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Abstract

Advancements in automatic speaker verification (ASV) can be considered to be primarily lim-
ited to improvements in modelling and classification techniques, capable of capturing ever larger
amounts of speech data.

This thesis begins by presenting a fairly extensive review of developments in ASV, up to the
current state-of-the-art with i-vectors and PLDA. A series of practical tuning experiments then
follows. It is found somewhat surprisingly, that even the training of the total variability matrix
required for i-vector extraction, is potentially susceptible to unwanted variabilities.

The thesis then explores the use of deep learning in ASV. A literature review is first made, with
two training methodologies appearing evident: indirectly using a deep neural network trained
for automatic speech recognition, and directly with speaker related output classes. The review
finds that interest in direct training appears to be increasing, underpinned with the intent to
discover new robust ‘speaker embedding’ representations.

Last a preliminary experiment is presented, investigating the use of a deep convolutional neural
network for speaker identification. The small set of results show that the network successfully
identifies two test speakers, out of 84 possible speakers enrolled. It is hoped that subsequent
research might lead to new robust speaker representations or features.
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Chapter 1

Introduction

Developing algorithms to automatically recognise individuals from their speech is a challenging

task. Speech recordings often contain large amounts of variability, which if not accounted for

can severely degrade performance. The sources of these variabilities can include speaker specific

types, for example a person’s emotional state, their health, and increase in age over time;

transmission channel variabilities, such as coder-decoders (CODECs), and background noise; as

well as other recording variabilities, such as phonetic content and duration.

A considerable amount of effort in addressing variability issues though has been made within the

specific field of automatic speaker verification (ASV) [1–3]. ASV is about determining whether

or not a speech recording was spoken by an enrolled speaker, compared with identification, which

is about determining who specifically produced a speech signal out of a set of enrolled speakers.

Figure 1.1 illustrates how the percentage equal error rates (EER) on English telephony speech,

over the period of 2004 to 2012, have decreased exponentially. The percentage EER corresponds

to when the decision threshold value set, results in an equal percentage of false alarms and miss

errors, and is often used as benchmark comparison score. The results presented are taken from

the NIST speaker recognition evaluations (NIST-SRE) [4], which have become an almost official

standard for comparing leading performances within the ASV research community.

In 2004, Figure 1.1 shows how the equal error rate (EER) performance on NIST-SRE English

telephony trials corresponded to around 7.73% [5], dropping exponentially to just under 1% in

2012 [6]. The focus of the latest 2016 evaluation [7] appears to have now moved on to addressing

non-English speech.

1
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Figure 1.1: Exponentially decreasing percentage equal error rates (%EER) across the NIST-SRE
trials from 2004 to 2012, with the 2004-05 %EER results taken from [5], and the remaining five
years taken respectively from [6,8–10].

Figure 1.1 shows how the performance on English telephony can be considered in many respects

to be at, or if not very close, to the upper achievable limit. However it can be argued that much

of the research focus from 2000 to achieve this performance, has been primarily about developing

speaker models, that are capable of capturing variabilities across vast labelled corpora. There has

been significantly less importance placed instead, with improving the understanding of speaker

specific structures, and in particular the pre-stage feature extraction process. The majority of

recognition systems still use cepstral features, which was originally proposed by Furui [11] in

1981.

This observation has as well been made recently in two eminent works. Garcia-Romero [12] for

example makes this observation at the beginning of his thesis from 2012, writing that, “Recent

advances in speaker recognition are not necessarily due to new or better understanding of speaker

characteristics that are informative or interpretable by humans; rather, they are the result of

improvements in machine learning techniques that leverage large amounts of data.”
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His statement has been followed by Todisco et al [13] at Speaker Odyssey 2016, where they

wrote that, “There is more to be gained from the study of features rather than classifiers.” They

found that by adopting this approach with their detection of spoofing attacks work, they were

able to achieve a 72% relative improvement with their newly proposed perceptually weighted

cepstral coefficients. Their paper subsequently won one of the best paper awards.

To help give some impression of the exponential increase in speech training data used, the 2004

NIST evaluation contained approximately 500k gross trials. However the 2012 evaluation has

since exceeded 114 million trials, equating to a 228 times increase in size. The extensive NIST

speech corpora are usually then expanded even further, by taking advantage of the large amounts

of available Switchboard corpora recordings [14].

Therefore despite the exceptional performance achieved with specifically English telephony, auto-

matic speaker verification algorithms still remain somewhat susceptible to sources of variability

that have not been included in the model training corpora [15], and especially when used in

challenging degraded environments.

Referring again to Garcia-Romero’s thesis [12], he shows how in less than benign conditions,

performance degrades rapidly. Adding babble noise at 6dB signal-to-noise ratio (SNR), he

found that the percentage equal error rate increased ten-fold relative to his original telephony

conditions, at 1.43% to 10.7%. If automatic speaker verification algorithms therefore are to

become truly robust to unwanted variabilities, then more robust features beyond cepstra are

very likely needed. This theme forms the underlying motivation of the work presented.

1.1 Thesis Structure

This thesis begins by first formerly presenting the automatic speaker verification (ASV) task.

Following this, a relatively in-depth review of the developments up to, and including the current
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state-of-the-art is presented. ASV has seen an extensive amount of research published, the

majority of which can be argued has been around developing speaker models and classification

techniques, and not in the development of features. However, it is important to review the

research published, in order to better understand the limits of the current techniques. The

review starts with the pioneering work by Reynolds [16], on Gaussian mixture models (GMMs)

with Bayesian adaptation during the mid-’90s, charting the advancements that have eventually

led to the development of i-vectors (identity) by Dehak et al [3], in around 2010.

Following the review a series of practical tuning experiments are presented. It is found that

published works can sometimes lack in specific implementation details. For example, a lot of

publications will usually only write that they have taken whole evaluation data sets, such as

NIST-SRE 2004 to 2006 [3], with little or no information on how they pre-screened or prepared

the data, and their specific feature calculation details. The experiments presented, attempt to

address some of these issues by repeating some of the leading published works [3, 12, 17], as

well as hopefully providing a much deeper practical understanding of the limits of the various

approaches.

Throughout the experiments presented a fixed reference test set is used. This is done to enable

performances differences to be compared between earlier and later recognition approaches. These

comparable set of experimental findings are hopefully of value, and contribution in particular,

to ASV research community.

With the underlying motivation to discover new robust features beyond cepstra and speaker

specific structures, this then motivates the initial investigation into the use of deep learning.

Pioneered by LeClun et al [18], deep learning has led to major advancements in image object

recognition [19], automatic speech recognition (ASR) [20], and machine translation [21].

Deep learning prescribes a data-driven automated methodology to discovering new features or

representations from the raw data [18]. Multiple levels of representation are learnt automatically,
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often using large multi-layer neural networks. The higher levels conceptually correspond to

higher levels of abstraction, that are hopefully representative of the decision class, and are

defined by composition of the lower level representations.

The success of deep learning within automatic speaker recognition research can be viewed as

being rather limited to date, when compared to the other communities mentioned. Specifically,

research investigating the direct training of deep neural networks (DNNs), where the output

classes to be discriminated between are speaker related, has appeared somewhat limited until

of very recent. This is most likely attributed to the often limited amounts of enrolment data

available per speaker [22]. However, the direct training effectively tasks DNNs to discover new

discriminative speaker features or representations.

One of the first published work that has investigated direct training, is by Variani et al [23] in

2014. However their work is limited to using recordings of speakers uttering the fixed phrase

“Okay Google”. Much of the related publications appear otherwise to either involve using a

pre-trained deep neural network for automatic speech recognition [24, 25]. It is only very re-

cently, that interest appears to be noticeably increasing, with in particular the work on “speaker

embeddings” by Snyder et al [26].

With this in mind, a review of work investigating deep learning in the context of ASV is pre-

sented. This is followed by some experimental work, investigating the direct training of a deep

convolutional neural network for speaker identification. The work presented is very much a first

attempt and much further work is needed, but it is hoped that this might lead in the not too

distant future to new robust speaker features, and insight. The thesis then closes with some

final conclusions and recommendations.



Chapter 2

Automatic Speaker Verification

This chapter outlines briefly speaker verification from an automated research perspective.

Speaker verification is defined as the task of determining whether or not an unknown speech

segment was spoken by some hypothesised speaker, and can be considered also as a speaker

detection problem. Figure 2.1 shows the typical likelihood ratio implementation adopted for

automated systems [1].

Figure 2.1: Likelihood ratio-based automatic speaker verification (ASV).

A raw speech segment Y is first passed through a front-end process to extract hopefully robust

speaker dependent features. These features are then processed as an hypothesis test between:

H0 : Y is from hypothesised speaker S,

H1 : Y is not from hypothesised speaker S.

In order then to verify whether or not speech segment Y was uttered by speaker S, the ratio of

6
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the two output hypothesis scores can be then taken:

∧ =
p(Y |H0)

p(Y |H1)





>= θ acceptH0

< θ rejectH0

(2.1)

where p(Y |H0) is the probability density function for the true hypothesis H0, evaluated for

observed speech segment Y . Conversely, H1 represents the false hypothesis, that speech segment

Y was not produced by the hypothesised speaker S.

If the likelihood ratio score exceeds or is equal to θ, then the true hypothesis is chosen, otherwise

the false hypothesis is selected.

Often the log of the likelihood ratio is then taken [1], giving the final summation score form:

∧ = log p(X|λhyp)− log p(X|λhyp) (2.2)

where p(Y |H0) in practice is represented by p(X|λhyp), with X a sequence of feature vectors

X = {x1, ..., xT } indexed at time t ∈ [1, 2...T ]; H0 is represented by model λhyp, and the alternate

hypothesis H1 by model λhyp.

The notional aim of automatic speaker verification research is to then develop both, robust

models to represent the two hypotheses, and feature extractors, such that decision error rate is

minimised.



Chapter 3

Gaussian Mixture Models (GMMs)

Automatic speaker verification (ASV) has advanced significantly since the mid-’90s, with major

advancements appearing to emerge roughly every four years. The technology applied to tele-

phony speech is now at a point where banks, and other large global corporations are beginning

to use it on a daily basis [27, 28]. It was argued at the start of this thesis, that the focus of

ASV research to achieve this level of performance, has been primarily around developing models

that are capable of capturing variabilities across vast labelled corpora. Probably the key early

instigating work in data-driven speaker models is by Reynolds et al [16], with their work on

adapted Gaussian mixture models (GMM) from the mid-’90s.

Reynolds et al [16] proposed the training of a single large GMM based universal background

model (UBM), to both capture unwanted variabilities, and to help counter for the often limited

amount of hypothesised speaker training data by maximum a-posteriori (MAP) adaptation. The

use of a single large UBM also importantly provides a probabilistic reference, allowing speaker

models to be compared. Such was the success of this formulation, it essentially still underpins

the current state-of-the-art with i-vectors [2, 3]. The purpose of this chapter is therefore to

review the theory and implementation of GMM-UBMs proposed by Reynolds et al [1, 16].

Figure 3.1 shows an expanded GMM-UBM verification system, with the non-hypothesised (a),

and hypothesised (b) pre-training model stages included. The diagram illustrates how Reynolds

et al [16] represents the non-hypothesised speaker model by a single large universal background

model. The main alternative approach according to Reynolds et al [16] at the time, was oth-

erwise to train a collection of individual non-hypothesised speakers, specific for each speaker.

8
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Figure 3.1: Likelihood-ratio based speaker verification system using a single reference universal
background model (UBM). The first stage to training a GMM-UBM ASV, is to (a) train a UBM
on a extremely last cohort of background speakers, enabling then, (b) hypothsised speaker models
to be then trained using MAP adapted EM training, relative to the central reference UBM. With
both the non-hypothesised UBM and hypothesised speaker models trained, likelihood-ratio based
speaker verification (c) can then be applied to unknown speech recordings, with yes/no decisions
made using a pre-defined score decision threshold.

However for applications requiring a large number of hypothesised speakers, preparing individual

background sets for each speaker is far from practicable [29].

Figure 3.1 illustrates how the first stage to training a GMM-UBM system, is to (a) train the

UBM against a large cohort of background speakers. This is implemented usually with the

expectation maximisation (EM) algorithm, with the amount of background speech material

used often vast. For telephony conditions, this often involves multiple NIST-SRE evaluation

and Switchboard corpora [3], equating to thousands of hours of speech data.
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Once a UBM has been successfully trained, it is then used in the maximum a-posteriori (MAP)

adapted EM training of hypothesised speaker models (b). The final non-hypothesised UBM and

the hypothesised speaker models, can then be used to perform likelihood ratio-based speaker

verification on unknown speech recordings (c), as defined previous by Equation 2.1.

Interestingly, the use of a single large background model was also proposed by Carey et al [30] at

a similar time, which they referred to as a ‘General Model’. The difference with their work is that

they proposed instead a text dependent hidden Markov model (HMM) speech recogniser, fed

into a form of recurrent neural network to make decisions. According to Auckenthaler et al [31]

however, subsequent work by Parris et al [32] investigating discrimination of phonemes for text

independent verification applications, was found not to perform as well as GMM-UBM based

equivalents. Auckenthaler et al concluded in [31] that this was most likely due to the training

data not being able to be shared between the Gaussian mixture components, in comparison

to GMM-UBM systems. With the HMM, the data is aligned to the phonetic classes, and

consequently no data is then able to be shared between the classes, leading to poorly trained

distribution model parameters.

The purpose of this chapter, is to primarily review the early pioneering works in data-driven

GMM-UBMs by Reynolds et al [16] during the mid-’90s. This chapter is structured, present-

ing each of the main processing stages in order of processing, beginning with the ‘Front-End

Processing’ on feature extraction. This is then followed with the UBM, how it is effectively a

large GMM-trained using the EM algorithm, and then the MAP adapted EM training of the

hypothesised speaker models. The chapter then concludes with briefly reviewing normalisation

techniques commonly applied to the output log-likelihood ratio scores. Research has found that

setting the verification decision threshold can be quite troublesome [29], with a number of score

normalisation proposed.
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3.1 Front End Processing (Feature Extraction)

Feature extraction is a critical first stage in an ASV system, transforming the raw speech signal

into vectors that elicit speaker specific characteristics, as well as removing redundancy. Nearly

all ASV systems proposed compute cepstral features [15, 16, 29], first proposed by Davis and

Mermelstein [33] for ASR, and then applied to speaker recognition by Furui [11].

Figure 3.2 shows the typical cepstral feature extraction process.

Figure 3.2: Cepstral feature extraction process.

Eight processing stages can be seen, through from the underlying audio signal to the final set of

feature vectors X.

(1) Pre-emphasis: The first stage is pre-emphasis, which is the appliance of a filter to enhance

the higher frequencies of the spectrum, defined in [29] as:

xp(t) = x(t)− a · x(t− 1) (3.1)

where a is usually between [0.95, 0.98].

Pre-emphasis is not always applied (illustrated here by the dashed line), the choice being em-

pirically defined on a case by case basis [29]. In this work, pre-emphasis has not been explored.

(2) Windowing: Speech signals are rapidly varying time signals, and as such in the second

stage, they are split into short-time frame windows [29]. A hamming or hanning window is then
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applied to each window, tapering the speech signal to reduce side effects. The window size used

here throughout is 32ms, intentionally chosen to be a power of two, with 256 samples at 8kHz

sampling frequency for the next Fourier transform stage. The increment is 16ms giving 50%

overlap.

(3) VAD: Voice activity detection is required to remove non-speech and silence time frames,

that would otherwise lead to degraded speaker verification decisions. In noisy conditions, the

robustness of the VAD is likely to be critical to achieving good performance, with it acting as a

filter quite early into the process.

(4) |DFT|: The Fourier transform is next applied and its modulus taken, giving an estimate of

the power spectrum.

(5) Filterbank: The power spectrum is then multiplied through a filterbank, which comprises

a series of bandpass filters often triangular shaped, and spaced either linearly or perceptually

according to the Bark/Mel scale [29].

The Mel scale is given by the equation below, and is said to reflect human perception of pitch:

fMel = 1000 · log(1 + fLIN/1000)

log2
(3.2)

The filterbank used here is Mel spaced with nominally 26 triangular filters, but a more appro-

priate number for future research on telephony band-limited speech is possibly around 20 [34].

(6) Log: The logarithm of the filterbank outputs is then taken, to better reflect human percep-

tion of loudness. It is likely also applied to compensate for the natural downwards tilt of the

magnitude spectra with frequency.

(7) DCT: To then transform into the cepstral domain, the discrete cosine transform (DCT)

is taken. This effectively is a decorrelation on top of the Fourier transform, and a dimension
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reduction. Typically a higher order of 19 coefficients is retained [3, 12].

(7) Centre & Reduce: The cepstral coefficients are then centralised to the mean on a recording

basis, which is found from a practical experience here to be critically important for achieving

good performance. Early work by Reynolds in [35] showed that cepstral mean subtraction gave

a 25% percentage increase in performance, removing potential convolutional noise. He also

compared Rasta filtering as alternate process, finding that whilst this helped, it was no better if

not worse than cepstral mean removal. The cepstra is also sometimes then “reduced” or variance

normalised [29]. Cepstral mean subraction with variance normalisation (CMV) is applied here.

3.2 Dynamic Feature Extraction

In order to try and incorporate dynamic time varying information into the models, delta and

double delta cepstra are normally computed. They are usually calculated as a polynomial

approximation, spanning a finite duration either side to the current feature vector.

The defining equations taken from [29] are as follows

δcf (t)

δt
≈ ∆cf =

∑l
k=−l k · cf+k∑l

k=−l |k|

δ2cf (t)

δ2t
≈ ∆∆cf =

∑l
k=−l k

2 · cf+k∑l
k=−l k

2

(3.3)

where k defines the time frame and f the cepstral feature order. Both Reynolds [16] and Garcia-

Romero [12] set l as two frames either side of the current feature vector [16].

The open source Voicebox toolkit created by Brookes [36] used here to extract the cepstral

features for all experiments, uses four time frames either side to compute the first order, and
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one frame either side for the second order differential.

3.3 The Universal Background Model

The universal background model (UBM) is a large Gaussian mixture model, typically consist-

ing of between 512 to 2048 mixture components, and is used to compute the required non-

hypothesised speaker likelihood p(X|λhyp) defined in Equation 2.2.

Following Reynolds et al [16], a GMM probability density used to estimate a likelihood function,

can be defined as the weighted linear combination over M unimodal Gaussian densities

p(X|λ) =

M∑

i=1

wipi(X) (3.4)

where the M Gaussian densities pi(X) are defined as

pi(X) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(X − µi)′(Σi)

−1(X − µi)
}

(3.5)

with wi representing the weights (which must satisfy the constraint
∑M

i=1wi = 1, and are strictly

non-negative); µi, the mean, being a vector D x 1; and Σi, the D x D covariance matrix. The

parameters of a Gaussian mixture model thus are denoted by Reynolds [16] as λ = {wi, µi,Σi}.

The likelihood model training criterion can then be defined as the cumulative product across all

feature vector instances, X = {x1, ..., xT }:

p(X|λ) =
T∏

t=1

p(xt|λ) (3.6)
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where again often the logarithm is taken, giving a summation form:

logp(X|λ) =
T∑

t=1

log p(xt|λ) (3.7)

The UBM is trained in practice using the expectation-maximisation (EM) algorithm, which

iteratively refines the GMM parameters to locally maximise the likelihood p(X|λ).

3.4 UBM-MAP Speaker Model Training

The speaker specific models are trained via a Bayesian maximum a-posteriori (MAP) adaptation

procedure, relative to the UBM. This procedure was proposed by Reynolds [16], following the

original MAP procedure published by Gauvain and Lee [37], and is similar to the EM algorithm,

but differs in the maximisation stage.

By defining the speaker models in reference to the UBM, helps to alleviate the small amount of

training data usually only available to train the individual models. UBM’s typically are trained

with more than 1000 hours of audio [3,12], meaning that they are well defined. Crucially as well,

the UBM in effect provides a probabilistic reference, allowing speaker models to be compared.

The MAP training also helps to provide a tight coupling between the UBM and the speaker

models [29], improving performance.

Figure 3.3 re-drawn from Reynolds [16], helps to illustrate this process, with a fictional two

dimensional feature space. The well trained UBM model mixture components can be seen

to be adapted dependent on whether there is a high count of speaker specific training data.

Components C1 and C2 for example do have a high amount and are adapted accordingly, but

C3 does not, and is not changed.

It is useful to derive the MAP training equations with respect to the original Bayes’ rule, because
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Figure 3.3: Illustration of how the speaker model Gaussian components are referenced relative to
the universal background model (UBM) via maximum a-posteriori adaptation (MAP). Gaussian
components C1 and C2 are opportunely adapted by the speaker enrolment features available,
with C3 left defined by the original UBM.

it sets the ground for the current state-of-the-art i-vector [3] presented later. Taking Bayes’ rule:

posterior =
prior · likelihood

evidence

P (A|B) =
P (A) · P (B|A)

P (B)

(3.8)

To train a speaker model (λ), Reynolds [16] defines an EM style MAP modified training proce-

dure. Taking that xt instead now represents the training features from a hypothesised speaker,

it is first aligned with the UBM mixture components:

p(i|xt) =
wipi(xt)∑M
j wjpj(xt)

(3.9)

where wi represents the prior weight, for the i’th mixture component spanning 1 to M , and the

likelihood probability is calculated by the Gaussian probability density function:

pi(xt) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(xt − µi)′(Σi)

−1(xt − µi)
}

(3.10)
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After the initial alignment of the observation vectors xt with the UBM, the sufficient statistics

of the the posterior distribution p(i|xt) are computed:

ni =

T∑

t=1

p(i|xt)

Ei(x) =
1

ni

T∑

t=1

p(i|xt)xt

Ei(x
2) =

1

ni

T∑

t=1

p(i|xt)x2
t

(3.11)

This Reynolds notes is the same as the expectation step of the EM algorithm. However the next

stage, where the model parameters are updated to maximise the likelihood is different.

Reynolds [16] adapts the old UBM model mixture component parameters with the new expec-

tations, when computing the new model parameters:

ŵi = [αwi ni/T + (1− αwi )wi]γ

µ̂i = αmi Ei(x) + (1− αmi )µi

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂2
i

(3.12)

A scale factor γ is used to ensure that all adapted mixture weights sum to unity.

The adaptation is controlled by the data-dependent mixing coefficient αpi , p ∈ {w,m, v}, and is

defined as:

αpi =
ni

ni + rp
(3.13)

where rp is a fixed relevance factor for parameter p. As illustrated earlier in Figure 3.3 with the

conceptual two dimensional feature space, Equation 3.13 shows how mixture components with

more speaker training data will have a larger αpi , and as such will be adapted more.

The relevant factor rp controls how much the speaker training data adapts the mixture compo-
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nents. The value used here is 19, following the Microsoft Research (MSR) Identity toolbox [38].

Reynolds et al [16] report that they find relevance factors in the range of 8 to 20 to be insensitive

to ASV performance. They decided on a value of 16.

Further to this, according to Bimbot et al [29], it is found that making r model parameter

dependent also brings little benefit. It is found as well that typically adapting only the means

brings real benefit. This again was empirically shown by Reynolds et al in [16].

The MAP adaptation procedure proposed by Reynolds can be viewed intuitively, as the linear

trade-off between the prior (initialised with the UBM), and the likelihood given the speaker

specific training features X available:

p(λ|X) ∝ arg max
λ

(logp(X|λ) + logp(λ)) (3.14)

The MAP concept above still in fact forms the foundation of current state-of-the-art i-vectors

[2, 3], which are defined on the GMM-UBM ASV.
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3.5 Score Normalisation

With the UBM and speaker models trained, GMM-UBM speaker verification can be applied. An

unknown segment of speech audio can be processed against a hypothesised speaker model and

the UBM, with the difference between the outputted model probability scores computed using

Equation 2.2. If the score exceeds a set threshold, then the hypothesised speaker is accepted or

otherwise rejected.

Unfortunately research has found setting this decision threshold to be quite troublesome [29].

The models are ultimately modelled on cepstral features, which are in themselves highly sus-

ceptible to unwanted variabilities. Some examples of these unwanted variabilities include

• speaker variabilities: mood, emotion, health, and fundamental frequency;

• transmission channel variabilities: CODECs, background noise, and handset;

• and other variabilities: duration, and phonetic content.

According to Bimbot et al [29], score normalisation was thus introduced to try compensate for

this unwanted variability, in an attempt to make the setting of the decision threshold speaker-

independent. In their journal paper, they make reference to the study by Li and Porter [39],

who they write observed large variances in the target speaker score (intra-speaker scores), and

impostor scores (inter-speaker scores) during trialling.

From their study, they proposed the use of the impostor score distributions to normalise the

outputted speaker model scores respectively:

∧̂λ(X) =
∧λ(X)− µλ

σλ
(3.15)

where µλ and σλ are the mean and standard deviation normalisation parameters for speaker

model λ, derived from an impostor score distribution.
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This formulation led to an extensive amount of score normalisation research, including zero

score normalisation (Z-Norm) above, handset normalisation (H-Norm) by Reynolds et al [16],

test normalisation (T-Norm) by Auckenthaler et al [40], cellular normalisation by Reynolds for

NIST 2002 [29], and combinations.

The issue with unwanted speaker and channel variabilities is still very much a contested topic.

In more recent times this has led to techniques such as probabilistic linear discriminant anal-

ysis (PLDA) [41, 42] for scoring, which effectively is a factor analysis implementation. This

is discussed in the following chapter, in association with i-vectors [3], which build upon the

GMM-UBM work of Reynolds [16].



Chapter 4

I-Vectors

The success of adapted Gaussian mixture models (GMMs) by Reynolds et al [16] highlighted the

potential of data-driven approaches. Their work and others related [31, 32], spawned in effect

the next decade of research into data-driven modelling techniques, culminating with i-vectors in

2010 by Dehak et al [3]. I-vectors have since largely remained as the state-of-the-art, with only

in recent years their successful fusion with deep learnt automatic speech recognition [22, 43].

This chapter reviews i-vectors by Dehak et al [3], and works by Kenny et al [2] prior to deep

learning.

I-vectors conceptually build upon the maximum a-posteriori (MAP) adaptation of hypothesised

speaker models proposed by Reynolds et al [16], with factor analysis. The use of MAP adaptation

relative to the UBM helps to mitigate the often limited amounts of hypothesised speaker training

material available, by providing a form of model regularisation. The UBM also provides a

probabilistic reference allowing speaker models to be better compared.

Equation 4.1 below is taken from [22, 44], and succinctly defines the i-vector, as the maximum

a-posteriori (MAP) point estimate of the latent vector w. The t-th observation vector xt is

assumed to be generated by the GMM defined:

xt ∼
∑

c

γctN (µc + Tcw,Σc) (4.1)

where c represents the Gaussian mixture component index; Tc is a matrix representing a low-rank

subspace known, known as the total variability subspace from which the means of each Gaussian

are adapted to a speech recording; w is a normal-distributed latent vector that is recording

21
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specific, and is referred to as an i-vector, µc and Σc are the mean and covariance matrix of the

unadapted c-th Gaussian of the speaker population (note that Σc can be updated [2], but in

practice this supposedly found to bring little benefit [22]); and γct represents the alignment of the

observation xt to Gaussian component c at time t, or weight, and is given by γct = p(c|xt). The

weights γct, covariance matrix Σc, and offset mean µc, are derived in practice from a universal

backgound model (UBM) [12,45].

Following Garcia-Romero’s description [12], Equation 4.1 illustrates how the means of the GMM

are assumed to be random vectors generated by a second stage of generative modelling. A

supervector is constructed, by concatenating together all the mixture component means M =

[MT
1 , ...,M

T
C ]T , which is assumed to obey the linear model:

M = µ+ Tw (4.2)

where: M is of dimension CFx1, with C number of mixture components, and feature dimension

order F ; and that the prior distribution of the mean supervector M is Gaussian, with mean µ

and covariance TT ∗.

The total variability subspace captures both the desired speaker, and undesired variabilities.

The matrix T (CFxKT ) defines the mapping from the high dimensional CF supervector space,

with the eigenvectors of TT ∗ notionally defining the KT principle eigenvectors of the supervector

covariance matrix [2]. The dimension of the total variability factors w or i-vector is KTx1.

Prior to i-vectors, Kenny et al [46] proposed the Joint Factor Analysis (JFA) model, where the

factor analysis model of the means of each mixture component is expanded to:

M = µ+ Ux+ V y +Dz (4.3)

with: U (CFxKU ) and V (CFxKV ) matrices of low-rank, representing the speaker and channel
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variability subspaces respectively; x (KU x 1) and y (KV x1) are normal-distributed independent

latent vectors representing the speaker and channel dependent factors; and D is a diagonal

CFxCF matrix representing residual variability not captured by the two other components,

with z (CFx1) representing the respective normal-distributed latent residual-factors.

JFA approximately halved the percentage equal error rate of GMM-UBM verification based

systems, from notionally 8% down to 4% [17]. Dehak et al [3] states that the original motivation

to investigate i-vectors, utilising a single total variability subspace, was because he found that

the channel factors (x) of the JFA model, in fact contained speaker information. During JFA

scoring, Dehak et al [3] describes how the likelihood of a test utterance feature vector is computed

against a channel-compensated speaker model (M−Ux), implying thus a potential loss of speaker

discriminative information.

It should also be notably mentioned, that performances similar to JFA were also being achieved

using nuisance attribute projection (NAP) [47]. The key concept described in [48] behind NAP,

is to remove dimensions from a support vector machine (SVM) expansion, which are irrelevant

to the speaker recognition task. NAP was developed independently in parallel to JFA.

The intention of this chapter is to review the theory and implementation behind i-vectors. As

such, the remainder of this chapter is structured, with first a review of the training process

to estimate the total variability matrix (T-matrix), before then summarising the key T-matrix

training steps and extraction of i-vectors from speech utterances. The chapter then concludes

by reviewing verification procedures, and in particular probabilistic linear discriminant analysis

(PLDA) [41] scoring, which has been key to achieving state-of-the-art performance.
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4.1 Training the T-Matrix

In this sub-section, the total variability matrix (T-matrix) training procedure is presented.

The T-matrix is trained iteratively, using typically the expectation maximisation (EM) algo-

rithm. Dehak et al [3] writes that the same procedure used to estimate the eigenvoice matrix V

in [2], is used. Equation 4.4 is taken from [2], and defines the eigenvoice matrix V within the fa-

miliar mean supervector maximum a-posteriori (MAP) model, for speaker s; and the unadapted

speaker population offset µ, usually defined by a universal background model (UBM).

M(s) = µ+ V y(s) (4.4)

The one significant difference with the eigenvoice matrix V Dehak et al [3] writes, is that

all the training recordings from the same speaker are considered as belonging to the same

speaker. However when training the T-matrix, they pretend that all the training recordings

from the same speaker are derived from different speakers. The objective is to estimate the

total variability subspace, independent of speakers and channels. For further reference, a useful

practical implementation guide is also given by Lei in [45].

Thus following the eigenvoice matrix V training by Kenny et al [2], and substituting V for T ;

they proposed the likelihood objective function to maximise, similar to Reynolds [16], as

∏

s

PT,Σ (X(s)) (4.5)

where PT,Σ (X(s)) is the probability of the training observation feature vectorX(s), for speaker s,

given the GMM model λ(s) corresponding to the supervector containing Tw(s) with unadapted

covariance matrix Σ (note again that Σ can be updated [2], but in practice this is supposedly

found to bring little benefit [22]). The probability is then extended across all speakers s by the
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taking the product.

The training procedure proposed by Kenny et al [2], can be split into three stages. The first

stage is a preparation stage, whilst the second and third correspond to the iterative expectation

maximisation (EM) algorithm:

(1) Prepare the required zero’th, first, and second order statistics expanded into matrices.

(2) The expectation step of the EM algorithm: the posterior distribution of the latent i-vector

w(s) (equivalent to y(s) with eigenvoices) is calculated, using the current alignment of

speaker s’s feature vector, the current estimate of T , and the prior N(y|0, I).

(3) The maximisation step: update T by a linear regression, using the new posterior distribu-

tion estimates of w(s).

Fundamentally the training procedure can be viewed as fitting feature observations to the Gaus-

sian component densities, such that the conditional likelihood criterion previous (Eq. 4.5) is

maximised. Thus following Kenny et al’s [2] observations, and taking the standard GMM model

equation to be maximised

∑

s

∑

c

(
Nc(s)log

1

(2π)F/2|Σc|1/2
− 1

2

∑

t

(xt −Mc(s))
∗Σ−1

c (xt −Mc(s))

)
(4.6)

where s ranges over all speakers in the training set, c spans all mixture components, and t is

summed over all time frames xt aligned with c for speaker s; if the covariance matrix Σ is already

estimated, then the problem can be seen to reduce to a least mean squares minimisation exercise

of fitting Gaussian densities

∑

t

(Xt −Mc(s))
∗ (Xt −Mc(s)) (4.7)

where Σ−1
c can be dropped.
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Unfortunately fitting the Gaussian densities is complicated because the true Gaussian state

structure for each speaker s is hidden, and the GMM model parameters are not fully sufficient

to explain λ(s) relative to the training observation vectors X(s).

More practically explained, the Gaussian component densities will have regions of overlap, lead-

ing to regions of uncertainty as to how to best fit the training observations, and therefore giving

rise to the presence of latent parameters. This is also further complicated by the use of MAP

adaptation, requiring a maximum criterion trade-off between the original model prior parameters

values p(λ(s)), and new training data likelihood updates p(X(s)|λ(s)) [16,37].

To address these difficulties, Kenny et al [2] follow Reynolds et al’s [16] and Gauvain and Lee’s

[37] approach, by utilising the EM algorithm to train the T matrix. The EM algorithm is used

to iteratively estimate T , such that the likelihood criterion
∏
s PT,Σ(X(s)) accrued across all

training speakers s is maximised.

Kenny et al [2] propose repeatedly estimating in turn the expectation of the latent parameters

(i-vectors w(s)) whilst holding all the model parameters constant, and then subsequently feeding

the new latent parameter estimates back in to update the model parameter estimates (the T

matrix). The EM process is repeated until
∏
s PT,Σ(X(s)) converges at a maximum value.

The EM training of the T-matrix is next presented in depth, following the eigenvoice V matrix

training procedure in [2], whilst also remembering that all training recordings are treated as if

they were all produced by different speakers instead.
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4.1.1 Stage 1 - Prepare Required Statistics

For each training speaker recording, the zero’th, first and second order statistics are required:

Nc(s) =
∑

t

p(c|xt)

Fc(s) =
∑

t

(xt − µc)

Sc(s) =
∑

t

(xt − µc) (xt − µc)∗

(4.8)

where c is the mixture component, s is a speaker recording, t is the time frame, and µ is the

speaker independent mean offset, typically defined by a pre-trained UBM.

Expanding into matrices:

NN(s) =




N1(s) ∗ I
. . .

NC(s) ∗ I




FF (s) =




F1(s)

...

FC(s)




SS(s) =




S1(s)

. . .

SC(s)




where NN(s) is the zero’th order diagonal matrix, of dimension CDxCD, with C mixture

components and D feature dimension order; FF (s) represents the first order matrix of length

CD, centralised to the speaker independent mean offset (UBM), and I is the identity matrix;

and SS(s) represents the second order diagonal matrix of dimension CDxCD.
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4.1.2 Stage 2 - Calculate Posterior Expectation of w(s) (EM Algorithm)

The posterior distribution of the latent vector w(s), is calculated using the current alignment

of the speaker s’s training feature data X, the current estimates of T , and the prior N(y|0, 1).

On the first iteration T is randomly initialised.

Kenny et al [2] derive the required expectation of w(s) from Bayes’ posterior equation below

(dropping the reference to s):

PT (w|X) ∝ PT (X|w)N(w|0, I) (4.9)

or in notation used so far:

p(w|X,T ) ∝ p(X|w, T )p(w) (4.10)

where p(w|X,T ) represents the current estimate of posterior distribution of w to be calculated,

and T the model parameters to be estimated.

Kenny et al gives a full derivation in Appendix-Proof of Proposition 1 of [2], but essentially

solves Eq. 4.9, by presuming the distribution form:

p(w|X(s), T ) ∝ exp
(
−1

2
(w − a(s))∗l(s)(w − a(s))

)
(4.11)

where a(s) represents the required posterior mean expectation of the latent vector w(s), which

they define as:

a(s) = l−1(s)T ∗Σ−1FFx(s) (4.12)

and l(s) is the covariance matrix of the posterior of w(s), defined as:

l(s) = I + T ∗Σ−1NN(s)T (4.13)
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Kenny et al derive a(s) by essentially beginning from Equation 4.9, solving for:

PT (w|X) ∝ PT (X|w)N(w|0, I) (4.14)

where the reference to s was dropped for ease of notation.

They then define PT (X|w) in Appendix-Lemma 1 as:

log PT ,Σ (X(s)|w(s)) = GΣ(s) +HT ,Σ (s,w(s)) (4.15)

with GΣ(s) representing a Gaussian log likelihood function given by expression:

log p(x|s) = GΣ(s) =
C∑

c=1

(
Nc(s)

TF
log

1

(2π)D/2|Σc|1/2
− 1

2
tr
(
Σ−1
c Sc(s)

))
(4.16)

where TF represents the total time frames, and HT ,Σ(s,w) containing the required hidden w

terms is defined as:

HT ,Σ(s,w) = w∗T ∗Σ−1FF (s)− 1

2
w∗T ∗NN(s)Σ−1Tw (4.17)
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The proof given to derive HT ,Σ(s,w) involves multiplying out the exponent terms from log

likelihood distribution p(x|w(s)). First they define some useful terms, and again drop the

reference to s. They let O = Tw, where Oc denotes the c’th block of O, with each block a Dx1

vector in size (D is the feature dimension order), and define the second order statistic centred

additionally by Oc:

Sc(Oc) =
∑

t

(xt − µc −Oc) (xt − µc −Oc)∗ (4.18)

The log likelihood distribution p(x|w) can then be defined using the two newly defined terms

as:

p(x|w) =
∑

c

(
Nc

1

(2π)D/2|Σc|1/2
− 1

2
tr
(
Σ−1
c Sc(Oc)

))
(4.19)

To derive HT ,Σ(s,w), Kenny et al expand out the exponent term as follows (remembering the

second order statistic Sc(s) from Equations 4.8 defined earlier, and Nc accounting for missing

required summation over time for (OcO
∗
c ):

Sc(Oc) = Sc − FcO∗c −OcF ∗c +NcOcO
∗
c (4.20)

re-including the trace

tr
(
Σ−1
c Sc(Oc)

)
= tr

(
Σ−1
c Sc

)
− 2FcΣ

−1
c Oc +O∗cΣ

−1
c NcOc (4.21)

where the trace of Σ−1
c Sc is only required because the matrices in practice are diagonal; the two

FcO
∗
c and OcF

∗
c terms can be grouped because they are equal scalars when multiplied out; and

O∗cΣ
−1
c NcOc comes from the transpose trace property tr(ABB∗) = tr(B∗AB).
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Summing across all Gaussian mixture components leads to the final proof of HT ,Σ(s,w), with
∑

c

tr
(
Σ−1
c Sc

)
corresponding to GΣ(s):

∑

c

tr
(
Σ1
cSc(Oc)

)
=
∑

c

tr
(
Σ−1
c Sc

)
− 2O∗Σ−1FF + O∗NNΣ−1O (4.22)

Having derived HT ,Σ(s,w) containing the pertinent latent vector w terms, Kenny et al sub-

stitutes back into their required Bayesian posterior distribution definition for w (dropping the

reference to s):

PT (w|X) ∝ PT (X|w)N(w|0, I)

∝ exp
(
w∗T ∗Σ−1FF − 1

2
w∗T ∗NNΣ−1Tw − 1

2
w∗w

)

∝ exp
(
w∗T ∗Σ−1F −

(
1

2
w∗
[
T ∗NΣ−1T + I

]
w

))

= exp

(
w∗T ∗Σ−1F − 1

2
w∗lw

)

∝ exp
(
−1

2
(w − a)∗l(w − a)

)

By assuming that the posterior distribution pT (w|X) must be of a Gaussian form, they solve to

find the required posterior mean value a, given covariance matrix l−1:

a(s) = l−1(s)T ∗Σ−1FF (s) (4.23)

The original mean MAP adapted i-vector equation (Eq. 4.2), can thus be expanded to its full

form:

M(s) = Tw(s) +m

ˆM(s) = T l−1(s)T ∗Σ−1FFX(s) +m

(4.24)
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4.1.3 Stage 3 - Update T via Maximisation (EM Algorithm)

The T matrix is next updated by a linear regression procedure, where the hidden variable w(s)

now plays the role of an explanatory variable. Kenny et al gives a very lengthy derivation in the

Appendix of [2], under Proof of Proposition 3.

Kenny et al otherwise defines the new estimates of T (and Σ), as the solution of:

∑

s

(NN(s)TE[w(s)w∗(s)]) =
∑

s

(FF (s)E[w∗(s)]) (4.25)

where s represents each training speaker (remembering for T-matrices, different recordings from

the same speaker are treated as if they were produced by a different speaker); and E[w(s)], and

E[w(s)w∗(s)] are the first and second order moments of w(s), calculated from the new posterior

distribution expectation estimates.

To solve Equation 4.25, Kenny et al first note that NN(s) is diagonal, and equate the ith row

of the left hand side to the ith row of the right, for i = 1, ..., CD (where C is the total number

of components, and D the feature dimension order). This gives

T i
∑

s

(
NN i(s)E[w(s)w∗(s)]

)
=
∑

s

(
FF i(s)E[w∗(s)]

)
(4.26)

where T i is the ith row of T , and similarly for NN i(s) and FF i(s).

They then go further, by making the observation that the zero’th order (diagonal) matrix NN(s)

values are the same, for each respective Gaussian mixture component. Letting i then be of the

form (c− 1)D + d, where 1 ≤ c ≤ C and 1 ≤ d ≤ D, then NN i(s) = Nc(s), gives

T i
∑

s

(NNc(s)E[w(s)w∗(s)]) =
∑

s

(
FF i(s)E[w∗(s)]

)
(4.27)
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T is then solution of a (KTxKT ) system of equations, where each row T i is calculated inde-

pendently in turn, and NNc is effectively a scalar value for each Gaussian mixture component.

First re-arranging for clarity, and noting that the bracketed left terms multiply out to a scalar

allowing [∑

s

(NNc(s)E[w(s)w∗(s)])

]
T i =

∑

s

(
FF i(s)E[w∗(s)]

)
(4.28)

The solution for T then is

T i =

(∑

s

(NNc(s)E[w(s)w∗(s)])

)−1

∗
(∑

s

(
FF i(s)E[w∗(s)]

)
)

(4.29)

where E[w∗(s)] =
(
l−1(s)T ∗Σ−1FFX(s)

)∗
, and E[w(s)w∗(s)] = l−1(s), which can be calculated

from the new posterior distribution estimates from the expectation (EM) stage.
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The proof of the system equation 4.25 is defined in the Appendix of [2] under Proof of Proposition

3, and involves constructing an EM auxiliary function, with w as the hidden variable. The

theoretical construct involving Jensen’s inequality is first reviewed, before then following the

derivation given Kenny et al [2].

Following the EM tutorials by Andrzejewski [49], Mackey [50], and Ng [51], the objective is to

maximise the likelihood of the observed data x given model parameters λ. Letting w represent

a latent variable, then the conditional log likelihood can be defined as (dropping the reference

to s):

log (p(X|λ)) = log

(∑

w

p(X,w|λ)

)
(4.30)

Defining then some auxiliary distribution q(w) for w, this leads to

log (p(X|λ)) = log

(∑

w

q(w)
p(X,w|λ)

q(w)

)
(4.31)

A lower likelihood is then formalised using Jensen’s inequality for a concave function, given that

it is not possible to directly maximise p(X|λ) due to the latent model variable w

f(E[X]) ≥ E[f(X)] (4.32)

which then substituting Equation 4.31 into Jensen’s inequality

log(p(X|λ)) = log

(∑

w

q(w)
p(X,w|λ)

q(w)

)

≥ Ew∼q
[
log

(
p(X,w|λ)

q(w)

)]

≥
∑

w

q(w)log

[
p(X,w|λ)

q(w)

]

≥
∑

w

q(w)log (p(X,w|λ))−
∑

w

q(w)log (q(w))
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Thus the following observation can be drawn

log(p(X|λ)) ≥ Ew∼q [log (p(X,w|λ))]︸ ︷︷ ︸
Expected Complete Log−Likelihood

+Ew∼q [log (q(w))]︸ ︷︷ ︸
Entropy H(w)

= A(w, λ) (4.33)

where the lower defined limit comprises of the expected complete log-likelihood, with respect to

w drawn from distribution q; and the entropy or uncertainty H(w) of latent variable w. This

lower bound is typically referred to as an auxiliary function, defined here as A(w, λ).

The EM algorithm in its general form is precisely then coordinate ascent on the two variables

w and λ, of the log-likelihood lower bound A(w, λ) [50]

(1) E-Step: q(i+1)(w) = argmaxqA(w, λi)

(2) M-Step: λi+1 = argmaxλA(w(i+1), λ))

where i represents the iteration number.

The M-Step is thus the maximisation of the auxiliary function A(w, λ), defined by Equation

4.33 with respect to parameters λ. This maximisation is equivalent to maximising the expected

complete log-likelihood (ECLL) under q, provided the entropy or uncertainty H(w) can be

minimised.

The expectation E-Step is used to derive an optimal value for q(w), which the solution is

qi+1(w) = p(w|X,λi) (4.34)
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This solution for q(w) can be derived as follows

log(p(X|λ)) ≥ Ew∼q
[
log

(
p(X,w|λ)

q(w)

)]

≥ Ew∼q
[
log

(
p(w|X,λ)p(X|λ)

q(w)

)]

≥ log (p(X|λ))− Ew∼q
[
log

(
q(w)

p(w|X,λ

)]

≥ log (p(X|λ))−KL
(
p(w|X,λ)

q(w)

)
(4.35)

≥ log (p(X|λ))−KL
(
p(w|X,λ)

p(w|X,λ)

)

≥ log (p(X|λ))

The solution then for q(w) involves minimising the Kullback-Leibler (KL) divergence, by setting

q(w) = p(w|X,λ). Substituting this solution for q(w) leads to inequality becoming an equality.

Given that the log-likelihood provides an upper limit for the auxiliary function for all q(w), the

equality result indicates that choice of q(w) must be maximal.

Finally returning to Kenny et al’s derivation, they first begin by constructing the required

Jensen’s inequality for the EM algorithm. Referring to the earlier stated definition equations

f(E[x]) ≥ E[f(x)]

≥
∑

w

q(w)(i+1)log

(
p(w|λ(i), X)

q(i+1)(w)

)

and substituting in the required terms gives

f(E[X]) ≥
∑

s

∫ (
log

PT,Σ(X(s), w))

PT0,Σ0(w|X(s))

)
PT0,Σ0(w|X(s))dw (4.36)

where T0 and Σ0 represent the currents estimate for T and Σ.
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Kenny et al then from this define their required auxiliary function to be maximised, with respect

to T .

A =
∑

s

Ew∼q [logPT,Σ(X(s)|w(s))] (4.37)

The derivation of this can be explained by the KL equality derivation, Equation 4.35 previous,

resolving to posterior probably of observation vectors X given model λ. This can be re-written

in the earlier proof definition format

A =
∑

s

Ew∼q [logP (X(s)|λ(s) = {w(s), T,Σ})]

Kenny et al then refer back to their previous general definition for the logPT,Σ(X|w(s)) (in

Lemma 1 of the Appendix), displayed previously here in Equation 4.15 as

A =
∑

s

GΣ(s) +
∑

s

Ew∼q [HT,Σ(s, w(s))] (4.38)

They first term does not contain any reference to T , and so will be disappear when differentiated

with respect to T . Kenny et al thus focus on the second term defined as

∑

s

Ew∼q [HT,Σ(s, w(s))] =
∑

s

Ew∼q

[
w∗(s)T ∗Σ−1FF (s)− 1

2
w∗(s)T ∗NN(s)Σ−1Tw(s)

]
(4.39)

resolving to a more suitable form for matrix differentiation, beginning with the second term

=
∑

s

(
Ew∼q[w

∗(s)]T ∗Σ−1FF (s)
)
−
(

1

2
tr
(
T ∗NN(s)Σ−1TEw∼q[w(s)w∗(s)]

))
(4.40)

since 1
2w
∗(s)Bw(s) = 1

2 tr(w
∗(s)Bw(s)) holds true because the end result is a scalar, where B

represents here T ∗NN(s)Σ−1T , and w(s) importantly is a vector. This is then further translated

to 1
2 tr(w

∗(s)Bw(s)) = 1
2 tr([Bw(s)]w∗(s)), since the trace is invariant with the order of summa-
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tion (property: tr(XY ) = tr(Y X), where X is a n x m matrix, and Y is a m x n matrix). Kenny

et al then re-write the expectation within the second term, since both the trace and expectation

are linear operators.

Next they re-write the first term to required differential form, whilst also factorising out the

expectation and Σ, and changing slightly the ordering of the second term (again the property:

tr(XY ) = tr(Y X)), giving the required form for differentiation

=
∑

s

tr

(
Σ−1

(
FF (s)Ew∼q[w

∗(s)]T ∗ − 1

2
NN(s)TEw∼q[w(s)w∗(s)]T ∗

))
(4.41)

where the first term follows from

Ew∼q
[
w∗(s)T ∗Σ−1FF (s)

]
= tr

(
Ew∼q

[
w∗(s)T ∗Σ−1FF (s)

])

= tr
(
[E[w∗(s)]T ∗]

[
Σ−1FF (s)

])

= tr
([

Σ−1FF (s)
]

[Ew∼q[w
∗(s)]T ∗]

)

= tr
(
Σ−1 (FF (s)Ew∼q[w

∗(s)]T ∗)
)

Kenny then differentiates Equation 4.41 with respect to T , setting the gradient to 0, to obtain

the required system of normal equations (Equation 4.25 previous), which can be solved for the

update of T .

Taking the matrix differentiation identities

δBθ∗

δθ
= B

δθBθ∗

δθ
= θ(B +B∗) (4.42)

where B is a matrix that is not a function of variable θ.
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Differentiating Equation 4.41 using these two identities gives,

=
∑

s

tr
(
Σ−1 (FF (s)Ew∼q[w

∗(s)]−NN(s)TEw∼q[w(s)w∗(s)])
)

(4.43)

Kenny et al then write that if Y represents some matrix with the same dimensions as T , that

the derivative with respect to T in the direction of Y is given by

=
∑

s

tr
(
Σ−1 (FF (s)Ew∼q[w

∗(s)]−NN(s)TEw∼q[w(s)w∗(s)])Y ∗
)

=
∑

s

tr (M(s)Y ∗)

where M(s) effectively represents a transformation matrix.

In order then for the gradient to be equal to 0 for all Y , then the following is a must

∑

s

Σ−1 (FF (s)Ew∼q[w
∗(s)]−NN(s)TEw∼q[w(s)w∗(s)]) = 0 (4.44)

from which finally Equation 4.25 is derived. This by default implies that the matrix trace

summation is redundant and can be dropped, since critically the gradient must be 0 for all Y ,

and not as the result of the summation.
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4.2 T-Matrix Training Overview and I-Vector Extraction

In the previous section, the training of the T-matrix was explained in great detail, following the

detailed Eigenvoice work by Kenny et al in [2]. In this section, the key steps are highlighted

for ease of reference, and the i-vector extraction process, which can be easily defined out of this

process. A useful implementation guide is also given by Lei in [45], from which this section is

based.

(1) Calculate the required zero’th, first and second order statistics for each speaker (s), and

Gaussian mixture component (c), where the sum extends over all t observation frames Xt

respectively for each speaker s.

Nc(s) =
∑

t

p(c|Xt)

F̂c(s) =
∑

t

p(c|Xt)Xt

Ŝc(s) = diag

(∑

t

p(c|Xt)X
2
t

)

(2) Centre the first and second order statistics relative to a pre-trained UBM, with mean µc.

Fc(s) = F̂c(s)−Nc(s)µc

Sc(s) = Ŝc(s)− diag
(
F̂c(s)µ

∗
c + µcF̂c(s)

∗ −Nc(s)µcµ
∗
c

)
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(3) Expand the statistics into matrices for computational ease.

NN(s) =




N1(s) ∗ I
. . .

NC(s) ∗ I




FF (s) =




F1(s)

...

FC(s)




SS(s) =




S1(s)

. . .

SC(s)




where NN(s) is the zero’th order diagonal matrix of dimension CDxCD, with C mix-

ture components and feature dimension order D, and I is the identity matrix; FF (s)

represents the first order matrix of length CD, centralised to a speaker independent UBM

mean offset; and SS(s) represents the second order diagonal matrix of dimension CDxCD.

(4) Calculate the posterior expectation of the latent total variability factors w(s), or as com-

monly referred to, i-vectors. This is the expectation stage of the EM training algorithm.

l(s) = I + T ∗(s)Σ−1NN(s)T

w(s) ∼ Normal
(
l−1(s)T ∗Σ−1FF (s), l−1(s)

)

w̄(s) = E [w(s)] = l−1(s)T ∗Σ−1FF (s) (4.45)

where l−1(s) is the RTxRT covariance matrix of the posterior distribution of w(s), Σ is the

unadapted speaker independent covariance matrix derived from a UBM, Normal implies a

Gaussian normal distribution, and w̄(s) is the required expected mean value (or i-vector).

On the first iteration T can be random initialised [45].
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(5) Pre-calculate required accumulators.

Ac =
∑

s

NNc(s)E [w(s)w∗(s)] =
∑

s

NNc(s)l
−1(s)

Cc =
∑

s

FFc(s)E [w∗(s)] =
∑

s

FFc(s)
(
l−1(s)T ∗Σ−1FF (s)

)∗

where E [w(s)w∗(s)] is given by l−1(s); and E [w∗(s)] is the complex conjugate transpose

of the newly calculated mean, of the posterior distribution of w(s).

(6) Compute the new estimate of T , the total variability matrix. This is the maximisation

stage of the EM algorithm.

Tc = A−1c Cc

(7) Repeat stages 4 to 6 approximately 20 iterations according to Lei [45], to give the final

estimate for T .

(8) To calculate i-vectors during normal speaker enrolment, Equation 4.45 in stage 4 should

be used.
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4.3 Speaker Verification Scoring and PLDA

In the previous two sections, the training of the total variability matrix (T ) was extensively

reviewed, concluding with a summary implementation guide based on a publication by Lei

[45]. The T-matrix defines a total variability subspace, that attempts to capture both the

desired speaker, and undesired channel variabilities. Once trained, the T-matrix allows speech

utterances to be translated into this low-dimensional subspace. The computed total variability

factors are thus MAP point estimates of latent variables (w(s) for speaker s) relative to a well

defined UBM, more commonly referred to as i-vectors .

The training of the T-matrix is computationally intensive, involving the iterative application

of the EM algorithm against a large cohort of background speakers. The maximum likelihood

estimation process proposed by Kenny [2] is motivated by the often limited amounts of training

data involved per speaker, making it difficult to estimate the supervector covariance matrix

reliably. The covariance matrix of the supervectors (corresponding to TT ∗) is therefore estimated

by maximising across all the background training speakers.

Kenny further explains this in [2], by making such observations when reviewing the earlier work

by Gales [52], that T (effectively V in [2]) should be the dependent regressed coefficients, and

the i-vectors w(s) (y(s) in [2]) the explanatory variables. Gales [52] instead maximises with

respect to w(s), which Kenny objects to because T then cannot be reliably estimated if there is

limited speaker training data per speaker. In addition, the use of factor analysis for dimension

reduction also critically provides a common shared subspace T to compare speaker utterances.

In this section, probabilistic linear discriminant analysis (PLDA) [42] verification scoring of the

i-vectors within the total variability sub-space is reviewed. PLDA has enabled state-of-the-art

speaker verification performances [12] to be achieved. Initial formulations otherwise combined

within class covariance normalisation (WCCN) [3, 12] with linear discriminant analysis (LDA)

to compensate for undesired variabilities. The verification score was then calculated by way of
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a cosine similarity applied between the compensated i-vectors.

4.3.1 Probabilistic Linear Discriminant Analysis (PLDA)

PLDA was originally proposed by Prince and Elder [42] for facial recognition, before then being

adopted by the speaker recognition research community [10,41]. PLDA in the context of speaker

recognition, ignores the process by which i-vectors are generated, and considers instead that they

are generated by some probabilistic generative model [12].

Given then an i-vector wi,r corresponding to some utterance r spoken by speaker i, PLDA

proposes the following model, taken from [12,42]

wi,r = m+ Φβi + Γαi,r + εi,r (4.46)

where Si = m+ Φβi represents the between-speaker variability, which depends only the identity

of the speaker and not the particular image (no dependence on r), with a speaker independent

offsetm; and the undesired channel component Ci,r = Γαi,r+εi,r, which is utterance r dependent,

and describes the within-speaker variability (channel noise).

The PLDA factor analysis equation 4.46 therefore can be seen to strongly resembles Joint Factor

Analysis (JFA) [46]. In fact Kenny defines in [41] PLDA as a special case of JFA that was

independently developed, where PLDA limits to a single Gaussian component unlike JFA.

The columns of Φ define a basis for the between-speaker subspace (eigenvoices), with β a latent

identity vector having a standard normal normal distribution, representing the position in the

subspace. Similarly, Γ defines a basis for the within-speaker (eigenchannel) subspace, with α

again a latent identity vector having a standard normal distribution, and ε represents a residual

term, defined in [42] as Gaussian distributed with zero mean, and diagonal covariance Σ.

Within the field of speaker recognition Kenny [41] modifies the PLDA Equation 4.46, proposing
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that the within-speaker factor term (Γαr) can be removed to give the following form

wi,r = m+ Φβi + εi,r (4.47)

Kenny writes that because the dimensionality of i-vectors is sufficiently low, then the covariance

matrix Σ of the residual channel noise term εi,r can be robustly estimated, and made full

covariance. He therefore proposes that Γαi,r can be removed because it does not then add any

additional information, particularly in the case of telephony speech, where there is a large amount

of labelled background training data available. The model parameters m,Φ,Σ are learnt during

a pre-training phase similar to the training of the T-matrix, using the familiar EM algorithm,

estimating their maximum likelihood point estimates [42].

PLDA verification scoring considers whether a claimed identity utterance, and a test utterance

are from the same speaker or not. This resolves into a log-likelihood ratio test between the

hypothesis Hs that they are from the same speaker, or the alternate hypothesis Hd that they

are from different speakers.
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Following the derivation in [12], if a test utterance is produced by the claimed identity speaker

(hypothesis Hs), then the following generative PLDA model is assumed
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(4.48)

which can be summarised as

n
′

= m
′

+ Φ
′
βi + ε

′
(4.49)

where there are K potential i-vectors wi,r for claimed speaker identity i, with r = 1, ...,K; and

a test utterance i-vector wT .

Conversely, if the test utterance is produced by a different speaker (hypothesis Hd), then the

i-vectors are assumed to follow
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where i 6= j, and summarised as

n
′

= m
′

+ Φ
′′
β

′′
+ ε

′′
(4.51)

Equation 4.48 illustrates how the i-vectors are all generated using the same latent identity

variable βi, compared with β
′′ ∈ [βi, βj ]

T in Equation 4.51.
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Given then that the channel residual and latent identity variables are assumed to be Gaussian,

along with the statistical independence assumption between the speaker and channel compo-

nents, Garcia-Romero [12] defines the verification score as the ratio of two Gaussian distributions

score = log p ({ni,r}, nT |Hs})− log p ({ni,r}, nT |Hd) (4.52)

= logN
(
w

′ |{m′
,Φ

′
Φ

′T + Σ
′}
)
− logN

(
w

′ |{m′
,Φ

′′
Φ

′′T + Σ
′}
)

(4.53)

where Σ
′

is a block diagonal matrix with K + 1 copies of the channel noise covariance matrix Σ

in the diagonal.

Equation 4.53 illustrates how the log-likelihood ratio therefore involves two Gaussian distribu-

tions with the same mean, but two different covariance matrices.

Critically also, the computed verification score is not based on point estimates of the latent iden-

tity variables, but by the marginalisation over the latent variables. Prince and Elder [42] write

that they recognise the inherent uncertainty, given that the claim identity might be observed

under noisy conditions. An interesting side effect of the marginalisation according to Prince and

Elder, is that it is then also valid to compare models with different numbers of identity variables,

or i-vectors in this case, as illustrated by Equations 4.48 and 4.50. Otherwise specifically then,

they calculate the probability that the i-vectors representing the claimed identity, and the test

i-vector, are all generated from the same person or not, irrespective of who the actual identity

is.

4.3.2 The Statistical Independence Assumption

PLDA assumes (i) statistical independence between the between-speaker (S) and channel (C)

components, and (ii) that S and C have Gaussian distributions, which are both questionable

assumptions. Kenny in [41] highlights for example, that it is well known that gender-dependent
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eigenchannel modelling is more effective than gender-independent modelling, thereby illustrating

the limitations of the statistical independence assumption. However despite the relationship

between speaker and channel effects yet to be properly understood, the application of PLDA

within the low dimensional total variability space, is said to aid such statistical independence

assumptions.

By limiting the dimension order of the between-speaker covariance matrix Cov(S, S), and the

within-speaker (channel) covariance matrix Cov(Cr, Cr), Kenny [41] writes that they can be

treated as full rank. Remembering that the total variability matrix notionally corresponds to

the principle eigenvectors of the supervector covariance matrix, this then presumably aids the

further statistical independent decomposition into S and C, enabling them to be then assumed

to be full rank due to the low dimensionality.

Interestingly, Kenny continues in [41] by hypothesising that there might in fact be principle axes

of channel variability, which are speaker dependent. Observing scatter plots produced by Tang

et al [53] of effectively the first two i-vector components, the plots are high directional with

respect to the speakers. Kenny therefore concludes that this must not only explain the success

of cosine scoring, but also that the channel effects are speaker dependent. This also then leads

him to conclude that the statistical independence assumption is fundamentally flawed.

Whilst the conclusion drawn by Kenny around the success of cosine scoring appears to be

valid, his following hypothesis that the statistical independence assumption is fundamentally

flawed is possibly over-stated. The channel effects in the utterance recordings used by Tang et

al [53] might not be as dominant as the speaker effects, potentially masking the nature of the

channel effects. Tang et al [53] explains the highly directional speaker dependent nature of their

scatter plots, being attributed simply to the intentional MAP adaptation applied. The precise

recordings used by Tang et al [53] are not listed, but it would seem likely they are derived from

the GALE Mandarin broadcast news database used in their experiments.
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It would seem therefore, despite the extensive research into data-driven modelling techniques,

much further research is needed to understand the limits of the statistical independence assump-

tion [41], between the speaker and channel effects. This problem according to Kenny is likely to

be difficult to solve, if not otherwise potentially highly non-linear if there are multiple different

compounding sources of channel noise.

4.3.3 Gaussian Assumptions: Heavy-Tailed PLDA

Accepting then the difficulties with solving the statistical independence assumption, Kenny

instead focused his efforts on addressing the Gaussian assumption in [41], proposing the use of

the heavy tailed Students’ t-distribution. His findings, on the NIST 2008 SRE evaluation data,

demonstrated a substantial 30% relative improvement over Joint Factor Analysis. Inspired by

this, Garcia-Romero [12] subsequently developed an i-vector length normalisation procedure,

addressing computational issues around Kenny’s work, whilst achieving similar performance.

Kenny describes how the Gaussian assumption effectively prohibits large deviations from the

mean, but outlier speaker and channel case effects do arise. He gives such speaker examples as

non-native language speakers, and channel effects arising from gross distortions, particularly in

the case of non-telephony microphone sourced speech.

Motivated by these observations, Kenny in [41] proposes that the latent identity prior βi, and the

residual channel noise εi,r in the PLDA model equation (Eq. 4.46), are Student’s t distributed

rather than Gaussian. He refers to his proposed form of PLDA as Heavy-Tailed PLDA (HT-

PLDA).

Importantly, the weight of the tails of the Student’s t distribution are controlled by the degrees

of freedom. The smaller the number of degrees of freedom, the heavier the tails. Conversely,

as the number of degrees of freedom is increased to infinity, then the Student’s t distribution
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converges to a Gaussian distribution. Both the latent identity prior βi, and the residual εi,r,

have individual respective degrees of freedom parameters, which must be estimated.

Unfortunately however, the use of the heavy-tailed distribution results in the log-likelihood ratio

for speaker verification scoring (Eq. 4.53), to no longer have a closed form solution according to

Kenny [41]. Calculating the two required likelihoods involves marginalising (i.e. the evidence in

Bayesian theory) over the respective latent variables.

Kenny states in [41], that this tends to be intractable, because it generally difficult to factorise

out the latent variable priors from the joint distribution (over the claimed identity, and test

utterance i-vectors). This suggests that the distribution of the latent variable priors over the

i-vector must be complicated, making it difficult to separate out the latent priors. To solve

this problem, Kenny in [41] uses variational Bayes to compute a lower bound, as a proxy for

the marginal likelihoods in the log-likelihood ratio (Eq. 4.53), at expense to the amount of

computation required.

4.3.4 Gaussian Assumptions: I-Vector Length Normalisation

The use of variatonal Bayes requires much more computation according to Garcia-Romero [12],

when compared with the original Gaussian PLDA. In an effort to rectify this, Garcia-Romero

in [12] investigates the use of non-linear transforms, to map from the heavy tailed student’s t

distribution, back to the preferred, computationally efficient use of Gaussian distributions.

In [12], Garcia-Romero proposes dropping the statistical independence assumption between the

speaker identity,and channel variations. Based on Kenny’s observations in [41], that there must

exist a principle axis of channel variation that is speaker dependent, he proposes the following

generative i-vector model

w = m+ Ωz (4.54)
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where the latent variable z instead represents both the speaker and channel factors, and fol-

lows the Student’s t distribution. Observing then that the Student’s t distribution belongs to

the family of Elliptically Symmetric Densities (ESD), he investigates the use of a non-linear

transformation technique called Radial Gaussianization (RG), proposed by Lyu and Simoncelli

in [54].

Radial Gaussianization can be used to transform non-Gaussian ESD into spherically symmetric

Gaussian distributions, rendering appropriate the Gaussian and statistical independence as-

sumptions [12]. Lyu and Simoncelli point out in [54] that conventional linear transforms, like

for example the second-order decorrelation method PCA-reliant on covariance, have no effect

on removing the dependencies beyond second order for ESD. Therefore instead, observing that

ESD are inherently symmetric, they propose a non-linear function that acts radially, mapping

to a Gaussian distribution, and thus preserving spherical symmetry.

RG is a two-step process. The first, is to transform the ESD to a Spherically Symmetric Density

(SSD)-removing the second-order dependencies, by removing the mean, and applying a linear

whitening transform learned from i-vector data samples. In the second stage, the centred and

whitened i-vectors, are then length normalised, by applying a non-linear histogram warping of

the length distribution.

Following [54], the radial marginal distribution (lengths) of the whitened source i-vector (r =

‖wwht‖), in terms of the ESD generating function f (·), follows by standard form a Chi distri-

bution

pr(r) =
rd−1

β
f
(
−r2/2

)
(4.55)

where β is a normalising constant that ensures that the density integrates to one, and d is the

number of degrees of freedom in r.

The radial marginal distribution of a spherical Gaussian density, with unit component variance,
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similarly follows a Chi distribution, with d degrees of freedom

px −
rd−1

2d/2−1Γ (d/2)
exp

(
−r2/2

)
(4.56)

where Γ (·) is the standard Gamma function.

The RG transform is thus specifically defined as

g(r) = F−1
x Fr (r) (4.57)

where F−1
x is the normalising inverse cumulative density function (CDF) of px, multiplied by

the cumulative density function of pr, where r = ‖wwht‖.

Garcia-Romero [12] points out that the CDF Fr, in practice has to be estimated from the data,

which poses problems for when competing in the NIST-SRE academic trials. The rules of the

evaluation only allow each trial verification score to be derived from the two i-vectors specified,

where RG requires training across a large portion of the evaluation set to be robust. It does seem

strange however, why previous trial data is not representative, given that PLDA inherently needs

representative multiple speaker session data. It may perhaps be that RG is highly susceptible

to speaker and channel variations.

Irrespectively, Garcia-Romero continue nevertheless, simplifying the second stage length nor-

malisation, by proposing to simply scale the lengths of each centred and whitened i-vector, to

unit length. Thus the RG transform is modified to

gLN (r) =
r

‖r‖ (4.58)

where r = ‖wwht‖. This effectively projects r onto the unit hypersphere.

He justifies his approximation in [12], hypothesising that most of the probability mass of a
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standard Gaussian distribution will be concentrated within a thin shell located close to its mean.

If the dimension order is increased, the thickness of the shell will as a consequence decrease.

They argue therefore that, projecting the data onto a hyper-sphere, whose radius depends on

the dimensionality of the space (from the earlier relation of the Gaussian distribution to the

Chi distribution in Equation 4.55), is therefore sufficient. They expect this approximation to

become more exact as the dimensionality of the space then increases.

Garcia-Romero in [12] also writes on a practicality note, that the precise choice of radius for

the hyper-sphere is unimportant, and that the unit radius is simply chosen for convenience.

Using a different radius can be seen to just introduce an offset in the verification score, based

on Equation 4.53, which is dependent effectively on comparisons between covariance matrices.

He summarises the i-vector length normalisation transformation in [12], learned from background

development data as:

(1) Centre and whiten

• Compute mean and sample covariance matrix (m̂, Ŝ) from development data.

• Use singular value decomposition to obtain whitening transform A = D1/2UT , where

Ŝ = UDUT .

• Centre and whiten i-vector: wwht = A(w − m̂).

(2) Scaling or normalisation

• Project onto unit sphere: wLN = wwht
‖wwht‖ .

The transformation can then be applied during verification, once learned from background de-

velopment i-vector data.

Garcia-Romero and Wilson [10] find that using this heavy-tailed Student’s t to Gaussian trans-

formation, they are able to achieve similar state-of-the-art performances to Kenny’s HT-PLDA
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if not better, on NIST-SRE 2010 evaluation data.

Table 4.1 is taken from [10], and shows applying i-vector length normalisation (G-PLDA), they

are able to achieve 1.29% equal error rate (EER), compared with HT-PLDA at 1.48% for male

speech. They find a similar improvement over HT-PLDA for female speech, with the percentage

EER improving from 2.21% to 1.97%. Interestingly, they also find that applying length normal-

isation to the HT-PLDA, improves the performance to slightly better than that of G-PLDA +

length normalisation, at 1.28% EER for male and 1.95% EER for female.

Rank Male Female

EER% minDCF(new) EER% minDCF(new)

4 G-PLDA 3.08 0.4193 3.41 0.4008

3 HT-PLDA 1.48 0.3357 2.21 0.341

2 G-PLDA + Length 1.29 0.3084 1.97 0.3511

1 HT-PLDA + Length 1.28 0.3036 1.95 0.3297

Table 4.1: I-vector compensated results from Garcia-Romero and Espy-Wilson [10] comparing
Gaussian (G) and heavy-tailed (HT) PLDA, with length normalisation on the NIST-10 telephony
core 5 condition.

4.3.5 PLDA Conclusions

PLDA was originally proposed by Prince and Elder [42] for facial recognition, before being

adopted for speaker recognition by Kenny [41]. Like JFA, PLDA assumes that the speaker and

channel effects are statistically independent, and that they are Gaussian distributed. Kenny

questions the validity of both assumptions, but without an obvious solution to the statistical

independence assumption, proceeds to otherwise investigate the use of the heavy-tailed Student’s

t distribution.

Kenny’s original motivations for proposing the Student’s t distribution, were to allow for outlier

speaker and channel effects, which are effectively prohibited by the use of Gaussian distributions.
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Within the domain of telephony speech, he shows that HT-PLDA leads to a substantial 30%

relative improvement compared with JFA [41], and similarly if not more when compared with

the original Gaussian-PLDA (G-PLDA) form [10]. However the use of the heavy tailed Student’s

t distribution comes at the increased expense in computation, requiring the use of variational

Bayes.

Garcia-Romero [12] in response to this proposes an i-vector length normalisation procedure,

based on a non-linear transformation procedure [54]. Taking advantage of the fact that the

Student’s t distribution is an elliptical symmetric distribution, the non-linear transform radially

learns a mapping to the computationally efficient Gaussian distributions, whilst attempting to

preserve spherical symmetry. With Wilson in [10], they show that similar, if not better state-

of-the-art of the performances can be achieved on telephony speech, using length normalisation.

The success of these two procedures raises the question though, of what are exactly these outlier

effects attributed to principally, and are they that common? It would seem for English telephony,

which comprises most of the NIST-SRE 2010 data [55], the margins for further improvement are

small. The application of PLDA is perhaps then no more then than fine tuning in this scenario,

but perhaps PLDA or JFA may prove useful in detecting or understanding speech variations

with non-native speakers.

However for interview or microphone derived speech, Kenny [41] finds that HT-PLDA modelling

of channel effects, if left to its own devices degenerates. He concludes that there must be

extreme non-Gaussian effects present. An alternative observation, is perhaps simply that the

underlying UBM (which provides probabilistic speaker independent reference), must be derived

with a sufficient amount of background interview speech data. Attempting otherwise to apply

HT-PLDA channel corrections, to what is maybe a fundamentally telephony based recogniser,

would seem possibly then futile. Kenny unfortunately does not state what he used, other than

he used a large corpus of background data.
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An interesting area for further research thus, is maybe to try to investigate the statistical inde-

pendence assumptions between speaker and channel effects, but under strict controlled recording

conditions. Is it for example possible, to interpret the i-vector changes when the microphone,

vocabulary, and speakers recordings are made under strict controls? Kenny’s findings in [41] are

derived from open NIST data, where such control is not possible, making his strong conclusions

then that the statistical independence assumption are flawed, potentially over-stated. He also

does not consider the impact of any speech detection, and speaker segmentation.

It also may simply not be possible to easily understand the relationship, which might be highly

non-linear. The use of highly non-linear deep neural networks may then be another interesting

area of research. An initial investigation into the use of deep networks for speaker identification

is covered later in this thesis.



Chapter 5

Performance Tuning Experiments

In the previous two chapters, an extensive review of the major advancements in automatic

speaker verification (ASV) was presented. The review covered in particular the pioneering

works by Reynolds et al [1, 16] on GMM-UBMs from the mid-’90s, which led eventually to the

development of i-vectors by Dehak et al [3] in 2010. Current state-of-the-art ASV systems are

still essentially underpinned by i-vectors, with only in recent times seen their partial fusion with

deep learnt automatic speech recognition (ASR) [22,56].

In this chapter a series of practical performance tuning experiments are presented. Often many

publications leave out specific implementation details, making it difficult to sometimes repeat if

not understand the practical limits of published findings. Dehak et al in [3] for example, writes

only that they used whole NIST-SRE 2004 to 2006 data sets for when training their UBM and

T-matrix, with few details on any pre-screening and on their feature calculation process. Bimbot

et al [29] describe their feature extraction process in detail as part of their literature review,

but they do not advocate the importance of cepstral mean subtraction (CMS). This is shown

by Reynolds in [35] to be critical to achieving good performance. The cepstral features can also

be variance normalised (CMV), or reduced.

The experiments presented therefore attempt to answer basic questions such as:

• How many EM training iterations should be generally used when training a UBM?

• At what stage in the cepstral feature calculation process should the speech detector and

CMV be applied?

57
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• What is the effect of adding more training data to the UBM on performance?

• What is the effect of increasing the size of the UBM on GMM-UBM and i-vector recogni-

tion performance?

This chapter is structured as follows, beginning with first a description of the experimental cor-

pora used, and the scoring procedure adopted. Following this, an architectural type description

is given, explaining how each of the components in the ASV system have been implemented.

The experiments then presented are effectively split into two parts, with the first part investigat-

ing different GMM-UBM configurations and hyperparameter settings, and the latter exploring

T-matrix training with i-vectors.

In order to allow for comparison between different speaker verification configurations, a fixed

reference test set is used throughout. It is hoped that this comparable set of findings, exploring

GMM-UBMs and i-vector based verification systems, provides useful information to the research

community. The chapter then ends with some conclusions.

5.1 Experimental Corpora and Toolboxes

The speech corpora used throughout the experimental work presented here, are taken from the

standard NIST-SRE 2004 to 2005 [57, 58] evaluations, and the Switchboard-2 Phase I and II

sets [14,59].

Table 5.1 shows statistics of the corpora used for training the UBMs and T-matrices, whilst 5.2

shows the test set used throughout for consistency. For reference, the total number of hours is

also included. Only male speech is used throughout the experiments presented, to try to avoid

additional issues found with gender dependencies [41].
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All audio is 8kHz, 8-bit µ-law American English telephony. The term ‘3conv4w’ means that three

conversations are used to train each respective speaker model, each approximately 5 minutes

gross audio duration, and four wire (speakers are channel separated). The term ‘1conv4w’ refers

to the test list, defining the list of 5 minute conversational segments to be verified against a

specified model respectively.

Corpora #Channels Overall Total Total Male Cumulative Male Total

NIST-SRE04 Training 1 440 181 181

SWB2-P1 2 606 267 448

SWB2-P2 2 745 364 812

FE-P1 2 1948 880 1692

FE-P2 2 1966 846 2538

Table 5.1: List of corpora used for training the UBMs and T-matrices in hours (SWB2-
P1=Switchboard 2-Phase 1, FE-P1=Fisher English-Part 1).

Corpora Trial Set #Channels Total Hours Total Male #Male Trials

NIST-SRE 05 3conv4w-1conv4w 2 184 84 12161

Table 5.2: The reference test set used, which is selected out of the NIST-SRE 2005 evaluation
standard trial conditions, where ‘3conv4w‘ is the model training list, and ‘1conv4w’ the test list.

5.2 Accuracy Scoring

The standard NIST-SRE 2005 [58] scoring procedure is used in line with the ‘3conv4w-1conv4w’

trial condition, as referred to in Table 5.2. Accuracy scores are computed in the form equal error

(EER) percentage rates and a cost score, with results often presented in the form of detection

error trade-off (DET) plots [58].

An example DET curve is shown in Figure 5.1, with an EER score corresponding to 7.6%, and

cost 0.033. The performance profile is derived by progressively increasing or decreasing the

detection threshold applied to the output log-likelihood ratio score, defined earlier in Equation
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Figure 5.1: Example detection error trade-off (DET) curve.

2.1, but re-stated again here for convenience

∧ = log

(
p(Y |H0)

p(Y |H1)

)




>= θ acceptH0

< θ rejectH0

(5.1)

where p(Y |H0) is the probability density function for the true hypothesised speakerH0, evaluated

for observed speech segment Y , and respectively H1 is for Y not being the hypothesised speaker,

with θ the decision threshold applied.
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The cost score is defined by NIST [58] as:

CDet =
(
CMiss · PMiss|H0

· PH0

)
+

(
CFA · PFA|H1

· (1− PH0)
)

(5.2)

where CMiss and CFA are the relative miss and false alarm costs, PMiss|H0
and PFA|H1

are

the a-posteriori probabilities of a miss given the hypothesised speaker being present, and false

alarm given it is not the hypothesised speaker present, and PH0 the a-priori probability of the

hypothesised speaker.

The three parameters are defined as follows by NIST:

CMiss CFA PH0

10 1 0.01

Table 5.3: Cost scoring equation parameters as defined by NIST-SRE in 2005 [58].

The cost equation effectively biases the optimum score threshold to be much higher than one

would normally expect. Whilst the cost of every miss is high at ‘10’, the prior probability of

the hypothesised speaker being present is set very low at 1%. This places the operating point

on the DET curve in the top left of the plot, as can be seen in Figure 5.1, at over 20% miss and

just under 1% false alarm. Normally one would expect the minimum cost point to fall in the

bottom right of the DET plot, corresponding with a low miss probability.

This effectively shows how NIST is prioritising applications that have to process a significant

amount of telephony audio, with a very low probability of their target speaker, where potential

excessive false alarms are distracting to an operator.

A number of slight modifications have since been made by NIST since 2005, but Equation 5.2

represents the underlying vanilla cost formulation, and the three cost equation parameters listed

in Table 5.3 are used throughout for all experiments presented.
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5.3 ASV Hyperparameter Settings and the Voice Activity Detector

Figure 5.2(a) highlights the main components found in an ASV system, taken from [16]. Directly

underneath in (b) is an expanded diagram of the sub-components typically found in the ‘Front-

End Processing’ component. As described in [16], the objective of the ‘Front-End Processing’ is

to attempt to extract features from the speech signal that convey speaker dependent information.

The output of this process is usually a sequence of feature vectors X = [x1, ...xT ] representing

the speech utterance, where xt is a feature vector at short-time frame or segment t. The front-

end processor usually also contains additional processes, including a speech or voice activity

detector (VAD) to attempt to remove non-speech periods, and further filter type processes to

try to remove nuisance variabilities.

(a) Likelihood-ratio based speaker verification set up.

(b) Front-End Processor.

Figure 5.2: Main automatic speaker verification processing stages.

Figure 5.2(b) highlights the standard default configuration used throughout the experiments,

with the exception of the feature extraction experiment presented in Sub-Section 5.4.2. The

specific cepstral feature extraction hyperparameter settings chosen are listed in Table 5.4, and
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computed using the open source Voicebox toolkit written by Brookes [36] in Matlab.

Component Hyperparameter V alue

Windowing
Frame Size 32ms

Frame Increment 16ms

Cepstra Extractor
Filterbank 26 triangular mel-spaced from 0 to 4kHz

Cepstra Order 19 coefficients (+ ∆ + ∆∆ + energies as specified)

Table 5.4: Feature extraction hyperparameter settings.

For the speaker processing stages highlighted in Figure 5.2(a), namely the model training and

verification decision process, the open source Microsoft Research (MSR) Identity Toolbox [38]

written in Matlab was used. The MSR toolbox is found to be very efficient, with the implemented

code highly parallelised.

A successful attempt was made at implementing the training procedure for the T-matrix, but

it was found to be too slow to be of practical use in the first instance. The training of the

T-matrix takes a considerable amount of computational processing, due to the large amounts of

background data often used for robustness [3].

Unfortunately both the Voicebox [36] and MSR Identity toolboxes [38] do not include a voice

activity detector (VAD), which is important for achieving good speaker verification performance.

A VAD was implemented, effectively following the similar speaker verification process depicted

in Figure 5.2(a), but the decision output changed to be ‘speech’ or ‘not speech’ instead.

The GMM model training libraries without MAP adaptation from the MSR Identity toolbox [38]

were used. Two GMM models were effectively trained, representing respectively the ‘speech’

and ‘non-speech’ utterance periods. The models were trained on all the NIST-SRE 2004 [57]

male training data. The supplementary ‘ctm’ transcript files were used as the ground-truth voice

activity labels. The cepstral features were extracted similarly using the Voicebox toolkit [36].

Table 5.5 lists the specific feature extraction and model hyperparameter settings.

In degraded and more variable conditions, the robustness of the VAD is likely to prove more
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Hyperparameter Values

Windowing 32ms frames, 16ms increment

Filterbank 26 triangular mel-spaced from 0 to 4kHz

Cepstral order 19 coefficients + ∆ + energies (=40 in total)

Gaussian Components 2

Table 5.5: Voice activity detector feature extraction and model hyperparameter settings.

critical. Fauve et al for example, from an ealier publication in 2007, used only the energy

distribution in [17], following earlier work from [60]. In a more recent publication however,

Novotnỳ et al [61] use a Czech phoneme recogniser, dropping all frames that are decoded as

silence or noise. For noise robustness, they purposely trained their phoneme recogniser on

speech that they artificially degraded with additive noise.

To also avoid complications with developing a robust speaker segmentation, all audio data is

limited to two channel recordings. The focus of the experiments presented here is specifically on

understanding in the first instance, the robustness of GMM-UBM and i-vectors based speaker

verification. Interestingly, speaker segmentation and diarization is a theme of current research,

with the recent ‘Speakers in The Wild’ challenge [62], where proposed techniques are based on

combined type clustering with factor analysis [61].

Last, the use of score normalisation is also not investigated here. The use of Z-Norm’ and T-

Norm’ [29] invariably should lead to improved performance. The objective of this experiments

here is to first understand the fundamental GMM-UBM verification performance, prior to the

additional normalisation stages.

5.4 GMM-UBM Experiments

Three experiments are presented investigating hyperparameter sensitivity of the GMM-UBM

verification system, and the effect on performance due to when specifically the VAD, and the
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cepstral mean variance (CMV) normalisation are applied within the front-end feature extrac-

tion process. The hyperparameters investigated specifically, includes the number of EM UBM

training iterations required to train a UBM, and second the joint performance with respect to

the use of acceleration features, number of Gaussian components, and amount of UBM speech

training data.

5.4.1 EM UBM Training Iterations

The purpose of this experiment, is simply to understand the number of EM iterations required

to successfully train a UBM. A 512 Gaussian component UBM is trained on the NIST-SRE 2004

male ‘conv4w’ speech training data, with EM iterations up to a maximum of 40. The cepstral

feature order nominally used is 40, consisting of 19 cepstra, the delta-cepstra, and both energies.

Figure 5.3 shows the result, with the number of EM iterations with respect to the UBM log-

likelihood training criterion log (p(X|λUBM )) (Eq. 3.6), where X = xt, ...xT represents feature

observation vectors at short-time frame t, and λ the UBM.

The plot shows that 20 EM iterations appears generally sufficient for training the UBM, with

the log-likelihood probability effectively converged on a maximum value. It should be noted

that the MSR Identity Toolbox [38] uses a binary split to initialise the Gaussian components.

5.4.2 Application of the VAD and CMV in the Front-End Process

The front-end process involves the calculation of the cepstral features, in preparation for GMM

model training or verification scoring. Front-end processing also usually includes a number of

other stages that can be critical to achieving good verification performance.

In this experiment, the effect on performance of the location of the VAD, and the cepstral

mean subtraction with variance (CMV) normalisation, within the feature extraction process is



CHAPTER 5. PERFORMANCE TUNING EXPERIMENTS 66

Figure 5.3: UBM log-likelihood probability p(X|λ) with respect to EM training iterations, on
the male SRE04 training data ‘X’, with 19C+E+19∆+∆E = 40 cepstra, and 512 Gaussian
components.

investigated. The VAD is important for removing silence or non-speech frames. CMV is used

to remove convolutive type noise by subtracting the cepstral means, and can then be variance

normalised.

Figure 5.4 shows the three front-end configurations considered, with (a) defined as the ‘default’

reference. In configurations (b) and (c) the VAD is moved to before the cepstral extraction,

with (c) also additionally moving the CMV to before the delta feature extractor. Configuration

(b) potentially corresponds to that used by Reynolds et al in [16].

The precise cepstral feature order totals 38, consisting of 19 plus the delta coefficients, and

excluding the energy coefficients. The use of zero’th energy coefficients was subsequently found

in other experiments not reported here to not add any additional value, and so was discarded.

The UBM used was trained again on the NIST-SRE 2004 male training data, consisting of 512
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(a) Default chosen configuration (a).

(b) Configuration b.

(c) Configuration c.

Figure 5.4: The three different front-end configurations considered, with respect to the locations
of the VAD and cepstral mean variance (CMV) normalisation.

Gaussian components with 20 EM iterations.

Figure 5.5 shows the resultant percentage EER (a) and minimum cost scores (b). Clearly in

both plots, the default configuration ‘a’ can be seen to produce the best performance at close

to 7.1% EER, and 3.1 cost score. The EER improvement is more than 0.5% relative.

A possible explanation for this result, is that applying the VAD prior to the cepstral and delta

feature extractors might lead to ‘glitches’, as groups of speech frames are blindly concatenated

together. If proven true, then this effect is expected to be more likely pronounced within the

delta features.

It is therefore interesting that Reynolds et al [16] potentially uses front-end configuration (b).
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Figure 5.5: Respective %EER and cost performance scores with respect to the specific ap-
plication of the VAD and CMV within the front-end feature extraction process. The three
configurations are defined in Figure 5.5.

Their motivation is to remove silence periods prior to cepstral feature extraction. This remains

an area of further research to understand the reasons for this, that is if in fact Reynolds et al [16]

did configure their front-end in this form. An interesting further experiment for example might

be to explore the dependency with the VAD threshold, in the form of DET curve.

Despite this observation, the results in Figure 5.5 indicate that for the specific experimental

conditions used for this work, the VAD and CMV should be reasonably optimal. The perfor-

mances reported in Figure 5.5, are also similar to the leading results reported for this type of

configuration [17]. The ‘default’ front-end configuration is used in all subsequent experiments.
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5.4.3 Acceleration Features, Background Training Data, and Model Size

In this experiment the use of acceleration cepstral features, amount of background speech train-

ing data used to train the UBM, and the number of Gaussian components is investigated. It is

invariably expected that using larger amounts of training data should lead to better performance

and robustness, provided the data can be learned effectively.

The percentage EER and minimum cost scores are compared with and without the use of

acceleration features. The feature order is respectively 38 (19C+19∆) without the acceleration

features, and 57 (19C+19∆+19∆∆) with. The UBM training data is incrementally increased,

from the initial NIST-SRE 2004 male training set, to including all of the male audio from

Switchboard II-Phase 1, and then similarly with Switchboard II-Phase 2. The UBM is equally

increased in Gaussian component size, from the initial total of 512 to 1024, and then 2048.

The number of EM iterations used to train the UBMs is fixed at 20 for all cases. Again, the

comparable reference test set from the NIST-SRE 2005 ‘3conv4w-1conv4w’ is used.

Figure 5.6 shows the %EER and minimum cost results for this experiment, with four bar charts

displayed, for without acceleration features (left), and with (right). Comparing first the perfor-

mance benefit with using acceleration, it is clear to see that there is a general overall improvement

between the left and right plots. For example, without acceleration features with a UBM for

1024 Gaussian components, the EER is approximately 7.35% and cost 3.17. This decreases with

acceleration features to approximately 6.8% EER and cost 2.98.

The slight exception to this, is with the %EER results when Switchboard II-Phase 2 data is added

to the 1024 Gaussian component UBM. The performance can be seen to become marginally worse

at 8.25% compared with 8.3%, if not effectively remaining unchanged. Critically however, the

corresponding cost scores decrease, implying that within the operating threshold performance

still improves.
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Figure 5.6: Percentage EER and cost scores with respect to with, and without acceleration
cepstral features, and the amount of UBM training data (horizontal axis). No energy coefficients
are used.

Focusing next on increasing the amount of data used to train the UBM, in general it would seem

that adding Switchboard data unexpectedly degrades performance. For example the %EER at

512 Gaussian components without acceleration features increases from approximately 7.2% to

8.25%, and the cost 3.34 to 3.74. Increasing the number of Gaussian components though, appears

to temper this degradation in general. The would suggest that UBM models with more than 512

Gaussian components are required to effectively learn the larger amounts of background data.

This pattern also appears indicative with the use of acceleration features.
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However the one significant exception to this is again with the Switchboard II-Phase 2, where

comparing the %EER with acceleration features does not decrease at 1024 Gaussian components

compared with the 512, essentially remaining fixed at 8.29% and 8.30% respectively. Further

research is needed to understand this phenomenon with the %EER scores, but again the corre-

sponding costs do nevertheless decrease as expected.

To try to understand the more significant issue, with the apparent progressive degradation in

performance when Switchboard II data is added to the UBM, the corresponding true and false

trial LLR cumulative distributions plots are shown in Figure 5.7.

Three cumulative distribution plots are shown in Figure 5.7, corresponding respectively to the

512, 1024 and 2048 trained UBMs. Each plot contains six profiles, corresponding to both the

true and false trials, with the three UBMs trained incrementally with SRE04 (training), and

Switchboard II-Phases 1 and 2 data respectively.

Comparing all three plots in Figure 5.7, it is clear that there is an increasing positive LLR score

offset as more background data is added. The 512 Gaussian component profiles in (a) can be

seen to be centralised around a LLR score of -0.1, but this increases to approximately -0.03 in

(b) with 1024 components, to then 0.02 in (c) with 2048 components. This would suggest that

in the first instance, that some form of score normalisation is needed.

Examining next the individual plot profiles, the increase in verification error can be examined by

comparing the regions of overlap between the true and false trial profiles. For the 512 Gaussian

component UBMs in plot (a), the UBM only trained on the NIST-SRE 2004 data (green), clearly

has the smallest region of overlap, with the true trial profile having a noticeably lower number of

LLR score instances below 0.0, compared with the two UBM true profiles trained on Switchboard

II data. Interestingly, the UBM trained on additionally both Switchboard II-Phases 1 and 2,

appears to have an apparent positive offset, with both the false and true profiles. The shift is

particularly consistent across the whole of the false profile (dashed blue), increasing the region
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(a) 512 Gaussian components

(b) 1024 Gaussian components

(c) 2048 Gaussian components

Figure 5.7: True and false trial-cumulative distribution LLR score plots, at 512, 1024 and 2048
Gaussian components. Each plot contains the true and false score profile pairs for the UBMs
trained incrementally with SRE04 (training), and Switchboard II-Phases 1 and 2 data.
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of overlap, and hence the higher error rate.

The subtle frequency changes in the true and false LLR score distributions, when Switchboard

II data is added to the UBM, indicates possibly that the GMM-UBM system is quite sensitive

to speaker and channel variations. The Switchboard II data likely has a high degree of variation,

because it intentionally contains a large number of speakers, and speaking over many different

telephone channels. It is also according to Reynolds et al in [16], in their pioneering GMM-UBM

MAP paper, well known that variations in telephone handsets can cause significant degradations

in performance.

Intuitively, the EM training of the UBM involves essentially an undirected blind fitting of Gaus-

sian distributions to the background data. There is effectively no allowance or compensation

made for unwanted combinations of speaker and channel variations, which may in themselves

be sparse or not that common. Adding then more background training data, which potentially

contains such high degrees of speaker and channel variation, without allowing for this fact, is

possibly the reason for the decrease in performance found. Further research is needed though

to prove this hypothesis.

5.5 I-Vector Experiments: T-Matrix Training

The T-matrix is required for the extraction of i-vectors from speech utterances, mapping from

the high dimensional supervector space to the low dimensional total variability space. In this

experiment the training of the total variability matrix (T-matrix) is investigated, with respect

to the amount of background speech data used, and also the number of Gaussian components

in the UBM.

Multiple whole sets of corpora are typically used when training the T-matrix for robustness. In

the principle i-vector paper by Dehak et al [3] for example, they used all of the Switchboard
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Descriptor Configuration Value

UBM Gaussian components 1024 & 2048

T-matrix Rank Order 400

Features
Order 19C+19∆+19∆∆=57
Filterbank 26 Mel-Spaced Filters

Table 5.6: The UBM (Gaussian components), T-matrix (rank order), and the feature order
hyperparameter values. The number of Gaussian components in the UBM is investigated at
both 1024 and 2048 components. The number of EM training iterations for both the UBM and
T-matrix is set at 20.

Descriptor NIST-04
(training)

SwbII-P1 SwbII-P2 FE-P1 FE-P2

UBM (fixed data) X X X

T-Matrix (incremental data) X X X X X

Table 5.7: The background male data used to train the UBM, and to estimate the T-matrix.
The UBM data is fixed throughout the experiment, with three corpora used. The T-matrix
is incrementally increased, starting with NIST-SRE 2004 (training), then adding Switchboard
II-Phases 1 and 2, with last the two Fisher English-Parts 1 and 2.

corpora, NIST 2004 and 2005, and both part 1 and 2 of the Fisher English database. It is

expected that using more training data should lead to both better, and more robust performance.

However, it was observed in the previous GMM-UBM experiment presented in Sub-section 5.4.3,

that unintentionally adding large amounts of potentially highly variable data in an effectively

blind manner using the EM algorithm, can lead potentially to a degradation in performance.

Thus in this experiment, the incremental increase in the amount of training data used to learn

the T-matrix, and its component size via the UBM, are investigated.

Table 5.6 lists the UBM, T-matrix, and feature order hyperparameter values. As part of the T-

matrix training experiment, the number of UBM Gaussian components is investigated at both

1024 and 2048. The T-matrix rank order, and the feature orders are fixed throughout. The

number of EM training iterations used to learn the UBM and T-matrix is also fixed at 20.

The male background data used to train the UBM and T-matrix are listed in Table 5.7. The

UBM data is fixed throughout the experiment, utilising the three male corpora indicated (NIST-
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04 training, and Switchboard II-Phases 1 and 2). The training data for the T-matrix though,

as part of the experiment, is incrementally increased to analyse the effect on ASV performance.

In total five corpora are used, including the Fisher English-Parts 1 and 2.

The scoring procedure used through this experiment is simply the cosine distance, which is

defined in [3] as

score (whypothesised, wtest) =
〈whypothesised, wtest〉
‖whypothesised‖‖wtest‖

≥
<
θ (5.3)

where θ represents the threshold by which a verification decision is made, and w the respective

hypothesised speaker and test utterance i-vectors to be compared. The intention in this exper-

iment, is to explore the effect of the training of the T-matrix on ASV performance in the first

instance, with the obvious next step to then investigate PLDA scoring.

5.5.1 Results and Analysis

Figures 5.8 and 5.9 show the respective DET performance plots, with incrementally increasing

the amount of male training data used to estimate the T-matrix. Figure 5.8 shows the respective

performances with (a) 1024 , and (b) 2048 Gaussian Components. In Figure 5.9, the two

component total profiles with the larger amounts of Switchboard II data are plotted together

for comparison, and to also analyse the effect of the adding even more T-matrix training data,

with the Fisher English (Parts 1 and 2) corpora.

Analysing the 1024 and 2048 Gaussian component plots in Figure 5.9(a), it can be observed

that using larger amounts of training data to estimate the T-matrix is required, to achieve

performance beyond that of the GMM-UBM systems presented previously in Sub-Section 5.4.

At 1024 components (a), using only the NIST-SRE 2004 (training) data to train the T-matrix,

results in an EER performance of 8.24%, and cost of 3.25. Adding both Switchboard II-Phases
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1 and 2 corpora then improves this to 5.71%, and cost 1.94. Comparing with the 1024 GMM-

UBM results in Figure 5.6, the older GMM-UBM can be seen to outperform the newer i-vector

approach when only using NIST-SRE 2004 data to train the UBM, scoring approximately 6.8%

EER and with cost 2.98.

A possible explanation for this, is that first the GMM-UBM makes no attempt to manage

unwanted increases in speaker and channel variabilities, which are not representative of the

test conditions. The T-matrix in comparison, is specifically intended to be used to try to

capture the principle speaker (and channel) dimensions of variability. Using more training

data to estimate the T-matrix, should help then in general with the estimation of the principle

component dimensions of total variability. However, one would expect that using larger amounts

of data that is representative of the test conditions to train the T-matrix, is more likely to give

the better performance.

The presence of unwanted variabilities in the T-matrix training corpora, is perhaps the reason

for the slightly unexpected behaviour with the Fisher English-Part 1 and 2 (Fep1, Fep2) corpora.

For both the 1024 and 2048 Gaussian component plots, adding Fisher English-Part 1 leads to

a significant increase in performance, particularly with the 2048 components. For example,

with 1024 Gaussian components, the cost score improves from 1.94 to 1.57 with adding Fisher

English-Part 1, corresponding to a 19% improvement. With the larger complexity 2048 Gaussian

component model, there is further expected improvement, with the cost score improving from

2.01 to 1.41, corresponding to an almost 30% improvement. However both the 1024 and 2048

DET plots indicate that adding Fisher English-Part 2 leads somewhat surprisingly, to a slight

degradation in performance.

With 1024 Gaussian components, Figure 5.8(a) shows that adding Fisher English-Part 2 to the

existing T-matrix training data, degrades the EER from 5.62% to 5.71%, and the cost score from

1.57 to 1.82. Similarly, with 2048 Gaussian components directly underneath in plot (b), the EER
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(a)

(b)

Figure 5.8: DET plots showing the ASV i-vector performance with cosine scoring at (a) 1024
and (b) 2048 Gaussian components, on the male NIST-SRE 2005 (3conv4w-1conv4w) reference
set, with respect to incrementally increasing the amount of male training data used to estimate
the T-matrix.
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Figure 5.9: Combined 1024 and 2048 Gaussian component DET plot for ease of comparison, and
for comparing with and without the use of Fisher English male training data in the training of
the T-matrix, again on the male NIST-SRE 2005 (3conv4w-1conv4w) reference set with cosine
scoring.

increases from 4.61% to 4.80%, and the cost 1.41 to 1.55. The decrease in ASV performance

suggests that by adding the Fisher English-Part 2 data, this may have introduced unwanted

variabilities during the training of the T-matrix. Further research is needed to try to isolate the

source of this variability, but the Part 2 set appears to contain a larger number of speakers at

562 compared with 418, for approximately the same number of recordings. The smaller amount

of training data per speaker with the Part 2 set, coupled with the larger number of speakers, is

maybe then not as helpful.
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The use of 1024 and 2048 Gaussian components is next specifically compared, with the combined

DET plot shown in Figure 5.9. In total six profiles are shown, corresponding to the T-matrices

trained with all the specified Switchboard II data, and with and without the two Fisher English

corpora.

In general, Figure 5.9 appears to indicate that using 2048 Gaussian components does not begin

to add benefit, until all of the NIST, Switchboard, and Fisher English corpora are included when

training the T-matrix.

Examining the locations of the minimum cost points, it appears that only when Fisher English-

Part 1 data is added on top of the NIST-SRE and Switchboard corpora used, does the use

of 2048 components significantly advance upon the three 1024 component profiles. The 2048

minimum cost point improves to approximately 0.3% false alarm, with 12% miss.

Using otherwise 2048 Gaussian components without the Fisher English training data, leads it

would appear to a poorer performance, compared with to using 1024 Gaussian components. At

the minimum cost points, both the 1024 and 2048 Gaussian component profiles correspond to

approximately 15% miss, but the false alarm probability becomes worse. Using 2048 Gaussian

components, the false alarm probability corresponds to approximately 0.55%, compared with

the lower value of approximately 0.45% with 1024 Gaussian components.

5.6 Experimental Conclusions

In this chapter a series of practical performance tuning experiments were presented. The exper-

iments were motivated by the often limited amount of practical implementation details usually

included in published works, which can make it difficult to repeat findings, and or understand the

limits of leading performances. The experiments presented were split effectively into two parts,

the first explored the earlier GMM-UBM ASV system, whilst the latter experiment focused on
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i-vectors.

The GMM-UBM experiments investigated such practicalities, that included:

(1) The number of EM training iterations required to successfully train a UBM,

(2) The application of the VAD, and cepstral mean variance (CMV) normalisation, within the

Front-End feature extraction process,

(3) And the effect on performance of acceleration features, amount of UBM training data, and

model size (total Gaussian components).

The i-vector experiment presented, investigated the training of the T-matrix, which is required

for the extraction of i-vectors from speech utterances. The T-matrix is typically trained across

several large corpora for robustness [3]. The requirement of using such large amounts of data

was explored, with incrementally increasing the amount of data used, and with respect to the

number of Gaussian components defined by the UBM.

Summarising the GMM-UBM experiments in turn, it was found that 20 EM iterations appeared

generally sufficient to successfully train a 512 Gaussian component UBM, on the NIST-SRE 2004

(training) male training data, with the log-likelihood training criterion effectively converged.

Probing next the specific application of the VAD and CMV, within the Front-End feature

extraction process, it was found that applying the VAD after the delta feature calculation

was best, and then the CMV normalisation. This led to a relative improvement of 0.5% EER

(achieving 7.2%) over the two other configurations considered. It was also found during other

experimentation, the use of energy cepstral features did not add any additional value to ASV

performance.

However in slight contradiction, it was observed that Reynolds et al [16] potentially apply their

VAD before their delta feature calculation, which was found here to be not as effective. Their
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motivation for this, was to first remove unwanted silence time-frames. A possible reason for this

difference, is perhaps that there is a dependency on the VAD threshold. It would therefore be

interesting to investigate this further, but for the experimental conditions presented here, the

EER and cost score findings are believed to relatively well optimised. The VAD trigger threshold

is set at a more confident LLR score of 2.0.

It was observed that including the additional acceleration cepstral features led usually to an

improvement in performance, by as much as 0.5% EER. Contrary though to expectation, using

more data (Switchboard II) to train the UBM, in addition to the initial NIST-SRE 2004 (train-

ing) training set, was found to progressively degrade performance as more was added. Adding

both Phases 1 and 2 of the Switchboard II datasets, decreased performance by as much as 1.5%

EER.

Cumulative distributions of the true and false trial LLR scores were analysed, to try to un-

derstand why, adding more training data was leading to a decrease in ASV performance. The

cumulative distribution plots highlighted initially that the LLR scores were becoming increas-

ingly offset, as more Switchboard II data was added to the training of the UBM. This suggested

that basic score normalisation, such as Z-norm or T-norm [29] should be applied in the fist in-

stance, to try to compensate for any unwanted variability or train-test domain data mismatch.

A closer examination was then made of the regions of overlap between the true and false LLR

score distributions, in an attempt to understand more the increased degradation in performance

found. Subtle frequency variations in the cumulative true and false score distributions, when

Switchboard II data was added, gave further indications that the GMM-UBM system might be

again quite sensitive to unwanted variabilities.

A further observation was made, that the GMM-UBM ASV system does not effectively make any

attempt to compensate or manage unwanted variabilities. The iterative EM algorithm used to

train the UBM, essentially just attempts to best fit Gaussian component densities to the training
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feature observations, without any specific prior speaker knowledge. It is therefore perhaps not

entirely surprising then, that adding larger amounts of potentially variable Switchboard II data,

in an effectively uncontrolled manner, degrades performance. The sensitivity to channel effects

was also highlighted previously by Reynolds et al [16], in the context of handset variability,

writing that this has been widely observed in the literature. The use then of ‘Switchboard’ type

data, presumably alludes to similar channel difficulties.

Having thus established a reasonably robust GMM-UBM baseline system, the i-vector approach

was next investigated. The T-matrix is a significant aspect of the i-vectors, mapping speech

utterances from the higher dimensional supervector space to the lower dimensional total vari-

ability space. The training of this matrix was subsequently explored, in respect of the amount of

training data used, and the number of Gaussian components in the UBM. The scoring procedure

adopted, was the simple cosine distance scoring only.

It was found that larger amounts of training data were required to train the T-matrix, such that

performance actually improved beyond that of the GMM-UBM experiments. Larger amounts of

training data (i.e., including Switchboard II data on top of the initial NIST-SRE 2004 (training)

is presumably required to better estimate the principle component dimensions of speaker (and

channel) variability.

Intuitively as well, using 2048 Gaussian components over 1024, was not found to be helpful until

all of the NIST-SRE 2004 (training), Switchboard II-Phases 1 and 2, and the Fisher English data

was used. Performance in fact was marginally worse compared with limiting to 1024 Gaussian

components, if only the NIST-SRE 2004 and Switchboard II data was used (i.e., without the

Fisher English).

However whilst adding more data was generally found to be better, it was also found that

potentially adding data that is maybe highly variable, and or not representative of the test

conditions, can degrade performance. This was observed in particular when adding the Fisher
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English-Part 2 corpora. It was hypothesised that adding this data degraded performance because

it contains an additional 144 speakers, compounded with there also not being any more recording

examples available to that found in the Part 1 corpora.

In conclusion, a performance of 4.61% EER, with a cost score of 1.41 was achieved. The

experiments partially corroborate the opening observations made by Garcia-Romero [12], that

ASV advancement has been made by the development of statistical models, which can leverage

large amounts of data, and are efficient at adapting to scenarios with limited amounts of data.

This is evident in particular with the training of the T-matrix with i-vectors. However these

experiments have also highlighted the importance of using data that is representative of test

conditions, and that they should contain a sufficient amount of information or examples of the

variabilities they exhibit.

In terms of future research, an interesting area would be to examine the linear independent

speaker and channel statistical model underpinning PLDA scoring. Kenny [41] in particular

questions this assumption.

The application of PLDA typically leads to state-of-the-art performance [12] on telephony speech.

However a better understanding of the relationship between speaker and channel variabilities

will perhaps be required, if speaker recognition is to move truly beyond telephony conditions,

and also English language; The focus on English has been driven particularly in recent times by

the NIST-SRE trials [63]. This now motivates the initial study into the use of non-linear deep

neural networks, which is presented in the next chapter.



Chapter 6

Deep Learning

The work presented thus far, has covered extensively the developments in automatic speaker

verification (ASV) up to approximately 2012, with the advent of i-vectors [3], and the subsequent

research into the use of PLDA scoring [12, 41, 42]. I-vectors coupled with PLDA still largely

remain as the state-of-the-art in ASV [26].

More widely however, machine learning has been witnessing significant advancements made

through the use of deep learning [18], particularly in image object recognition [19], and ASR [64].

Inspired by LeCun et al [18], they describe deep learning as, “Allowing computational models

that are composed of multiple processing layers, to learn representations of data with multiple

levels of abstraction.”

Deep learning is typically encapsulated by the use of a multilayer neural network, with the

layers of neurons attempting to progressively increase both the selectivity, and invariance of the

required representation of chosen output classes. Increasing the number of layers increases the

learning ability of the network. The term ‘deep’ refers to more than one hidden layer.

Deep learning with neural networks, can be conceptually viewed as attempting to extract robust

features or representations of the data for classification, by way of a data-driven approach.

Observation data is fed into the first layer, with the output layer corresponding to the classes

to be learnt. Each layer then attempts to automatically learn representations that help to

discriminate between the classes. Each subsequent higher layer notionally corresponds to a

higher, more abstractive level of information about the classes.

A deep neural network (DNN) in practice is a multi-layer perceptron with multiple hidden

84
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layers, randomly initialised, and trained using a form of stochastic gradient descent to learn the

weights [65]. In speech processing, the inputs to the DNN are typically stacked spectral features,

such as mel-frequency cepstral coefficients (MFCCs), extracted from short-time frame intervals

in the lower tens of milliseconds. Typically also a wider context of up to in the order of 10

frames (+/-5 frames) is used [65,66]. The outputs of the DNN are the posterior probabilities of

the target classes with respect to the current input observation data.

Much of the work of late in ASV appears to be focused around the use of DNNs for ASR [22,

25,56]. This is likely motivated by the larger amounts of speech data available for training ASR

systems. As a probable consequence of this, it appears that there has been less research published

around the use of deep networks defined with output classes, which are specifically speaker

related. Variani et al [23] is probably one of the first published such works, where they consider

a standard feed-forward DNN for ASV, but they limit to a text dependent application. However,

it would seem that research interest in the direct training of DNNs for ASV is increasing, with

in particular eminent work by Snyder et al [26].

The effective use of deep learning within ASV to discover new robust representations, can be

regarded therefore still as largely an open question. This motivates the initial study into the

use of deep learning presented in this chapter, which begins by first reviewing such research to

date.

The chapter then presents some initial experimental work into the development of a deep convo-

lutional neural network (CNN) for speaker identification. The use of CNNs is motivated by the

success found in image object recognition [19], where filterbank spectra can be also perceived

as images. It is hoped that this work in the future might lead to a better understanding of

the complex relationship between speaker and channel variabilities, highlighted previously with

PLDA in Section 4.3.2, and to more robust features for ASV. The chapter then ends with some

conclusions.
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6.1 The Indirect DNN-ASR Approach for ASV

It is fairly apparent from the literature that there are two main approaches adopted within ASV

for applying deep learning. The first, is one in which a pre-learnt DNN for ASR is used [65,67].

The second involves the more direct approach, where the output classes are speaker related

[23, 26, 68]. In this section a brief account of the indirect approach, using a pre-learnt DNN for

ASR is first presented, followed by a slight interjection of McLaren et al’s [25] extended work

on convolutional neural networks (CNNs) for noisy conditions.

The use of a pre-learnt DNNs for ASR is originally inspired by Lei et al [22]. They recognised that

unlike in other speech-related fields, there is often limited amounts of speaker dependent training

data, making they claimed the direct transition to automatic speaker recognition challenging.

To circumvent the issue of limited data, they instead proposed the use of a pre-learnt DNN for

acoustic modelling in ASR, to form an alternate phonetically aware UBM to help guide ASV.

Following Lei et al [22], the i-vector model assumes that the t-th observation vector xt is gener-

ated by the GMM defined by

xt ∼
∑

c

γctN (µc + Tcw,Σ) (6.1)

where c represents the Gaussian mixture component; Tc the total variability matrix representing

a low rank subspace (the total variability subspace) by which the means of the Gaussians are

adapted to a speech recording; w is a normally-distributed latent vector that is recording specific

(the i-vector); µc and Σc are the speaker independent mean and covariance matrix of the c-th

Gaussian of the speaker population; and γct is the posterior of the c-th Gaussian, given by

γct = p (c|xt) (6.2)

γct therefore defines the alignment of observation vector xt to Gaussian component c at time t.
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As pointed out in [22], the Gaussians in a UBM are traditionally used to define the classes c in

Equation 6.1. Instead Lei et al in [22] propose the use of senones, defined by the leaves of an

ASR phone decision tree. This does however make the assumption that each of the senones can

be accurately modelled by a single Gaussian. Lei et al [22] advise that whilst this is a strong

assumption, the results from their work show that it is reasonable for ASV.

Senones effectively correspond to the underlying tied-triphone states of the hidden Markov model

(HMM) states [69]. In ASR, usually a set of simple pre-defined phonetic left and right context

questions is used to grow a decision tree, by splitting the triphones of the same central phoneme

into sub-groups so as to maximise the likelihood of the training data. The clustering of the

triphones to produce tied-state variants, is performed to mitigate training data sparsity issues

that commonly arise during training [70]. Due to there often being many triphone states present,

inevitably many states will usually have an insufficient number of training examples available

to estimate them robustly.

Lei et al’s [22] motivation for defining the GMM classes in Equation 6.1, according to the

posteriors of tied-triphone states in an ASR system, is to attempt to embed phonetic alignment

information into the speaker models. They draw attention to how in a classic UBM, the Gaussian

classes are only defined so as to maximise the likelihood of the model. The classes do not they

point out, have any inherent meaning, other than covering parts of the acoustic feature space.

However if the classes in Equation 6.1 correspond to phonetic senones, and the posteriors of

the senones can be accurately estimated, then conceptually the utterance short-time frames

can be aligned by phonetic (senone) content prior to computation of the i-vector. Notionally,

speakers can thus be compared, aligned by their pronunciations of phonemes relative to the

general population. In practical terms, observation frames are statistically assigned to their

corresponding senone classes, which restricts the MAP adaptation shift of the means from the

population mean µc in Equation 6.1, to only the aligned senone classes.
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Figure 6.1: Illustration of the indirect DNN-ASR architecture taken from [71], where the output
classes of the DNN are defined as the phonetic senone states, which are also effectively the tied-
triphone states of an ASR-HMM. The acoustic features are stacked around the current input
frame (in practice +/-5 frames [66,71] context) for input into the DNN. Bottleneck features can
also be extracted by restricting the number of nodes in one of the hidden layers, and taking its
output as features [56,72].

Taken from [71], Figure 6.1 illustrates the indirect DNN-ASR architecture proposed, where

the output classes to the DNN as indicated are defined to be the phonetic senone states. A

speech utterance produced by a speaker is first processed by a front-end module, which extracts

typically short-time frame cepstral acoustic features [66]. The feature vectors are then stacked

around the current input frame, with typically a wide context of +/-5 frames [66, 71] for input

into the DNN.

Figure 6.1 also highlights, how ‘bottleneck’ features can be extracted from the DNN, by re-

stricting the number of nodes in one of the hidden layers and taking its output. The use of

bottleneck features for ASV is investigated by Lei et al in [72], motivated by earlier work in

language identification [73].

In the first instance, Lei et al [22] trialled simply replacing the standard acoustic UBM with

their new phonetic senone derived UBM trained on transcribed speech data, where the Gaussian
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components are given by

γct ≈ p(k|xt)

nc =
∑

t

γct

µc =
1

nc

∑

t

γc,txt

Σc =
1

nc

∑

t

γc,txtx
∗
t − µcµ∗c

(6.3)

and the posteriors γct for Gaussian component c for observation features xt, are defined by the

ASR system (using Bayes rule to convert to required posteriors). The terms µc and Σc, represent

the means and covariance matrices for each of the Gaussian components c in Equation 6.1.

Traditionally a GMM was used to model the observation probability p(x|q) for ASR decoding.

According to McLaren et al [56], once the set of senones was derived from the decision tree, a

Viterbi decoder was used to align the training data to the corresponding senones. The resultant

alignments were then used to estimate the observation probability p(x|q).

Unfortunately Lei et al [22] found this approach did not lead to significant improvements com-

pared to just using a standard UBM, without knowledge of the phonetic knowledge. They con-

cluded that this was due to the poor phonetic recognition accuracy of the GMM-based method;

more precisely, if an observation frame is assigned to the wrong senone, then it is no better to

having just used a conventional unsupervised UBM.

Lei et al [22] further point out that in ASV, context is only captured usually by way of delta and

double delta cepstra features. They argue that this is not sufficient for predicting accurately

phonetic content, and with using only a single GMM with a few thousand Gaussian components.

Fortunately, state-of-the-art ASR systems now typically use a standard feed-forward DNN, to

more accurately estimate the senone class posteriors (p(q|x)) for observation features (x). How-

ever the initial training of the DNN still does rely on a pre-trained HMM ASR system, with

GMM states to generate the training alignments.
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Figure 6.2: The proposed ‘DNN/i-vector’ framework proposed by Lei et al [22], where the ASR
trained DNN is used to more accurately estimate the zero’th order utterance level statistics, and
the frame level senone posterior probabilities for alignment. The diagram also illustrates how
the features for the ASR-DNN (log-mel filterbanks = xt), are not incumbent on the features
used for ASV (e.g., MFCCs + ∆ + ∆∆ = x′t).

Figure 6.2 shows the ‘DNN/i-vector’ framework proposed by Lei et al [22], where the DNN

trained for ASR, is used to estimate the zero’th order, and frame level senone posterior proba-

bilities (γc,t ≈ p(c|xt) at time t and Gaussian component c). Figure 6.2 also illustrates how the

features used by the DNN are not incumbent on the features used for ASV. Lei et al [22] for

example, use the log outputs from the Mel-filterbanks (xt) for their DNN, but MFCCs+delta

coefficients (x′t) for the end ASV task. The frame level posteriors, which provide phonetic senone

alignment, are then used to estimate the first and second order utterance level statistics required

for i-vector extraction (Equations 6.3), using cepstral features x′t.

The i-vector for utterance s(t) can be thus computed using all required Baum-Welch statistics,
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defined in [22] as

Nc =
∑

t

γct

Fc =
∑

t

γctx
′
t

Sc =
∑

t

γctx
′
tx
′∗
t

where Nc, Fc, and Sc are the required zero’th, first and second order statistics; and gammact

the posterior for the c’th Gaussian at time frame t.

The indirect DNN-ASR approach inherently requires the pre-training of a (HMM) ASR. However

once trained, Figure 6.2 illustrates how the HMM ASR decoding component is no longer required.

Lei et al [22] find the DNN to provide much more accurate estimation of the senone posterior

probabilities, likely they speculate due to both the larger time frame context used (+/-7 frames),

and DNN based discriminative training.

6.1.1 Performance of the DNN/i-vector Framework and Bottleneck Features

Two ASV methods are effectively highlighted from the indirect DNN-ASR approach. The first

is naturally the underpinning ‘DNN/i-vector framework’, of substituting the acoustic feature

derived UBM for the phonetically derived senone based UBM, and using the DNN for accurate

estimation of the senone posteriors.

The second method is the use of ‘bottleneck’ features [56, 72], extracted from the DNN by

restricting the number of hidden nodes in one of the layers. The outputs from the bottleneck

layer are then taken as a new set of features for each acoustic feature frame, and used for ASV

by modelling the features using the standard UBM/i-vector or the DNN/i-vector frameworks.

The use of bottlenecks features was motivated by earlier usage in language identification [73].
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According to [56], the bottleneck features can also be appended to the conventional cepstral

features, where they found provides significant performance gains.

McLaren et al [56] typically used the second-to-last layer as the bottleneck, with the number of

hidden nodes reduced to 80 from 1200 nodes. Their DNN otherwise consists of 5-layers with

3494 senones, which they train on 800 and 1300 hour of microphone and telephone speech respec-

tively. For the input to the DNN, they use the log mel-filterbank outputs from 40 filterbanks.

The feature vectors are stacked across 15 consecutive frames, producing a 600-dimensional con-

textualised input to their DNN.

Table 6.1 shows a summary of the findings from McLaren et al [56], where they compare different

configuration performances relative to the classical i-vector based system. Their results are

derived on the NIST-SRE 2012 extended clean telephony (core 2), and clean microphone (core

1) conditions, which contain an upper limit of 100M trials. The performance figures in Table

6.1 correspond to the NIST-SRE primary cost score, which is the weighted sum of two different

cost operating points, based on a lower (0.001) and a higher (0.01) pre-defined target prior [63].

In total six combinations are shown, with ‘UBM (MFCC)’ referring to a classically trained

UBM/i-vector framework trained on mel-frequency cepstral coefficients (MFCC). ‘DNN (BN)’

refers to the new DNN/i-vector framework with the UBM instead derived from senone posteriors,

and ‘BN’ the use of bottleneck features during i-vector extraction. The term ‘pcaDCT’ refers to

an alternative acoustic feature to MFCCs investigated in [56].

Table 6.1 illustrates how in telephony clean conditions, using instead the DNN (MFCC) at

0.184, the UBM (BN) at 0.165, or the DNN (BN) configuration at 0.189, leads to significant

improvement over the UBM (MFCC) baseline at 0.257. The largest improvement can be seen

to correspond to the UBM (BN) configuration. McLaren et al then investigated fusing multiple

combinations, which led to even further improvements, with 0.143 using UBM (MFCC+BN),

and 0.137 with DNN (pcaDCT+BN).
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Channel
UBM

(MFCC)
DNN

(MFCC)
UBM
(BN)

DNN
(BN)

UBM
(MFCC+BN)

DNN
(pcaDCT+BN)

Tel-Clean (c2) 0.257 0.184 0.165 0.189 0.143 0.137

Mic-Clean (c1) 0.187 0.176 0.172 0.207 0.134 0.156

Table 6.1: Comparative NIST-SRE primary cost scores taken from [56] on the NIST-SRE 2012
extended clean telephone (core 2) and microphone (core 1) conditions, comparing indirect DNN-
ASR ASV performances using different combinations of the DNN-senone derived UBM and
bottleneck features, relative to the classical UBM Mel-cepstral feature (MFCC) i-vector baseline.
pcaDCT are alternate acoustic features to MFCC investigated in [56].

Their findings suggest for matched telephony train-test conditions, the use of the new DNN-

ivector framework and bottleneck features demonstrate clear ASV performance gains over the

classical i-vector framework using MFCC features. Interestingly the further improvement in per-

formance found by fusing, also appears to highlight how the information derived using acoustic

features (MFCC or pcaDCT), is notionally orthogonal to that derived via the new DNN i-vector

framework. This also perhaps explains the 0.165 lower score found with UBM (BN) configura-

tion, compared with the DNN (MFCC) at 0.184, and DNN (BN) at 0.189.

Analysing next their microphone derived results in Table 6.1, it immediately appears that the

recording conditions are extremely beneficial for the baseline UBM(MFCC) system, with an

improvement from 0.257 to 0.187. The specific sample rate is not specified in the NIST-SRE

2012 evaluation plan [63]. However the bit depth used for the microphone derived speech is

double that of the telephony, at 16 bits. This would suggest that the recordings contain in the

very least, less quantisation noise and are of a higher quality.

Again in general, with the exception of the DNN(BN) scoring 0.207, the use of the new DNN

i-vector framework and bottleneck features leads to an improvement over the baseline. Fus-

ing again leads to further significant improvement, with the UBM (MFCC+BN) configuration

returning the best result overall at 0.134.

McLaren et al [56] speculate that anomalous lower performance found with the DNN(BN) at
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0.207, is likely an artefact of using DNNs not well suited to the microphone characteristics.

Given the also noticeable poorer performance of the DNN (pcaDCT+BN) at 0.156, relative to

the UBM (MFCC+BN) at 0.134, might suggest that the DNN is quite susceptible to channel

condition changes or over-tuning.

6.1.2 The CNN/i-vector Framework for Noisy Conditions

Inspired by the use of CNNs for ASR on noise degraded speech [74] and, they claim, their

successful application of an alternate CNN/i-vector framework to language identification [75],

McLaren et al [25] also investigated the use of convolutional neural networks (CNN) instead in

their DNN/i-vector framework for noisy conditions.

Figure 6.3 illustrates their CNN-ASR deep network, trained similarly to estimate phonetic senone

class posteriors. The difference with their CNN deep network compared with the DNN, is that

they substitute the first layer for a convolutional one. However the rest of their deep network

remains unchanged, consisting of between 5 to 7 fully connected feed forward layers as before

in [25].

CNNs are a biologically inspired variation of multi-layer perceptrons (DNNs) [76], following

similar observations to the early work of Hubel and Wiesel [77]. In their research into under-

standing the visual system, Hubel and Wiesel [77] discovered that regions of neurons in a cat’s

visual cortex are sensitive specifically to localised regions of the visual field (receptive field), and

also that some neurons are orientation selective. CNNs in a manner similar, are constructed

such that they are sensitive to specific localised patterns, but also then invariant to their precise

location. These localised patterns or features, can then be combined in subsequent higher layers

to derive higher-order semantic level features [78]. The use of CNNs by Krizhevsky et al [19],

led to the pivotal halving of errors in the 2012 ImageNet visual recognition challenge [18].

According to [79], CNNs comprise of multiple alternating convolutional and pooling layers. At
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each convolutional layer, a linear filter is convolved by computing its inner product against its

current local receptive field, followed by a non-linear activation function. This localised process

is repeated across the input observation data or visual field, producing a filtermap for each

convolutional filter respectively.

The linear filters effectively correspond to the weight vector of neurons, which along with the

bias, are in essence replicated across the entire visual field. These replicated neurons therefore

share the same weight vectors, and biases. This intentional property allows CNNs conceptually

to detect distinctive patterns or features, regardless of their position [76]. The training of a

CNN, therefore involves deciding initially on the optimum number and size of the filters, such

that the patterns and features important for end class discrimination are learnt.

Figure 6.3 illustrates the convolution calculation with a diagram derived from McLaren et al [25].

A single nominal linear filter of size five frames by two filterbank coefficients, is convolved with a

filterbank spectral image restricted to the frequency axis only (in image processing, convolutions

are performed in 2-dimensions to reflect that objects can occur anywhere in an image, which is

not usually the case for speech). With a step size of one, this produces a vector of length six.

Typically multiple filters are also used, producing multiple corresponding maps as illustrated.

It should also be noted that each replicated neuron, with weights corresponding to the linear

filter, also includes a bias term. The bias adjusted convolutional output scores are then passed

through a non-linear activation function prior to max pooling [79].

Following the convolution layer, max pooling or another form is normally applied, and can be

considered a form of down-sampling [18, 78]. Max pooling involves computing the maximum of

a locally specified patch, and aids in translational invariance, and reducing complexity at the

higher layers [76]. Final training of the CNN is then said to be no different to with a DNN, with

backpropagating gradients [18]. Figure 6.3 illustrates max pooling with a group size of three

with no overlap, producing a vector of length two from the original size of six.
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Figure 6.3: Illustration of the CNN-ASR deep network used by McLaren et al [25], for their
alternate CNN/i-vector framework for ASV in noisy conditions. Compared with their original
DNN/i-vector framework in [22], the first layer is substituted for a convolutional layer instead.
The remainder of the network is unchanged, consisting of between 5 to 7 fully connected layers.
Following the diagram in [25], only one convolutional filter is shown, but in total they use 200
filters, generating 200 corresponding ‘filter maps’. The filters are convolved with the filterbank
spectral image along the frequency access only. The size of the filter used is also larger in practice
than shown, with a context of 15 time frames (equal to the CNN input), and a height normally
of 8 filterbank coefficients. They use non-overlapping max pooling, with a pooling size of 3. In
the illustrative figure, this produces a 2-dimensional output vector.

McLaren et al [25] in their experimentation, first extract 40 log Mel-spaced filterbank coefficients,

with a context of 15 frames to produce a stacked vector of length 600 for input into the CNN.

In total they used 200 convolutional filters, restricting to a 1-D convolution along the frequency

axis as illustrated in Figure 6.3, but using a context of 15 frames thereby matching their CNN

input size. They then concatenate the output vectors from the CNN layer into one long vector,

and input it into their traditional fully connected DNN layers, of which they use between five

to seven layers.

McLaren et al [25] state that they choose to restrict convolution to the frequency dimension,

based on the earlier findings of a study conducted by Abel-Hamid et al [80] for ASR. In their

study, they find that convolving along the time dimension degrades ASR performance, conclud-
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Configuration %Miss@1.5%FA %EER

UBM(PLP) 33.3 9.4
CNN(PLP) 30.2 8.5
CNN(PNCC) 29.5 8.5
UBM(PNCC) 27.5 8.1

CNN(PLP) + CNN(PNCC) 27.5 8.1
UBM(PLP) + UBM(PNCC) 23.9 7.4
CNN(PNCC) + UBM(PNCC) 20.8 6.7
CNN(PLP) + UBM(PNCC) 20.4 6.6

Table 6.2: Percentage miss at 1.5% false alarm (FA) and percentage equal error rate (%EER)
scores taken from McLaren et al [25] in descending order, derived on the RATS SID 10s-10s
(enroll[6x10s]-test) [83] noisy radio re-transmissions, comparing the use of the classic UBM/i-
vector extraction [3] to their proposed CNN/i-vector framework, and with fusion. They also
make comparisons between using perceptual linear prediction (PLP), and power normalised
cepstral coefficient (PNCC) features. The matched language test set used consists of 85K target
and 5.8M impostor trials, from 305 unique speakers.

ing that perhaps the implicit word or phonetic shift detracts from performance. Despite this

issue, they found the use of a CNN still to perform favourably over their original DNN.

Again like in [22], each output node from the DNN corresponds to each senone defined by the

ASR decision tree. Similarly to [22], McLaren et al [25] note that a pre-trained HMM ASR with

GMM states is needed to generate the initial timing alignments, prior to CNN training.

Table 6.2 shows percentage miss at 1.5% false alarm (FA) rate, and percentage EER scores taken

from McLaren et al [25], presented in descending order. They compare their proposed CNN/i-

vector framework to the classic UBM/i-vector [3], and with fusion. They also compare two

types of input features: perceptual linear prediction (PLP) [81], and power normalised cepstral

coefficients (PNCC) [82]. McLaren et al [25] describe PNCC features as using a power law to

design the filterbank, and a power-based normalisation instead of a logarithm. For reference, the

features used to train the CNN are independent to that used for ASV [22]. This was discussed

in Section 6.1 previous.

Their results are derived on the 10s-10s (enrol-test) trial set from the noisy RATS corpora [83],
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where according to McLaren et al [25] the 10s train implies six recordings each in duration 10

seconds. The RATS speech data is sourced from noisy radio re-transmissions. The matched lan-

guage 10s-10s set used to derive their results shown in Table 6.2, consists of 53K re-transmissions

from 5899 speakers, and a matched language test set of 85K target (hypothesised) and 5.8M

non-target trials from 305 unique speakers. The languages are Levantine Arabic, Dari, Farsi,

Pushto and Urdu.

The results in Table 6.2 show that PLP features perform better with the CNN/i-vector frame-

work, at 30.2% miss compared with 33.3% for the UBM(PLP). However the reverse is found

for the UBM/i-vector framework, with UBM(PNCC) giving 27.5% miss compared with 29.5%

for the CNN(PNCC). The best single configuration result is therefore found using the classical

UBM/i-vector framework [3], albeit using PNCC features.

Fusing again is found to lead to significant performance improvements in the percentage miss

scores, which correspond to a more realistic operating point compared with the EER. The best

configuration found is with CNN(PLP) + UBM(PNCC), scoring 20.4% miss, corresponding

approximately to a significant one-third improvement. The results, like in [22] again highlight

how the information contain in the (DNN/CNN)/i-vector framework is potentially orthogonal to

a degree, with that contained in the UBM/i-vector framework. It would be interesting therefore

also, to compare the performance with the DNN/i-vector, to try to understand the potential

benefit of the CNN over the DNN.

On a related CNN aspect, research has also taken place recently, with experimenting with time-

delay neural networks (TDNNs) [84,85]. In a TDNN [86], the filter is set to match the number

of filterbank coefficients, thereby restricting convolution to the time axis. TDNNs are however

structured, such that the lower layers only have a restricted time context, with higher layers

processing increasingly wide activation contexts. Therefore unlike in a typical DNN, information

is not potentially lost due to averaging effectively across an entire temporal context [84]. The
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Configuration EER% minDCF10−3 minDCF10−2

UBM(5297)/i-vector 2.00 0.410 0.241

UBM(4096)/i-vector 1.96 0.414 0.227

TDNN(5297)/i-vector 1.09 0.214 0.108

Table 6.3: Percentage EER and minimum cost scores for two operating points for gender depen-
dent models taken from Snyder et al [85], on the NIST-SRE 2010 core five extended telephony
condition, comparing the classic UBM(5297)/i-vector [3] with 5297 Gaussian components, and
their TDNN(5297)/i-vector framework. The minDCF10−3 refers to the new NIST-SRE 2010
minimum cost cost operating point, with an a-priori hypothesised speaker probability of 0.001.

context restriction of the lower layers, also potentially resolves the issues found by Abel-Hamid

et al [80], with the word and phonetic variability along the time dimension.

Peddinti et al [84] in 2015 re-investigated the use of TDNNs for ASR, which was then exper-

imented with by Snyder et al [85] for ASV. Peddinti et al [84] find for ASR, that the use of

TDNNs leads to a pivotal improvement on average of 4.3% word error rate, across several large

vocabulary continuous speech recognition (LVCSR) tasks. They conclude that the TDNN is

able to learn wider time frame contexts better than DNNs. They also find that the structuring

of the multiple TDNN layers, such that the higher layers have increasingly wide contexts is also

beneficial. Intuitively, this suggests that the lower layers learn to detect effectively localised

features, whilst the higher layers learn the wider complex patterns across time.

Similar substantial improvements are found by Snyder et al [85], when applying TDNNs for

ASV, reporting a 50% EER relative improvement on NIST-SRE 2010 extended condition five

(telephony) data. Table 6.3 is taken from [85], and shows a summary of their findings, with the

%EER improving from their classical UBM(4096)/i-vector baseline of 1.96%, with 4096 Gaussian

component classes, to 1.09% for the TDNN(5297)/i-vector. Their results also show that the use

of TDNNs leads to comparable performance improvements, at both minimum cost operating

points. The UBM(5297)/i-vector for minDCF−3 for example improves from 0.410 to 0.214.

NIST in 2010 defined a new minimum cost operating point, with a lower a-prior probability of

0.001 for an hypothesised speaker.
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Both Snyder et al’s [85] and McLaren et al [25] therefore demonstrate the effectiveness of CNNs

for ASV even if applied indirectly through the use of ASR. It would be interesting however to

compare performances directly between DNNs and CNNs, to understand better the benefits of

applying these networks under different joint conditions.

6.2 Direct Training of DNNs for ASV

In the direct DNN-ASV method, the DNN is directly trained with output classes that are specif-

ically speaker related. Choosing to define speaker related classes, effectively directs the deep

network to discover potentially new robust representations or features for ASV. This approach

can be notionally defined as “End-to-End”, in view of that the model parameters are all learnt

jointly for the end speaker recognition task.

Somewhat surprisingly, the number of published works investigating this direct method appears

limited, when compared to the indirect DNN-ASR path. This is perhaps a consequence of

the limited amount of labelled ASV data available per speaker [22]. However of late, research

interests in direct methods appear to be increasing, with a number of published works [26,87,88].

Two of probably the most prominent methods, include that of ‘d-vectors’ by Variani et al [23],

and very recently ‘speaker embeddings’ by Snyder et al [26]. The theory behind these two

methods is examined, with a review then made on the experimental findings found.

6.2.1 D-Vectors via DNNs for Speaker ID

One of if not the first approach to training a DNN directly for ASV, was proposed by Variani

et al [23] in 2014, where they proposed the use of ‘d-vectors’.

Figure 6.4 illustrates how they first train a background DNN for speaker identification, taking

in stacked filterbank and energy features, with the output classes defined as individual speakers.
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Figure 6.4: Illustration of the background speaker identification DNN used to extract a d-vectors
for a speaker, by averaging the output activations from the last hidden layer.

Once the DNN is trained, they then use the outputs of the last hidden layer, to extract their

new ‘d-vector’ speaker discriminative features.

Variani et al [23] experiment with the use of d-vectors for their text dependent ASV application,

with the phrase “Ok Google”. Their hypothesis, is that “d-vectors” are generalisable to represent

unseen speakers during ASV classification. During speaker enrolment, the d-vector is averaged

across all training utterances. Variani et al [23] used cosine scoring to compare the speaker

similarity between train and test utterance d-vectors.

The configuration of their speaker identification DNN in [23] included four hidden layers, with

256 nodes per layer. The DNN used was specifically a maxout DNN with dropout, the intent

being to try to minimise potential over-fitting issues with the small training set. Variani et

al [23] used a pool size of two, with dropout restricted to the last two layers at 50%. They also

used rectified linear units (ReLU) as the non-linear activation function on hidden nodes.

Random dropout is proposed in [89] as a form of regularisation, helping to prevent complex
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co-adaptations in which network nodes are only helpful in the context of several other nodes,

by randomly omitting certain hidden nodes during training. Hinton et al [89] also describe how

dropout, can be viewed as an efficient form of model averaging using neural networks. During

testing all the hidden nodes are used, effectively in a “mean network”. However due to there

being effectively more weights during testing compared with to training, the weights of the

network have to be scaled down accordingly. For example if a dropout rate of 50% is used, then

the weights have to be halved.

Maxout DNNs [90] were developed to minimise the model averaging approximation when using

dropout. Variani et al [23] define maxout DNNs as differing from multilayer perceptrons (MLPs),

by dividing the nodes in each hidden layer into non-overlapping groups. Each group then

only generates a single activation output via max pooling i.e., the maximum output value is

simply taken. By effectively adopting a smarter model averaging process, this can optimise the

activation function for each hidden node during training with maxout.

The training criterion is the cross entropy loss, computed using a softmax activation function,

defined in [91] as

lsoftmax = −log exp
(
wTs a+ bs

)
∑

s̃ exp
(
wTs̃ a+ bs̃

) (6.4)

where a denotes the activation vector from the last hidden layer; w and b the learnt weight matrix

and bias; and s the hypothesised speaker. The softmax normalisation is computed across all

training speakers s̃.

Research into the use of d-vectors has since included work by Heigold et al [91], where they

formulate a complete ‘end-to-end’ deep network for ASV, illustrated in Figure 6.5. They effec-

tively train a deep network to try to verify whether or not, a test utterance was produced by an

hypothesised speaker or a different speaker.

In a manner similar to Variani et al [23], they first enrol a speaker by computing their average

d-vector across available training utterances. Verification again includes computing the cosine
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Figure 6.5: Illustration of the ‘end-to-end’ deep network proposed by Heigold et al [91] for ASV,
building on the original d-vector work by Variani et al [23], with an additional logistic regression
layer added to learn the cosine speaker model and test utterance d-vector distance scores, and
the use of a time-sequence LSTM RNN in place of a DNN. Heigold et al [91] refer to d-vectors as
speaker representations, which inspires the very recent work on ‘speaker embeddings’ by Snyder
et al [26].

distance between a test utterance d-vector representation, and the average d-vector representa-

tion of an hypothesised speaker across all available training utterances. However, unlike with

Variani et al [23], they add an additional logistic regression classification stage after the cosine

similarity.

To train their complete end-to-end ASV network jointly with the DNN, they use the following

expanded loss function (le2e) (where their derivations are expanded based on [92])
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le2e = C(w, b) = −
∑

i

(
y(i)log(hw,b(x

(i))) + (1− y(i))log(1− hw,b(x(i)))
)

(6.5)

where y represents the binary-valued labels (y(i)ε{false, true}) as to whether the hypothesised

speaker is truly present or not; for the i’th computed cosine similarity score x, between a pair

of d-vectors representing respectively a test utterance and an hypothesised speaker; and hw,b

represents the logistic function of the form

hw,b(x) = P (y = accept|x) =
1

1 + exp(−(wTx) + b)

P (y = reject|x) = 1− P (y = accept|x) = 1− hw,b(x)

where the objective is to learn parameters w and b, so that P (y = accept|x) = hw,b(x) is large

when x represents an accept, and small otherwise (so that P (y = reject|x) is large).

Heigold et al [91] within their framework also investigate the use of two types of networks as

opposed to one, namely a DNN similar to that used by Variani et al [23], and a LSTM neural

network. The LSTM is limited to a single output, and accrues time-sequence information across

individual utterance observation frames.

LSTM networks are a special form of recurrent neural networks (RNN), but modified to address

the long-term dependency problems associated with RNNs, when modelling long sequences of

data. It is therefore perhaps slightly intriguing the amount of benefit, specifically an LSTM

network delivers over a conventional RNN, when they are only considering short “Ok Google”

phrases.
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6.2.2 Speaker Embeddings for End-to-End ASV

In work by Heigold et al [91], they use the term ‘speaker representation’ when they refer to the

use of ‘d-vector’ type formulations, for speaker models. The concept of representing a speaker

in some discriminative space notionally derived using ‘end-to-end’ deep learning, inspired the

very recent work by Snyder et al [26] with ‘speaker embeddings’. This is perhaps the second

most prominent work of late in direct training of DNNs for ASV.

Snyder et al [26] comparably train a feed-forward DNN, with an objective function that operates

on pairs of embeddings. The intention is to train a network that maximises the same speaker

probability when two embeddings originate from the same speaker, and conversely minimises

the same probability if the embeddings are from two different speakers.

Motivated by the earlier work of Heigold et al [91], they develop a DNN framework that they

state is capable of handling variable duration input through the use of a temporal pooling layer,

and is developed for text-independent verification. Figure 6.6 illustrates their proposed ‘end-

to-end’ ASV utilising ‘speaker embeddings’, with (a) their DNN architecture to map stacked

MFCC features to an embedding vector, and (b) their ASV scoring process.

The DNN architecture shown in Figure 6.6(a), illustrates how their network consists of a number

of network-in-network (NIN) [79] non-linear activations layers, and a temporal pooling layer. The

final layer is linear, and produces the output embedding vector x, a symmetric weight matrix

S, and a bias offset b. Both S and b are reported in [26] as constants, that are independent of

the input observation features, but are required for their distance objective function.

The temporal pooling layer is described in [26] as aggregating the output of the preceding hidden

layer over time, and computing its average and standard deviation. They then concatenate these

statistics together, and append them to the input of a last hidden layer. The final layer is then

linear, producing the final speaker embedding.
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(b) ASV Process

Figure 6.6: Illustration of the end-to-end ASV process using speaker embeddings by Snyder et al
[26], with (a) the DNN architecture proposed that maps stacked MFCC to a ‘speaker embedding’
vector, and (b) the ASV scoring process. The objective function L(xtest, xmodel) operates on
pairs of embeddings, maximising same speaker embeddings, and conversely minimising pairs of
embeddings from different speakers.
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Ghahremani et al [93] describe the motivation for calculating the mean and standard deviation

over a moving input window to the network, as expecting to capture long term variability

effects in the speaker and channel. In regards therefore to handling variable duration input, the

additional first and second order statistics, speculatively perhaps adds a form or regularisation.

The DNN notionally can be viewed as a background model [23], of which the accrued mean and

standard deviation possibly helps to align the frame level data inputs into the next NIN layer.

Figure 6.6(a) as stated, highlights the multiple NIN layers employed within their DNN. The NIN

concept was originally developed by Lin et al [79], in pursuance of improving linear assumptions

made around the max pooling process used with CNNs. Max pooling layers are used to both

reduce the dimensionality, and aid in translational invariance. Lin et al [79] argue that the max

pooling process is effectively too simplistic, and makes such assumptions that the latent concepts

are linearly separable.

Lin et al [79] instead recommend substituting both the activation function of the convolutional

layer, and the max pooling layer for another non-linear deep network, which they term a ‘micro

network’ within the CNN. The micro-network therefore acts as the non-linear activation, whilst

also encompassing the max pooling process. This effectively ties the mapping of the receptive

field data through the convolutional filter, the non-linear activation, and max-pooling process,

to the output vector into one joint process. Lin et al [79] investigate using conventional feed-

forward DNNs as their ‘micro-networks’. They term the overall structure a ‘network in network’

(NIN). Snyder et al [26] decide to adopt the NIN non-linearity concept for ASV, following its

introduction to ASR by [93] for acoustic modelling from the signal domain using CNNs.

Figure 6.6(a) illustrates within their DNN architecture, the structure of a single NIN layer

adopted from Ghahremani et al [93]. The modified NIN non-linearity presented in [93], is a

new many-to-many non-linearity comprising they state of two block diagonal matrices. These

repeated blocks are interleaved between layers of rectified linear units (ReLU). The transfor-
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mation matrix block U1, maps an input vector into some high dimensional space, where it is

subsequently passed through a ReLU function. The matrix block U1 is of dimension m x k,

where m corresponds to the input size, and k the number of dimensions of the higher dimen-

sional space. Ghahremani et al [93] define this higher dimensional space as the “NIN hidden

dimension”, which presumably at deeper layers within the network corresponds ideally to an

effective space to discriminate speakers. If the micro neural network block parameters are shared

across the NIN layer, then Ghahremani et al [93] asserts that each column of the block U1 can

be interpreted as a 1-d convolutional filter of size and shift equal to m, the size of input to the

block U1.

The second matrix transformation block U2 then maps back down to a lower dimensional space,

where it is followed by another ReLU function. They define the combination of the blocks U1

and U2, with the ReLUs, as a “micro neural network block”. Their proposed NIN non-linearity

thus resembles closely an autoencoder type structure, with many repetitions, but interleaved by

ReLU non-linearities.

The intuition behind their DNN architecture, can be perhaps explained further in reference to

the earlier works by Chen and Salman [94], who they cite use a similar constructed DNN. Snyder

et al [26] describe their study, as investigating the training of DNNs on a speaker comparison

task, producing frame-level features that capture speaker characteristics. According to Snyder

et al [26], they then supposedly use these statistics to create single Gaussian component speaker

models.

A key remark is made by Chen and Salman in [94], in that they consider their DNN to be

essentially comprised of two deep autoencoders. The pair of autoencoders appear to conceptually

derive a space at the code layer, with which minimises speaker utterance comparison errors.

Chen and Salman [94] also propose that their DNN can be viewed as a regularised Siamese

(RS) architecture, in which the data reconstruction of the autoencoders conceptually regularises
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interference from non-speaker related information.

The multiple NIN autoencoding type micro-neural networks proposed by Snyder et al in [26],

are possibly intended to instil similar qualities, in attempting to iteratively derive an effective

speaker discriminant space through repeated application, of the autoencoder type micro-neural

networks. However interestingly their overall DNN architecture, illustrated in Figure 6.6, can

maybe be considered to be an autoencoder type layout without the eventual decoding back to

the original input data, which is applied by Chen and Salman in [94] for regularisation. The

speaker embedding output layer then possibly can viewed equivalently to the study of Chen and

Salman [94], as the coding layer.

Snyder et al [26] report that they use a NIN configuration, consisting of 150 micro-neural net-

works, with an input di size of 600 nodes, a hidden layer dh of 2000, and an output layer do of

3000.

Training of their DNN architecture can be explained via their ASV scoring process, as is illus-

trated in Figure 6.6(b) with the objective function LS,b(xtest, xmodel). Snyder et al’s [26] intention

is to train a network, where the objective function maximises speaker embeddings from the same

speaker, and conversely minimises if they are from different.

Taking a pair of embedding vectors x and y, they thus define their objective according to an

error (E) probability function as follows

E = −


 ∑

(x,y)εPsame

ln (p(x, y)) +K


 ∑

(x,y)εPdiff

ln (1− p(x, y))




 (6.6)

where K is a constant introduced in lieu of there usually being many more pairs of different

speakers (Pdiff ), compared with the same (Psame),
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The joint probability p(x, y) they define by the logistics function

p(x, y) =
1

1 + exp−LS,b(x,y)
(6.7)

where LS,b represents a form of linear distance similarity score, defined as

LS,b(x, y) = xT y − xTSx− yTSy + b (6.8)

Intuitively if speaker embeddings x and y are sourced from the same speaker, then LS,b(x, y)

will tend to zero. The goal of training is to learn the symmetric weight vector S and bias b, such

that S scales optimally components xTSx and yTSy with offset adjustment b, with respect to

the dot product xT y. Snyder et al [26] also points out, that Equation 6.8 can alternatively be

viewed as having a PLDA-like quality, implying presumably a factor analysis type characteristic,

where S might be construed as a factor loading matrix.

Having defined their scoring scheme for training the DNN, Snyder et al [26]’s enrolment process

for a speaker is otherwise analogous to [23,91]. Speaker embedding vectors are simply averaged

across all available utterances to produce the final embedding.

6.2.3 Performance of D-Vectors and Speaker Embeddings

This sub-section presents a review of the experimental findings by Variani et al [23], Heigold et

al [91], and Snyder et al [26], the theory of which was discussed in the previous section.

Naturally both Variani et al [23] and Heigold et al [91], who are developing a text-dependent

ASV system to operate on the fixed utterance “Ok Google”, present findings following a similar

experimental methodology. Snyder et al [26] however also chooses to focus on short utterances

for a private application, presenting results on a large internal US telephony data set.
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Corpora and Hyperparameter Settings

Variani et al [23] in their d-vector ASV experimentation, report that they used a total of 496

speakers for training their d-vector extraction neural network, with a remaining 150 speakers

from their set used for evaluation. All speakers are uttering only the same phrase “Ok Google”,

in many sessions. During training of the DNN, they state that they used anywhere between 60

to 130 “Ok Google” utterances per speaker. For speaker enrolment, they used between 4 to 20

utterances per speaker. In the construction of their evaluation set, they set one out of every 150

trials as a true target trial, with approximately 12750 trials in total.

Their maxout DNN with dropout comprised of four hidden layers, with 256 nodes per layer,

and a pool size of 2 per layer. They restricted the dropout to the last two layers, dropping 50%

of activations. The output layer size corresponds to the number of training speakers, namely

496. For input into their DNN, they stacked 40 dimensional log filterbank energy features, over

a context of 30 frames to the left and 10 to the right. No information is available on the frame

size and increment used, as well as the recording format and collection conditions.

Heigold et al [91] in comparison to Variani et al [23], experiment on a significantly larger amount

of data. Their corpus comprises of two DNN training sets, a small (train 2M utterances), and a

large (train 22M utterances). The small contains a mere 4K speakers with over 500 utterances

per speaker, whilst the large train 22M contains 80K speakers with over 150 utterances per

speaker. Heigold et al [91] inform that they then augment this data, by artificially adding in car

and cafeteria noise at multiple signal-to-noise ratios (SNRs) simulating far distance character-

istics. They evaluate on 3K speakers, with between 1-9 utterances for enrolment per speaker,

and 3-5 utterances for testing.

Due to presumably the larger data size in comparison to Variani et al [23], they use 504 node

DNN layers instead of 256, with 4 layers in total, and again ReLU non-linearities except for the

last layer that is linear. The first layer is also locally connected, with a patch size they define as
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10 x 10, found in [95] to reduce their model size by 30% relative to their original fully connected

DNN, and to similarly improve the relative ASV EER performance by 8%. For input into the

DNN, like Variani et al [23], they use stacked 40 dimensional log-filterbanks (with they note

some basic spectral subtraction), but concatenated over double the number of frames at 80 to

match the average duration found for “OK Google” utterances.

Snyder et al [26] as stated, report findings on an internally collected corpus for a short duration

application, where high accuracy and good calibration of scores across test conditions is required.

Their full training dataset used for their DNN (train102K), equates to 102K speakers and more

than 5.7K hours of US telephony speech at 8kHz. Their evaluation set comprised of 2419

speakers, with 2915 training utterances for training (equating to 1.21 utterances per speaker,

with an average duration of 91s), and 2419 test utterances (with a duration between 1 to 92s).

They constructed their test set, such that approximately 80% of the trials were non-target (false

trial).

Their DNN comprised of four hidden NIN layers, followed by a temporal pooling layer, another

NIN layer, and then a liner output layer. They state that they used 150 micro-neural networks

within each NIN, each taking an input size of 600, a hidden layer of 2000 nodes, and an output

layer of 3000 nodes. They used ReLUs non-linear activation functions with the NIN layers. For

input into the DNN, they used a 20 dimensional MFCC feature vector with a frame-length of

25ms, reportedly mean-normalised over a sliding window of up to 3s.

Snyder et al [26] inform that they splice 9 x 20 MFCC frames together to create a 180 dimen-

sional input vector. The size of this input vector however is less than the required minimum

input dimension of the NIN, at 600 nodes. No details are provided as to how this is managed.

Speculatively, their baseline i-vector system uses also 20 MFCCs, but appends delta and accel-

eration features to create a 60 dimensional vector. Whilst Snyder et al [26] explicitly state that

they only splice 9 frames together, perhaps they in fact meant 10, if they accidentally had not
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included the central frame. This would coincidentally generate the minimum 600 input node

length required.

Review of Experimental Findings

Table 6.7 shows eleven pairs of %EER scores in total, comparing with and without test score

normalisation (T-norm), taken from Variani et al [23] (V), Heigold et al [91] (H), and Snyder [26]

(S).

The two results taken from Variani et al [23], compare their d-vector ASV with the classic i-

vector [3] approach, using cosine scoring, and with twenty “Ok Google” utterances per speaker

used for enrolment. The two %EER scores show that they achieve comparable performance

using d-vectors at 2.00%, compared with 1.21% for T-normalised i-vector scores. Variani et

al [23] notably also find that applying T-norm to d-vector derived ASV scores, slightly degrades

performance. They therefore choose in [23] to focus their efforts on the original non-normalised

scores.

The marginal degradation in performance due to T-norm can be observed by the DET plot

taken from [23], shown in Figure 6.8(a). The two pairs of profiles, for with and without T-norm,

are derived using just 4 training utterances per speaker, instead of the 20 in Table 6.7. At 0.5%

false alarm rate, the DET plot shows that applying T-norm increases the percentage miss from

17% (‘d-vector raw’) to approximately 20.5% (‘d-vector tnorm’). However T-norm is shown to

be beneficial for i-vectors, where at the same 0.5% false alarm rate, the percentage miss improves

from 10% to approximately 7.5%.

The DET plot shown in Figure 6.8(a) also highlights, that the ‘d-vector’ ASV approach appears

to perform much better than i-vectors at very high false alarm rates. For example at approxi-

mately 30% false alarm, both d-vector profiles correspond to a 0.2% miss, compared with the

i-vector profile pair at 0.4% miss and greater (highlighted by the red arrows). Variani et al [23] in
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Configuration Data %EER

UBM/DNN Training
Enrol − Test

Original T −Norm
(#utterances)

V: d-vector - 20-1 2.00 -
V: i-vector - 20-1 - 1.21

S: i-vector+PLDA 102K full-full 2.4 -
S: i-vector+PLDA 102K [1-20s]-20s 3.2 -
S: DNN 102K [1-20s]-20s 2.6 -
S: Fusion 102K [1-20s]-20s 1.9 -
S: Fusion 102K [1-20s]-full 1.6 -

H: DNN,softmax train 2M [1-9]-[3-5] 3.86 3.32
H: DNN,softmax train 22M [1-9]-[3-5] 2.69 2.08
H: DNN,e-to-e train 22M [1-9]-[3-5] 2.04 2.14
H: LSTM,e-to-e train 22M [1-9]-[3-5] 1.36 -

Figure 6.7: Summary %EER scores with and without T-norm taken from Variani et al [23] (V),
Heigold et al [91] (H), and Snyder et al [26] (S), comparing direct DNN training approaches
for ASV: V=comparison between d-vector and classic i-vector with T-norm; S=comparisons
between classic i-vectors with PLDA scoring, their speaker embedding ASV (DNN), and fusion,
whilst varying the enrol and test durations, [1-20s] implies variable between 1 to 20s, and full
implies a complete recording; H=d-vector type formulations using either a softmax or a complete
end-to-end objective training criterion, substituting the DNN for a LSTM network, and varying
the amount of DNN training data from 2M utterances (train 2M) to 22M (train 22M).

(a) Variani et al [23] (b) Snyder et al [26]

Figure 6.8: DET ASV performance graphs highlighting potential score calibration issues with
the current direct training of DNNs for ASV: (a) taken from Variani et al [23], with d-vectors
using only 4 “Okay Google” utterances for enrolment; and (b) taken from Snyder et al [26] for
pooled 10s, 20s and full recording test conditions, with 1-20s enrolment, and their 102K speaker
set for training the i-vector UBM and DNN for speaker embedding extraction.
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response to this phenomena, perform a separate histogram analysis of the unprocessed d-vector

derived scores, concluding that the scores are heavy-tailed distributed instead of normal. They

therefore speculate that a more sophisticated score normalisation method may be required for

the d-vector based ASV.

In a rather unexpected manner, the potential score calibration issue found by Variani et al [23],

is also observable in the more recently produced DET plots by Snyder et al [26]. An example plot

is shown directly alongside in Figure 6.8(b), for pooled test 10s, 20s and full recording condition

scores. Their DET plot shows how at the %EER point, whilst performance might be better

using their speaker embedding approach, at the typical NIST-SRE [63] minimum cost operating

point for large data sets - corresponding to low false alarm rates, performance using d-vectors

is worse. The use therefore of the %EER, whilst a more easily interpretable benchmark point,

should be tempered with the application operating point of interest.

Concerning the potential issue of score calibration, it perhaps can be hypothesised that the issue

might be partially the result of the direct use of the network activation outputs, which will have

invariably passsed through a non-linear activation function. In the case of d-vectors, Variani et

al [23] take the outputs of the last hidden layer of the DNN, which will have passed through

a ReLU activation function. Similarly, Snyder et al [26] apply a logistics function as part of

their ASV scoring process. Further research is needed to understand this peculiarity, but the

heavy-tailed score distribution might lend itself also to the length normalisation process applied

by Garcia-Romero for PLDA [10].

Examining Snyder et al’s [26] results further, Table 6.7 lists five %EER scores. The scores

suggest that when there is more enrolment and test data available, the i-vector with PLDA

scoring performs better than the DNN approach. For example, when complete train and test

recordings are used (full-full), the i-vector+PLDA achieves 2.4% EER. If however, the data is

reduced to between 1 to 20s enrolment with 20s test ([1-20s]-20s), then the %EER increases to
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3.2%. In comparison, the corresponding DNN speaker embedding approach achieves 2.6% EER.

Fusion as expected leads to improvements, at 1.9% with 20s test, and 1.6% using the full test

recordings.

In lieu of the promising low fusion score, and the potential issue of calibration, reference is

made back to the DET plot in Figure 6.8(b). At the %EER point, there is a similar marked

improvement from the DNN profile at approximately 3%, to the fusion profile at 2%EER. The

fusion also aids it appears, in reducing the degradation in performance at low false alarm rates,

where performance can be seen to tend towards following mostly the i-vector profile.

Analysing and constrasting next %EER results from Heigold et al [91], four pairs of scores are

included in Table 6.7. The initial pair of ‘DNN,softmax’ scores, are derived using a softmax

training criterion, similar to that used to originally train the d-vector speaker ID DNN proposed

by Variani et al [23]. Heigold et al [91] compare training the DNN using the smaller ‘train 2M’

background set of 2M utterances, to utilising the much larger ‘train 22M’ set. The number of

enrolment and test utterances is fixed at between 1-9 and 3-5 respectively.

Heigold et al [91] find, not unsurprisingly using more data to train their DNN leads to improve-

ment, with for example the EER improving from 3.86% without T-norm to 2.69%. They also

find improvement with applying T-norm, with for example the ‘train 22M’ DNN score improv-

ing from 2.69% to 2.08%. The improvement found by Heigold et al [91] is therefore in slight

contradiction to the result of Variani et al [23], who found the opposite when applying T-norm.

Further research is therefore needed to understand this, especially in view of the potential score

calibration issues with Variani et al [23], and Snyder et al [26].

Table 6.7 next shows their %EER scores derived when applying their ‘end-to-end’ loss criterion,

and substituting the DNN for an LSTM network. Applying the end-to-end loss criterion, they

find improves the original unprocessed ASV scores from 2.69% to 2.04%. However almost no

change is found with the T-norm pair, which degrades marginally from 2.08% to 2.14%. In
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regard to using a LSTM network in place of a DNN, they find a substantial improvement from

2.04% to 1.36%, but at the expense of approximately ten times more calculations.

In summary the experimental findings of Variani et al [23], Heigold et al [91], and Snyder et

al [26] highlight the potential of a directly trained DNN for ASV, with %EER results almost

comparable if not better at times to the classic i-vector based ASV system. The issue with

score calibration however highlights that further research is still very much needed, but a direct

approach appears promising. It perhaps would be beneficial to isolate the interesting short

duration problem in the first instance, to focus research into understanding the notionally single

problem of directly training a DNN for ASV.
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6.3 Preliminary Experiment - Speaker Identification using CNNs

In the previous sections, research exploring the use of deep learning, both indirectly via a pre-

trained DNN for ASR, and directly was reviewed. It can be surmised from the review made,

that the degree of research into understanding the direct approach, where the classes are speaker

related, has until very recently received much less attention. This is perhaps due to the often

limited amounts of enrolment data available per speaker [22].

Direct training of DNNs for ASV however notionally directs the DNN to discover new, poten-

tially more robust features or representations from which to discriminate speakers. An apparent

emerging term to such effect, is a ‘speaker embedding’, coined by Snyder et al [26]. The use

of deep networks for the potential discovery of new robust features or representations, there-

fore motivates the preliminary experiment presented here, with the use of convolutional neural

networks (CNNs) for speaker identification.

More widely the use of convolutional neural networks (CNN) has led to significant advancements

in recognition performance, particularly in computer vision with the work of Krizhevsky et al [19]

in the 2012 ImageNet recognition competition. CNNs were described earlier in Section 6.1.2,

where they can be considered as a biologically inspired variation of multi-layer perceptrons

(DNNs) [76].

CNNs are intentionally constructed, such that they are sensitive to specific localised patterns,

but also invariant to their precise location. Combining then these localised patterns or features

in higher order or deeper layers, conceptually allows more complex-higher level semantic level

features to be subsequently discovered [74]. Notionally, it can be considered then that Krizhevsky

et al [19] are effectively using their five CNNs layers, as a data-driven feature extraction, directed

by the subsequent fully connected regular DNN layers.

In the preliminary experiment presented, the data-driven CNN framework of Krizhevsky et
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Figure 6.9: Proposed closed speaker identification task.

al [19] for image object recognition, is followed with an analogous speaker identification (ID)

task. Figure 6.9 illustrates, where given a speech utterance, the question is who out of ‘N ’

possible speakers produced it. Similar to ASV, the speech sample is first passed through a front-

end process to extract features, before then being compared against the ‘N ’ speaker models. A

maximum can then be taken to decide who out of the ‘N ′ speakers is most probable.

The goal of the experiment presented, is thus to establish whether or not a CNN can be trained

successfully for speaker identification. It is hoped that this work might eventually lead to the

development of more robust features or speaker representations, effectively analogous to the

current research in ‘speaker embeddings’ [26].

6.3.1 Deep Network Architecture and Component Settings

Figure 6.10 illustrates the CNN-DNN architecture used, based on Google TensorFlow’s MNIST

CNN tutorial [96].

The complete network comprises of two CNN layers, followed by a fully connected conventional

DNN layer, and a final output (readout in TensorFlow terminology) layer. The first CNN layer

is expanded to illustrate the two inner processes of convolution with non-linear activation, and
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Figure 6.10: Illustration of the CNN-DNN network architecture used for speaker identification.
The first CNN layer is expanded for illustrative purposes, comprising of a convolution+non-
linear activation and a max pooling process. The single 3 x 3 example convolutional filter shown
for display only, is smaller than the filter used during the experiments, which was 5 x 5 for
both CNN layers. In total, 32 filters were used in the first CNN layer, and 64 in the second,
generating the equivalent number of respective feature maps. A max pooling group size of 2 x
2 was used for both CNN layers.

max pooling. It should be noted that the single example convolution filter shown in Figure 6.10

is for display purpose only, and is smaller than was used in practice. A slightly larger size of 5

x 5 was used for both layers, with a max pool group size of 2 x 2.

The input image into the network comprises of the log Mel filterbank output coefficients, based

on the works of [23,84]. The filterbank coefficients were also passed through a linear discriminant

analysis (LDA) transform, based on [84]. The LDA transform matrix was estimated using all

male training data from the NIST-SRE 2005 ‘conv4w’ training set.

In total 26 filterbank coefficients were calculated, from a 32ms frame size with 16ms increment.

In order to aid the twice halving of the dimension size from the max pooling processes, the last

two filterbank coefficients were dropped, giving a length of 24. Each image also underwent mean

and standard deviation normalisation, before being scaled to a comparable [0,1] scale. The mean

and standard deviation statistics, and [0,1] minimum-maximum scaling parameters were derived
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Component V alues

Front-End 26 mel spaced filters, 32ms window with 16ms increment

Input Filterbank 24 filterbank coeff’s x 32 time frames

Conv’ Layer 1 5 x 5 x 32

Max’ Pooling 2 x 2 with stride 1

Conv’ Layer 2 5 x 5 x 64

Max’ Pooling 2 x 2 with stride 1

#Fully Connected Nodes 1024

Activation function ReLU

Table 6.4: DNN-CNN and front-end log-mel filterbank calculation settings. Rectified linear
units (ReLU) were used as the non-linear activation function for all three layers.

from across all the enrolment and test data.

Figure 6.10 illustrates how the linear filter is convolved across the filterbank spectral image

producing a corresponding feature map. Often many filters are used, producing the respective

number of filter maps. In total 32 filters were used in the first layer, and 64 in the second. The

filters were stepped across the filterbank image with a stride of 1 coefficient. To also maintain

the dimension size, the log spectral filterbank images were padded with zeros.

Max pooling is then applied, which reduces the dimensionality, aiding in computational burden

at higher layers and translational invariance. Figure 6.10 illustrates how with a group size of 2 x

2, the filter maps are halved in dimension (the stride size of max pooling group is 1 coefficient).

The output filtermaps of the max pooling are subsequently fed into a second convolutional layer

with max pooling, the outputs of which are stacked, and processed by a fully connected regular

DNN layer. The fully connected layer has 1024 nodes.

Table 6.4 lists the component settings chosen for reference. Rectified linear units (ReLU) were

used as the non-linear activation function for all three layers in the network.
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Model Train 1 Train 2 Test

M7029 jiio.sph:B jhfb.sph:A jebn:A (test 1)

M7040 jewi.sph:B jhmt.sph:A jaxv:A (test 2)

M7845 jico.sph:B jacj.sph:B -

M8611 jhpl.sph:B jekq.sph:B -

Table 6.5: Initial test models and training/test speech data taken from the NIST-SRE 2005
‘3conv4w’ training set [58] . The M7845 test recording was not used due to the recording only
containing half the amount of speech to the other two recordings. The M8611 test recording
was found to contain no speech at all.

6.3.2 Experimental Protocol

Google’s open source TensorFlow MNIST tutorial and software development kit (SDK) [96] was

used as the basis for implementing the CNN-DNN described. The CNN-DNN was trained to

initially just learn 4 speaker models from the NIST-SRE 2005 [58] ‘3conv4w-1conv4w’ male set,

before be being subsequently increased up to 84 models using training data from the NIST-SRE

2004 [57] ‘3conv4w’ male set.

The NIST-SRE 2005 ‘3conv4w-1conv4w’ male set [58] consists of 3 recordings per speaker model.

For the preliminary experiment presented, four models were chosen, which are listed in Table 6.5.

Two of the recordings were used for training, whilst the third was kept for testing. Unfortunately

the third recording for the M7845 model contained only half the amount of speech to the M7029

and M7040 recordings, and the third recording for M8611 contained no speech at all. Due to time

restrictions, there was not sufficient time to substitute these models, but they do nevertheless

aid in testing for false alarm events.

The initial four male speaker models from the NIST-SRE 2005 ‘3conv4w-1conv4w’ training set

were subsequently expanded upon, with models from the NIST-SRE 2004 [57] ‘3conv4w’ male

set. Initially, 40 speaker models were appended before being increased to 80, resulting in 84 in

total.
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To minimise further complexity, the filterbank images were kept fixed at a size of 24 x 32

coefficients, corresponding to the number of filterbank coefficients, and time frames respectively.

The duration of all enrolment and test recordings was fixed at 3200 voice activity detected

(VAD) frames, corresponding to 51s (31999*16ms increment + 32ms frame duration) of speech

per recording. In respect that each filterbank image is fixed at 32 time frames, this produces

100 filterbank images per audio recording. Prior to training, the images were first randomised

to help stabilise the training of the network.

A fixed total number of 32K iterations (referred to as ‘steps’ in TensorFlow) was set for training

the network. At each iteration (step), the first 50 images were drawn (the batch size) from the

enrolment collection of filterbank images, and used to train the network. The images were not

replaced back into the collection. When the collection of training filterbank images was empty

(corresponding to 1 epoch), the training images were re-randomised and populated back into

the collection. The training cycle was then repeated, until 32K iterations (steps) was reached.

With 44 speaker models, 87 training audio recordings were used, equating to 8700 training im-

ages. The number of epochs (complete training repetitions across all the 8700 training images)

is therefore (50 batches x 32000 steps) / 8700 images = 184. For 84 speaker models, 166 audio

recordings were used, which equates to 96 epochs. The high number of epochs or repetitions over

the complete training data, perhaps may lead to future over-tuning issues; however, the motiva-

tion here was simply to establish whether or not a CNN network could be trained successfully

for speaker identification.

The cross entropy loss function was used as the training criterion, with the output speaker

posteriors computed using a softmax.
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6.3.3 Results and Analysis

Figure 6.11 shows the output speaker posterior scores from the network for the two test recording

(jebn:A, jaxv:A) respectively, with a network of 44 models (a) and 88 models (b) respectively.

The posterior scores correspond to the mean taken across all the test utterance time frames.

The two pairs of plots show that the CNN-DNN network is able to correctly identify the two

speaker models, namely M7029 (model 1) and M7040 (model 2) when processed against the two

test utterances respectively. The use of 84 speaker models is perhaps at the limit for the size of

network specified, evident by the lower mean posterior scores obtained. Further experimentation

is needed, but the preliminary objective to determine whether or not a CNN network can be

trained successfully for speaker identification, at least for a very small trial appears true.
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(a) 44 models

(b) 84 models

Figure 6.11: Activation scores averaged across the two respective test recordings (jebn:A,
jaxv:A), for the network with 44 models (a), and 88 models (b). The two pairs of plots highlight
how the network correctly identifies speakers M7029 (model 1), and M7040 (model 2) correctly.
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6.4 Deep Learning Conclusions

In this chapter, a study into deep learning approaches within ASV was made, motivated by the

potential to discover new robust speaker representations and features.

A literature review was first presented of research into deep learning to date in ASV, which

highlighted two prime approaches: indirectly via a pre-learnt DNN for ASR; and the direct

training of the DNN, where the output classes are speaker related. The review highlighted

how to date, the indirect approach appears to have received more research attention than the

direct form. This was concluded as being most likely the result of the often limited amounts

of enrolment data available per speaker [22]. However of late, it would appear that the direct

training of DNNs is beginning to see an increase in interest, with such works including [26, 87,

88,91].

The indirect approach using a DNN pre-trained for ASR was originally proposed by Lei et al [22].

In their framework, they propose that the classes of the UBM are defined by phonetic senone

states, instead of corresponding to the unsupervised GMM component indices. The senone

posterior state alignments are calculated using the DNN trained for ASR.

Lei et al [22] define senones as the leaves of the ASR decision tree, which therefore correspond

to the underlying tied triphone states of the ASR HMM. By defining the UBM classes as such,

they argue allows the ASV process to be aligned on the phonetic content present in utterances.

They refer to their alternate framework as ‘DNN/i-vector’ in [56].

Two practical ASV methodologies appear to have emerged from the indirect approach, with the

first as described. The second involves bottleneck features extracted directly from the network,

from a layer with a reduced number of nodes. The performance of both methods was assessed

in great detail by McLaren et al in [56]. They show on NIST-SRE 2012 [63] data, that using

bottleneck features or the DNN/i-vector framework on telephony English conditions, gave on
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average a 30% relative improvement over their UBM(MFCC)/i-vector baseline. They further

show that fusion between the acoustic MFCC derived i-vectors, and the indirect phonetic ASR

schemes, leads to even greater gains with a relative improvement in the order of 45%. The

significant gains found with fusion, leads Mclaren et al [56] to conclude that the information

from conventional acoustic MFCC trained i-vectors is orthogonal, to the information supplied

by the indirect phonetic ASR-DNN approach.

McLaren et al [56] find similar patterns of improvement with ‘microphone’ derived speech, but

highlight that DNN is perhaps more susceptible to unwanted channel variabilities. Somewhat

also strikingly, their cost scores appear generally appear lower for the microphone speech, com-

pared with their telephony results. Very little detail is provided about the recordings, other

than that a higher bit depth of 16 bits is used with microphone speech, compared with 8 bits

for telephony.

Further such research into indirect ASR schemes, included the substitution of the DNN for a

CNN for robustness in noisy conditions. McLaren et al [25] present findings on the large radio

re-transmission RATS [83] evaluation corpus. Comparing again to a classic i-vector baseline,

they find that in this case the use of the CNN/i-vector framework alone, does not lead to signif-

icant gains over a more conventionally trained i-vector based system on acoustic type features.

However the fusion of both leads to significant performance improvements, at around the more

conventional NIST-SRE [63] minimum cost operating point, corresponding to a large speech

data processing system. They find at 1.5% false alarm rate, approximately a 10% improvement

in miss performance, on an evaluation set comprising of 5.8M impostor and 5.8K target trials.

The use of CNNs it appears was also explored by Snyder et al [85], in the form of time delay

neural networks (TDNN). Their use of TDNNs was inspired by the major gains found by Peddinti

et al [84] in ASR, with on average a 4.3% improvement in word error rate across several large

vocabulary tasks. Snyder et al [85] find similar relative improvements, with in the order of 50%
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EER.

A review was then made of research exploring the direct training of the DNN for ASV. The

early works of Variani et al [23] on d-vectors, and the very recent work by Snyder et al [26],

are probably the two most prominent works in this context. Both methods essentially can be

viewed, as attempting to derive an effective space to represent and discriminate speakers within,

derived through the direct training of DNNs. To this effect, Snyder et al [26] coins the term

‘speaker embedding’, referring to the mapping of a speech utterance into a speaker embedding

vector.

Research into the direct training of an ‘end-to-end’ deep learnt ASV system appears promising,

if perhaps at a relatively early stage of research. Snyder et al [26] find that under short duration

conditions, their ‘end-to-end’ trained DNN performs better than their i-vector+PLDA based

ASV system, at 2.6% EER compared with 3.2%. This equates to a 20% improvement. They

find that fusion improves this to 1.6% EER, a 50% relative improvement. Heigold et al [91],

following the work of Variani et al [23], also investigate the use of LSTM to capture time-sequence

information, and reporting similar performance gains.

However the DET plots from both Snyder et al [26], and Variani et al [23] both exhibit po-

tential score calibration issues. At the usual NIST-SRE [63] minimum cost operating point,

corresponding to a low false alarm rate, the miss performance degrades significantly compared

with the use of i-vectors. Conversely, at high false alarm rates, the direct trained DNN ASV

systems perform better than the i-vector based schemes. The DET profiles in effect, appear

to be tilted clockwise relative to the i-vector profiles. Despite this potential calibration issue,

research into direct training of DNNs for ASV appears promising. It perhaps would also be

interesting to compare performances over longer durations, attempting to focus efforts thereby

on the successful training of the DNN.

Last a preliminary experiment was presented, on directly training a CNN for speaker identifica-
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tion (ID). The use of CNNs as a data-driven feature extractor, was motivated by the significant

breakthrough in computer vision by [19]. The experiment demonstrated that it is possible to

train a small CNN for speaker identification, discriminating two speakers from out of a possible

82 confusable speakers, for a very small trial. Much further research is needed, but it is hoped

that this might lead to further understanding or discovery of new robust speaker representations.



Chapter 7

Conclusions and Recommendations

This thesis opened by stating how performance on English telephony conditions, can be con-

sidered in many respects to be at, or if not very close to the upper achievable limit. However

despite this exceptional performance achieved, ASV systems still remain somewhat susceptible

to sources of unseen variability, and especially in challenging degraded conditions [12]. It was

hypothesised, that if ASV systems are to become truly robust to unseen or unwanted variabil-

ities, then more robust features beyond cepstra are likely needed. Much of the research over

the last two decades, has been focused instead on developing speaker models and classification

techniques capable of learning large amounts of data.

With this underlying motivation in mind, an extensive review was first made of the developments

from the mid-’90s with the early work on GMM-UBMs by Reynolds et al [1,16], up to the eventual

development of i-vectors by Dehak et al [3], and the adoption of PLDA scoring [41,42] in around

2010. A thorough explanation was made in particular of i-vectors, including the adoption of the

underlying UBM centralised MAP adaptation concept from Reynolds [16], for the compensation

of the often limited amounts of speaker enrolment data, and the derivation of the EM training

process for the total variability matrix.

In reviewing the subsequent work by Kenny on HT-PLDA [41] scoring of i-vectors, attention

was drawn to his observations made, concerning the linear statistical independence assumption

made between speaker and channel variability. Kenny et al interestingly in [41] argues that

this assumption is potentially both flawed, and still not well understood. He hypothesises

that the channel variability is speaker dependent, based on scatter plots of the first two i-
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vector components produced by Tang et al [53], which are highly directional with respect to

the speakers. This he argues, indicates that there is not a consistent axis of session variability

between speakers.

Whilst Kenny’s observations are potentially over-stated, this does partially corroborate the

opening observations made, that there still lacks the discovery or understanding of a truly

robust set of speaker features or representation, beyond that of cepstra. However if a true

physical understanding of the relationship between speaker and channel variabilities is to be

achieved, then perhaps experimental speech corpora need to be made under much more tightly

controlled conditions, and labelled accordingly. This invariably would be more costly and time

consuming, and would also come at the risk of the results found not being generalisable to wider

conditions.

Following the review, the thesis then presented a series of performance tuning experiments on

GMM-UBM and i-vector based ASV systems. Specific implementation details are sometimes

lacking from published works, which can make it difficult to repeat leading findings, and to gauge

the limits of these approaches. The experiments were conducted using a fixed reference telephony

test set (NIST-SRE 2005 ‘3conv4w-1conv4w’ [58]), to allow for comparison throughout.

The experiments highlighted in particular how effectively adding more background data, without

due regard to the amount of potential variability it contains, can lead if not careful to a degra-

dation in performance. This susceptibility was particularly evident with early the GMM-UBM

ASV, where adding Switchboard II data [14,59] to the UBM was found to degrade performance.

An analysis was made of the cumulative LLR score distributions, which showed two noticeable

patterns. The first was a very noticeable shift in scores with respect to adding more Switchboard

II data to the UBM, indicating that score normalisation should be applied (Z-Norm and or

T-Norm [29]). The second, were subtle score variations, which it was concluded was likely

attributed to the sensitivity of the GMM-UBM ASV to unwanted variabilities. The training of
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the UBM for example, does not make any allowance for unwanted speaker and channel variations,

applying effectively a ‘blind’ maximum likelihood EM fit of the Gaussian distributions.

Somewhat surprisingly, the training of the total variability matrix (T-matrix), required for

extraction of i-vectors from utterances, was also found to be slightly susceptible to unwanted

variabilities. Often whole evaluation datasets are used to train the T-matrix for robustness [3,12],

with notionally little regard to the amount of benefit each set adds to performance. It was found

that adding the Fisher English-Part 2 [97] degraded performance marginally, from 4.61% EER to

4.80% EER with 2048 Gaussian components. From a brief analysis, it was speculated that this

might have been due to the increased number of speakers in the Fisher English-Part 2 at 562,

compared with 418 in the Fisher English-Part 1 [98], coupled with also that the total number

of recordings remains approximately the same.

A fairly extensive study was then made into the use of deep learning with ASV, which can be

viewed as the data-driven discovery of new robust features or representations for classification.

The chapter began by presenting a literature review of deep learning work to date in ASV,

before then concluding with a preliminary experiment on training a CNN directly for speaker

identification. The literature review highlighted effectively two main approaches adopted within

ASV, the first by indirectly using a pre-trained DNN for ASR, and the second being the direct

training with speaker related output DNN classes.

The review also highlighted how the direct approach until of recent, has received less attention.

It was concluded that this was perhaps due to the often limited amounts of speaker enrolment

data available, making it more challenging [99]. However it would appear, that very recently

the direct training approach is receiving an increased amount of interest, with works including

the likes of [23,26,87,88,91].

The indirect ASR-DNN scheme is described by Lei et al [22], where they propose defining the

UBM classes by phonetic senone states intead, which correspond to the underlying tied-triphone
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states of an ASR-HMM. They recommend accurate calculation of the senone posteriors, by the

use of a DNN trained for ASR. They conceptually describe their ‘DNN/i-vector’ framework

as guiding the ASV process, such that speakers utterances are compared with respect to the

phonetic content present.

Findings by McLaren et al [56] and Snyder et al [85] indicate gains by as much as 50% EER on

NIST-SRE US English data can be achieved. McLaren et al in [25] also finds similar significant

gains in noisy conditions, using CNNs instead of DNNs and at low false alarm rates, where they

achieve a 10% improvement in miss performance on a test data set comprising of more than

5.8M trials.

The indirect ASR-DNN approach therefore would seem to be well established, provided however

there is sufficient data to train the ASR in the required ASV operating domain. In view of

understanding further speaker and channel variability, and the fusion of both acoustic and

phonetic information, it perhaps might be interesting to see if it possible to develop a more

forensic type speaker recognition system in the future.

Direct DNN training schemes seem to comprise of two main works, that of originally by Variani

et al [23] with ‘d-vectors’, and very recently by Snyder et al [26] with ‘speaker embeddings’. Both

methods are effectively attempting to discover through the use of deep learning, a new robust

space from which to represent and discriminate speakers. Performance appears promising if at

quite an early stage, with Snyder et al [26] finding that they achieve a slightly better percentage

EER with shorter durations compared with using i-vectors and PLDA scoring. However analysis

of their DET plots indicates a potential issue with score calibration.

Last, a preliminary experiment was presented, investigating whether or not a CNN could be

directly trained successfully for a very small speaker identification task. A successful result was

achieved. The use of CNNs was motivated by the major performance gains found in image

object recognition by Krizhevsky et al [19], where they effectively use CNNs as data-driven
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feature extraction components in their network. Much further experimentation is needed, but

it is hoped that this might lead to the new more robust speaker representations, or in the very

least a better understanding of the allusive relationship between speaker and channel variabilities

highlighted.
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The NIST Year 2004 Speaker Recognition 
Evaluation Plan 

1 INTRODUCTION 
The year 2004 speaker recognition evaluation is part of an ongoing 
series of yearly evaluations conducted by NIST. These evaluations 
provide an important contribution to the direction of research 
efforts and the calibration of technical capabilities. They are 
intended to be of interest to all researchers working on the general 
problem of text independent speaker recognition. To this end the 
evaluation is designed to be simple, to focus on core technology 
issues, to be fully supported, and to be accessible to those wishing 
to participate.  

The 2004 evaluation will use new conversational speech data 
collected in the Mixer Project using the Linguistic Data 
Consortium’s new “Fishboard”  platform.1  This data will be mostly 
conversational telephone speech in English as in previous 
evaluations, but it is expected to include some speech in languages 
other than English and may include some microphone data.  The 
evaluation will include twenty-eight different speaker detection 
tests defined by the duration and type of both the training and the 
test segments of the individual trials of which these tests are 
composed.  For each such test, an unsupervised adaptation mode 
will be offered in addition to the basic test. 

The evaluation will be conducted in the spring. The data will be 
made available to participants in late March, with results due to be 
submitted to NIST about three and a half weeks later.  A follow-up 
workshop for evaluation participants to discuss research findings 
will be held early in June. Specific dates are listed in the Schedule 
(section �11). 

Participation in the evaluation is invited for all sites that find the 
tasks and the evaluation of interest. For more information, and to 
register to participate in the evaluation, please contact Dr. Alvin 
Martin at NIST.2  

2 TECHNICAL OBJECTIVE 
This evaluation focuses on speaker detection, posed primarily in 
the context of conversational telephone speech. The evaluation is 
designed to foster research progress, with the goals of: 

• Exploring promising new ideas in speaker recognition.  

• Developing advanced technology incorporating these ideas.  

• Measuring the performance of this technology.  

2.1 Task Definition  

The year 2004 speaker recognition evaluation is limited to the 
broadly defined task of speaker detection.  This has been NIST’s 
basic speaker recognition task over the past eight years.  The task is 

                                                                 
1 See http://www.upenn.edu/mixer/ 
2 To contact Dr. Martin, send him email at alvin.martin@nist.gov, 
or call him at 301/975-3169.  Each site must return a signed 
registration form to complete the registration process: 
http://www.nist.gov/speech/tests/spk/2004/register.pdf  

to determine whether a specified speaker is speaking during a given 
speech segment.3 

2.2 Task Conditions 

Previous evaluations have included both a limited data condition 
and an extended data condition.  Limited data meant that the 
training and test segment data for each trial consisted of two 
minutes or less of concatenated segments of speech data, with 
silence intervals removed, while extended data meant that each of 
these consisted of an entire conversation side or, for training, 
multiple conversation sides.  It has been decided this year to 
remove the specific distinction between limited and extended data 
tests, and to no longer do silence removal, but to offer multiple 
testing conditions involving the amount and type of data available 
for both the training and the test segments.  

Thus the speaker detection task for 2004 includes tests involving 
seven distinct training conditions and four distinct (test) segment 
conditions.  There will thus be 28 different combinations of 
training/segment conditions.  A test (sequence of trials) will be 
offered for each of these combinations.  One of these (see section 
2.2.3) is designated the core test.  Participants must do the core test 
and may choose to do any subset of the remaining tests.  Results 
must be submitted for all trials included in each test for which any 
results are submitted. For each test, there will also be an optional 
unsupervised adaptation condition.  A site may do the adaptation 
condition for a particular test only if it also does the particular test 
without adaptation. 

2.2.1 Training Conditions 

The training segments in the 2004 evaluation will be continuous 
conversational excerpts.  Unlike in past years, there will be no prior 
removal of intervals of silence.  For some training conditions the 
NIST energy-based automatic speech detector will be used to 
estimate the duration of actual speech in the chosen excerpts. 

The seven training conditions to be included involve target 
speakers defined by the following training data: 

1. An excerpt from a single channel conversation side 
estimated to contain approximately 10 seconds of speech 

2. An excerpt from a single channel conversation side 
estimated to contain approximately 30 seconds of speech 

3. A single channel conversation side, of approximately five 
minutes total duration4 

                                                                 
3 In previous evaluation plans, the speaker detection task was 
divided into a “one-speaker”  and a “ two-speaker”  task.  However, 
this distinction relates to the task conditions rather than the task 
definition.  Therefore in this evaluation plan the one- and two-
speaker conditions, both for training and for test segments, are 
included under task conditions in section 2.2. 
4 Each conversation side will consist of the last five minutes of a 
six-minute conversation.  This will eliminate from the evaluation 
data the less-topical introductory dialogue, which is more likely to 
contain identifying information about the speakers. 
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4. Three single channel conversation sides involving the 
same speaker 

5. Eight single channel conversation sides involving the 
same speaker 

6. Sixteen single channel conversation sides involving the 
same speaker 

7. Three summed-channel conversations, formed by 
sample-by-sample summing of the two sides of actual  
conversations, each including a common speaker (the 
target of interest) and a second speaker not participating 
in the other two conversations 

Word transcripts derived from an automatic speech recognition 
(ASR) system5 will be provided for all English training segments of 
each condition.  These transcripts will, of course, be errorful, 
perhaps with word error rates in the 20-30% range. 

2.2.2 Test Segment Conditions 

The test segments in the 2004 evaluation will be continuous 
conversational excerpts.  Unlike in past years, there will be no prior 
removal of intervals of silence.  For some test segment conditions 
the NIST automatic speech detector will be used to estimate the 
duration of actual speech in the chosen excerpts. 

The four test segment conditions to be included are the following: 

1. An excerpt from a single channel conversation side 
estimated to contain approximately 10 seconds of speech 

2. An excerpt from a single channel conversation side 
estimated to contain approximately 30 seconds of speech 

3. A single channel conversation side, of approximately five 
minutes total duration4 

4. A summed channel conversation, formed by sample-by-
sample summing of the two sides of an actual 
conversation 

Errorful ASR word transcripts derived from an ASR system will be 
provided for all English-language test segments of each condition.   

2.2.3 Training/Segment Condition Combinations 

The matrix of training and segment condition combinations is 
shown in Table 1. A test will be offered for each combination.  
Each test consists of a sequence of trials, where each trial consists 
of a target speaker, defined by the training data provided, and a test 
segment.  The system must decide whether speech of the target 
speaker occurs in the test segment.  Both an actual decision (‘T’  or 
‘F’ ) and a likelihood score, indicating system confidence in the 
correctness of this decision, must be submitted for each trial. 

The shaded box in Table 1 corresponds to the condition of a single 
conversation side as training and a single conversation side as test 
segment.  The test for this condition will be defined as the core test 
for the 2004 evaluation.  All participants are required to submit 
results for this core test.  Each participant may choose to also 
submit results for all, some, or none of the other 27 test conditions.  
For each test for which results are submitted, they must be 
submitted for all trials included in the test. 

                                                                 
5 All conversations will be processed at BBN using a system 
derived from their RT-03 conversational telephone speech STT 
evaluation system. 

 

Table 1:  Matrix of training and test segment conditions.  The 
shaded entry is the required core test condition. 

Test Segment Condition 
 

10 sec 30 sec 1 side 1 conv 

10 sec 
X X X X 

30 sec 
X X X X 

1 side 
X X X X 

3 sides 
X X X X 

8 sides 
X X X X 

16 sides 
X X X X 

T 
r 
a 
i 
n 
i 
n 
g 

  
 

C 
o 
n 
d 
i 
t 
i 
o 
n 
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X X X X 

2.2.4 Unsupervised Adaptation Mode 

In previous evaluations, adaptive strategies were not allowed and 
each trial was restricted to use data from a single test segment and a 
single (static) model.  This year, an unsupervised adaptation mode 
will be supported, allowing models to be updated based on test 
segments processed in previous trials.   

As in previous evaluations, for each trial systems may not in 
general use information about other evaluation target speakers or 
other test segments.  In unsupervised adaptation mode, however, 
the trials for each target speaker model must be processed in order, 
and after each trial the model may optionally be updated based on 
the test segments in the preceding trials.  How this is accomplished 
should be discussed in the system descriptions (see section 10).  

Thus for each test, participants will have the option of doing the 
test in unsupervised adaptation mode.   Unsupervised adaptation 
results may only be submitted for tests for which (standard) non-
adaptive results are also submitted, and the performance results 
with and without such adaptation will be compared. 

3 PERFORMANCE MEASURE 
There will be a single basic cost model for measuring speaker 
detection performance, to be used for all speaker detection tests.  
This detection cost function is defined as a weighted sum of miss 
and false alarm error probabilities: 

CDet  =  CMiss × PMiss|Target × PTarget 

       +  CFalseAlarm× PFalseAlarm|NonTarget × (1-PTarget) 

The parameters of this cost function are the relative costs of 
detection errors, CMiss and CFalseAlarm, and the a priori probability of 
the specified target speaker, PTarget. The parameter values in Table 
2 will be used as the primary evaluation of speaker recognition 
performance for all speaker detection tests. 
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Table 2:  Speaker Detection Cost Model Parameters 
for the primary evaluation decision strategy 

CMiss CFalseAlarm PTarget 

10 1 0.01 

3.1 Normalization  

One of the advantages of using a cost model is that it can be 
easily applied to different applications simply by changing the 
model parameters.  On the other hand, a potential disadvantage 
of using cost as a performance measure is that it gives values that 
often lack intuitive meaning.  To improve the intuitive value of 
the cost defined to be the best cost that could be obtained without 
processing the input data (i.e., by always making the same 
decision, namely either to accept or to reject the segment speaker 
as being the target speaker, whichever gives the lowest cost): 
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4 EVALUATION CONDITIONS 
Speaker detection performance will be evaluated in terms of the 
detection cost function.  For each test, the cost function will be 
computed over the sequence of trials provided and over subsets of 
these trials of particular evaluation interest.   Each trial must be 
independently judged as “ true”  (the model speaker speaks in the 
test segment) or “ false”  (the model speaker does not speak in the 
test segment), and the correctness of these decisions will be tallied.6  

In addition to the actual detection decision, a decision (likelihood) 
score will also be required for each test hypothesis.  Higher scores 
will be taken to indicate greater confidence that “ true”  is the correct 
decision and lesser confidence that “ false”  is the correct decision.  
This decision score will be used to produce detection error tradeoff 
curves, in order to see how misses may be traded off against false 
alarms.7 

4.1 Training Data 

As discussed in section 2.2.1, there will be seven training 
conditions.  NIST will be interested in examining how performance 
varies among these conditions for fixed test segment conditions. 

Most of the training data will be in English, but some training 
conversations involving bi-lingual speakers may be collected in 
Arabic, Mandarin, Russian, and Spanish.  Thus it will then be 
possible to examine how performance is affected by whether or not 

                                                                 
6 This means that an explicit speaker detection decision is required 
for each trial. Explicit decisions are required because the task of 
determining appropriate decision thresholds is a necessary part of 
any speaker detection system and is a challenging research problem 
in and of itself. 
7 Decision scores for all of the trials in a given test will be pooled 
before plotting detection error tradeoff curves. Thus it is necessary 
to normalize scores across speakers to achieve satisfactory 
detection performance. 

the training language matches the language, generally English, of 
the test data.  For the training conditions involving multiple 
conversations, the effect of having a mix of languages in the 
training may also be examined.  The language used in all training 
data files will be indicated in the file header and available for use. 

All training data is expected to be collected over telephone 
channels. 

The sex of each target speaker will be provided to systems. 

For all training conditions, errorful ASR transcriptions of all 
English language data will be provided along with the audio data.  
Systems may utilize the data provided as they wish.  The acoustic 
data may be used alone, the transcriptions may be used alone, or all 
data may be used in combination.8   

4.1.1 Single Channel Excerpts  

As discussed in section 2.2.1, there will be training conditions 
consisting of excerpts with approximately 10-seconds and 
approximately 30-seconds of estimated speech duration.   These 
estimated durations will vary so that the excerpts may include only 
whole turns whenever possible, but they will be constrained to lie 
in the ranges of 8-12 seconds for “10-second” excerpts, and 25-35 
seconds for “30-second” excerpts. 

4.1.2 Single Channel Conversation Sides 

As discussed in section 2.2.1, there will be training conditions 
consisting of one, three, eight, or sixteen single conversation sides 
of a given speaker.  These sides will consist of approximately five 
minutes from an original six minute conversation side, with an 
initial segment of around one minute excised.  The excision point 
will be chosen so as not to include a partial speech turn.  Areas of 
silence within the five minutes of conversation chosen will not be 
excised.      

4.1.3 Summed Channel Conversations  

As discussed in section 2.2.1, the final training condition will 
consist of three whole conversations, minus initial segments of 
about a minute each.  In contrast with the other training conditions, 
however, the two sides of each conversation, in which both the 
target speaker of interest and another speaker participate, will be 
summed together.  Thus the challenge is to distinguish speech by 
the intended target speaker from speech by other participating 
speakers.  To make this challenge feasible, the training 
conversations will be chosen so that each non-target speaker 
participates in only one conversation, while the target speaker 
participates  in all three. 

The difficulty of finding the target speaker’ s speech in the training 
data is affected by whether the other speaker in a training 
conversation is of the same or of the opposite sex as the target.  
Systems will not be provided with this information, but may use 
automatic gender detection techniques if they wish.  Performance 
results will be examined as a function of how many of the three 
training conversations contain same-sex other speakers. 

Note that an interesting contrast will exist between this training 
condition and that consisting of three single conversation sides. 

                                                                 
8  Note, however, that there will be some non-English training data, 
for which no meaningful ASR transcripts will be available.  
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4.2 Test data 

As discussed in section 2.2.2, there will be four test segment 
conditions.  NIST will be interested in examining how performance 
varies among these conditions for fixed training conditions. 

For a limited number of speakers some test conversations may be 
collected using non-telephone channels.  Several microphone types 
will be included in this collection.  Thus it will be possible to 
examine how performance is affected by whether or not test data is 
recorded over a telephone channel, and by the type of microphone 
used in non-telephone test data. The  non-telephone data will  
include some or all of the following microphone types: 

• Ear-bud/lapel mike 

• Miniboom mike 

• Courtroom mike 

• Conference room mike 

• Distant mike 

• Near-field mike 

• PC stand mike 

• Microcassette mike 

Information on the microphone type used in each non-telephone 
test segment data will be available to recognition systems. 

With rare exceptions, all test data speech is expected to be in 
English. 

For all test segments conditions, errorful ASR transcriptions of the 
(English language) data will be provided along with the audio data.  
Systems may utilize the data provided as they wish.  The acoustic 
data may be used alone, the ASR transcriptions may be used alone, 
or all data may be used in combination.   

4.2.1 Single Channel Excerpts  

As discussed in section 2.2.2, there will be test segment conditions 
consisting of excerpts with approximately 10-seconds and 
approximately 30-seconds of estimated speech duration These 
estimated durations will vary so that the excerpts may include only 
whole turns whenever possible, but they will be constrained to lie 
in the ranges of 8-12 seconds for “10-second” excerpts, and 25-35 
seconds for “30-second” excerpts.  

4.2.2 Single Channel Conversation Sides 

As discussed in section 2.2.2, there will be a test segment condition 
consisting of a single conversation side of a given speaker.  Each 
such side will consist of approximately five minutes from an 
original six minute conversation side, with an initial segment of 
around one minute excised.  The excision point will be chosen so as 
not to include a partial speech turn.  Areas of silence within the five 
minutes of conversation chosen will not be excised.      

4.2.3 Summed Channel Conversations  

As discussed in section 2.2.2, the there will be a test segment 
condition consisting of a single whole conversation, minus an 
initial segment of about a minute.  In contrast with the other test 
segment conditions, however, the two sides of this conversation 
will be summed together, and both the target speaker and that 
speaker’s conversation partner will be represented in each 
conversation.   

The difficulty of determining whether the target speaker speaks in 
the test conversation is affected by the sexes of the speakers in the 
test conversation.  For no trials will both speakers be of opposite 
sex from the target.  Systems will not be told whether the two test 
speakers are of the same or opposite sex, but may use automatic 
gender detection techniques if they wish.  Performance results will 
be examined with respect to whether one or both target 
conversation speakers are of the same sex as the target. 

Note that an interesting contrast will exist between this condition 
and that consisting of a single conversation side. 

4.3 Factors Affecting Performance 

All trials will be same-sex trials.  This means that the sex of the test 
segment speaker, or of at least one test segment speaker when the 
test segment is a summed channel conversation, will be the same as 
that of the target speaker model.  Performance will be reported 
separately for males and females and pooled across sex. 

All trials involving telephone test segments will be different 
number trials.  This means that the telephone numbers, and 
presumably the telephone handsets, used in the training and the test 
data segments will be different from each other. 

Past NIST evaluations have shown that the type of telephone 
handset and the type of telephone transmission channel used can 
have a great effect on speaker recognition performance.  Factors of 
these types will be examined in this evaluation. 

Telephone callers in the Mixer collection (see section 6) are asked 
to classify the transmission channel as one of the following types: 

• Cellular 

• Cordless 

• Regular (ie., land-line) 

Telephone callers in the Mixer collection are asked to classify the 
instrument used as one of the following types: 

• Speaker-phone 

• Head-mounted 

• Ear-bud 

• Regular (ie., hand-held) 

Performance will be examined as a function of the telephone 
transmission channel type and of the telephone instrument type in 
both the training and the test segment data.  The effects of different 
types of cellular transmission encoding may also be considered. 

4.4 Unsupervised Adaptation 

As discussed in section 2.2.4, an unsupervised adaptation mode 
will be supported for each test.  Performance with and without such 
adaptation will be compared for participants attempting tests with 
unsupervised adaptation. 

4.5 Common Evaluation Condition 

In each evaluation NIST specifies a common evaluation condition.9 
The performance results on trials satisfying this condition are 

                                                                 
9 In past NIST evaluations this was referred to as the “primary”  
condition. The term “common evaluation condition”  is more 
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treated as the basic official evaluation outcome.  The common 
evaluation condition in the 2004 evaluation will be regarded as all 
trials meeting each of the following specifications: 

• Part of the core test as defined in section 2.2.3 

• All training and test speech in English 

• All training and test speech involve a telephone channel 

• Male or female target – pooled across sex 

• Hand-held telephone instruments used in all training and test 
speech 

• All training and test segment data involves either land-line or 
cellular (not cordless) telephone transmission channels  

4.6 Comparison With Previous Evaluations 

In each evaluation it is of interest to compare performance results, 
particularly of the best performing systems, with those of previous 
evaluations.  This is complicated by the fact that the evaluation 
conditions change in each successive evaluation.   

The 2004 evaluation is no exception in this regard.  The 
concatenation of speech segments with areas of silence removed, as 
practiced in the past, will not be done this year.  There will be 
multiple durations utilized in the various training and test 
conditions, and none will be exactly as in the past.  And whereas 
past evaluations have largely focused either primarily on landline 
data or primarily of cellular data, this evaluation will involve a 
mixture of both. 

Nonetheless, NIST will examine how the results for test conditions 
most similar to those used in past compare with the past results.  
The test condition most similar to the “ limited data”  condition of 
the recent evaluations will be that involving training on a single 
conversation side and testing on 30-second excerpts.  The condition 
most similar to the most widely examined “extended data”  results 
of the past will be that involving training on eight conversation 
sides and testing on a single conversation sides.  Participating sites, 
particularly those that participated in previous evaluations, may 
wish to consider including one of these tests in the results they 
submit for this evaluation.  NIST will examine, after the fact, 
results on the subsets of trials of these tests that most resemble the 
conditions of past evaluation tests to facilitate the most meaningful 
comparison of performance results achieved over time in the course 
of the evaluations. 

5 DEVELOPMENT DATA 
The evaluation data for 2003 evaluation will serve as the 
development data for this year’s evaluation, and will be covered by 
the LDC license agreement noted in section 6.  Please refer to last 
year’s evaluation plan for details.10 

Note that no development data that is specific to the changed 
format and collection methods of the 2004 evaluation data 
(described in section 6) is being provided.  Participating sites may 
use other speech corpora to which they have access for 

                                                                                                             
appropriate in the sense that this condition is used to officially rank 
system performance, and is not necessarily the condition that is 
most important to the evaluation. 
10 The year 2003 speaker recognition evaluation plan may be 
accessed from http://www.nist.gov/speech/tests/spk/2003/doc/ 

development.  Such corpora should be described in the system 
descriptions.  The original Switchboard-1 Corpus may be used, but 
participating sites are cautioned, particularly with respect to the 
development of background speaker models, that an effort is being 
made to recruit a limited number of the speakers in that corpus to 
participate in the new data collections from which this year’s 
evaluation data will be selected. 

6 EVALUATION DATA 
The training and test segment data will be all newly collected by 
the Linguistic Data Consortium (LDC).  The Mixer Project invited 
participating speakers to take part in numerous six-minute 
conversations on specified topics with people they did not know.   
The Fishboard platform allowed an automaton to initiate calls to 
selected pairs of speakers for most of the conversations, while 
individual speakers initiated some calls themselves, with the 
automaton contacting other speakers for them to converse with.  
Speakers initiating calls were encouraged to use unique telephone 
numbers (and thus generally unique telephone handsets) for their 
initiated calls. 

The conversational data for this evaluation, to be distributed to 
participants by NIST on CD-ROM’s, has not been publicly 
released. The LDC will provide a license agreement, which non-
member participating sites must sign, governing the use of this data 
for the evaluation. The ASR transcript data, and any other auxiliary 
data which may also be supplied, will be made available by NIST 
in electronic form to all registered participants. 

All conversations will have been processed through echo canceling 
software before being used to create the evaluation training and test 
segments. 

All training and test segments will be stored as 8-bit mu-law 
continuous speech signals in separate SPHERE files.  The SPHERE 
header of each such file will contain some auxiliary information as 
well as the standard SPHERE header fields.  This auxiliary 
information will include the language of the conversation, whether 
or not the data was recorded over a telephone line, and the 
microphone type for non-telephone data. Most segments will be in 
English and recorded over a telephone line.  The header will not 
contain information on the type of telephone transmission channel 
or the type of telephone instrument involved. 

6.1 Single Channel Excerpts 

The 10-second and 30-second excerpts to be used as training or as 
test segments will be continuous segments from single conversation 
sides that are estimated to contain approximately 10 or 30 seconds 
of actual speech.   

The number of single channel excerpt training segments both for 
the 10-second and for the 30-second training conditions is expected 
to be around 600.  The number of single channel excerpt test 
segments for each of the two durations is expected to be around 
2000. 

6.2 Single Conversation Sides 

The single conversation sides to be used as training data or as test 
segments will all be approximately five minutes in total signal 
duration.   

The number of single conversation training sides is expected not to 
exceed 6400.  The number of these to be used to create speaker 
models based on a single conversation side is expected to be around 
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600.  The numbers of models specified by 3, 8, or 16 sides are each 
expected to be around 400 or fewer.     

The number of single conversation side test segments is expected to 
be around 2000. 

6.3 Summed Channel Conversations  

The summed-channel conversations to be used as training data or 
as test segments will all be approximately five minutes in total 
signal duration  

The number of summed channel training conversations is expected 
to be around 1200.  These will be used to specify around 400 target 
speaker models.  The number of summed-channel conversation test 
segments is expected to be around 2000. 

6.4 Trials to be included 

The trials for each of the 28 speaker detection tests offered will be 
specified in separate index files.  These will be text files in which 
each record specifies the model and a test segment for a particular 
trial.  The number of trials in each test is expected not to exceed 
25,000. 

7 EVALUATION RULES 
In order to participate in the 2004 speaker recognition evaluation, a 
site must complete, in its entirety, the core test condition (without 
unsupervised adaptation) as specified in section 2.2.3.11  Any other 
test conditions included must be completed in their entirety. 

All participants must observe the following evaluation rules and 
restrictions: 

• Each decision is to be based only upon the specified test segment 
and target speaker model. Use of information about other test 
segments (except as permitted for the unsupervised adaptation 
mode condition) and/or other target speakers is not allowed.12 
For example: 

• Normalization over multiple test segments is not allowed, 
except as permitted for the unsupervised adaptation mode 
condition.  

• Normalization over multiple target speakers is not allowed.  

• Use of evaluation data for impostor modeling is not 
allowed. 

• If an unsupervised adaptation condition is included, the test 
segments must be processed in the order specified. 

• The use of manually produced transcripts or other information 
for training is not allowed. 

• Knowledge of the sex of the target speaker (implied by data set 
directory structure as indicated below) is allowed.  Note that 
there will be no cross-sex trials. 

                                                                 
11 Participants are encouraged to do as many tests as possible. 
However, it is absolutely imperative that results for all of the trials 
in a test be submitted in order for that test to be considered valid 
and for the results to be accepted. 
12 This means that the technology is viewed as being "application-
ready". Thus a system must be able to perform speaker detection 
simply by being trained on a specific target speaker and then 
performing the detection task on whatever speech segment is 
presented, without the (artificial) knowledge of other test data. 

• Knowledge of the language used in all segments, which will be 
provided, is allowed. 

• Knowledge of whether or not a segment involves telephone 
channel transmission, and of the non-telephone microphone type 
used, which will be provided, is allowed. 

• Knowledge of the telephone transmission channel type and of the 
telephone instrument type used in all segments is not allowed, 
except as determined by automatic means. 

• Listening to the evaluation data, or any other experimental 
interaction with the data, is not allowed before all test results 
have been submitted. This applies to training data as well as test 
segments.  

• Knowledge of any information available in the SPHERE header 
is allowed.  

8 EVALUATION DATA SET ORGANIZATION 
The organization of the evaluation data will be: 

• A top level directory used as a unique label for the disk: 
“sp04-NN”  where NN is a digit pair identifying the disk 

• Under which there will be four sub-directories: 
 “ train” , “ test” , “ trials” , and  “doc”  

8.1 train Subdirectory 

The “ train”  directory contains three subdirectories: 

• data: Contains all the SPHERE formatted speech data 
used for training in each of the seven training conditions. 

• female:  Contains seven training files that defines the 
female models for each of the seven training conditions. 
(The format of these files is defined below.) 

• male: Contains seven training files that defines the male 
models for each of the seven training conditions. (The 
format of these files is defined below.) 

The seven training files for both male and female models have the 
same structure.  There is one record per line, and each record 
contains two fields.  The first field is the model identifier and the 
second field is a comma separated list of speech files (located in the 
“data”  directory) that are to be used to train the model. 

The seven training files in each gender directory are named: 

• “10sec.trn”  for the 10 second training condition, an 
example record looks like:   “3232 mrpv.sph” 

• “30sec.trn”  for the 30 second training condition, an 
example record looks like:   “5241 mrpw.sph” 

• “1side.trn”  for the 1 side training condition, an example 
record looks like:   “4240 mrpz.sph” 

• “3sides.trn”  for the 3 sides training condition, an 
example record for this training condition looks like:            
“7211 mrpz.sph,hrtz.sph,nost.sph” 

• “8sides.trn”  for the 8 sides training condition. 

• “16sides.trn”  for the 16 sides training condition. 

• “3convs.trn”  for the 3 conversations (summed sides) 
training condition, an example record  looks like:     
“3310 nrfs.sph,irts.sph,poow.sph”  
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8.2 test Subdirectory 

The “ test”  directory contains one subdirectory: 

• data: This directory contains all the SPHERE formatted 
speech test data to be used for each of the four test 
segment conditions. The file names will be arbitrary ones 
of four characters along with a “ .sph”  extension. 

8.3 trials Subdirectory 

The “ trials”  directory contains twenty-eight index files, one for 
each of the possible combinations of the seven training conditions 
and four test segment types.  These index files define the various 
evaluation tests.  The naming convention for these index files will 
be “TrainCondition-TestCondition.ndx”  where TrainCondition, 
refers to the training condition and whose models are defined in the 
corresponding training file.  Possible values for TrainCondition are: 
10sec, 30sec, 1side, 3sides, 8sides, 16sides, and 3convs. 
“TestCondition”  refers to the test segment condition.  Possible 
values for TestCondition are: 10sec, 30sec, 1side, and 1conv. 

Each record in a TrainCondition-TestCondition.ndx file contains 
exactly three fields and defines a single trial.  The first field is the 
model identifier. The second field identifies the gender of the 
model, either “m”  or “ f” .  The third field is the test segment under 
evaluation, located in the test/data directory.  This test segment 
name will not include the .sph extension.  An example for the train 
on 3-sides and test on 1side index file “3sides-1side.ndx”  looks 
like:  “7211 m nrbw” . 

The records in these 28 files are ordered numerically by model 
identifier, and within each model’s tests, alphabetically by the test 
segments. Each index file orders the trials as they are to be 
processed when unsupervised adaptation is used 

8.4 doc Subdirectory 

This will contain text files that document the evaluation and the 
organization of the evaluation data.  This evaluation plan document 
will be included. 

9 SUBMISSION OF RESULTS 
Sites participating in one or more of the speaker detection 
evaluation tests must report results for each test in its entirety. 
These results for each test condition (1 of the 28 test index files) 
must be provided to NIST in a single file using a standard ASCII 
format, with one record for each trial decision.  The file name 
should be intuitively mnemonic and should be constructed as 
“SSS_N”, where 

• SSS identifies the site, and 

• N identifies the system.  

9.1 Format for Results 

Each file record must document its decision with the target model 
identification, test segment identification, and decision information. 
Each record must contain eight fields, separated by white space and 
in the following order: 

1. The training type of the test – 10sec, 30sec, 1side, 3sides, 
8sides, 16sides, or 3convs 

2. Adaptation mode. “n”  for no adaptation and “u”  for 
unsupervised adaptation. 

3. The segment type of the test – 10sec, 30sec, 1side, or 1conv 

4. The sex of the target speaker –  m or f 

5. The target model identifier 

6. The test segment (minus the “ .sph”  extention). 

7. The decision – t or f (whether or not the target speaker is 
judged to match  the speaker in the test segment) 

8. The likelihood score (where the more positive this score, the 
more likely the target and segment speakers are judged to 
match ) 

9.2 Means of Submission 

Submissions may be made via email or via ftp.  The appropriate 
addresses for submissions will be supplied to participants receiving 
evaluation data. 

10 SYSTEM DESCRIPTION 
A brief description of the system(s) (the algorithms) used to 
produce the results must be submitted along with the results, for 
each system evaluated. It is permissible for a single site to submit 
multiple systems for evaluation for a particular test. In this case, 
however, the submitting site must identify one system as the 
"primary" system for the test prior to performing the evaluation. 

Sites must report the CPU execution time that was required to 
process the evaluation data, as if the test were run on a single CPU.  
This should be reported separately for creating models from the 
training data and for processing the test segments, and may be 
reported either as absolute processing time or as a multiple of real-
time for the data processed.  The additional time required for 
unsupervised adaptation should be reported where relevant.   Sites 
must also describe the CPU and the amount of memory used. 

11 SCHEDULE 
The deadline for signing up to participate in the evaluation is 
March 14, 2004. 

The evaluation data set CD-ROM's will be distributed by NIST on 
March 29, 2004. 

The deadline for submission of evaluation results to NIST is April 
22, 2004. 

Evaluation results will be released to each site by NIST on April 
29, 2004. 

The deadline for site workshop presentations to be supplied to 
NIST in electronic form for inclusion in the workshop CD-ROM is 
May 27, 2004. 

Registration and room reservations for the workshop must be 
received by (a date to be determined). 

The follow-up workshop will be held on June 3-4, 2004 at the 
Hotel Beatriz in Toledo, Spain in conjunction with the 2004:  A 
Speaker Odyssey workshop on speaker and language recognition. 
Those participating in the evaluation are expected to present and 
discuss their findings at this NIST portion of the workshop.  

12 GLOSSARY 
Trial – The individual evaluation unit involving a test segment and 
a hypothesized speaker. 

Target (true speaker) trial – A trial in which the actual speaker of 
the test segment is in fact the target (hypothesized) speaker of the 
test segment. 
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Non-target (impostor) trial – A trial in which the actual speaker of 
the test segment is in fact not the target (hypothesized) speaker of 
the test segment. 

Target (model) speaker – The hypothesized speaker of a test 
segment, one for whom a model has been created from training 
data. 

Non-target (impostor) speaker – A hypothesized speaker of a test 
segment who is in fact not the actual speaker. 

Segment speaker – The actual speaker in a test segment. 

Test – A collection of trials constituting an evaluation component. 

Turn – The interval during a conversation during when one 
participant speaks while the other remains silent. 
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The NIST Year 2005 Speaker Recognition 
Evaluation Plan 

1 INTRODUCTION 
The year 2005 speaker recognition evaluation is part of an ongoing 
series of yearly evaluations conducted by NIST. These evaluations 
are an important contribution to the direction of research efforts 
and the calibration of technical capabilities. They are intended to be 
of interest to all researchers working on the general problem of text 
independent speaker recognition. To this end the evaluation is 
designed to be simple, to focus on core technology issues, to be 
fully supported, and to be accessible to those wishing to participate.  

The 2005 evaluation will use conversational telephone speech data 
collected for the Mixer Corpus by the Linguistic Data Consortium 
using the “Fishboard” platform plus some “multi-channel”  data 
collected simultaneously from a number of auxiliary microphones. 
The data will be mostly English speech, but it may include some 
speech in four additional languages.   

The evaluation will include twenty different speaker detection tests 
defined by the duration and type of the training and test data. For 
each such test, an unsupervised adaptation mode will be offered in 
addition to the basic test. 

The evaluation will be conducted in April 2005. A follow-up 
workshop for evaluation participants to discuss research findings 
will be held in June. Specific dates are listed in the Schedule 
(section �11). 

Participation in the evaluation is invited for all sites that find the 
tasks and the evaluation of interest. Participating sites must follow 
the evaluation rules set forth in this plan and must be represented at 
the evaluation workshop. For more information, and to register to 
participate in the evaluation, please contact Dr. Alvin Martin at 
NIST.1  

2 TECHNICAL OBJECTIVE 
This evaluation focuses on speaker detection in the context of 
conversational telephone speech. The evaluation is designed to 
foster research progress, with the goals of: 

• Exploring promising new ideas in speaker recognition.  

• Developing advanced technology incorporating these ideas.  

• Measuring the performance of this technology.  

2.1 Task Definition  

The year 2005 speaker recognition evaluation is limited to the 
broadly defined task of speaker detection. This has been NIST’s 
basic speaker recognition task over the past nine years. The task is 
to determine whether a specified speaker is speaking during a given 
segment of conversational speech. 

                                                                 

 
1 To contact Dr. Martin, send him email at alvin.martin@nist.gov, 
or call him at 301/975-3169. Each site must return a signed 
registration form to complete the registration process: 
http://www.nist.gov/speech/tests/spk/2005/register.pdf  

2.2 Task Conditions 

The speaker detection task for 2005 is divided into 20 distinct and 
separate tests. Each of these tests involves one of five training 
conditions and one of four test conditions. One of these tests (see 
section 2.2.3) is designated the core test. Participants must do the 
core test and may choose to do any one or more of the other 19 
tests. Results must be submitted for all trials included in each test 
for which any results are submitted. For each test, there will also be 
an optional unsupervised adaptation condition. Sites choosing the 
adaptation option for a test must also perform the test without 
adaptation to provide a baseline contrast. 

2.2.1 Training Conditions 

The training segments in the 2005 evaluation will be continuous 
conversational excerpts. Unlike in some previous years, but as in 
2004, there will be no prior removal of intervals of silence. Also, 
for the first time, both sides of all two-channel conversations will 
be provided (to aid systems in echo cancellation, dialog analysis, 
etc.). For all two-channel segments, the channel containing the 
putative target speaker to be recognized will be identified. 

The five training conditions to be included involve target speakers 
defined by the following training data: 

1. A two-channel (4-wire) excerpt from a conversation 
estimated to contain approximately 10 seconds of speech 
of the target on its designated side (The NIST energy-
based automatic speech detector will be used to estimate 
the duration of actual speech in the chosen excerpts.) 

2. One two-channel (4-wire) conversation, of approximately 
five minutes total duration2, with the target speaker 
channel designated. 

3. Three two-channel (4-wire) conversations involving the 
target speaker on their designated sides 

4. Eight two-channel (4-wire) conversations involving the 
target speaker on their designated sides 

5. Three summed-channel (2-wire) conversations, formed by 
sample-by-sample summing of their two sides. Each of 
these conversations will include both the target speaker 
and another speaker. These three non-target speakers will 
all be distinct. 

English language word transcripts, produced using an automatic 
speech recognition (ASR) system, will be provided for all training 
segments of each condition. These transcripts will, of course, be 
errorful, with word error rates typically in the range of 15-30%. 

                                                                 

 
2 Each conversation side will consist of the last five minutes of a 
six-minute conversation. This will eliminate from the evaluation 
data the less-topical introductory dialogue, which is more likely to 
contain language that identifies the speakers. 
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2.2.2 Test Segment Conditions 

The test segments in the 2005 evaluation will be continuous 
conversational excerpts. Unlike in some previous years, but as in 
2004, there will be no prior removal of intervals of silence. Also, 
for the first time, both sides of all two-channel conversations will 
be provided (to aid systems in echo cancellation, dialog analysis, 
etc.). For all two-channel segments, the channel containing the 
putative target speaker to be recognized will be identified.  

The four test segment conditions to be included are the following: 

1. A two-channel (4-wire) excerpt from a conversation 
estimated to contain approximately 10 seconds of speech 
of the putative target speaker on its designated side (The 
NIST energy-based automatic speech detector will be used 
to estimate the duration of actual speech in the chosen 
excerpts.) 

2. A two-channel (4-wire) conversation, of approximately 
five minutes total duration, with the putative target speaker 
channel designated. 

3. A summed-channel (2-wire) conversation formed by 
sample-by-sample summing of its two sides 

4. A two-channel (4-wire) conversation, with the usual 
telephone speech replaced by auxiliary microphone data in 
the putative target speaker channel. This auxiliary 
microphone data will be supplied in 8 kHz 8-bit µ-law 
form. 

English language word transcripts, produced using an automatic 
speech recognition (ASR) system, will be provided for all test 
segments of each condition.   

2.2.3 Training/Segment Condition Combinations 

The matrix of training and test segment condition combinations is 
shown in Table 1. A test will be offered for each combination. 
Each test consists of a sequence of trials, where each trial consists 
of a target speaker, defined by the training data provided, and a test 
segment. The system must decide whether speech of the target 
speaker occurs in the test segment. The shaded box labeled 
“ required”  in Table 1 is the core test for the 2005 evaluation. All 
participants are required to submit results for this test. Each 
participant may also choose to submit results for all, some, or none 
of the other 19 test conditions. For each test for which results are 
submitted, results for all trials must be included. 

2.2.4 Unsupervised Adaptation Mode 

The unsupervised adaptation mode allows systems to update 
themselves based on previous trial segments for the target model 
involved (up to and including the current trial segment). This is in 
contrast to the non-adaptive mode in which the system is static and 
the target (and background) speaker models are a function only of 
the target speaker training data. (The speaker models of course also 
benefit from speech data used and knowledge acquired during 
system development.) 

In the unsupervised adaptation mode it is required that the trials for 
each target model be performed in the order given in the test index 
file (see section �8.3). The trials for each model will be grouped 
together, and the test segments for each of these target models will 
be listed in chronological order. Within the testing for each target 
model, the target (and background) models may be updated by the 
system after each trial using the test segment data processed thus 
far for that target model. However, the adaptation must be 

discarded and the system reset to its initial unadapted state 
whenever a new model is encountered in the test index file. 

Table 1:  Matrix of training and test segment conditions. 
The shaded entry is the required core test condition. 

Test Segment Condition 

 10 sec 
2-chan 

1 conv 
2-chan 

1 conv 
summed-

chan 

1 conv 
aux mic 

10 seconds 
2-channel 

optional optional optional optional 

1 conversation  
2-channel 

optional required optional optional 

3 conversation  
2-channel  

optional optional optional optional 

8 conversation  
2-channel  

optional optional optional optional 
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3 conversation  
summed-
channel  

optional optional optional optional 

For each test performed in unsupervised adaptation mode results 
must also be submitted for that test in non-adaptive mode in order 
to provide a contrast between adaptive and non-adaptive 
performance. The unsupervised adaptation techniques used should 
be discussed in the system description (see section �10). 

3 PERFORMANCE MEASURE 
There will be a single basic cost model for measuring speaker 
detection performance, to be used for all speaker detection tests. 
This detection cost function is defined as a weighted sum of miss 
and false alarm error probabilities: 

CDet  =  CMiss × PMiss|Target × PTarget 

+  CFalseAlarm× PFalseAlarm|NonTarget × (1-PTarget) 

The parameters of this cost function are the relative costs of 
detection errors, CMiss and CFalseAlarm, and the a priori probability of 
the specified target speaker, PTarget. The parameter values in Table 
2 will be used as the primary evaluation of speaker recognition 
performance for all speaker detection tests. 

Table 2:  Speaker Detection Cost Model Parameters 
for the primary evaluation decision strategy 

CMiss CFalseAlarm PTarget 

10 1 0.01 

To improve the intuitive meaning of CDet, it will be normalized by 
dividing it by the best cost that could be obtained without 
processing the input data (i.e., by either always accepting or always 
rejecting the segment speaker as matching the target speaker, 
whichever gives the lower cost): 
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4 EVALUATION CONDITIONS 
Speaker detection performance will be evaluated in terms of the 
detection cost function. For each test, the cost function will be 
computed over the sequence of trials provided and over subsets of 
these trials of particular evaluation interest. Each trial must be 
independently judged as “ true”  (the model speaker speaks in the 
test segment) or “ false”  (the model speaker does not speak in the 
test segment), and the correctness of these decisions will be tallied.3  

In addition to the actual detection decision, a confidence score will 
also be required for each test hypothesis. This confidence score is 
the system’s estimate of the probability that the test segment 
contains speech from the target speaker. This confidence score will 
be used to produce detection error tradeoff curves, in order to see 
how misses may be traded off against false alarms.4 

4.1 Training Data 

As discussed in section 2.2.1, there will be five training conditions. 
NIST is interested in examining how performance varies among 
these conditions for fixed test segment conditions. 

Most of the training data will be in English, but some training 
conversations involving bi-lingual speakers may be collected in 
Arabic, Mandarin, Russian, and Spanish. Thus it will then be 
possible to examine how performance is affected by whether or not 
the training language matches the language of the test data. For the 
training conditions involving multiple conversations, the effect of 
having a mix of languages in the training may also be examined. 
The language used in all training data files will be indicated in the 
file header and available for use. 

All training data will have been collected over telephone channels. 

The sex of each target speaker will be provided to systems in the 
test index file (see section �8.3). 

For all training conditions, English language ASR transcriptions of 
all data will be provided along with the audio data. Systems may 
utilize this data as they wish. The acoustic data may be used alone, 
the transcriptions may be used alone, or all data may be used in 
combination.5   

4.1.1 Excerpts  

As discussed in section 2.2.1, one of the training conditions is an 
excerpt of a conversation containing approximately 10 seconds of 
estimated speech duration in the channel of interest. The actual 
duration of target speech will vary (so that the excerpts include 

                                                                 

 
3 This means that an explicit speaker detection decision is required 
for each trial. Explicit decisions are required because the task of 
determining appropriate decision thresholds is a necessary part of 
any speaker detection system and is a challenging research problem 
in and of itself. 
4 Confidence scores for all of the trials in a given test will be 
pooled before plotting detection error tradeoff curves. Thus it is 
necessary to normalize these scores across speakers to achieve 
satisfactory detection performance. 
5  Note, however, that the ASR transcripts will all be generated by 
an English language recognizer, regardless of the actual language 
being spoken.  

only whole turns whenever possible) but the target speech duration 
will be constrained to lie in the range of 8-12 seconds.  

4.1.2 Two-channel Conversations 

As discussed in section 2.2.1, there will be training conditions 
consisting of one, three, and eight two-channel conversations of a 
given speaker. These will consist of approximately five minutes 
from an original six minute conversation, with an initial segment of 
about one minute excised. The excision point will be chosen so as 
not to include a partial speech turn.  

4.1.3 Summed-channel Conversations  

As discussed in section 2.2.1, one of the training conditions will 
consist of three summed-channel conversations, minus initial 
segments of about a minute each. Here the two sides of each 
conversation, in which both the target speaker and another speaker 
participate, will be summed together. Thus the challenge is to 
distinguish speech by the intended target speaker from speech by 
other participating speakers. To make this challenge feasible, the 
training conversations will be chosen so that each non-target 
speaker participates in only one conversation, while the target 
speaker participates in all three. 

The difficulty of finding the target speaker’ s speech in the training 
data is affected by whether the other speaker in a training 
conversation is of the same or of the opposite sex as the target. 
Systems will not be provided with this information, but may use 
automatic gender detection techniques if they wish. Performance 
results will be examined as a function of how many of the three 
training conversations contain same-sex other speakers. 

Note that an interesting contrast will exist between this training 
condition and that consisting of three two-channel conversations. 

4.2 Test data 

As discussed in section 2.2.2, there will be four test segment 
conditions. NIST is interested in examining how performance 
varies among these conditions for fixed training conditions. 

Most of the test data will be in English, but some may be in Arabic, 
Mandarin, Russian, or Spanish. The language used in all test data 
files will be indicated in the file header and available for use. 

For all test conditions, English language ASR transcriptions of the 
data will be provided along with the audio data. Systems may 
utilize this data as they wish. The acoustic data may be used alone, 
the ASR transcriptions may be used alone, or all data may be used 
in combination.5   

4.2.1 Excerpts  

As discussed in section 2.2.2, one of the test conditions is an 
excerpt of a conversation containing approximately 10 seconds of 
estimated speech duration in the channel of interest. The actual 
duration of target speech will vary (so that the excerpts include 
only whole turns whenever possible) but the target speech duration 
will be constrained to lie in the range of 8-12 seconds.  

4.2.2 Two-channel Conversations 

As discussed in section 2.2.2, one of the test conditions is a single 
two-channel conversation. (The channel of interest will be 
designated in the test index file – see section �8.3.) Each 
conversation will consist of approximately five minutes from an 
original six minute conversation, with an initial segment of about 
one minute excised. The excision point will be chosen so as not to 
include a partial speech turn.  
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4.2.3 Summed-channel Conversations  

As discussed in section 2.2.2, one of the test conditions is a single 
summed-channel conversation, minus an initial segment of about a 
minute. Here the two sides of the conversation will be summed 
together, and only one of the two speakers included may match a 
target speaker specified in a trial.  

The difficulty of determining whether the target speaker speaks in 
the test conversation is affected by the sexes of the speakers in the 
test conversation.  Systems will not be told whether the two test 
speakers are of the same or opposite sex, but automatic gender 
detection techniques may be used. Performance results will be 
examined with respect to whether one or both of the test speakers 
are of the same sex as the target. (For all trials there will be at least 
one speaker who is of the same sex as the target speaker.) 

Note that an interesting contrast will exist between this condition 
and that consisting of a single two-channel conversation. 

4.2.4 Auxiliary Microphone Conversations  

As discussed in section 2.2.2, one of the test conditions is a two-
channel conversation in which the channel of interest is an 
auxiliary microphone channel. The other channel will contain 
normal telephone data. As with the normal two-channel 
conversation test condition, about five minutes from an original 
six-minute conversation will be provided. The microphone data 
will be provided in single byte 8-bit µ-law form that matches the 
telephone data provided. 

Several types of auxiliary microphones will be included in this 
data. Thus it will be possible to examine how performance is 
affected by whether or not test data is recorded over a telephone 
channel, and by the type of microphone used in non-telephone test 
data. The non-telephone data will include some or all of the 
following microphone types: 

• Ear-bud/lapel mike 

• Mini-boom mike 

• Courtroom mike 

• Conference room mike 

• Distant mike 

• Near-field mike 

• PC stand mike 

• Micro-cassette mike 

Information on the microphone type used in each non-telephone 
test segment data will not be available to recognition systems. 

These auxiliary microphone conversations will all be in English. 
ASR transcriptions will be provided as they are for all other calls. 
Note, however, that the ASR transcript will be produced using 
telephone data input rather than the auxiliary microphone signal. 

4.3 Factors Affecting Performance 

All trials will be same-sex trials. This means that the sex of the test 
segment speaker in the channel of interest (two-channel), or of at 
least one test segment speaker (summed-channel), will be the same 
as that of the target speaker model. Performance will be reported 
separately for males and females and also for both sexes pooled. 

All trials involving telephone test segments will be different-
number trials. This means that the telephone numbers, and 
presumably the telephone handsets, used in the training and the test 
data segments will be different from each other. 

Past NIST evaluations have shown that the type of telephone 
handset and the type of telephone transmission channel used can 
have a great effect on speaker recognition performance. Factors of 
these types will be examined in this evaluation. 

Telephone callers in the Mixer collection (see section 6) are asked 
to classify the transmission channel as one of the following types: 

• Cellular 

• Cordless 

• Regular (i.e., land-line) 

Telephone callers in the Mixer collection are also asked to classify 
the instrument used as one of the following types: 

• Speaker-phone 

• Head-mounted 

• Ear-bud 

• Regular (i.e., hand-held) 

Performance will be examined as a function of the telephone 
transmission channel type and of the telephone instrument type in 
both the training and the test segment data. 

4.4 Unsupervised Adaptation 

As discussed in section 2.2.4, an unsupervised adaptation mode 
will be supported for each test. Performance with and without such 
adaptation will be compared for participants attempting tests with 
unsupervised adaptation. 

4.5 Common Evaluation Condition 

In each evaluation NIST specifies a common evaluation condition 
(a subset of trials in the core test that satisfy additional constraints) 
in order to better foster technical interactions and technology 
comparisons among sites. The performance results on these trials 
are treated as the basic official evaluation outcome. The common 
evaluation condition for the 2005 evaluation will be the subset of 
the trials in the core test that satisfy the following two conditions: 

• The test segment and all of the training data for the target 
model are in English. 

• The test segment and all of the training data are from 
regular (hand-held) telephone instruments. 

4.6 Comparison with Previous Evaluations 

In each evaluation it is of interest to compare performance results, 
particularly of the best performing systems, with those of previous 
evaluations. This is generally complicated by the fact that the 
evaluation conditions change in each successive evaluation. For the 
2005 evaluation the summed-channel test conditions are essentially 
identical to ones used in 2004. The two-channel test conditions 
have changed in that both data channels are being provided this 
year, unlike last. It will be of interest if any participants offer 
contrastive systems showing the effect of having the extra data 
channel. And the auxiliary microphone test condition is, as noted 
previously, new for 2005. Nevertheless, for fifteen of the 2005 tests 
it will be possible to make a fairly direct comparison with a 
comparable 2004 test. Comparisons will also be made with the 
results of earlier evaluations for conditions most similar to those in 
this evaluation. 

While the test conditions will match those of 2004, the test data 
will be different. In particular, the 2005 target speakers will all be 
different from those of the 2004 evaluation. The question always 
arises of to what extent are the performance differences due to 
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random differences in the test data sets. For example, are the target 
speakers in the current evaluation easier, or harder, on the average 
to recognize? To address this question, sites participating in the 
2005 evaluation that also participated in 2004 are strongly 
encouraged to submit to NIST results for their (unmodified) 2004 
systems run on the 2005 data for the same test conditions as in 
2004. Such results will not count against the limit of three 
submissions per test condition (see section 7). Sites are also 
encouraged to “mothball”  their 2005 systems for use in similar 
comparisons in future evaluations. 

5 DEVELOPMENT DATA 
The evaluation data for the 2004 evaluation will serve as the 
primary development data for this year’s evaluation. This data is 
covered by the LDC license agreement noted in section 6. Please 
refer to last year’s evaluation plan for details.6 

A limited amount of auxiliary microphone data from the cross-
channel Mixer collection will be provided to sites requesting it and 
indicating an interest in participating in any of the evaluation tests 
that involve this type of data. 

Participating sites may use other speech corpora to which they have 
access for development. Such corpora should be described in the 
site’s system description. The original Switchboard-1 corpus may 
be used, but note that an effort is being made to recruit a limited 
number of the speakers from that corpus to participate in the new 
data collection from which this year’s evaluation data will be 
selected. 

6 EVALUATION DATA 
Both the target speaker training data and the test segment data will 
be all newly collected by the Linguistic Data Consortium (LDC) as 
part of the Mixer project. This project invited participating speakers 
to take part in numerous six-minute conversations on specified 
topics with strangers. The Fishboard platform used to collect this 
data automatically initiated calls to selected pairs of speakers for 
most of the conversations, while participating speakers also 
initiated some calls themselves, with the collection system 
contacting other speakers for them to converse with. Speakers were 
encouraged to use different telephone instruments for their initiated 
calls. 

The conversational data for this evaluation, to be distributed to 
evaluation participants by NIST on DVD’s, has not been publicly 
released. The LDC will provide a license agreement, which non-
member participating sites must sign, governing the use of this data 
for the evaluation. The ASR transcript data, and any other auxiliary 
data which may be supplied, will be made available by NIST in 
electronic form to all registered participants. 

All conversations will have been processed through echo canceling 
software before being used to create the evaluation training and test 
segments. 

All training and test segments will be stored as 8-bit µ-law speech 
signals in separate SPHERE7 files. The SPHERE header of each 
such file will contain some auxiliary information as well as the 
standard SPHERE header fields. This auxiliary information will 

                                                                 

 
6 www.nist.gov/speech/tests/spk/2004/SRE-04_evalplan-v1a.pdf 
7 ftp://jaguar.ncsl.nist.gov/pub/sphere_2.6a.tar.Z 

include the language of the conversation and whether or not the 
data was recorded over a telephone line.   

Most segments will be in English and recorded over a telephone 
line. The header will not contain information on the type of 
telephone transmission channel or the type of telephone instrument 
involved. Nor will the microphone type be identified for the 
auxiliary microphone test, as noted in section �4.2.4. 

6.1 Excerpts 

The 10-second two-channel excerpts to be used as training data or 
as test segments will be continuous segments from single 
conversations that are estimated to contain approximately 10 
seconds of actual speech in the channel of interest. When both 
channels are channels of interest for different trials, then each will 
contain approximately 10 seconds of actual speech. 

The number of training segments is expected not to exceed 2000. 
The number of test segments is expected not to exceed 4000. 

6.2 Two-channel Conversations 

The two-channel conversations to be used as training data or as test 
segments will be approximately five minutes in duration.   

The number of conversations to be used for training is expected not 
to exceed 10,000. The number of these to be used to create speaker 
models based on a single conversation is expected not to exceed 
2000. The numbers of models specified by 3 or 8 conversations are 
each expected not to exceed 1200.     

The number of test segments is expected not to exceed 4000. 

6.3 Summed-channel Conversations  

The summed-channel conversations to be used as training data or 
as test segments will be approximately five minutes in duration  

The number of summed channel training conversations is expected 
not to exceed 2400. These will be used to specify no more than 800 
target speaker models. The number of summed-channel 
conversation test segments is expected not to exceed 4000. 

6.4 Auxiliary Microphone Conversations 

These two-channel conversations to be used as test segments will 
be approximately five minutes in duration.   

The number of test segments is expected not to exceed 2000. 

6.5 Number of Trials 

The trials for each of the 20 speaker detection tests offered will be 
specified in separate index files. These will be text files in which 
each record specifies the model and a test segment for a particular 
trial. The number of trials in each test is expected not to exceed 
50,000. 

7 EVALUATION RULES 
In order to participate in the 2005 speaker recognition evaluation a 
site must submit complete results for the core test condition 
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(without unsupervised adaptation) as specified in section 2.2.3.8 
Results for other tests are optional but strongly encouraged. 

All participants must observe the following evaluation rules and 
restrictions in their processing of the evaluation data: 

• Each decision is to be based only upon the specified test 
segment and target speaker model. Use of information about 
other test segments (except as permitted for the unsupervised 
adaptation mode condition) and/or other target speakers is not 
allowed.9 For example: 

– Normalization over multiple test segments is not allowed, 
except as permitted for the unsupervised adaptation mode 
condition.  

– Normalization over multiple target speakers is not allowed.  

– Use of evaluation data for impostor modeling is not 
allowed, except as permitted for the unsupervised 
adaptation mode condition. 

• If an unsupervised adaptation condition is included, the test 
segments for each model must be processed in the order 
specified. 

• The use of manually produced transcripts or other human-
produced information for training is not allowed. 

• Knowledge of the sex of the target speaker (implied by data set 
directory structure as indicated below) is allowed. Note that no 
cross-sex trials are planned, but that summed-channel segments 
may involve either same sex or opposite sex speakers. 

• Knowledge of the language used in all segments, which will be 
provided, is allowed. 

• Knowledge of whether or not a segment involves telephone 
channel transmission is allowed. 

• Knowledge of the telephone transmission channel type and of 
the telephone instrument type used in all segments is not 
allowed, except as determined by automatic means. 

• Listening to the evaluation data, or any other human interaction 
with the data, is not allowed before all test results have been 
submitted. This applies to training data as well as test segments.  

• Knowledge of any information available in the SPHERE header 
is allowed.  

The following general rules about evaluation participation 
procedures will also apply for all participating sites: 

• Access to past presentations – Each new participant that has 
signed up for, and thus committed itself to take part in, the 
upcoming evaluation and workshop will be able to receive, 
upon request, the CD of presentations that were presented at 
the preceding workshop.   

• Limitation on submissions – Each participating site may submit 
results for up to three different systems per evaluation 

                                                                 

 
8  It is imperative that results be complete for every test submission. 
A test submission is complete if and only if it includes a result for 
every trial in the test. 
9 This means that the technology is viewed as being "application-
ready". Thus a system must be able to perform speaker detection 
simply by being trained on the training data for a specific target 
speaker and then performing the detection task on whatever speech 
segment is presented, without the (artificial) knowledge of other 
test data. 

condition for official scoring by NIST. Results for systems 
using unsupervised adaptation and results for 2004 systems 
run on 2005 data will not count against this limit. Note that 
the answer keys will be distributed to sites by NIST shortly 
after the submission deadline. Thus each site may score for 
itself as many additional systems and/or parameter settings as 
desired. 

• Attendance at workshop – Each evaluation participant is 
required to have one or more representatives at the evaluation 
workshop who must present there a meaningful description 
of its system(s). Evaluation participants failing to do so may 
be excluded from future evaluation participation. 

• Dissemination of results 

– Participants may publish and otherwise disseminate their 
own results. 

– Participants may publish and otherwise disseminate 
anonymous charts, produced by NIST, of all system results 
for a condition. 

– Participants may not publish or otherwise disseminate the 
names or results of other participants without the explicit 
written permission of each such participant. Participants 
violating this rule may be excluded from future evaluations.  

8 EVALUATION DATA SET ORGANIZATION 
The organization of the evaluation data will be: 

• A top level directory used as a unique label for the disk: 
“sp05-NN”  where NN is a digit pair identifying the disk 

• Under which there will be four sub-directories: 
 “ train” , “ test” , “ trials” , and  “doc”  

8.1 train Subdirectory 

The “ train”  directory contains three subdirectories: 

• data: Contains the SPHERE formatted speech data used 
for training in each of the seven training conditions. 

• female: Contains five training files that define the female 
models for each of the seven training conditions. (The 
format of these files is defined below.) 

• male: Contains five training files that define the male 
models for each of the seven training conditions. (The 
format of these files is defined below.) 

The five training files for both male and female models have 
similar structures. Each has one record per line, and each record 
contains two fields. The first field is the model identifier. The 
second includes a comma separated list of speech files (located in 
the “data”  directory) that are to be used to train the model. For the 
2-channel training conditions, each list item also specifies whether 
the target speaker’s speech is on the “A”  or the “B”  channel of the 
speech file. 

The five training files in each gender directory are named: 

• “10sec4w.trn”  for the 10 second two-channel training 
condition, an example record looks like: 
  3232 mrpv.sph:B 

•  “1conv4w.trn”  for the 1 conversation two-channel 
training condition, an example record looks like:  
  4240 mrpz.sph:A 

• “3conv4w.trn”  for the 3 conversation two-channel 
training condition, an example record for this training 
condition looks like:  
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 7211 mrpz.sph:B,hrtz.sph:A,nost.sph:B 

• “8conv4w.trn”  for the 8 conversation training condition. 

•  “3conv2w.trn”  for the 3 conversation summed-channel 
training condition, an example record  looks like:      
  3310 nrfs.sph,irts.sph,poow.sph 

8.2 test Subdirectory 

The “ test”  directory contains one subdirectory: 

• data: This directory contains all the SPHERE formatted 
speech test data to be used for each of the four test 
segment conditions. The file names will be arbitrary ones 
of four characters along with a “ .sph”  extension. 

8.3 trials Subdirectory 

The “ trials”  directory contains twenty index files, one for each of 
the possible combinations of the five training conditions and four 
test segment types. These index files define the various evaluation 
tests. The naming convention for these index files will be 
“TrainCondition-TestCondition.ndx”  where TrainCondition, refers 
to the training condition and whose models are defined in the 
corresponding training file. Possible values for TrainCondition are: 
10sec4w, 1conv4w, 3conv4w, 8conv4w, and 3conv2w. 
“TestCondition”  refers to the test segment condition. Possible 
values for TestCondition are: 10sec4w, 1conv4w, 1conv2w, and 
1convmic. 

Each record in a TrainCondition-TestCondition.ndx file contains 
four fields and defines a single trial. The first field is the model 
identifier. The second field identifies the gender of the model, 
either “m”  or “ f” . The third field is the test segment under 
evaluation, located in the test/data directory. This test segment 
name will not include the .sph extension. The fourth field specifies 
the channel of the test segment speech of interest, either “A”  or 
“B” . (This will always be “A”  for the summed channel test.) An 
example for the train on three conversations two-channel and test 
on one conversation two-channel index file “3conv4w-
1conv2w.ndx”  looks like:  “7211 m nrbw B” . 

The records in these 20 files are ordered numerically by model 
identifier, and within each model’s tests, chronologically by the 
recording dates of the test segments. Thus each index file specifies 
the processing order of the trials for each model. (This order of 
processing is mandatory when unsupervised adaptation is used.) 

8.4 doc Subdirectory 

This will contain text files that document the evaluation and the 
organization of the evaluation data. This evaluation plan document 
will be included. 

9 SUBMISSION OF RESULTS 
Sites participating in one or more of the speaker detection 
evaluation tests must report results for each test in its entirety. 
These results for each test condition (1 of the 20 test index files) 
must be provided to NIST in a single file using a standard ASCII 
format, with one record for each trial decision. The file name 
should be intuitively mnemonic and should be constructed as 
“SSS_N”, where 

• SSS identifies the site, and 

• N identifies the system.  

9.1 Format for Results 

Each file record must document its decision with the target model 
identification, test segment identification, and decision information. 
Each record must contain eight fields, separated by white space and 
in the following order: 

1. The training type of the test – 10sec4w, 1conv4w, 3conv4w, 
8conv4w,  or 3convs2w 

2. Adaptation mode. “n”  for no adaptation and “u”  for 
unsupervised adaptation. 

3. The segment type of the test – 10sec4w, 1conv4w, 1conv2w, or 
1convmic 

4. The sex of the target speaker –  m or f 
5. The target model identifier 

6. The test segment identifier  

7. The decision – t or f (whether or not the target speaker is 
judged to match  the speaker in the test segment) 

8. The confidence score (an estimate of the probability that the 
test segment contains speech from the target speaker) 

9.2 Means of Submission 

Submissions may be made via email or via ftp. The appropriate 
addresses for submissions will be supplied to participants receiving 
evaluation data. 

10 SYSTEM DESCRIPTION 
A brief description of the system(s) (the algorithms) used to 
produce the results must be submitted along with the results, for 
each system evaluated. A single site may submit the results for up 
to three separate systems for evaluation for each particular test, not 
counting test results using unsupervised adaptation and not 
counting results for 2004 systems run on 2005 data. If results for 
more than one system are submitted for a test, however, the site 
must identify one system as the "primary" system for the test prior 
to performing the evaluation. Sites are welcome to present 
descriptions of and results for additional systems at the evaluation 
workshop. 

For each system for which results are submitted, sites must report 
the CPU execution time that was required to process the evaluation 
data, as if the test were run on a single CPU. This should be 
reported separately for creating models from the training data and 
for processing the test segments, and may be reported either as 
absolute processing time or as a multiple of real-time for the data 
processed. The additional time required for unsupervised 
adaptation should be reported where relevant. Sites must also 
describe the CPU and the amount of memory used. 

11 SCHEDULE 
The deadline for signing up to participate in the evaluation is 
March 1, 2005. 

The evaluation data set DVD's will be distributed by NIST on April 
4, 2005. 

The deadline for submission of evaluation results to NIST is April 
28, 2005. 

Evaluation results will be released to each site by NIST on May 5, 
2005. 
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The deadline for site workshop presentations to be supplied to 
NIST in electronic form for inclusion in the workshop CD-ROM is 
May 27, 2005. 

Registration and room reservations for the workshop must be 
received by (a date to be determined). 

The follow-up workshop will be held on or about June 6-8, 2005 at 
a location to be designated in the eastern United States. All sites 
participating in the evaluation must have representatives in 
attendance to discuss their systems and results.  

12 GLOSSARY 
Test – A collection of trials constituting an evaluation component. 

Trial – The individual evaluation unit involving a test segment and 
a hypothesized speaker. 

Target (model) speaker – The hypothesized speaker of a test 
segment, one for whom a model has been created from 
training data. 

Non-target (impostor) speaker – A hypothesized speaker of a test 
segment who is in fact not the actual speaker. 

Segment speaker – The actual speaker in a test segment. 

Target (true speaker) trial – A trial in which the actual speaker of 
the test segment is in fact the target (hypothesized) speaker of 
the test segment. 

Non-target (impostor) trial – A trial in which the actual speaker of 
the test segment is in fact not the target (hypothesized) speaker 
of the test segment. 

Turn – The interval in a conversation during which one participant 
speaks while the other remains silent. 
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The NIST Year 2006 Speaker Recognition 

Evaluation Plan 

1 INTRODUCTION 

The year 2006 speaker recognition evaluation is part of an ongoing 

series of yearly evaluations conducted by NIST. These evaluations 

are an important contribution to the direction of research efforts 

and the calibration of technical capabilities. They are intended to be 

of interest to all researchers working on the general problem of text 

independent speaker recognition. To this end the evaluation is 

designed to be simple, to focus on core technology issues, to be 

fully supported, and to be accessible to those wishing to participate.  

The 2006 evaluation will reuse from the 2005 evaluation some of 

the conversational telephone speech data collected for the Mixer 

Corpus by the Linguistic Data Consortium using the “Fishboard” 

platform, and will use some additional unexposed data from this 

collection and some similar data collected more recently. Some 

unexposed or newly collected “multi-channel” data collected 

simultaneously from a number of auxiliary microphones will also 

be included. The data will be mostly English speech, but will 

include some speech in four additional languages.   

The evaluation will include 15 different speaker detection tests 

defined by the duration and type of the training and test data. For 

each such test, an unsupervised adaptation mode will be offered in 

addition to the basic test. 

The evaluation will be conducted in April and May of 2006. A 

follow-up workshop for evaluation participants to discuss research 

findings will be held late in June in San Juan, Puerto Rico, 

preceding the Odyssey 2006 Workshop there. Specific dates are 

listed in the Schedule (section  11). 

Participation in the evaluation is invited for all sites that find the 

tasks and the evaluation of interest. Participating sites must follow 

the evaluation rules set forth in this plan and must be represented at 

the evaluation workshop. For more information, and to register to 

participate in the evaluation, please contact NIST.1  

2 TECHNICAL OBJECTIVE 

This evaluation focuses on speaker detection in the context of 

conversational telephone speech. The evaluation is designed to 

foster research progress, with the goals of: 

• Exploring promising new ideas in speaker recognition.  

• Developing advanced technology incorporating these ideas.  

• Measuring the performance of this technology.  

2.1 Task Definition  

The year 2006 speaker recognition evaluation is limited to the 

broadly defined task of speaker detection. This has been NIST’s 

basic speaker recognition task over the past ten years. The task is to 

                                                                 

 

1 Send email to speaker_poc@nist.gov, or call 301/975-3169. Each 

site must complete the registration process by signing and returning 

the registration form, which is available online at:                            .                        

http://www.nist.gov/speech/tests/spk/sre-06_registration.pdf 

determine whether a specified speaker is speaking during a given 

segment of conversational speech. 

2.2 Task Conditions 

The speaker detection task for 2006 is divided into 15 distinct and 

separate tests. Each of these tests involves one of five training 

conditions and one of four test conditions. One of these tests (see 

section 2.2.3) is designated as the core test. Participants must do the 

core test and may choose to do any one or more of the other tests. 

Results must be submitted for all trials included in each test for 

which any results are submitted. For each test, there will also be an 

optional unsupervised adaptation condition. Sites choosing the 

adaptation option for a test must also perform the test without 

adaptation to provide a baseline contrast. 

2.2.1 Training Conditions 

The training segments in the 2006 evaluation will be continuous 

conversational excerpts. As in the previous two years, there will be 

no prior removal of intervals of silence. Also, as in 2005, both sides 

of all two-channel conversations will be provided (to aid systems in 

echo cancellation, dialog analysis, etc.). For all two-channel 

segments, the channel containing the putative target speaker to be 

recognized will be identified. 

The five training conditions to be included involve target speakers 

defined by the following training data: 

1. A two-channel (4-wire) excerpt from a conversation 

estimated to contain approximately 10 seconds of speech 

of the target on its designated side (The NIST energy-

based automatic speech detector will be used to estimate 

the duration of actual speech in the chosen excerpts.) 

2. One two-channel (4-wire) conversation, of approximately 

five minutes total duration2, with the target speaker 

channel designated. 

3. Three two-channel (4-wire) conversations involving the 

target speaker on their designated sides 

4. Eight two-channel (4-wire) conversations involving the 

target speaker on their designated sides 

5. Three summed-channel (2-wire) conversations, formed by 

sample-by-sample summing of their two sides. Each of 

these conversations will include both the target speaker 

and another speaker. These three non-target speakers will 

all be distinct. 

English language word transcripts, produced using an automatic 

speech recognition (ASR) system, will be provided for all training 

segments of each condition. These transcripts will, of course, be 

errorful, with word error rates typically in the range of 15-30%. 

                                                                 

 

2 Each conversation side will consist of the last five minutes of a 

six-minute conversation. This will eliminate from the evaluation 

data the less-topical introductory dialogue, which is more likely to 

contain language that identifies the speakers. 



 

 

sre-06_evalplan-v9.doc 2006 Speaker Recognition page 2 of 8 

 March 8, 2006  

2.2.2 Test Segment Conditions 

The test segments in the 2006 evaluation will be continuous 

conversational excerpts. As in the past two years, there will be no 

prior removal of intervals of silence. Also, as in 2005, both sides of 

all two-channel conversations will be provided (to aid systems in 

echo cancellation, dialog analysis, etc.). For all two-channel 

segments, the channel containing the putative target speaker to be 

recognized will be identified.  

The four test segment conditions to be included are the following: 

1. A two-channel (4-wire) excerpt from a conversation 

estimated to contain approximately 10 seconds of speech 

of the putative target speaker on its designated side (The 

NIST energy-based automatic speech detector will be used 

to estimate the duration of actual speech in the chosen 

excerpts.) 

2. A two-channel (4-wire) conversation, of approximately 

five minutes total duration, with the putative target speaker 

channel designated. 

3. A summed-channel (2-wire) conversation formed by 

sample-by-sample summing of its two sides 

4. A two-channel (4-wire) conversation, with the usual 

telephone speech replaced by auxiliary microphone data in 

the putative target speaker channel. This auxiliary 

microphone data will be supplied in 8 kHz 8-bit µ-law 

form. 

English language word transcripts, produced using an automatic 

speech recognition (ASR) system, will be provided for all test 

segments of each condition.   

2.2.3 Training/Segment Condition Combinations 

The matrix of training and test segment condition combinations is 

shown in Table 1. Note that only 15 (out of 20) condition 

combinations will be included in this year’s evaluation. Each test 

consists of a sequence of trials, where each trial consists of a target 

speaker, defined by the training data provided, and a test segment. 

The system must decide whether speech of the target speaker 

occurs in the test segment. The shaded box labeled “required” in 

Table 1 is the core test for the 2006 evaluation. All participants are 

required to submit results for this test. Each participant may also 

choose to submit results for all, some, or none of the other 14 test 

conditions. For each test for which results are submitted, results for 

all trials must be included. 

2.2.4 Unsupervised Adaptation Mode 

The unsupervised adaptation mode allows systems to update 

themselves based on previous trial segments for the target model 

involved (up to and including the current trial segment). This is in 

contrast to the non-adaptive mode in which the system is static and 

the target (and background) speaker models are a function only of 

the target speaker training data. (The speaker models of course also 

benefit from speech data used and knowledge acquired during 

system development.) 

In the unsupervised adaptation mode it is required that the trials for 

each target model be performed in the order given in the test index 

file (see section  8.3). The trials for each model will be grouped 

together, and the test segments for each of these target models will 

be listed in chronological order. Within the testing for each target 

model, the target (and background) models may be updated by the 

system after each trial using the test segment data processed thus 

far for that target model. However, the adaptation must be 

discarded and the system reset to its initial unadapted state 

whenever a new model is encountered in the test index file. 

Table 1:  Matrix of training and test segment conditions. 

The shaded entry is the required core test condition. 

Test Segment Condition 
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3 conversation  

summed-

channel  

 optional optional  

For each test performed in unsupervised adaptation mode results 

must also be submitted for that test in non-adaptive mode in order 

to provide a contrast between adaptive and non-adaptive 

performance. The unsupervised adaptation techniques used should 

be discussed in the system description (see section  10). 

3 PERFORMANCE MEASURE 

There will be a single basic cost model for measuring speaker 

detection performance, to be used for all speaker detection tests. 

For each test, a detection cost function will be computed over the 

sequence of trials provided. Each trial must be independently 

judged as “true” (the model speaker speaks in the test segment) or 

“false” (the model speaker does not speak in the test segment), and 

the correctness of these decisions will be tallied.3  

This detection cost function is defined as a weighted sum of miss 

and false alarm error probabilities: 

CDet  =  CMiss × PMiss|Target × PTarget 

+  CFalseAlarm× PFalseAlarm|NonTarget × (1-PTarget) 

The parameters of this cost function are the relative costs of 

detection errors, CMiss and CFalseAlarm, and the a priori probability of 

the specified target speaker, PTarget. The parameter values in Table 

2 will be used as the primary evaluation of speaker recognition 

performance for all speaker detection tests. 

                                                                 

 

3 This means that an explicit speaker detection decision is required 

for each trial. Explicit decisions are required because the task of 

determining appropriate decision thresholds is a necessary part of 

any speaker detection system and is a challenging research problem 

in and of itself. 
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Table 2:  Speaker Detection Cost Model Parameters 

for the primary evaluation decision strategy 

CMiss CFalseAlarm PTarget 

10 1 0.01 

To improve the intuitive meaning of CDet, it will be normalized by 

dividing it by the best cost that could be obtained without 

processing the input data (i.e., by either always accepting or always 

rejecting the segment speaker as matching the target speaker, 

whichever gives the lower cost): 
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In addition to the actual detection decision, a confidence score will 

also be required for each test hypothesis. This confidence score 

should reflect the system’s estimate of the probability that the test 

segment contains speech from the target speaker. Higher 

confidence scores should indicate greater estimated probability that 

the target speaker’s speech is present in the segment. The 

confidence scores will be used to produce Detection Error Tradeoff 

(DET) curves, in order to see how misses may be traded off against 

false alarms. Since these curves will pool all trials in each test for 

all target speakers, it is necessary to normalize the confidence 

scores across all target speakers.  

The ordering of the confidence scores is all that matters for 

computing the detection cost function, which corresponds to a 

particular application defined by the parameters specified in section 

3, and for plotting DET curves. But these scores are more 

informative, and can be used to serve any application, if they 

represent actual probability estimates. It is suggested that 

participants provide as scores estimated likelihood ratio values, 

which do not depend on the application parameters. In terms of the 

conditional probabilities for the observed data of a given trial 

relative to the alternative target and non-target hypotheses the 

likelihood ratio (LR) is given by: 

LR = prob (data | target hyp.) / prob (data | non-target hyp.) 

Sites are asked to specify if their scores may be interpreted as 

likelihood ratio estimates. If so, floating point format should 

probably be used for scores to avoid any truncation of small values 

to zero. 

A further type of scoring and graphical presentation will be 

performed on submissions whose scores are declared to represent 

likelihood ratios. A log likelihood ratio (llr) based cost function, 

which is not application specific and may be given an information 

theoretic interpretation, is defined as follows: 

Cllr = 1 / (2 * log2) * (∑log(1+1/s)/NTT)+ (∑log(1+s))/NNT) 

where the first summation is over all target trials, the second is over 

all non-target trials, NTT and NNT are the total numbers of target 

and non-target trials, respectively, and s represents a trial’s 

likelihood ratio score.

4 i 

Graphs based on this cost function, somewhat analogous to DET 

curves, will also be included. These may serve to indicate the 

ranges of possible applications for which a system is or is not well 

calibrated.5 

4 EVALUATION CONDITIONS 

Performance will be measured, graphically presented, and 

analyzed, as discussed in section 3, over all the trials of each of the 

15 tests specified in section 2, and over subsets of these trials of 

particular evaluation interest. Comparisons will be made of 

performance variation across the different training conditions and 

the different test segment conditions which define these tests. The 

effects of factors such as language, telephone transmission type, 

and microphone type, will be examined. The possible performance 

benefit of unsupervised adaptation will be considered. As in 

previous years, a common evaluation condition (a subset of the 

core test) will be defined. And comparisons will be made between 

this year’s evaluation results and those of recent past years. 

4.1 Training Data 

As discussed in section 2.2.1, there will be five training conditions. 

NIST is interested in examining how performance varies among 

these conditions for fixed test segment conditions. 

Most of the training data will be in English, but some training 

conversations involving bi-lingual speakers may be collected in 

Arabic, Mandarin, Russian, and Spanish. Thus it will then be 

possible to examine how performance is affected by whether or not 

the training language matches the language of the test data. For the 

training conditions involving multiple conversations, the effect of 

having a mix of languages in the training may also be examined. 

The language used in all training data files will be indicated in the 

file header and available for use. 

All training data will have been collected over telephone channels. 

The sex of each target speaker will be provided to systems in the 

test index file (see section  8.3). 

For all training conditions, English language ASR transcriptions of 

all data will be provided along with the audio data. Systems may 

utilize this data as they wish. The acoustic data may be used alone, 

the transcriptions may be used alone, or all data may be used in 

combination.6   

4.1.1 Excerpts  

As discussed in section 2.2.1, one of the training conditions is an 

excerpt of a conversation containing approximately 10 seconds of 

                                                                 

 

4 This reasons for choosing this cost function, and its possible 

interpretations, are described in detail in the paper “Application-

independent evaluation of speaker detection” in Computer Speech 

& Language, volume 20, issues 2-3, April-July 2006, pages 230-

275, by Niko Brummer and Johan du Preez. 

5 See the discussion of Applied Probability of Error (APE) curves 

in the reference cited in the preceding footnote. 

6  Note, however, that the ASR transcripts will all be generated by 

an English language recognizer, regardless of the actual language 

being spoken.  
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estimated speech duration in the channel of interest. The actual 

duration of target speech will vary (so that the excerpts include 

only whole turns whenever possible) but the target speech duration 

will be constrained to lie in the range of 8-12 seconds.  

4.1.2 Two-channel Conversations 

As discussed in section 2.2.1, there will be training conditions 

consisting of one, three, and eight two-channel conversations of a 

given speaker. These will consist of approximately five minutes 

from an original six minute conversation, with an initial segment of 

about one minute excised. The excision point will be chosen so as 

not to include a partial speech turn.  

4.1.3 Summed-channel Conversations  

As discussed in section 2.2.1, one of the training conditions will 

consist of three summed-channel conversations, minus initial 

segments of about a minute each. Here the two sides of each 

conversation, in which both the target speaker and another speaker 

participate, will be summed together. Thus the challenge is to 

distinguish speech by the intended target speaker from speech by 

other participating speakers. To make this challenge feasible, the 

training conversations will be chosen so that each non-target 

speaker participates in only one conversation, while the target 

speaker participates in all three. 

The difficulty of finding the target speaker’s speech in the training 

data is affected by whether the other speaker in a training 

conversation is of the same or of the opposite sex as the target. 

Systems will not be provided with this information, but may use 

automatic gender detection techniques if they wish. Performance 

results will be examined as a function of how many of the three 

training conversations contain same-sex other speakers. 

Note that an interesting contrast will exist between this training 

condition and that consisting of three two-channel conversations. 

4.2 Test data 

As discussed in section 2.2.2, there will be four test segment 

conditions. NIST is interested in examining how performance 

varies among these conditions for fixed training conditions. 

Most of the test data will be in English, but some may be in Arabic, 

Mandarin, Russian, or Spanish. The language used in all test data 

files will be indicated in the file header and available for use. 

For all test conditions, English language ASR transcriptions of the 

data will be provided along with the audio data. Systems may 

utilize this data as they wish. The acoustic data may be used alone, 

the ASR transcriptions may be used alone, or all data may be used 

in combination.6   

4.2.1 Excerpts  

As discussed in section 2.2.2, one of the test conditions is an 

excerpt of a conversation containing approximately 10 seconds of 

estimated speech duration in the channel of interest. The actual 

duration of target speech will vary (so that the excerpts include 

only whole turns whenever possible) but the target speech duration 

will be constrained to lie in the range of 8-12 seconds.  

4.2.2 Two-channel Conversations 

As discussed in section 2.2.2, one of the test conditions is a single 

two-channel conversation. (The channel of interest will be 

designated in the test index file – see section  8.3.) Each 

conversation will consist of approximately five minutes from an 

original six minute conversation, with an initial segment of about 

one minute excised. The excision point will be chosen so as not to 

include a partial speech turn.  

4.2.3 Summed-channel Conversations  

As discussed in section 2.2.2, one of the test conditions is a single 

summed-channel conversation, minus an initial segment of about a 

minute. Here the two sides of the conversation will be summed 

together, and only one of the two speakers included may match a 

target speaker specified in a trial.  

The difficulty of determining whether the target speaker speaks in 

the test conversation is affected by the sexes of the speakers in the 

test conversation. Systems will not be told whether the two test 

speakers are of the same or opposite sex, but automatic gender 

detection techniques may be used. Performance results will be 

examined with respect to whether one or both of the test speakers 

are of the same sex as the target. (For all trials there will be at least 

one speaker who is of the same sex as the target speaker.) 

Note that an interesting contrast will exist between this condition 

and that consisting of a single two-channel conversation. 

4.2.4 Auxiliary Microphone Conversations  

As discussed in section 2.2.2, one of the test conditions is a two-

channel conversation in which the channel of interest is an 

auxiliary microphone channel. The other channel will contain 

normal telephone data. As with the normal two-channel 

conversation test condition, about five minutes from an original 

six-minute conversation will be provided. The microphone data 

will be provided in single byte 8-bit µ-law form that matches the 

telephone data provided. 

Several types of auxiliary microphones will be included in this 

data. Thus it will be possible to examine how performance is 

affected by whether or not test data is recorded over a telephone 

channel, and by the type of microphone used in non-telephone test 

data. The non-telephone data will include some or all of the 

following microphone types: 

• Ear-bud/lapel mike 

• Mini-boom mike 

• Courtroom mike 

• Conference room mike 

• Distant mike 

• Near-field mike 

• PC stand mike 

• Micro-cassette mike 

Information on the microphone type used in each non-telephone 

test segment data will not be available to recognition systems. 

These auxiliary microphone conversations will all be in English. 

ASR transcriptions will be provided as they are for all other calls. 

Note, however, that the ASR transcript will be produced using 

telephone data input rather than the auxiliary microphone signal. 

4.3 Factors Affecting Performance 

All trials will be same-sex trials. This means that the sex of the test 

segment speaker in the channel of interest (two-channel), or of at 

least one test segment speaker (summed-channel), will be the same 

as that of the target speaker model. Performance will be reported 

separately for males and females and also for both sexes pooled. 

All trials involving telephone test segments will be different-

number trials. This means that the telephone numbers, and 
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presumably the telephone handsets, used in the training and the test 

data segments will be different from each other. (For some 

telephone conversational data collected at the sites collecting the 

auxiliary microphone data, information other than phone numbers 

may be used to establish that different handsets are used.) 

Past NIST evaluations have shown that the type of telephone 

handset and the type of telephone transmission channel used can 

have a great effect on speaker recognition performance. Factors of 

these types will be examined in this evaluation to the extent that 

information of this type is available. 

Telephone callers are generally asked to classify the transmission 

channel as one of the following types: 

• Cellular 

• Cordless 

• Regular (i.e., land-line) 

Telephone callers are generally also asked to classify the 

instrument used as one of the following types: 

• Speaker-phone 

• Head-mounted 

• Ear-bud 

• Regular (i.e., hand-held) 

Performance will be examined, to the extent the information is 

available and the data sizes are sufficient, as a function of the 

telephone transmission channel type and of the telephone 

instrument type in both the training and the test segment data. 

4.4 Unsupervised Adaptation 

As discussed in section 2.2.4, an unsupervised adaptation mode 

will be supported for each test. Performance with and without such 

adaptation will be compared for participants attempting tests with 

unsupervised adaptation. 

4.5 Common Evaluation Condition 

In each evaluation NIST specifies a common evaluation condition 

(a subset of trials in the core test that satisfy additional constraints) 

in order to better foster technical interactions and technology 

comparisons among sites. The performance results on these trials 

are treated as the basic official evaluation outcome. The common 

evaluation condition for the 2006 evaluation will be the subset of 

the trials in the core test that satisfy the following condition: 

• The test segment and all of the training data for the target 

model are in English. 

Note that all transmission and instrument types will be included in 

the common evaluation condition this year. 

4.6 Comparison with Previous Evaluations 

In each evaluation it is of interest to compare performance results, 

particularly of the best performing systems, with those of previous 

evaluations. This is generally complicated by the fact that the 

evaluation conditions change in each successive evaluation. For the 

2006 evaluation the test conditions are essentially identical to ones 

used in 2005, and most are similar to ones used in 2004. Thus it 

will be possible to make fairly direct comparisons between 2006 

and 2005 and even 2004 tests. Comparisons may also be made with 

the results of earlier evaluations for conditions most similar to 

those in this evaluation. 

While the test conditions will match those used previously, the test 

data will be partially different. The 2006 target speakers will all be 

different from those of the 2004 evaluation, but will include many 

of the same speakers as in 2005. The question always arises of to 

what extent are the performance differences due to random 

differences in the test data sets. For example, are the new target 

speakers in the current evaluation easier, or harder, on the average 

to recognize? To help address this question, sites participating in 

the 2006 evaluation that also participated in 2004 or 2005 are 

strongly encouraged to submit to NIST results for their 

(unmodified) 2004 or 2005 systems run on the 2006 data for the 

same test conditions as previously. Such results will not count 

against the limit of three submissions per test condition (see section 

7). Sites are also encouraged to “mothball” their 2006 systems for 

use in similar comparisons in future evaluations. 

5 DEVELOPMENT DATA 

The evaluation data for the 2004 evaluation will serve as the 

primary development data for this year’s evaluation. This data is 

covered by the LDC license agreement noted in section 6. Please 

refer to the 2004 evaluation plan for details.7 

All of the cross-channel microphone speech data used in the 2005 

evaluation, and all of the telephone data involving the speakers of 

this microphone data, will also be available as development data for 

the 2006 evaluation. NIST will be making this data available as a 

package, and it will be covered by the LDC license agreement as 

well. 

Participating sites may use other speech corpora to which they have 

access for development. Such corpora should be described in the 

site’s system description. The original Switchboard-1 corpus may 

be used, but note that an effort is being made to recruit a limited 

number of the speakers from that corpus to participate in the new 

data collection from which this year’s evaluation data will be 

selected. 

6 EVALUATION DATA 

Both the target speaker training data and the test segment data will 

have been collected by the Linguistic Data Consortium (LDC) as 

part of the Mixer project or in more recent similar collections. The 

Mixer project invited participating speakers to take part in 

numerous six-minute conversations on specified topics with 

strangers. The Fishboard platform used to collect this data 

automatically initiated calls to selected pairs of speakers for most 

of the conversations, while participating speakers also initiated 

some calls themselves, with the collection system contacting other 

speakers for them to converse with. Speakers were encouraged to 

use different telephone instruments for their initiated calls. 

The conversational data for this evaluation will be distributed to 

evaluation participants by NIST on a firewire drive. The LDC 

provides a license agreement8, which non-member participating 

sites must sign, governing the use of this data for the evaluation. 

The ASR transcript data, and any other auxiliary data which may 

be supplied, will be made available by NIST in electronic form to 

all registered participants. 

All conversations will have been processed through echo canceling 

software before being used to create the evaluation training and test 

segments. 

                                                                 

 

7 www.nist.gov/speech/tests/spk/2004/SRE-04_evalplan-v1a.pdf 

8 Available online at http://www.nist.gov/speech/tests/spk/2006/ 
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All training and test segments will be stored as 8-bit µ-law speech 

signals in separate SPHERE9 files. The SPHERE header of each 

such file will contain some auxiliary information as well as the 

standard SPHERE header fields. This auxiliary information will 

include the language of the conversation and whether or not the 

data was recorded over a telephone line.   

Most segments will be in English and recorded over a telephone 

line. The header will not contain information on the type of 

telephone transmission channel or the type of telephone instrument 

involved. Nor will the microphone type be identified for the 

auxiliary microphone test, as noted in section  4.2.4. 

6.1 Excerpts 

The 10-second two-channel excerpts to be used as training data or 

as test segments will be continuous segments from single 

conversations that are estimated to contain approximately 10 

seconds of actual speech in the channel of interest. When both 

channels are channels of interest for different trials, then each will 

contain approximately 10 seconds of actual speech. 

The number of training segments is expected not to exceed 2000. 

The number of test segments is expected not to exceed 4000. 

6.2 Two-channel Conversations 

The two-channel conversations to be used as training data or as test 

segments will be approximately five minutes in duration.   

The number of conversations to be used for training is expected not 

to exceed 10,000. The number of speaker models based on a single 

conversation, and the numbers of models specified by 3 or by 8 

conversations are each expected not to exceed 2000.     

The number of test segments is expected not to exceed 4000. 

6.3 Summed-channel Conversations  

The summed-channel conversations to be used as training data or 

as test segments will be approximately five minutes in duration  

The number of summed channel training conversations is expected 

not to exceed 2400. These will be used to specify no more than 800 

target speaker models. The number of summed-channel 

conversation test segments is expected not to exceed 4000. 

6.4 Auxiliary Microphone Conversations 

These two-channel conversations to be used as test segments will 

be approximately five minutes in duration.   

The number of test segments is expected not to exceed 2000. 

6.5 Number of Trials 

The trials for each of the speaker detection tests offered will be 

specified in separate index files. These will be text files in which 

each record specifies the model and a test segment for a particular 

trial. The number of trials in each test is expected not to exceed 

75,000. 

7 EVALUATION RULES 

In order to participate in the 2006 speaker recognition evaluation a 

site must submit complete results for the core test condition 

                                                                 

 

9 ftp://jaguar.ncsl.nist.gov/pub/sphere_2.6a.tar.Z 

(without unsupervised adaptation) as specified in section 2.2.3.10 

Results for other tests are optional but strongly encouraged. 

All participants must observe the following evaluation rules and 

restrictions in their processing of the evaluation data: 

• Each decision is to be based only upon the specified test 

segment and target speaker model. Use of information about 

other test segments (except as permitted for the unsupervised 

adaptation mode condition) and/or other target speakers is not 

allowed.11 For example: 

– Normalization over multiple test segments is not allowed, 

except as permitted for the unsupervised adaptation mode 

condition.  

– Normalization over multiple target speakers is not allowed.  

– Use of evaluation data for impostor modeling is not 

allowed, except as permitted for the unsupervised 

adaptation mode condition. 

• If an unsupervised adaptation condition is included, the test 

segments for each model must be processed in the order 

specified. 

• The use of manually produced transcripts or other human-

produced information for training is not allowed. 

• Knowledge of the sex of the target speaker (implied by data set 

directory structure as indicated below) is allowed. Note that no 

cross-sex trials are planned, but that summed-channel segments 

may involve either same sex or opposite sex speakers. 

• Knowledge of the language used in all segments, which will be 

provided, is allowed. 

• Knowledge of whether or not a segment involves telephone 

channel transmission is allowed. 

• Knowledge of the telephone transmission channel type and of 

the telephone instrument type used in all segments is not 

allowed, except as determined by automatic means. 

• Listening to the evaluation data, or any other human interaction 

with the data, is not allowed before all test results have been 

submitted. This applies to training data as well as test segments.  

• Knowledge of any information available in the SPHERE header 

is allowed.  

The following general rules about evaluation participation 

procedures will also apply for all participating sites: 

• Access to past presentations – Each new participant that has 

signed up for, and thus committed itself to take part in, the 

upcoming evaluation and workshop will be able to receive, 

upon request, the CD of presentations that were presented at 

the preceding workshop.   

• Limitation on submissions – Each participating site may submit 

results for up to three different systems per evaluation 

                                                                 

 

10  It is imperative that results be complete for every test 

submission. A test submission is complete if and only if it includes 

a result for every trial in the test. 

11 This means that the technology is viewed as being "application-

ready". Thus a system must be able to perform speaker detection 

simply by being trained on the training data for a specific target 

speaker and then performing the detection task on whatever speech 

segment is presented, without the (artificial) knowledge of other 

test data. 
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condition for official scoring by NIST. Results for systems 

using unsupervised adaptation and results for earlier year 

systems run on 2006 data will not count against this limit. 

Note that the answer keys will be distributed to sites by NIST 

shortly after the submission deadline. Thus each site may 

score for itself as many additional systems and/or parameter 

settings as desired. 

• Attendance at workshop – Each evaluation participant is 

required to have one or more representatives at the evaluation 

workshop who must present there a meaningful description 

of its system(s). Evaluation participants failing to do so may 

be excluded from future evaluation participation. 

• Dissemination of results 

– Participants may publish and otherwise disseminate their 

own results. 

– Participants may publish and otherwise disseminate 

anonymous charts, produced by NIST, of all system results 

for a condition. 

– Participants may not publish or otherwise disseminate the 

names or results of other participants without the explicit 

written permission of each such participant. Participants 

violating this rule may be excluded from future evaluations.  

8 EVALUATION DATA SET ORGANIZATION 

The organization of the evaluation data will be: 

• A top level directory used as a unique label for the disk: 

“sp06-NN” where NN is a digit pair identifying the disk 

• Under which there will be four sub-directories: 

 “train”, “test”, “trials”, and  “doc” 

8.1 train Subdirectory 

The “train” directory contains three subdirectories: 

• data: Contains the SPHERE formatted speech data used 

for training in each of the seven training conditions. 

• female: Contains five training files that define the female 

models for each of the seven training conditions. (The 

format of these files is defined below.) 

• male: Contains five training files that define the male 

models for each of the seven training conditions. (The 

format of these files is defined below.) 

The five training files for both male and female models have 

similar structures. Each has one record per line, and each record 

contains two fields. The first field is the model identifier. The 

second includes a comma separated list of speech files (located in 

the “data” directory) that are to be used to train the model. For the 

2-channel training conditions, each list item also specifies whether 

the target speaker’s speech is on the “A” or the “B” channel of the 

speech file. 

The five training files in each gender directory are named: 

• “10sec4w.trn” for the 10 second two-channel training 

condition, an example record looks like: 

  3232 mrpv.sph:B 

•  “1conv4w.trn” for the 1 conversation two-channel 

training condition, an example record looks like:  

  4240 mrpz.sph:A 

• “3conv4w.trn” for the 3 conversation two-channel 

training condition, an example record for this training 

condition looks like:  

 7211 mrpz.sph:B,hrtz.sph:A,nost.sph:B 

• “8conv4w.trn” for the 8 conversation training condition. 

•  “3conv2w.trn” for the 3 conversation summed-channel 

training condition, an example record  looks like:      

  3310 nrfs.sph,irts.sph,poow.sph 

8.2 test Subdirectory 

The “test” directory contains one subdirectory: 

• data: This directory contains all the SPHERE formatted 

speech test data to be used for each of the four test 

segment conditions. The file names will be arbitrary ones 

of four characters along with a “.sph” extension. 

8.3 trials Subdirectory 

The “trials” directory contains twenty index files, one for each of 

the possible combinations of the five training conditions and four 

test segment types. These index files define the various evaluation 

tests. The naming convention for these index files will be 

“TrainCondition-TestCondition.ndx” where TrainCondition, refers 

to the training condition and whose models are defined in the 

corresponding training file. Possible values for TrainCondition are: 

10sec4w, 1conv4w, 3conv4w, 8conv4w, and 3conv2w. 

“TestCondition” refers to the test segment condition. Possible 

values for TestCondition are: 10sec4w, 1conv4w, 1conv2w, and 

1convmic. 

Each record in a TrainCondition-TestCondition.ndx file contains 

four fields and defines a single trial. The first field is the model 

identifier. The second field identifies the gender of the model, 

either “m” or “f”. The third field is the test segment under 

evaluation, located in the test/data directory. This test segment 

name will not include the .sph extension. The fourth field specifies 

the channel of the test segment speech of interest, either “A” or 

“B”. (This will always be “A” for the summed channel test.) An 

example for the train on three conversations two-channel and test 

on one conversation two-channel index file “3conv4w-

1conv2w.ndx” looks like:  “7211 m nrbw B”. 

The records in these 20 files are ordered numerically by model 

identifier, and within each model’s tests, chronologically by the 

recording dates of the test segments. Thus each index file specifies 

the processing order of the trials for each model. (This order of 

processing is mandatory when unsupervised adaptation is used.) 

8.4 doc Subdirectory 

This will contain text files that document the evaluation and the 

organization of the evaluation data. This evaluation plan document 

will be included. 

9 SUBMISSION OF RESULTS 

Sites participating in one or more of the speaker detection 

evaluation tests must report results for each test in its entirety. 

These results for each test condition (1 of the xx test index files) 

must be provided to NIST in a single file using a standard ASCII 

format, with one record for each trial decision. The file name 

should be intuitively mnemonic and should be constructed as 

“SSS_N”, where 

• SSS identifies the site, and 

• N identifies the system.  
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9.1 Format for Results 

Each file record must document its decision with the target model 

identification, test segment identification, and decision information. 

Each record must contain nine fields, separated by white space and 

in the following order: 

1. The training type of the test – 10sec4w, 1conv4w, 3conv4w, 

8conv4w,  or 3convs2w 

2. Adaptation mode. “n” for no adaptation and “u” for 

unsupervised adaptation. 

3. The segment type of the test – 10sec4w, 1conv4w, 1conv2w, or 

1convmic 

4. The sex of the target speaker –  m or f 

5. The target model identifier 

6. The test segment identifier  

7. The test segment channel of interest, either “a” or “b” 

8. The decision – t or f (whether or not the target speaker is 

judged to match  the speaker in the test segment) 

9. The confidence score (where larger scores indicate greater 

likelihood that the test segment contains speech from the target 

speaker) 

9.2 Means of Submission 

Submissions may be made via email or via ftp. The appropriate 

addresses for submissions will be supplied to participants receiving 

evaluation data. Sites should also indicate if it is the case that the 

confidence scores in a submission are to be interpreted as 

likelihood ratios. 

10 SYSTEM DESCRIPTION 

A brief description of the system(s) (the algorithms) used to 

produce the results must be submitted along with the results, for 

each system evaluated. A single site may submit the results for up 

to three separate systems for evaluation for each particular test, not 

counting test results using unsupervised adaptation and not 

counting results for 2004 or 2005 systems run on the 2006 data. If 

results for more than one system are submitted for a test, however, 

the site must identify one system as the "primary" system for the 

test prior to performing the evaluation. Sites are welcome to present 

descriptions of and results for additional systems at the evaluation 

workshop. 

For each system for which results are submitted, sites must report 

the CPU execution time that was required to process the evaluation 

data, as if the test were run on a single CPU. This should be 

reported separately for creating models from the training data and 

for processing the test segments, and may be reported either as 

absolute processing time or as a multiple of real-time for the data 

processed. The additional time required for unsupervised 

adaptation should be reported where relevant. Sites must also 

describe the CPU and the amount of memory used. 

11 SCHEDULE 

The deadline for signing up to participate in the evaluation is 

March 27, 2006. 

The evaluation data set will be distributed by NIST so as to arrive 

at participating sites on April 24, 2006. 

The deadline for submission of evaluation results to NIST is May 

14, 2006 at 11:59 PM, Washington time. 

Initial evaluation results will be released to each site by NIST on 

May 22, 2006. 

The deadline for site workshop presentations to be supplied to 

NIST in electronic form for inclusion in the workshop CD-ROM is 

(a date to be determined). 

Registration and room reservations for the workshop must be 

received by (a date to be determined). 

The follow-up workshop will be held June 25-27, 2006 at the Ritz 

Carlton Hotel in San Juan, Puerto Rico in conjunction with the 

IEEE Odyssey 2006 Speaker and Language Recognition 

Workshop. All sites participating in the evaluation must have one 

or more representatives in attendance to discuss their systems and 

results.  

12 GLOSSARY 

Test – A collection of trials constituting an evaluation component. 

Trial – The individual evaluation unit involving a test segment and 

a hypothesized speaker. 

Target (model) speaker – The hypothesized speaker of a test 

segment, one for whom a model has been created from 

training data. 

Non-target (impostor) speaker – A hypothesized speaker of a test 

segment who is in fact not the actual speaker. 

Segment speaker – The actual speaker in a test segment. 

Target (true speaker) trial – A trial in which the actual speaker of 

the test segment is in fact the target (hypothesized) speaker of 

the test segment. 

Non-target (impostor) trial – A trial in which the actual speaker of 

the test segment is in fact not the target (hypothesized) speaker 

of the test segment. 

Turn – The interval in a conversation during which one participant 

speaks while the other remains silent. 
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The NIST Year 2008 Speaker Recognition 

Evaluation Plan 

1 INTRODUCTION 

The year 2008 speaker recognition evaluation is part of an ongoing 

series of evaluations conducted by NIST. These evaluations are an 

important contribution to the direction of research efforts and the 

calibration of technical capabilities. They are intended to be of 

interest to all researchers working on the general problem of text 

independent speaker recognition. To this end the evaluation is 

designed to be simple, to focus on core technology issues, to be 

fully supported, and to be accessible to those wishing to participate.  

The 2008 evaluation will be distinguished from the most recent 

evaluations, in particular those in 2005 and 2006, by including in 

the training and test conditions for the core (required) test not only 

conversational telephone speech data but also conversational 

speech data (of comparable duration) recorded over a microphone 

channel involving an interview scenario, and additionally, for the 

test condition, conversational telephone speech recorded over a 

microphone channel. Systems will know whether each segment 

comes from a telephone or a microphone channel, and whether it 

involves the interview scenario or an ordinary telephone 

conversation, but will be required to process trials involving all 

segments of each type. Submitted results will be scored after the 

fact to determine performance levels for telephone data, for 

microphone data of different conversational styles and microphone 

types, and for differing combinations of training and test data. 

The optional tests this year will include, in addition to the training 

and test conditions of recent evaluations, a condition involving 

longer duration segments of interview data recorded over 

microphone channels. 

The 2008 evaluation will not reuse data from previous evaluations, 

but some of the target speakers of the 2006 evaluation may 

reappear in the 2008 evaluation data. Target speakers from 

evaluations prior to 2006 will not be used in the 2008 evaluation 

data. 

As in recent evaluations, some of the speakers in the telephone 

conversational data will be bilingual and their evaluation data may 

include speech in a language other than English as well as speech 

in English. The microphone recorded interview data will all be in 

English. 

The evaluation will include 13 different speaker detection tests 

defined by the duration and type of the training and test data. For 

each such test, an unsupervised adaptation mode will be offered in 

addition to the basic test. 

The evaluation will be conducted in April and May of 2008. A 

follow-up workshop for evaluation participants to discuss research 

findings will be held in June in Montreal, Quebec, Canada. Specific 

dates are listed in the Schedule (section 11). 

Participation in the evaluation is invited for all sites that find the 

tasks and the evaluation of interest. Participating sites must follow 

the evaluation rules set forth in this plan and must be represented at 

the evaluation workshop. For more information, and to register to 

participate in the evaluation, please contact NIST.1  

2 TECHNICAL OBJECTIVE 

This evaluation focuses on speaker detection in the context of 

conversational speech. The evaluation is designed to foster research 

progress, with the goals of: 

• Exploring promising new ideas in speaker recognition.  

• Developing advanced technology incorporating these ideas.  

• Measuring the performance of this technology.  

2.1 Task Definition  

The year 2008 speaker recognition evaluation is limited to the 

broadly defined task of speaker detection. This has been NIST’s 

basic speaker recognition task over the past twelve years. The task 

is to determine whether a specified speaker is speaking during a 

given segment of conversational speech. 

2.2 Task Conditions 

The speaker detection task for 2008 is divided into 13 distinct and 

separate tests. Each of these tests involves one of six training 

conditions and one of four test conditions. One of these tests (see 

section 2.2.3) is designated as the core test. Participants must do the 

core test and may choose to do any one or more of the other tests. 

Results must be submitted for all trials included in each test for 

which any results are submitted. For each test, there will also be an 

optional unsupervised adaptation condition. Sites choosing the 

adaptation option for a test must also perform the test without 

adaptation to provide a baseline contrast. 

2.2.1 Training Conditions 

The training segments in the 2008 evaluation will be continuous 

conversational excerpts. As in recent evaluations, there will be no 

prior removal of intervals of silence. Also, except for summed 

channel telephone conversations and long interview segments as 

described below, two separate conversation channels will be 

provided (to aid systems in echo cancellation, dialog analysis, etc.). 

For all such two-channel segments, the primary channel containing 

the target speaker to be recognized will be identified. 

The six training conditions to be included involve target speakers 

defined by the following training data: 

1. 10-sec:  A two-channel excerpt from a 

telephone conversation estimated to contain approximately 

10 seconds of speech of the target on its designated side. 

(An energy-based automatic speech detector will be used 

to estimate the duration of actual speech in the chosen 

excerpts.) 

                                                                 

 

1 Send email to speaker_poc@nist.gov, or call 301/975-3605. Each 

site must complete the registration process by signing and returning 

the registration form, which is available online at:                            .                        

http://www.nist.gov/speech/tests/sre/2008/sre08_registration.pdf 
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2. short2:  One two-channel telephone 

conversational excerpt, of approximately five minutes total 

duration2, with the target speaker channel designated or a 

microphone recorded conversational segment of 

approximately three minutes total duration involving the 

target speaker and an interviewer.  For the interview 

segments most of the speech will generally be spoken by 

the target speaker, and for consistency across the 

condition, a second zeroed out channel will be included.  

3. 3conv:  Three two-channel telephone 

conversational excerpts involving the target speaker on 

their designated sides. 

4. 8conv: Eight two-channel telephone conversation 

excerpts involving the target speaker on their designated 

sides. 

5. long:  A single channel microphone 

recorded conversational segment of eight minutes or 

longer duration involving the target speaker and an 

interviewer. Most of the speech will generally be spoken 

by the target speaker. 

6. 3summed:  Three summed-channel telephone 

conversational excerpts, formed by sample-by-sample 

summing of their two sides. Each of these conversations 

will include both the target speaker and another speaker. 

These three non-target speakers will all be distinct. 

English language word transcripts, produced using an automatic 

speech recognition (ASR) system, will be provided for all training 

segments of each condition. These transcripts will, of course, be 

errorful, with English word error rates typically in the range of 15-

30%. Note, however, that the ASR system will always be run on 

two separated channels, and run only once for those segments that 

have been simultaneously recorded over multiple channels, and the 

ASR transcripts provided may sometimes be superior to what 

current systems could provide for the actual channel involved. This 

is viewed as reasonable since ASR systems are expected to 

improve over time, and this evaluation is not intended to test ASR 

capabilities. 

For the interview segments of the second and fifth conditions 

described above, the estimated intervals where the target speaker is 

speaking, as determined by an energy based segmenter utilizing the 

audio signals from lavalier microphones worn by each of the two 

speakers, will be provided. Systems may limit their processing to 

these intervals, or they may choose to process the full segments and 

do their own speaker separation processing. 

2.2.2 Test Segment Conditions 

The test segments in the 2008 evaluation will be continuous 

conversational excerpts. As in recent evaluations, there will be no 

prior removal of intervals of silence. Also, except for summed 

channel telephone conversations and long interview segments as 

described below, two separate conversation channels will be 

provided (to aid systems in echo cancellation, dialog analysis, etc.). 

                                                                 

 

2 Each conversation side will consist of five minutes of a longer 

conversation, and will exclude the first minute. This will eliminate 

from the evaluation data the less-topical introductory dialogue, 

which is more likely to contain language that identifies the 

speakers. 

For all such two-channel segments, the primary channel containing 

the putative target speaker to be recognized will be identified.  

The four test segment conditions to be included are the following: 

1. 10-sec:  A two-channel excerpt from a 

telephone conversation estimated to contain approximately 

10 seconds of speech of the putative target speaker on its 

designated side (An energy-based automatic speech 

detector will be used to estimate the duration of actual 

speech in the chosen excerpts.) 

2. short3:  A two-channel telephone 

conversational excerpt, of approximately five minutes total 

duration, with the putative target speaker channel 

designated or a similar such telephone conversation but 

with the putative target channel being a (simultaneously 

recorded) microphone channel or a microphone recorded 

conversational segment of approximately three minutes 

total duration involving the putative target speaker and an 

interviewer. For the interview segments, most of the 

speech will generally be spoken by the target speaker, and 

for consistency across the condition, a second zeroed out 

channel will be included. 

3. long:   A single channel microphone 

recorded conversational segment of eight minutes or 

longer duration involving the putative target speaker and 

an interviewer. Most of the speech will generally be 

spoken by the target speaker.  

4. summed:  A summed-channel telephone 

conversation formed by sample-by-sample summing of its 

two sides 

English language word transcripts, produced using an automatic 

speech recognition (ASR) system as described in section 2.2.2, will 

be provided for all test segments of each condition.   

For the interview segments of the second and third conditions 

described above, the estimated intervals where the target speaker is 

speaking, as described in section 2.2.2, will be provided. 

2.2.3 Training/Segment Condition Combinations 

The matrix of training and test segment condition combinations is 

shown in Table 1. Note that only 13 (out of 24) condition 

combinations will be included in this year’s evaluation. Each test 

consists of a sequence of trials, where each trial consists of a target 

speaker, defined by the training data provided, and a test segment. 

The system must decide whether speech of the target speaker 

occurs in the test segment. The shaded box labeled “required” in 

Table 1 is the core test for the 2008 evaluation. All participants are 

required to submit results for this test. Each participant may also 

choose to submit results for all, some, or none of the other 12 test 

conditions. For each test for which results are submitted, results for 

all trials must be included. 

2.2.4 Unsupervised Adaptation Mode 

The unsupervised adaptation mode allows systems to update 

themselves based on previous trial segments for the target model 

involved (up to and including the current trial segment). This is in 

contrast to the non-adaptive mode in which the system is static and 

the target (and background) speaker models are a function only of 

the target speaker training data. (The speaker models of course also 

benefit from speech data used and knowledge acquired during 

system development.) 
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In the unsupervised adaptation mode it is required that the trials for 

each target model be processed in the order given in the test index 

file (see section 8.3x). The trials for each model will be grouped 

together, and the test segments for each of these target models will 

be listed in chronological order. Within the testing for each target 

model, the target (and background) models may be updated by the 

system after each trial using the test segment data processed thus 

far for that target model. No reprocessing of earlier trials is 

permitted. The adaptation, however, must be discarded and the 

system reset to its initial unadapted state whenever a new model is 

encountered in the test index file. 

Table 1:  Matrix of training and test segment conditions. 

The shaded entry is the required core test condition. 

 

Test Segment Condition 

10sec short3  long  summed 
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 10sec optional    

short2   optional required  optional 

3conv    optional  optional 

8conv   optional optional  optional 

long  optional optional  

3summed   optional  optional 

 

For each test performed in unsupervised adaptation mode results 

must also be submitted for that test in non-adaptive mode in order 

to provide a contrast between adaptive and non-adaptive 

performance. The unsupervised adaptation techniques used should 

be discussed in the system description (see section 10). 

3 PERFORMANCE MEASURE 

There will be a single basic cost model for measuring speaker 

detection performance, to be used for all speaker detection tests. 

For each test, a detection cost function will be computed over the 

sequence of trials provided. Each trial must be independently 

judged as “true” (the model speaker speaks in the test segment) or 

“false” (the model speaker does not speak in the test segment), and 

the correctness of these decisions will be tallied.3  

This detection cost function is defined as a weighted sum of miss 

and false alarm error probabilities: 

CDet  =  CMiss × PMiss|Target × PTarget 

+  CFalseAlarm× PFalseAlarm|NonTarget × (1-PTarget) 

The parameters of this cost function are the relative costs of 

detection errors, CMiss and CFalseAlarm, and the a priori probability of 

the specified target speaker, PTarget. The parameter values in Table 

2 will be used as the primary evaluation of speaker recognition 

performance for all speaker detection tests. 

                                                                 

 

3 This means that an explicit speaker detection decision is required 

for each trial. Explicit decisions are required because the task of 

determining appropriate decision thresholds is a necessary part of 

any speaker detection system and is a challenging research problem 

in and of itself. 

Table 2:  Speaker Detection Cost Model Parameters 

for the primary evaluation decision strategy 

CMiss CFalseAlarm PTarget 

10 1 0.01 

To improve the intuitive meaning of CDet, it will be normalized by 

dividing it by the best cost that could be obtained without 

processing the input data (i.e., by either always accepting or always 

rejecting the segment speaker as matching the target speaker, 

whichever gives the lower cost): 
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In addition to the actual detection decision, a confidence score will 

also be required for each test hypothesis. This confidence score 

should reflect the system’s estimate of the probability that the test 

segment contains speech from the target speaker. Higher 

confidence scores should indicate greater estimated probability that 

the target speaker’s speech is present in the segment. The 

confidence scores will be used to produce Detection Error Tradeoff 

(DET) curves, in order to see how misses may be traded off against 

false alarms. Since these curves will pool all trials in each test for 

all target speakers, it is necessary to normalize the confidence 

scores across all target speakers.  

The ordering of the confidence scores is all that matters for 

computing the detection cost function, which corresponds to a 

particular application defined by the parameters specified in section 

3, and for plotting DET curves. But these scores are more 

informative, and can be used to serve any application, if they 

represent actual probability estimates. It is suggested that 

participants provide as scores estimated log likelihood ratio values 

(using natural logarithms), which do not depend on the application 

parameters. In terms of the conditional probabilities for the 

observed data of a given trial relative to the alternative target and 

non-target hypotheses the likelihood ratio (LR) is given by: 

LR = prob (data | target hyp.) / prob (data | non-target hyp.) 

Sites are asked to specify if their scores may be interpreted as log 

likelihood ratio estimates.  

A further type of scoring and graphical presentation will be 

performed on submissions whose scores are declared to represent 

log likelihood ratios. A log likelihood ratio (llr) based cost 

function, which is not application specific and may be given an 

information theoretic interpretation, is defined as follows: 

Cllr = 1 / (2 * log2) * (∑log(1+1/s)/NTT)+ (∑log(1+s))/NNT) 

where the first summation is over all target trials, the second is over 

all non-target trials, NTT and NNT are the total numbers of target 

and non-target trials, respectively, and s represents a trial’s 

likelihood ratio.

4  

                                                                 

 

4 This reasons for choosing this cost function, and its possible 

interpretations, are described in detail in the paper “Application-

independent evaluation of speaker detection” in Computer Speech 
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Graphs based on this cost function, somewhat analogous to DET 

curves, will also be included. These may serve to indicate the 

ranges of possible applications for which a system is or is not well 

calibrated.5 

4 EVALUATION CONDITIONS 

Performance will be measured, graphically presented, and 

analyzed, as discussed in section 3, over all the trials of each of the 

13 tests specified in section 2, and over subsets of these trials of 

particular evaluation interest. Comparisons will be made of 

performance variation across the different training conditions and 

the different test segment conditions which define these tests. The 

effects of factors such as language, telephone transmission type, 

and microphone type, will be examined. The possible performance 

benefit of unsupervised adaptation will be considered. Several 

common evaluation conditions of interest, each a subset of the core 

test, will be defined. And relevant comparisons will be made 

between this year’s evaluation results and those of recent past 

years. 

4.1 Training Data 

As discussed in section 2.2.1, there will be six training conditions. 

NIST is interested in examining how performance varies among 

these conditions for fixed test segment conditions. 

Most of the training data will be in English, but some telephone 

training conversations involving bi-lingual speakers will be 

collected in a number of other languages. Thus it will then be 

possible to examine how performance is affected by whether or not 

the training language matches the language of the test data. For the 

training conditions involving multiple conversations, the effect of 

having a mix of languages in the training may also be examined. 

The language used in all training data files will be indicated in the 

file header and available for use. 

Another performance factor of interest for English telephone 

conversations will be whether or not the speaker is a native U.S. 

English speaker. Information on this will not, however, be provided 

to systems. 

The sex of each target speaker will be provided to systems in the 

test index file (see section 8.33). 

For all training conditions, English language ASR transcriptions of 

all data will be provided along with the audio data. Systems may 

utilize this data as they wish. The acoustic data may be used alone, 

the transcriptions may be used alone, or all data may be used in 

combination.6   

4.1.1 10-second Excerpts  

As discussed in section 2.2.1, one of the training conditions is an 

excerpt of a telephone conversation containing approximately 10 

seconds of estimated speech duration in the channel of interest. The 

actual duration of target speech will vary (so that the excerpts 

                                                                                                             

 

& Language, volume 20, issues 2-3, April-July 2006, pages 230-

275, by Niko Brummer and Johan du Preez. 

5 See the discussion of Applied Probability of Error (APE) curves 

in the reference cited in the preceding footnote. 

6  Note, however, that the ASR transcripts will all be generated by 

an English language recognizer, regardless of the actual language 

being spoken.  

include only whole turns whenever possible) but the target speech 

duration will be constrained to lie in the range of 8-12 seconds.  

4.1.2 Two-channel Conversations 

As discussed in section 2.2.1, there will be training conditions 

consisting of one, three, and eight two-channel telephone 

conversational excerpts of a given speaker. (The first of these 

conditions will also include short interview segments.) These will 

each consist of approximately five minutes from a longer original 

conversation. The excision points will be chosen so as not to 

include partial speech turns.  

4.1.3 Short Interview Segments 

As discussed in section 2.2.1, one of the training conditions 

involves short conversational interview segments (along with single 

two-channel telephone conversations). These will each consist of 

approximately three minutes from a longer interview session. The 

excision points will be chosen so as not to include partial speech 

turns. Three minute segments are expected on average to include 

about as much speech from the speaker of interest as do five minute 

segments from telephone conversations. Two channels will be 

provided, the first from a microphone placed somewhere in the 

interview room, and the other a zero channel provided for 

consistency across the training condition. Information on the 

microphone type of the first channel will not be available to 

systems. 

The microphone data will be provided in 8-bit µ-law form that 

matches the telephone data provided. 

The speech of the short interview segments will all be in English. 

4.1.4 Long Interview Segments 

As discussed in section 2.2.1, one of the training conditions 

involves long conversational interview segments. These will each 

consist of eight minutes or more from an interview session. Any 

excision points will be chosen so as not to include partial speech 

turns. Only a single channels will be provided from a microphone 

placed somewhere in the interview room. Information on the 

microphone type will not be available to systems. 

The microphone data will be provided in 8-bit µ-law form that 

matches the telephone data provided. 

The speech of the long interview segments will all be in English. 

4.1.5 Summed-channel Conversations  

As discussed in section 2.2.1, one of the training conditions will 

consist of three summed-channel telephone conversation segments 

of about five minutes each. Here the two sides of each 

conversation, in which both the target speaker and another speaker 

participate, will be summed together. Thus the challenge is to 

distinguish speech by the intended target speaker from speech by 

other participating speakers. To make this challenge feasible, the 

training conversations will be chosen so that each non-target 

speaker participates in only one conversation, while the target 

speaker participates in all three. 

The difficulty of finding the target speaker’s speech in the training 

data is affected by whether the other speaker in a training 

conversation is of the same or of the opposite sex as the target. 

Systems will not be provided with this information, but may use 

automatic gender detection techniques if they wish. Performance 

results will be examined as a function of how many of the three 

training conversations contain same-sex other speakers. 
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Note that an interesting contrast will exist between this training 

condition and that consisting of three two-channel conversations. 

4.2 Test data 

As discussed in section 2.2.2, there will be four test segment 

conditions. NIST is interested in examining how performance 

varies among these conditions for fixed training conditions. 

Most of the test data will be in English, but some telephone speech 

will be in other languages, generally involving bilingual speakers 

who also speak English. The language used in all test data files will 

be indicated in the file header and available for use. 

For all test conditions, English language ASR transcriptions of the 

data will be provided along with the audio data. Systems may 

utilize this data as they wish. The acoustic data may be used alone, 

the ASR transcriptions may be used alone, or all data may be used 

in combination.   

4.2.1 Excerpts  

As discussed in section 2.2.2, one of the test conditions is an 

excerpt of a telephone conversation containing approximately 10 

seconds of estimated speech duration in the channel of interest. The 

actual duration of target speech will vary (so that the excerpts 

include only whole turns whenever possible) but the target speech 

duration will be constrained to lie in the range of 8-12 seconds.  

4.2.2 Two-channel Conversations 

As discussed in section 2.2.2, one of the test conditions involves 

single two-channel telephone conversational excerpts (or a short 

interview segment).  Each excerpt will consist of approximately 

five minutes from a longer original conversation. The excision 

points will be chosen so as not to include partial speech turns.  

4.2.3 Short Interview Segments 

As discussed in section 2.2.2, one of the test conditions involves 

short conversational interview segments (along with two-channel 

telephone conversations). These will each consist of approximately 

three minutes from a longer interview session. The excision points 

will be chosen so as not to include partial speech turns. Three 

minute segments are expected on average to include about as much 

speech from the speaker of interest as do five minute segments 

from telephone conversations. Two channels will be provided, the 

first from a microphone placed somewhere in the interview room, 

and the other a zero channel provided for consistency across the 

test condition. Information on the microphone type of the first 

channel will not be available to systems. 

The microphone data will be provided in 8-bit µ-law form that 

matches the telephone data provided. 

The speech of the short interview segments will all be in English. 

4.2.4 Long Interview Segments 

As discussed in section 2.2.2, one of the training conditions 

involves long conversational interview segments. These will each 

consist of eight minutes or more from an interview session. Any 

excision points will be chosen so as not to include partial speech 

turns. Only a single channel will be provided from a microphone 

placed somewhere in the interview room. Information on the 

microphone type will not be available to systems. 

The microphone data will be provided in 8-bit µ-law form that 

matches the telephone data provided. 

The speech of the long interview segments will all be in English. 

4.2.5 Summed-channel Conversations  

As discussed in section 2.2.2, one of the test conditions is a single 

summed-channel conversational excerpt of about five minutes. 

Here the two sides of the conversation will be summed together, 

and one of the two speakers included may match a target speaker 

specified in a trial.  

The difficulty of determining whether the target speaker speaks in 

the test conversation is affected by the sexes of the speakers in the 

test conversation. Systems will not be told whether the two test 

speakers are of the same or opposite sex, but automatic gender 

detection techniques may be used. Performance results will be 

examined with respect to whether one or both of the test speakers 

are of the same sex as the target. (For all trials there will be at least 

one speaker who is of the same sex as the target speaker.) 

Note that an interesting contrast will exist between this condition 

and that consisting of a single two-channel conversation. 

4.3 Factors Affecting Performance 

All trials will be same-sex trials. This means that the sex of the test 

segment speaker in the channel of interest (two-channel), or of at 

least one test segment speaker (summed-channel), will be the same 

as that of the target speaker model. Performance will be reported 

separately for males and females and also for both sexes pooled. 

This evaluation will focus on examining the effects of channel on 

recognition performance. This will include in particular the 

comparison of performance involving telephone segments with that 

involving microphone segments. Since each trial has a training and 

a test segment, four combinations may be examined here. For test 

segments only, performance on telephone channel telephone 

conversations will be compared with performance on microphone 

channel telephone conversations and with performance on 

microphone interview segments. 

For trials involving microphone segments, it will be of interest to 

examine the effect of the different microphone types tested on 

performance, and the significance on performance of the match or 

mismatch of the training and test microphone types. 

All trials involving telephone test segments will be different-

number trials. This means that the telephone numbers, and 

presumably the telephone handsets, used in the training and the test 

data segments will be different from each other.  

Past NIST evaluations have shown that the type of telephone 

handset and the type of telephone transmission channel used can 

have a great effect on speaker recognition performance. Factors of 

these types will be examined in this evaluation to the extent that 

information of this type is available. 

Telephone callers are generally asked to classify the transmission 

channel as one of the following types: 

• Cellular 

• Cordless 

• Regular (i.e., land-line) 

Telephone callers are generally also asked to classify the 

instrument used as one of the following types: 

• Speaker-phone 

• Head-mounted 

• Ear-bud 

• Regular (i.e., hand-held) 
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Performance will be examined, to the extent the information is 

available and the data sizes are sufficient, as a function of the 

telephone transmission channel type and of the telephone 

instrument type in both the training and the test segment data. 

4.4 Unsupervised Adaptation 

As discussed in section 2.2.4, an unsupervised adaptation mode 

will be supported for each test. Performance with and without such 

adaptation will be compared for participants attempting tests with 

unsupervised adaptation. 

4.5 Common Evaluation Condition 

In each evaluation NIST has specified a common evaluation 

condition, a subset of trials in the core test that satisfy additional 

constraints, in order to better foster technical interactions and 

technology comparisons among sites. The performance results on 

these trials are treated as the basic official evaluation outcome. 

Because of the broader scope of the 2008 evaluation and the 

multiple types of audio data included in the core test, several 

common evaluation conditions will be specified. At the same time, 

it will not to appropriate to examine performance results over all 

trials of the core test lumped together. The common conditions to 

be considered will include the following subsets of all of the core 

test trials:  

• All trials involving only interview speech in training and 

test 

• All trials involving interview speech from the same 

microphone type in training and test 

• All trials involving interview speech from different 

microphones types in training and test 

• All trials involving interview training speech and 

telephone test speech 

• All trials involving telephone training speech and non-

interview microphone test speech 

• All trials involving only telephone speech in training and 

test 

• All trials involving only English language telephone 

speech in training and test 

• All trials involving only English language telephone 

speech spoken by a native U.S. English speaker in 

training and test 

4.6 Comparison with Previous Evaluations 

In each evaluation it is of interest to compare performance results, 

particularly of the best performing systems, with those of previous 

evaluations. This is generally complicated by the fact that the 

evaluation conditions change in each successive evaluation. For the 

2008 evaluation the test conditions involving conversational 

telephone speech (with test segments possibly recorded over a 

microphone channel) are essentially identical those used in 2006. 

Thus it will be possible to make fairly direct comparisons between 

2008 and 2006 for these conditions. Comparisons may also be 

made with the results of earlier evaluations for conditions most 

similar to those in this evaluation. 

While the test conditions will match those used previously, the test 

data will be different. The 2008 target speakers may include some 

used in the 2006 evaluation, but most will not have appeared 

previously. The question always arises of to what extent are the 

performance differences due to random differences in the test data 

sets. For example, are the new target speakers in the current 

evaluation easier, or harder, on the average to recognize? To help 

address this question, sites participating in the 2008 evaluation that 

also participated in 2006 are strongly encouraged to submit to 

NIST results for their (unmodified) 2006 (or earlier year) systems 

run on the 2008 data for the same test conditions as previously. 

Such results will not count against the limit of three submissions 

per test condition (see section 7). Sites are also encouraged to 

“mothball” their 2008 systems for use in similar comparisons in 

future evaluations. 

5 DEVELOPMENT DATA 

All of the previous NIST NRE evaluation data, covering evaluation 

years 1996-2006 may be used as development data for 2008. This 

data will be sent to prospective evaluation participants by the 

Linguistic Data Consortium on a hard drive provided the required 

license agreement is signed and submitted to the LDC.7 

A limited amount of development data representing the interview 

scenario that is new for 2008 will also be made available. This will 

include interview sessions involving six speakers, which speakers 

will not be targets in the 2008 evaluation data. This data will be 

provided on DVD by request to all sites that have submitted the 

LDC license agreement described above. 

Participating sites may use other speech corpora to which they have 

access for development. Such corpora should be described in the 

site’s system description (section 10).  

6 EVALUATION DATA 

Both the target speaker training data and the test segment data, 

including the interview data, will have been collected by the 

Linguistic Data Consortium (LDC) as part of the various phases of 

its Mixer project.8 The telephone collection part of the Mixer 

project invited participating speakers to take part in numerous 

conversations on specified topics with strangers. The Fishboard 

platform used to collect this data automatically initiated calls to 

selected pairs of speakers for most of the conversations, while 

participating speakers also initiated some calls themselves, with the 

collection system contacting other speakers for them to converse 

with. Speakers were encouraged to use different telephone 

instruments for their initiated calls. 

The speech data for this evaluation will be distributed to evaluation 

participants by NIST on a firewire drive. The LDC license 

agreement described in section 5, which non-member sites must 

sign to participate in the evaluation, will govern the use of this data 

for the evaluation. The ASR transcript data, the estimated speech 

intervals of interview target speakers, and any other auxiliary data 

which may be supplied, will be made available by NIST in 

electronic form to all registered participants. 

Since both channels of all telephone conversational data are 

provided, this data will not be processed through echo canceling 

                                                                 

 

7 Find link at http://www.nist.gov/speech/tests/sre/2008/index.html 

8 A description of the recent Mixer collections may be found at:   

http://papers.ldc.upenn.edu/Interspeech2007/Interspeech_2007_Mi

xer_345.pdf 
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software. Participants may choose to do such processing on their 

own.9 

All training and test segments will be stored as 8-bit µ-law speech 

signals in separate SPHERE10 files. The SPHERE header of each 

such file will contain some auxiliary information as well as the 

standard SPHERE header fields. This auxiliary information will 

include the language of the conversation, whether or not the data 

was recorded over a telephone line, and whether or not the data is 

from an interview session.  

The header will not contain information on the type of telephone 

transmission channel or the type of telephone instrument involved. 

Nor will the microphone type be identified for the interview data, 

as noted in section 4. 

The 10-second two-channel excerpts to be used as training data or 

as test segments will be continuous segments from single 

conversations that are estimated to contain approximately 10 

seconds of actual speech in the channel of interest. When both 

channels are channels of interest for different trials, then each will 

contain approximately 10 seconds of actual speech. 

The two-channel conversational excerpts to be used as training data 

or as test segments will be approximately five minutes in duration, 

while all the short interview segments will be approximately three 

minutes in duration. The primary channel of interest will be 

specified. Note that for the short interview segments the second, 

non-primary, channel contain all zeroes. Each segment will be 

identified as coming either from a telephone conversation or from 

an interview. 

The single channel long interview segments to be used as training 

data or as test segments will be eight minutes or longer in duration.   

The summed-channel conversational excerpts to be used as training 

data or as test segments will be approximately five minutes in 

duration  

6.1 Numbers of Models 

Table 3 provides estimated upper bounds on the numbers of models 

(target speakers) to be included in the evaluation for each training 

condition. 

Table 3:  Upper bounds on numbers of models by training 

condition 

Training Condition Max Models 

10sec 2000 

short2 4000 

3conv 2000 

8conv 2000 

long 2000 

3summed 2000 

                                                                 

 

9 One publicly available  source of such software is 

http://www.ece.msstate.edu/research/isip/projects/speech/software/l

egacy/fir_echo_canceller/ 

10 ftp://jaguar.ncsl.nist.gov/pub/sphere_2.6a.tar.Z 

6.2 Numbers of Test Segments 

Table 4 provides estimated upper bounds on the numbers of 

segment to be included in the evaluation for each test condition. 

Table 4:  Upper bounds on numbers of segments by test 

condition  

Test Conditions Max Segments 

10sec 5000 

short3 8000 

long 2000 

summed 5000 

6.3 Numbers of Trials 

The trials for each of the speaker detection tests offered will be 

specified in separate index files. These will be text files in which 

each record specifies the model and a test segment for a particular 

trial. The number of trials for each test condition is expected not to 

exceed 100,000.  

7 EVALUATION RULES 

In order to participate in the 2008 speaker recognition evaluation a 

site must submit complete results for the core test condition 

(without unsupervised adaptation) as specified in section 2.2.3.11 

Results for other tests are optional but strongly encouraged. 

Participating sites, particularly those with limited internal 

resources, may utilize publicly available software designed to 

support the development of speaker detection algorithms.12 The 

software used should be specified in the system description (section 

10). 

All participants must observe the following evaluation rules and 

restrictions in their processing of the evaluation data: 

• Each decision is to be based only upon the specified test 

segment and target speaker model. Use of information about 

other test segments (except as permitted for the unsupervised 

adaptation mode condition) and/or other target speakers is not 

allowed.13 For example: 

– Normalization over multiple test segments is not allowed, 

except as permitted for the unsupervised adaptation mode 

condition.  

– Normalization over multiple target speakers is not allowed.  

                                                                 

 

11  It is imperative that results be complete for every test 

submission. A test submission is complete if and only if it includes 

a decision and confidence score for every trial in the test. 

12 One publicly available source is the Mistral software for 

biometric applications developed at the University of Avignon 

along with other European sites:  http://mistral.univ-avignon.fr/en/ 

13 This means that the technology is viewed as being "application-

ready". Thus a system must be able to perform speaker detection 

simply by being trained on the training data for a specific target 

speaker and then performing the detection task on whatever speech 

segment is presented, without the (artificial) knowledge of other 

test data. 
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– Use of evaluation data for impostor modeling is not 

allowed, except as permitted for the unsupervised 

adaptation mode condition. 

– Speech data from past evaluations may be used for general 

algorithm development and for impostor modeling, but may 

not be used directly for modeling target speakers of the 

2008 evaluation. 

• If an unsupervised adaptation condition is included, the test 

segments for each model must be processed in the order 

specified. 

• The use of manually produced transcripts or other human-

created information is not allowed. 

• Knowledge of the sex of the target speaker (implied by data set 

directory structure as indicated below) is allowed. Note that no 

cross-sex trials are planned, but that summed-channel segments 

may involve either same sex or opposite sex speakers. 

• Knowledge of the language used in all segments, which will be 

provided, is allowed. 

• Knowledge of whether or not a segment involves telephone 

channel transmission is allowed. 

• Knowledge of the telephone transmission channel type and of 

the telephone instrument type used in all segments is not 

allowed, except as determined by automatic means. 

• Listening to the evaluation data, or any other human interaction 

with the data, is not allowed before all test results have been 

submitted. This applies to training data as well as test segments.  

• Knowledge of any information available in the SPHERE header 

is allowed.  

The following general rules about evaluation participation 

procedures will also apply for all participating sites: 

• Access to past presentations – Each new participant that has 

signed up for, and thus committed itself to take part in, the 

upcoming evaluation and workshop will be able to receive, 

upon request, the CD of presentations that were presented at 

the preceding workshop.   

• Limitation on submissions – Each participating site may submit 

results for up to three different systems per evaluation 

condition for official scoring by NIST. Results for systems 

using unsupervised adaptation and results for earlier year 

systems run on 2008 data will not count against this limit. 

Note that the answer keys will be distributed to sites by NIST 

shortly after the submission deadline. Thus each site may 

score for itself as many additional systems and/or parameter 

settings as desired. 

• Attendance at workshop – Each evaluation participant is 

required to have one or more representatives at the evaluation 

workshop who must present there a meaningful description 

of its system(s). Evaluation participants failing to do so will 

be excluded from future evaluation participation. 

• Dissemination of results 

– Participants may publish or otherwise disseminate their own 

results. 

– NIST will generate and place on its web site charts of all 

system results for conditions of interest and, unlike past 

practice, these charts may contain the site names of the 

systems involved. Participants may publish or otherwise 

disseminate these charts, unaltered and with appropriate 

reference to their source.  

– Participants may not publish or otherwise disseminate their 

own comparisons of their performance results with those of 

other participants without the explicit written permission of 

each such participant. Participants violating this rule will be 

excluded from future evaluations.  

8 EVALUATION DATA SET ORGANIZATION 

The organization of the evaluation data will be: 

• A top level directory used as a unique label for the disk: 

“sp08-NN” where NN is a digit pair identifying the disk 

• Under which there will be four sub-directories: 

 “train”, “test”, “trials”, and  “doc” 

8.1 train Subdirectory 

The “train” directory contains three subdirectories: 

• data: Contains four subdirectories which in turn contain 

the SPHERE formatted speech data used for training in 

the 6 training conditions: 

o 10sec:  10-second training segments 

o short2:  single two-channel telephone 

conversation (5-minute) and short interview 

two-channel segments used for the short2, 

3conv, and 8conv training conditions 

o long: long interview single channel training 

segments 

o summed:  summed channel single conversation 

(5-minute) segments used for the 3summed 

training condition 

• female: Contains 6 training files that define the female 

models for each of the 6 training conditions. (The format 

of these files is defined below.) 

• male: Contains 6 training files that define the male 

models for each of the 6 training conditions. (The format 

of these files is defined below.) 

The latter two sub-directories will be empty on the drives as 

distributed. The files described below will be distributed to 

evaluation participants by electronic means and may be saved here 

if desired. 

The 6 training files for both male and female models have similar 

structures. Each has one record per line, and each record contains 

two fields. The first field is the model identifier. The second 

includes a comma separated list of speech files (located in the 

“data” directory) that are to be used to train the model. For the two 

channel training conditions, each list item also specifies whether 

the target speaker’s speech is on the “A” or the “B” channel of the 

speech file. 

The 6 training files in each gender directory are named: 

• “10sec.trn” for the 10 second two channel training 

condition; an example record looks like: 

  32324 mrpvc.sph:B 

•  “short2.trn” for the 1 conversation/short interview two 

channel training condition; an example record looks like:  

  42403 mrpzt.sph:A 

•  “3conv.trn” for the 3 conversation two channel training 

condition; an example record for this training condition 

looks like:  

72101 
mrpzt.sph:B,hrtzp.sph:A,nosty.sph:B 
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• “8conv.trn” for the 8 conversation two channel training 

condition. 

• “long.trn” for the long interview single channel training 

condition; an example record looks like:  

  33105 nrkwd.sph 

•  “3summed.trn” for the 3 conversation summed-channel 

training condition; an example record  looks like:      

  50472 nrfsx.sph,irtts.sph,porow.sph 

8.2 test Subdirectory 

The “test” directory contains one subdirectory: 

• data: This directory contains four sub-directories which 

in turn contain the SPHERE formatted speech test data to 

be used the four test segment conditions. The file names 

will be arbitrary ones of five characters along with a 

“.sph” extension. 

o 10sec:  10-second test segments 

o short3:  single two-channel telephone 

conversation (5-minute) test segments, similar 

test segments with the channel of interest 

microphone recorded, and short interview two-

channel test segments 

o long: long interview single channel test 

segments 

o summed:  summed channel single conversation 

(5-minute) test segments 

o  

8.3 trials Subdirectory 

This sub-directory will be empty on the drives as distributed. The 

index files described below will be distributed to evaluation 

participants by electronic means and may be saved here if desired. 

The “trials” directory is designed to contain 13 index files, one for 

each of the evaluation tests. These index files define the various 

evaluation tests. The naming convention for these index files will 

be “TrainCondition-TestCondition.ndx” where TrainCondition, 

refers to the training condition and whose models are defined in the 

corresponding training file. Possible values for TrainCondition are: 

10sec, short2, 3conv, 8conv, long, and 3summed. “TestCondition” 

refers to the test segment condition. Possible values for 

TestCondition are: 10sec, short3, long, and summed. 

Each record in a TrainCondition-TestCondition.ndx file contains 

four fields and defines a single trial. The first field is the model 

identifier. The second field identifies the gender of the model, 

either “m” or “f”. The third field is the test segment under 

evaluation, located in the test/data directory. This test segment 

name will not include the .sph extension. The fourth field specifies 

the channel of the test segment speech of interest, either “A” or 

“B”. (This will always be “A” for the summed channel test 

condition and for interview test segments.) For example, for the 

train on three conversations two channel and test on one 

conversation/short interview index file “3conv-short3.ndx” a record 

looks like:  “72116 m nrbrw B”. 

The records in these 13 files are ordered numerically by model 

identifier, and within each model’s tests, by test segment type and 

chronologically by the recording dates of the test segments. Thus 

each index file specifies the processing order of the trials for each 

model. (This order of processing is mandatory when unsupervised 

adaptation is used.) 

8.4 doc Subdirectory 

This will contain text files that document the evaluation and the 

organization of the evaluation data. This evaluation plan document 

will be included. 

9 SUBMISSION OF RESULTS 

Sites participating in one or more of the speaker detection 

evaluation tests must report results for each test in its entirety. 

These results for each test condition (1 of the 13 test index files) 

must be provided to NIST in a single file using a standard ASCII 

format, with one record for each trial decision. The file name 

should be intuitively mnemonic and should be constructed as 

“SSS_N”, where 

• SSS identifies the site, and 

• N identifies the system.  

9.1 Format for Results 

Each file record must document its decision with the target model 

identification, test segment identification, and decision information. 

Each record must contain nine fields, separated by white space and 

in the following order: 

1. The training type of the test – 10sec, short2, 3conv, 8conv,  

long, or 3summed 

2. Adaptation mode. “n” for no adaptation and “u” for 

unsupervised adaptation. 

3. The segment type of the test – 10sec, short3, long, or summed 

4. The sex of the target speaker –  m or f 

5. The target model identifier 

6. The test segment identifier  

7. The test segment channel of interest, either “a” or “b” 

8. The decision – t or f (whether or not the target speaker is 

judged to match  the speaker in the test segment) 

9. The confidence score (where larger scores indicate greater 

likelihood that the test segment contains speech from the target 

speaker) 

9.2 Means of Submission 

Submissions may be made via email or via ftp. The appropriate 

addresses for submissions will be supplied to participants receiving 

evaluation data. Sites should also indicate if it is the case that the 

confidence scores in a submission are to be interpreted as log 

likelihood ratios. 

10 SYSTEM DESCRIPTION 

A brief description of the system(s) (the algorithms) used to 

produce the results must be submitted along with the results, for 

each system evaluated. A single site may submit the results for up 

to three separate systems for evaluation for each particular test, not 

counting test results using unsupervised adaptation and not 

counting results for earlier year systems run on the 2008 data. If 

results for more than one system are submitted for a test, however, 

the site must identify one system as the "primary" system for the 

test prior to performing the evaluation. Sites are welcome to present 

descriptions of and results for additional systems at the evaluation 

workshop. 

For each system for which results are submitted, sites must report 

the CPU execution time that was required to process the evaluation 

data, as if the test were run on a single CPU. This should be 
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reported separately for creating models from the training data and 

for processing the test segments, and may be reported either as 

absolute processing time or as a multiple of real-time for the data 

processed. The additional time required for unsupervised 

adaptation should be reported where relevant. Sites must also 

describe the CPU and the amount of memory used. 

11 SCHEDULE 

The deadline for signing up to participate in the evaluation is 

March 31, 2008. 

The evaluation data set will be distributed by NIST so as to arrive 

at participating sites on April 7, 2008. 

The deadline for submission of evaluation results to NIST is May 

8, 2008 at 11:59 PM, Washington time. 

Initial evaluation results will be released to each site by NIST on 

May 19, 2008. 

The deadline for site workshop presentations to be supplied to 

NIST in electronic form for inclusion in the workshop CD-ROM is 

(a date to be determined). 

Registration and room reservations for the workshop must be 

received by (a date to be determined). 

The follow-up workshop will be held June 17-18, 2008 at McGill 

University in Montreal, Quebec, Canada. All sites participating in 

the evaluation must have one or more representatives in attendance 

to discuss their systems and results.  

12 GLOSSARY 

Test – A collection of trials constituting an evaluation component. 

Trial – The individual evaluation unit involving a test segment and 

a hypothesized speaker. 

Target (model) speaker – The hypothesized speaker of a test 

segment, one for whom a model has been created from 

training data. 

Non-target (impostor) speaker – A hypothesized speaker of a test 

segment who is in fact not the actual speaker. 

Segment speaker – The actual speaker in a test segment. 

Target (true speaker) trial – A trial in which the actual speaker of 

the test segment is in fact the target (hypothesized) speaker of 

the test segment. 

Non-target (impostor) trial – A trial in which the actual speaker of 

the test segment is in fact not the target (hypothesized) speaker 

of the test segment. 

Turn – The interval in a conversation during which one participant 

speaks while the other remains silent. 
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The NIST Year 2012 Speaker Recognition 

Evaluation Plan 

1 INTRODUCTION 

The year 2012 speaker recognition evaluation (SRE12) is the next 

in an ongoing series of speaker recognition evaluations conducted 

by NIST. These evaluations serve to support speaker recognition 

research and to calibrate the performance of speaker recognition 

systems. They are intended to be of interest to all researchers 

working on the general problem of text independent speaker 

recognition. To this end the evaluation is designed to be simple, to 

focus on core technology issues, to be fully supported, and to be 

accessible to those wishing to participate.  

The basic task in NIST’s speaker recognition evaluations is speaker 

detection, i.e., to determine whether a specified target speaker is 

speaking during a given segment of speech. While the basic task in 

SRE12 remains unchanged, SRE12 task conditions represent a 

significant departure from previous NIST SRE’s.  In previous 

evaluations, the evaluation test set, which is released at the 

beginning of the evaluation period, has contained both the training 

data and the test data.  In SRE12, however, most target speakers 

will be taken from previous SRE corpora, with the training data 

being provided to evaluation participants at the time of registration, 

well in advance of the evaluation period.  Furthermore, in SRE12 

the training data for each such target speaker comprises all of the 

data from previous SRE’s, both training and test, and will include a 

fairly large number of speech segments taken from multiple 

recording sessions.  Similar to SRE10, all of the speech in SRE12 

is expected to be in English, though English may not be the first 

language of some of the speakers included. 

Participation in the evaluation is invited for all who find the task 

and evaluation of interest and are able to comply with the 

evaluation rules set forth in this plan. Further, participants must be 

represented at the evaluation workshop, to be held in Orlando, 

Florida, USA on December 11-12, 2012.  To register, please fill out 

and follow the instructions on the registration form.1 . 

2 TECHNICAL OBJECTIVE 

This evaluation focuses on speaker detection in the context of 

conversational speech over multiple types of channels. The 

evaluation is designed to foster research progress, with the goals of: 

 Exploring promising new ideas in speaker recognition.  

 Developing advanced technology incorporating these ideas.  

 Measuring the performance of this technology.  

2.1 Task Definition  

The year 2012 speaker recognition task is speaker detection, as 

described briefly in the introduction.  This has been NIST’s speaker 

recognition task over the past sixteen years. The task is to 

determine whether a specified target speaker is speaking during a 

given segment of speech.  More explicitly, one or more samples of 

                                                                 

 

1. http://nist.gov/itl/iad/mig/upload/registration_sre12-v0.pdf .        
For more information, please send email to speaker_poc@nist.gov 

speech data from a speaker (referred to as the “target” speaker) are 

provided to the speaker recognition system.   These samples are the 

“training” data.  The system uses these data to create a “model” of 

the target speaker’s speech.  Then a sample of speech data is 

provided to the speaker recognition system.  This sample is referred 

to as the “test” segment.  Performance is judged according to how 

accurately the test segment is classified as containing (or not 

containing) speech from the target speaker. 

SRE12 includes an optional evaluation of human-assisted speaker 

recognition (HASR12). The HASR12 task and evaluation is 

described in section 11. 

In previous NIST evaluations the system output consisted of a 

detection decision and a score representing the system’s confidence 

that the target speaker is speaking in the test segment.  NIST has 

recently encouraged expressing the system output score as the 

natural logarithm of the estimated likelihood ratio, defined as: 

LLR = log (pdf (data | target hyp.) / pdf (data | non-target hyp.)) 

Because of the general community acceptance of using the log 

likelihood ratio as a score, in SRE12 NIST is requiring that the 

system output score for each trial be the natural logarithm of the 

likelihood ratio.  Further, since the detection threshold may be 

determined from the likelihood ratio, system output in SRE12 will 

not include a detection decision. 

2.2 Task Conditions 

The speaker detection task for 2012 is divided into 9 distinct and 

separate tests (not counting the HASR test discussed in section 11).  

Each of these tests involves one of three training conditions and 

one of five test conditions.  One of these tests is designated as the 

core test which all participants must complete (except for those 

doing only the HASR test).  Participants may also choose to do one 

or more of the other tests.  Results must be submitted for all trials 

in each test for which results are submitted. 

In SRE12 knowledge of all targets is allowed in computing each 

trial’s detection score.  This differs from all previous SRE’s.  

Previously systems were restricted to use only knowledge of the 

single target speaker that was specified as the trial target.  To test 

the effect of this knowledge on system performance, the SRE12 

evaluation data will also include data from new speakers (for the 

non-target trials), to provide a basis for comparison of performance 

under the two conditions (of having versus not having knowledge 

of non-target speakers).  

All of the speech in SRE12 will be in English. 

2.2.1 Training Conditions 

Target speaker training data in SRE12 will comprise all of the 

speech data associated with the target speakers chosen from the 

LDC speaker recognition speech corpora used in previous SRE’s.  

There will be no more than 2,250 target speakers. A list of target 

speakers will be supplied, along with the relevant LDC speech 

corpora, when participants register to participate in the SRE12 

evaluation.  In addition, some previously unexposed target 

speakers, along with their relevant speech training data, will be 

supplied at evaluation time.  Some of these additional speakers may 

have only one training segment.  It should be noted that no 
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additional restrictions are placed upon the use of these previously 

unexposed target speakers; in particular, knowledge of these targets 

is allowed in computing each trial’s detection score. 

The three training conditions to be included involve target speakers 

defined by the following data: 

1. Core: All speech data, including microphone and 

telephone channel recordings, available for each target 

speaker. 

2. Telephone: All telephone channel speech data available 

for each target speaker.  This condition prohibits the use 

in any way of the microphone data from any of the 

designated target speakers.  Microphone data from 

speakers other than those specified as target speakers 

may be used, for example, for background models, 

speech activity detection models, etc. 

3. Microphone: All microphone channel speech data 

available for each target speaker.  This condition 

prohibits the use in any way of the telephone data from 

any of the designated target speakers.  Telephone data 

from speakers other than those specified as target 

speakers may be used, for example, for background 

models, speech activity detection models, etc. 

2.2.2 Test Segment Conditions 

The test segments in the 2012 evaluation will be mostly excerpts of 

conversational telephone speech but may contain interviews. There 

will be one required and four optional test segment conditions:  

1. Core: One two-channel excerpt from a telephone 

conversation or interview, containing nominally between 

20 and 160 seconds of target speaker speech.  Some of 

these test segments will have additive noise imposed. 

2. Extended: The test segments will be the same as those 

used in Core.  The number of trials in Extended tests will 

exceed the number of trials in Core tests. 

3. Summed: A summed-channel excerpt from a telephone 

conversation or interview, containing nominally between 

20 and 160 seconds of target speaker speech formed by 

sample-by-sample summing of its two sides.  

4. Known: The trial list for the known test segment 

condition will be the same as in Extended.  The system 

should presume that all of the non-target trials are by 

known speakers. 

5. Unknown: The trial list for the unknown test segment 

condition will be the same as in Extended.  The system 

should presume that all of the non-target trials are by 

unknown speakers. 

2.2.3 Training/Test Segment Condition Combinations 

The matrix of training and test segment condition combinations is 

shown in Table 1.  Note that only 9 (out of 15) of the possible 

condition combinations will be included in the 2012 evaluation.  

Each test consists of a sequence of trials, where each trial consists 

of a target speaker, defined by the training data provided, and a test 

segment.  The system must decide whether speech of the target 

speaker occurs in the test segment.  The highlighted text labeled 

“required (Core Test)” in Table 1 is the Core test for the 2012 

evaluation, and all participants (except those completing HASR 

only) are required to complete the core test.  Participants are 

encouraged, but not required, to submit results for one or more of 

the other eight optional tests.  For each test for which results are 

submitted, results for all trials must be included. 

Table 1: Matrix of training and test segment conditions.  The 

shaded entry is the required Core test 

 

Training Condition 

Core Microphone Telephone 

T
e
st

 S
eg

m
e
n

t 
C

o
n

d
it

io
n

 Core 
required 

(Core test) 
optional optional 

Extended optional optional optional 

Summed optional   

Known optional   

Unknown optional   

3 PERFORMANCE MEASURES 

The primary performance measure for SRE12 will be a detection 

cost, defined as a weighted sum of miss and false alarm error 

probabilities.  There are two significant changes from past practice 

regarding how this primary cost measure will be computed in 

SRE12: 

 First, no detection decision output is needed because trial 

scores are required to be log likelihood ratios.  Thus the 

detection threshold is a known function of the cost parameters, 

and so the trial detection decisions are determined simply by 

applying this threshold to the trials’ log likelihood scores. 

 Second, the primary cost measure in SRE12 will be a 

combination of two costs, one using the cost parameters from 

SRE10 and one using a greater target prior.  This is intended to 

add to the stability of the cost measure and to increase the 

importance of good score calibration over a wider range of log 

likelihoods. 

The cost function used in SRE12 to compute costs accounts 

separately for known and unknown non-target speakers: 

CDet  =  CMiss × PTarget × PMiss|Target  

+  CFalseAlarm × (1-PTarget) 

                    × (PFalseAlarm|KnownNonTarget × PKnown 

                          + PFalseAlarm|UnknownNonTarget × (1-PKnown)) 

The parameters of this performance measure are: 

 CMiss, the cost of a miss, 

 CFalseAlarm, the cost of a false alarm, 

 PTarget, the a priori probability that the segment speaker is 

the target speaker2, and 

 PKnown, the a priori probability that the non-target speaker 

is one of the evaluation target speakers3.   

                                                                 

 

2 Note that PTarget, the target prior used to compute system 

performance, is not the same as the prior probability of target trials 

in the corpus. 
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Table 2:  Speaker Detection Cost Model Parameters 

 CMiss CFA PTarget-A1 PTarget-A2 PKnown 

T
es

t 
S

eg
m

en
t 

C
o

n
d

it
io

n
 

Core 

Extended 

Summed 
1 1 0.01 0.001 

0.5 

Known 1 

Unknown 0 

 

To improve the intuitive meaning of CDet, it will be normalized by 

dividing it by the best cost that could be obtained without 

knowledge of the input data: 

  

where  
Thus 

 

 

where  

Actual detection costs will be computed from the trial scores by 

applying detection thresholds of log(β) for the two values of β, with 

βA1 (for PTarget-A1) being 99 and βA2 (for PTarget-A2) being 999. 

The primary cost measure for SRE12 is defined as: 

 

Also, a minimum detection cost will be computed by using the 

detection thresholds that minimize the detection cost. 

In addition to the primary performance measure, an alternative, 

information theoretic measure will be computed that considers how 

well all scores represent the likelihood ratio and that penalizes for 

errors in score calibration.  This performance measure is defined as:  

Cllr = 1 / (2 * log2) * ((∑log(1+1/s)/NTT)+ (∑log(1+s))/NNT)) 

where the first summation is over all target trials, the second is over 

all non-target trials, NTT and NNT are the total numbers of target and 

non-target trials, respectively, and s represents a trial’s likelihood 

ratio.4  

                                                                                                             

 

3 Note that PKnown, the known non-target prior used to compute 

system performance, is not the same as the prior probability of 

known non-target trials in the corpus. 

4 The reasons for choosing this cost function, and its possible 

interpretations, are described in detail in the paper “Application-

independent evaluation of speaker detection” in Computer Speech 

& Language, volume 20, issues 2-3, April-July 2006, pages 230-

275, by Niko Brummer and Johan du Preez. 

A useful variant of Cllr is to limit evaluation to the low false alarm 

region.  The motivation for doing this is to improve the informative 

power of Cllr in the low false alarm region.  This is important 

because the large majority of non-target scores, which are of no 

interest (since they are correctly rejected), nonetheless have a major 

influence on the computed value of Cllr.  A simple way of focusing 

the low false alarm region is to limit the trials in the calculation of 

Cllr to only those for which PMiss is greater than the minimum over 

the range of interest.  A reasonable minimum value of PMiss, given 

the current state of technology, is 10%.  Using this value, this 

variant of Cllr may be called Cllr-M10. 

In order to foster interest in speaker recognition performance 

measurement, NIST would like to encourage participants to 

propose additional performance measures for use in future NIST 

SRE’s.  Sites wishing to submit proposals should send email to 

speaker_poc@nist.gov for details. 

4 EVALUATION CONDITIONS 

Performance will be measured, graphically presented, and 

analyzed, as a function of various conditions of interest.  These will 

include the training and test conditions. 

For all training conditions, English language ASR transcriptions of 

all data will NOT be provided along with the audio data.  This is a 

change from recent SRE’s, where ASR transcripts were provided.   

4.1.1 Two-channel Conversations 

As mentioned in section 2.2.2, there will be test segments each 

consisting of an excerpt from a two-channel telephone 

conversation. These will vary in duration and amount of speech.  

The effect of longer or shorter segment durations on performance 

may be examined. The excision points will be chosen to minimize 

the likelihood of including partial speech turns. 

The telephone channel data will be provided in 8-bit µ-law form 

that differs from the microphone data provided. 

4.1.2 Interview Segments 

As mentioned in section 2.2.2, there will be test segments each 

consisting of an excerpt from an interview. These will vary in 

duration and amount of speech. The effect of longer or shorter 

segment durations on performance may be examined. Two 

channels will be provided, the first from a microphone placed 

somewhere in the interview room, and the other from the 

interviewer’s head mounted close-talking microphone. Information 

on the microphone type of the first channel will not be available to 

systems. 

The microphone channel data will be provided in 16-bit linear-pcm 

form that differs from the telephone data provided. 

4.1.3 Summed test segment condition 

As mentioned in section 2.2.2, there will be test segments each 

consisting of an excerpt from a telephone conversation where the 

two sides of each conversation, in which both the target speaker 

and another speaker participate, are summed together. Thus the 

challenge is to be able to correctly detect the target speaker despite 

the presence of speech from another speaker. 

4.2 Factors Affecting Performance 

All trials will be same-sex trials. This means that the sex of the test 

segment speaker in the channel of interest (or of at least one test 

segment speaker for the summed test segment condition), will be 

the same as that of the target speaker model. Performance will be 
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reported separately for males and females and also for both sexes 

pooled. 

This evaluation will include an examination of the effects of 

channel on recognition performance. This will include in particular 

the comparison of performance involving telephone segments with 

that involving microphone segments.  

For trials involving microphone test segments, it will be of interest 

to examine the effect of the different microphone types tested on 

performance, and the significance on performance of the presence 

of the test microphone in the training data. 

All or most trials involving telephone test segments will be 

different-number trials. This means that the telephone numbers, and 

presumably the telephone handsets, used in the training and the test 

data segments will be different from each other. If some trials are 

same-number, primary interest will be on results for different-

number trials, which may be contrasted with results on same-

number trials. 

Some of the test segments will include additive noise (noise added 

as a post-processing step after recording) or will be recorded in an 

intentionally noisy environment or both.  The impact of noise on 

performance will be examined in this evaluation. 

The Core test will include relatively large amounts of training data 

distributed in advance of the evaluation period as well as limited 

training data distributed at the start of the evaluation period.  NIST 

will compare performance of speakers in these training conditions. 

Past NIST evaluations have shown that the type of telephone 

handset and the type of telephone transmission channel used can 

have a great effect on speaker recognition performance. Factors of 

these types will be examined in this evaluation to the extent that 

information of this type is available. 

Telephone callers are generally asked to classify the transmission 

channel as one of the following types: 

 Cellular 

 Cordless 

 Regular (i.e., land-line) 

Telephone callers are generally also asked to classify the 

instrument used as one of the following types: 

 Speaker-phone 

 Head-mounted 

 Ear-bud 

 Regular (i.e., hand-held) 

4.3 Common Evaluation Condition 

In each evaluation NIST has specified one or more common 

evaluation conditions, subsets of trials in the core test that satisfy 

additional constraints, in order to better foster technical interactions 

and technology comparisons among sites. The performance results 

on these trial subsets are treated as the basic official evaluation 

outcomes. Because of the multiple types of test conditions in the 

2012 core test, and the likely disparity in the numbers of trials of 

different types, it is not appropriate to simply pool all trials as a 

primary indicator of overall performance. Rather, the common 

conditions to be considered in 2012 as primary performance 

indicators will include the following subsets of all of the core test 

trials:  

1. All trials involving multiple segment training and interview 

speech in test without added noise in test 

2. All trials involving multiple segment training and phone 

call speech in test without added noise in test 

3. All trials involving multiple segment training and interview 

speech with added noise in test 

4. All trials involving multiple segment training and phone 

call speech with added noise in test 

5. All trials involving multiple segment training and phone 

call speech intentionally collected in a noisy environment in 

test 

4.4 Comparison with Previous Evaluations 

In each evaluation it is of interest to compare performance results, 

particularly of the best performing systems, with those of previous 

evaluations. This is generally complicated by the fact that the 

evaluation conditions change in each successive evaluation. This is 

particularly problematic for SRE12, given the change in task 

conditions as discussed in section 1.  For the 2012 evaluation the 

training condition released at evaluation time and consisting of a 

single segment will be similar to the task condition in 2010.  Thus 

it will be possible to make relatively direct comparisons between 

2012 and 2010 in this limited circumstance. 

To help address the desire to make comparison with previous 

efforts, sites participating in the 2012 evaluation that also 

participated in 2010 are encouraged to submit to NIST results for 

their (unmodified) 2010 (or earlier year) systems run on the 2012 

data for the same test conditions as previously. Such results will not 

count against the limit of three submissions per test condition (see 

section 7). Sites are also encouraged to “mothball” their 2012 

systems for use in similar comparisons in future evaluations. 

5 DEVELOPMENT DATA 

All of the previous NIST SRE evaluation data, covering evaluation 

years 1996-2010, may be used as development data for 2012. This 

includes the additional interview speech used in the follow-up 

evaluation to the main 2008 evaluation. All of this data, or just the 

data not already received, will be sent to prospective evaluation 

participants by the Linguistic Data Consortium on one or more hard 

drives or DVD’s, provided the required license agreement is signed 

and submitted to the LDC.5  This development data includes the 

SRE12 training data for most of the target speakers (training data 

for some target speakers will be released at the beginning of the 

evaluation period along with the test data). 

Participating sites may use other speech corpora to which they have 

access for development. Such corpora must be described in the 

site’s system description (section 10).  

6 EVALUATION DATA 

The test data for this evaluation (other than that for the HASR test, 

described in section 11) will be distributed to evaluation 

participants by NIST on a USB hard drive. The LDC license 

agreement described in section 5, which all sites must sign to 

participate in the evaluation, will govern the use of this data for the 

evaluation. 

                                                                 

 

5 

http://nist.gov/itl/iad/mig/upload/2012_NIST_SRE_Data_Agreeme

nt-v3.pdf  
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Since both channels of all telephone conversational data are 

provided, this data will not be processed through echo canceling 

software. Participants may choose to do such processing on their 

own.6 

All telephone channel test data will be encoded as 8-bit µ-law 

speech samples and all microphone channel data will be encoded as 

16-bit linear pcm.  All test data will be stored in separate SPHERE7 

files.  In addition to the information that is contained in a standard 

SPHERE header, evaluation data will include in the header entries 

for channel (mic or tel) and speaking style (interview or phonecall).  

The SPHERE header will not contain information on the type of 

telephone transmission channel or the type of telephone instrument 

or microphone involved. 

6.1 Numbers of Test Segments 

Table 3 provides upper bounds on the numbers of segments8 to be 

included in the evaluation for each test condition. 

Table 3  Upper bounds on the number of test segments 

Test Data Max Segments 

Core/Extended 100,000 

Summed 100,000 

6.2 Numbers of Trials 

Table 4 gives upper bounds on the numbers of trials to be included 

in the evaluation for each test condition. 

The trials for each of the speaker detection tests will be specified in 

separate index files. These will be text files in which each record 

specifies the target speaker id, the test segment, and the side for a 

particular trial.  

Table 4  Upper bounds on the number of trials 

Test Conditions Max Trials 

Core 1,000,000 

Extended (optional) 100,000,000 

Summed (optional) 1,000,000 

7 EVALUATION RULES
9
 

In order to participate in the 2012 speaker recognition evaluation a 

site must submit complete results for the required test condition as 

specified in section 2.2.  A test submission is complete if and only 

if it includes a score for every trial in the test. 

                                                                 

 

6 One publicly available  source of such software is 

http://www.ece.msstate.edu/research/isip/projects/speech/software/l

egacy/fir_echo_canceller/ 

7 ftp://jaguar.ncsl.nist.gov/pub/sphere_2.6a.tar.Z 

8 A segment is a single unique audio file and includes both sides of 

the conversation, either as two separate channels or a single 

summed channel. 

9 Rules for the HASR evaluation are specified in section 11. 

All participants must observe the following evaluation rules and 

restrictions in their processing of the evaluation data (modified 

rules for the HASR test are specified in section 11.2). 

 Each score is to be based only upon the training data and the 

specified test segment.  Information about other test segments 

(including for example normalization of scores over multiple 

test segments) is not allowed.10  

 The use of manually produced transcripts or other human-

created information is not allowed. 

 Knowledge of the sex of the target speaker is allowed. Note 

that no cross-sex trials are planned, but that summed-channel 

segments may include speech from an opposite sex speaker. 

 Listening to the evaluation test data, or any other human 

interaction with the test data, is not allowed. It should be noted, 

however, that human interaction with the evaluation training 

data is permitted. 

 Knowledge of any information available in the SPHERE header 

is allowed.  

 The following general rules about evaluation participation 

procedures will also apply for all participating sites: 

o Access to past presentations – Each new participant that has 

signed up for, and thus committed itself to take part in, the 

upcoming evaluation and workshop will be able to receive, 

upon request, the CD of presentations that were presented 

at the preceding workshop.   

o Limitation on submissions – Each participating site may 

submit results for up to three different systems per 

evaluation condition for official scoring by NIST. Results 

for earlier year systems run on 2012 data will not count 

against this limit. Note that the answer keys will be 

distributed to sites by NIST shortly after the submission 

deadline. Thus each site may score for itself as many 

additional systems and/or parameter settings as desired. 

o Attendance at workshop – Each evaluation participant is 

required to have one or more representatives at the 

evaluation workshop who must present there a meaningful 

description of its system(s). Evaluation participants failing 

to do so will be excluded from future evaluation 

participation. 

o Dissemination of results 

 Participants may publish or otherwise disseminate their 

own results. 

 NIST will generate and place on its web site charts of 

all system results for conditions of interest, but these 

charts will not contain the site names of the systems 

involved. Participants may publish or otherwise 

disseminate these charts, unaltered and with appropriate 

reference to their source.  

 Participants may not publish or otherwise disseminate 

their own comparisons of their performance results with 

                                                                 

 

10 This means that the technology is viewed as being "application-

ready". Thus a system must be able to perform speaker detection 

simply by being trained on the training data for a specific target 

speaker and then performing the detection task on whatever speech 

segment is presented, without the (artificial) knowledge of other 

test data. 
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those of other participants without the explicit written 

permission of each such participant. Furthermore, 

publicly claiming to “win” the evaluation is strictly 

prohibited.  Participants violating this rule will be 

excluded from future evaluations. 

8 EVALUATION DATA SET ORGANIZATION 

This section describes the organization of the evaluation data other 

than the HASR data, which will be provided separately to those 

doing the HASR test. 

The organization of the evaluation data will be: 

 A top level directory used as a unique label for the disk: 

“sp12-NN” where NN is a digit pair identifying the disk 

 Under which there will be three sub-directories: 

 “data”, “test”, and  “doc” 

8.1 data Sub-directory 

The “data” directory will contain all of the speech test segments as 

well as any training segments not previously released. Its 

organization will not be explicitly described. Rather the files in it 

will be referenced in other sub-directories. 

8.2 train Sub-directory 

The “train” directory will contain a table of all target speakers that 

provides links to their speech files located either in the data 

directory or in the training data distributed by the LDC.  This table 

is a superset of the information that was also provided to evaluation 

participants at the time of registration. 

8.3 trials specification 

There will be three index files, named core.ndx, summed.ndx, and 

extended.ndx, to be used for the identically named test conditions.  

(The extended.ndx file will also be used for the known and 

unknown test conditions.) 

Each record in the index files will correspond to one trial and will 

contain three comma separated fields: 

1. The first field is a target speaker identification string. 

2. The second is the file name of a test segment within the data 

directory. 

3. The third is the channel designator (either “A” or “B”). 

These index files will be distributed to evaluation participants via 

FTP. 

8.4 doc Sub-directory 

This will contain text files that document the evaluation and the 

organization of the evaluation data. This evaluation plan document 

will be included. 

9 SUBMISSION OF RESULTS 

This section does not apply to the HASR test, whose submission 

requirements are described separately (section 11.4). 

Results for each test must be provided to NIST in a single separate 

file using standard ASCII format, with one record for each trial. 

Each file record must document its trial output with 4 comma 

separated fields: 

1. The target speaker identification string 

2. The test segment file name 

3. The channel designator 

4. The score.  In SRE12 the score is required to represent the 

system’s estimate of the log likelihood ratio (i.e., the natural 

logarithm of the target/non-target likelihood ratio). 

Submissions must be made via ftp. The appropriate addresses for 

submissions will be supplied to participants receiving evaluation 

data. 

New to SRE12, NIST will be releasing software that verifies a 

submission’s validity.  More information on the submission 

checker software will be made available to participants prior to the 

start of the evaluation. 

10 SYSTEM DESCRIPTION 

A brief description of the system(s) (the algorithms) used to 

produce the results must be submitted along with the results, for 

each system evaluated. This should include a description of any 

human interaction with the evaluation training data. 

A single site may submit the results for up to three separate systems 

for evaluation for each particular test, not counting results for 

earlier year systems run on the 2012 data. Please note that a 

"primary" system for each test completed must be identified as part 

of the submission.  Sites are welcome to present descriptions of and 

performance results for additional systems beyond those submitted 

at the evaluation workshop. 

For each system for which results are submitted, sites must report 

the CPU execution time that was required to process the evaluation 

data, as if the test were run on a single CPU. This should be 

reported separately for creating models from the training data and 

for processing the test segments, and should be reported as a 

multiple of real-time for the data processed. This may be reported 

separately for each test. Sites must also describe the CPU(s) 

utilized and the amounts of memory used. 

11 HASR TEST 

The Human Assisted Speaker Recognition (HASR) test will 

contain a subset of the core test trials of SRE12 to be performed by 

systems involving, in part or in whole, human judgment to make 

trial decisions. The systems doing this test may include large 

amounts of automatic processing, with human involvement in 

certain key aspects, or may be solely based on human listening. The 

humans involved in a system’s decisions may be a single person or 

a panel or team of people. These people may be professionals or 

experts in any type of speech or audio processing, or they may be 

simply “naïve” listeners. The required system descriptions (section 

11.2) must include a description of the system’s human element. 

Forensic applications are among the applications that the HASR 

test serves to inform, but the HASR test should not be considered to 

be a true or representative “forensic” test. This is because many of 

the factors that influence speaker recognition performance and that 

are at play in forensic applications are controlled in the HASR test 

data, which are collected by the LDC following their collection 

protocols. 

11.1 Trials and Data 

To accommodate different interests and levels of effort, two test 

sets will be offered, one with 20 trials (HASR1), and one with 200 

trials (HASR2). HASR participants may choose to perform either 

test. 

Because of the small numbers of trials in the HASR test set, the 

difficulty of the test will be increased by selection of difficult trials.  
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Objective criteria will be used to select dissimilar test conditions 

for target trials and similar speakers for non-target trials. 

Data used in the 2010 HASR pilot evaluation will be made 

available upon request to any site participating in the 2012 HASR 

evaluation. 

11.2 Rules 

The rules on data interaction as specified in section 7 not allowing 

human listening or transcript generation or other interaction with 

the data, do not apply, but the requirement for processing each trial 

separately and making decisions independently for each trial 

remains in effect.  Specifically: 

 Use of information about other trials is not allowed. 

This presents a dilemma for human interactions, however, because 

humans inherently carry forward information from prior 

experience.  To help minimize the impact of this prior exposure on 

human judgments, the trials will be released sequentially via an 

online automatic procedure.  The protocol for this sequential testing 

will be specified in greater detail in mid-2012, but will basically 

work as follows: 

 NIST will release the first trial as a three-field record as 

specified in section 8.3 for the core index file. 

 The participant will process that trial and submit the result to 

NIST in the format specified in section 11.4. 

 NIST will verify the submission format, and then make the next 

trial available for download to the participant. 

The training and test speech data for each trial may be listened to 

by the human(s) involved in the processing as many times and in 

any order as may be desired. The human processing time involved 

must be reported in the system descriptions (see section 11.4 

below). 

The rules on dissemination of results as specified in section 7 will 

apply to HASR participants,  

System descriptions are required as specified in section 10. They 

may be sent to NIST at any time during the processing of the 

HASR trials, or shortly after the final trial is processed. They 

should also describe the human(s) involved in the processing, how 

human expertise was applied, what automatic processing 

algorithms (if any) were included, and how human and automatic 

processing were merged to reach decisions. Execution time should 

be reported separately for human effort and for machine processing 

(if relevant). 

Because HASR remains a pilot evaluation with an unknown level 

of participation, participating sites will not in general be expected 

to be represented at the SRE12 workshop. NIST will review the 

submissions, and most particularly the system descriptions, and 

will then invite representatives from those systems that appear to be 

of particular interest to the speaker recognition research community 

to attend the workshop and offer a presentation on their system and 

results. One workshop session will be devoted to the HASR test 

and to comparison with automatic system results on the HASR 

trials. 

HASR is open to all individuals and organizations who wish to 

participate in accordance with these rules. 

11.3 Scoring 

Scoring for HASR will be very simple. Trial decisions (“same” if 

the segment speaker is judged to be the target speaker, otherwise 

“different”) will be required. In light of the limited numbers of 

trials involved in HASR, we will simply report for each system the 

overall number of correct detections (Ncorrect detections for Ntarget 

trials) and the overall number of correct rejections (Ncorrect 

rejections on Nnon-target trials). 

Scores for each trial will be required as in the automatic system 

evaluation, with higher scores indicating greater confidence that the 

test speaker is the target speaker. It is recognized, however, that 

when human judgments are involved there may only be a discrete 

and limited set of possible score values. In the extreme, there might 

only be two; e.g., 1.0 corresponding to “same” decisions and -1.0 

corresponding to “different” decisions. This is acceptable. The 

scores will be used to produce Detection Error Tradeoff (DET) 

curves11, or a discrete set of DET points, and compared with the 

performance of automatic systems on the same trial set.  

For each submission, the system description (section 11.2) should 

specify how scores were determined. Where this is a discrete set, 

the meaning of each possible score should be explained. It should 

also be indicated whether the scores may be interpreted as log 

likelihood ratios. 12 

11.4 Submissions  

HASR trial submissions should use the following record format: 

1. The test condition – “HASR1” or “HASR2” 

2. The trial index number (1 through 20 for HASR1, 1 through 

200 for HASR2) 

3. The decision as specified above in section 11.3  

4. The score as specified above in section 11.3 

12 SCHEDULE 

The deadline for signing up to participate in the evaluation is 

August 1, 2012. 

The HASR data set will become available for sequential 

distribution of trial data to registered participants in this test 

beginning on August 1, 2012 

The evaluation data (other than the HASR data) set will be 

distributed by NIST so as to arrive at participating sites on 

September 24, 2012. 

The deadline for submission of evaluation results (including all 

HASR trial results) to NIST is October 15, 2012 at 11:59 PM, 

Washington, DC time (EDT or GMT-5). 

Initial evaluation results will be released to each site by NIST on 

November 5, 2012. 

The deadline for site workshop presentations to be supplied to 

NIST in electronic form for inclusion in the workshop proceedings 

is December 3rd, 2012. 

                                                                 

 

11 For details regarding DET curves, see: 

http://www.itl.nist.gov/iad/mig/publications/storage_paper/det.pdf 

12 A possible description of multiple scoring classes, and how they 

might be viewed as corresponding to log likelihood ratios, is 

offered in “Forensic Speaker Identification”, Taylor & Francis, 

2002, by Philip Rose, on page 62. 
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The deadline for registration and room reservations for the 

workshop is to be determined. 

The follow-up workshop will be held December 11th-December 

12th, 2012 in Orlando, Florida, USA. All sites participating in the 

main evaluation must have one or more representatives in 

attendance to discuss their systems and results.  

13 GLOSSARY 

Test – A collection of trials constituting an evaluation component. 

Trial – The individual evaluation unit involving a test segment and 

a hypothesized speaker. 

Target speaker – The hypothesized speaker of a test segment, one 

for whom a model has been created from training data. 

Non-target speaker – A hypothesized speaker of a test segment 

who is in fact not the actual speaker. 

Segment speaker – The actual speaker in a test segment. 

Target trial – A trial in which the actual speaker of the test segment 

is in fact the target (hypothesized) speaker of the test segment. 

Non-target trial – A trial in which the actual speaker of the test 

segment is in fact not the target (hypothesized) speaker of the 

test segment. 

Turn – The interval in a conversation during which one participant 

speaks while the other remains silent. 
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1 Introduction

The 2016 speaker recognition evaluation (SRE16) is the next in an ongoing series of speaker recognition
evaluations conducted by NIST since 1996. These evaluations serve (1) to support speaker recognition
research by exploring promising new ideas in speaker recognition and developing advanced technology
incorporating these ideas and (2) to measure and calibrate the performance of speaker recognition systems.
They are intended to be of interest to all researchers working on the general problem of text independent
speaker recognition. To this end the evaluation is designed to be simple, to focus on core technology issues,
to be fully supported, and to be accessible to those wishing to participate.

The basic task in NIST’s speaker recognition evaluations is speaker detection, i.e., to determine whether
a specified target speaker is speaking during a given segment of speech. Like previous SREs, SRE16 focuses
on telephone speech recorded over a variety of handset types. However, there are several differences with
previous SREs:

• Target speaker data will not be distributed in advance like in SRE12

• Fixed training condition is introduced to allow better cross-system comparisons

• Test segments will have more duration variability than in previous evaluations

• The enrollment and test data were collected outside North America

• The evaluation will be conducted using same and different phone number trials

Participation in the evaluation is open to all who find the evaluation of interest and are able to comply
with the evaluation rules set forth in this plan. There is no cost to participate, but participants must be
represented at the evaluation workshop to be held in San Juan, Puerto Rico on December 11-12, 2016.
Information about evaluation registration can be found on the SRE16 website1.

2 Task Description

2.1 Task Definition

As stated in the Introduction, the task for SRE16 is speaker detection: given a segment of speech and the target
speaker enrollment data, automatically determine whether the target speaker is speaking in the segment.
A segment of speech (test segment) along with the enrollment speech segments(s) from a designated target
speaker constitutes a trial. The system is required to process each trial independently and to output a log
likelihood ratio (LLR) for that trial. The LLR is defined as follows:

LLR = ln
(

pd f (data|TargetHyp.)
pd f (data|NonTargetHyp.)

)
(1)

1http://www.nist.gov/itl/iad/mig/sre16.cfm

1
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2.2 Training Conditions

The training condition is defined as the amount of data/resources used to build a Speaker Recognition
(SR) system. The task described above can be evaluated over a fixed (required) or open (optional) training
condition.

• Fixed – The fixed training condition limits the system training to specific data sets. They are:

– data provided from the new corpus collection

– previous SRE data

– Switchboard corpora that contain transcripts

– Fisher corpora

The LDC license lists the actual catalog numbers of these corpora. Participants can obtain the data
from the Linguistic Data Consortium (LDC) after they have signed the LDC data license agreement.
For the fixed training condition, only the specified speech data may be used for system training and
development, to include all sub-systems (e.g., speech activity detection) and auxiliary systems used
for automatic labels/processing (e.g., language recognition). Publicly available, non-speech audio
and data (e.g., noise samples, impulse responses, filters) may be used and should be noted in the
system description. Participation in this condition is required.

• Open – The open training condition removes the limitations of the fixed condition. In addition to the
data listed in the fixed condition, participants can use other publicly available data. LDC will make
selected data from the IARPA Babel Program to be used in the open training condition. Participation
in this condition is optional but encouraged.

Sites are strongly encouraged to participate in both the fixed and open conditions to demonstrate the
gains that can be achieved with unconstrained amounts of data.

2.3 Enrollment Conditions

The enrollment condition is defined as the number of speech segments provided to create a target speaker
model. However, unlike previous SREs, gender labels will not be provided. There are two enrollment
conditions for SRE16:

• One-segment – the system is given only one approximately 60 secs2 of segment to build the model of
the target speaker.

• Three-segment – the system is given three approximately 60 secs segments to build the model of the
target speaker, all from the same phone number.

2.4 Test Conditions

• The test segments will be uniformly sampled ranging approximately from 10 secs to 60 secs. The test
segments that are less than 9 secs will not be included in the primary metric calculation but will be
scored for analysis of systems’ behavior.

• Trials will be conducted with test segments from both same and different phone numbers as the
enrollment segment(s).

• There will be no cross-sex trials.

• There will be no cross-language trials.
2as determined by SAD output
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3 Performance Measurement

3.1 Primary Metric

A basic cost model is used to measure the speaker detection performance and is defined as a weighted sum
of miss and false alarm error probabilities:

CDet(CMiss, CFalseAlarm, PTarget) =CMiss × PTarget × PMiss|Target+

CFalseAlarm × (1− PTarget)× PFalseAlarm|NonTarget (2)

where the parameters of the cost function are CMiss (cost of a missed detection) and CFalseAlarm (cost of a
spurious detection), and PTarget (a priori probability of the specified target speaker) and are defined to have
the following values:

Parameter ID CMiss CFalseAlarm PTarget
1 1 1 0.01
2 1 1 0.005

Table 1: SRE16 cost parameters

To improve the intuitive meaning of CDet, it will be normalized by dividing it by CDe f ault, defined as
the best cost that could be obtained without processing the input data (i.e., by either always accepting or
always rejecting the segment speaker as matching the target speaker, whichever gives the lower cost):

CNorm =
CDet

CDe f ault
(3)

where CDe f ault is defined as:

CDe f ault = min

{
CMiss × PTarget,
CFalseAlarm × (1− PTarget)

(4)

Substituting either set of parameter values from Table 1 into Equation 4 yields:

CDe f ault = CMiss × PTarget (5)

Substituting CDet and CDe f ault in Equation 3 with Equations 2 and 5, respectively, along with some
algebraic manipulations yields:

CNorm = PMiss|Target + β× PFalseAlarm|NonTarget (6)

where β is defined as:

β =
CFalseAlarm

CMiss
× 1− PTarget

PTarget
(7)

Actual detection costs will be computed from the trial scores by applying detection thresholds of log(β)
for the two values of β, with β1 for PTarget1 = 0.01 and β2 for PTarget2 = 0.005. Thus, the primary cost
measure for SRE16 is defined as:

CPrimary =
CNormβ1

+ CNormβ2

2
(8)

The evaluation data will be divided into 16 partitions. Each partition is defined as a combination of
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enrollment (1-segment or 3-segment), language (Tagalog or Cantonese), sex (Male or Female), and phone
number match (same or different). CPrimary will be calculated for each partition, and the final results is the
average of all the partitions’ CPrimary’s.

Also, a minimum detection cost will be computed by using the detection thresholds that minimize the
detection cost. Note that for minimum cost calculations, the counts for each condition set will be equalized
before pooling and cost calculation (i.e., minimum cost will be computed using a single threshold not one
per condition set).

NIST will make available the script that calculates the primary metric.

3.2 Alternative Metric

In addition to the primary metric, an alternative, information theoretic measure may be computed that
considers how well all scores represent the likelihood ratio and that penalizes for errors in score calibration.
This performance measure is defined as:

Cllr =
1

2× log(2)
×
(

∑ log(1 + 1
s )

NTT
+

∑ log(1 + s)
NNT

)
(9)

where the first summation is over all target trials NTT , the second is over all non-target trials NNT , and s
represents a trial’s likelihood ratio3.

4 Data Description

The data collected by the LDC as part of the Call My Net Speech Collection to support speaker recognition
research will be used to compile the SRE16 test set, development set, and part of the training set4.

The data are composed of telephone conversations collected outside North America, spoken in Tagalog
and Cantonese (referred to as the major language) and Cebuano and Mandarin (referred to as the minor lan-
guages). The development set described below will contain data from both the major and minor languages,
while the test set will be contain data from the two major languages. Recruited speakers (called claque
speakers) made multiple calls to people in their social network (e.g., family, friends). Claque speakers were
encouraged to use different telephone instruments (e.g., cell phone, landline) in a variety of settings (e.g.,
noisy cafe, quiet office) for their initiated calls and were instructed to talk for 10 minutes on a topic of their
choosing.

All segments will be encoded as a-law sampled at 8kHz in SPHERE formatted files. The development
and test sets will be distributed by NIST via Amazon Web Services (AWS).

4.1 Data Organization

The development and test sets follow a similar directory structure:
<base directory>/

README.txt
data/

enrollment/
test/
unlabeled/ (in training set only)

docs/
metadata/ (in development set only)

3The reasons for choosing this cost function, and its possible interpretations, are described in detail in the paper “Application-
independent evaluation of speaker detection” in Computer Speech & Language, volume 20, issues 2-3, April-July 2006, pages 230-
275, by Niko Brummer and Johan du Preez.

4The entire training set also includes previous SRE corpora, Switchboard, and Fisher corpora. See Section 4.4.
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4.2 Trial File

The trial file, named sre16 {dev|eval} trials.tsv and located in the docs directory, is composed of a
header and a set of records where each record describes a given trial. Each record is a single line containing
three fields separated by a tab character and in the following format:

modelid<TAB>segment<TAB>side<NEWLINE>

where
modelid - The enrollment identifier
segment - The test segment identifier
side - The channel5

For example:
modelid segment side

1001 sre16 dtadhlw sre16 a

1001 sre16 dtaekaz sre16 a

1001 sre16 dtaekbb sre16 a

4.3 Development Set

Participants in the SRE16 evaluation will receive data for development experiments that will mirror the
evaluation conditions. The development data will be drawn from the minor languages and will include:

• 20 speakers, 10 each from Cebuano and Mandarin

• 10 calls per speaker

• Associated metadata which will be listed in the following files located in the metadata directory as
outlined in section 4.1.

– calls.tsv - information about the calls (e.g., conversations)

– call sides.tsv - information about the call sides

– languages.tsv - information about the languages

– subjects.tsv - information about the speakers

The development data may be used for any purpose.

4.4 Training Set

Section 2.2 describes the two training conditions: Fixed (required) and Open (optional). Participants in the
SRE16 evaluation will receive a common set of data resources for training for the fixed training condition.
An unlabeled (i.e., no speaker id, gender, language, or phone number information) set of approximately
2200 calls from the Call My Net collection will be made available divided into sets from the minor and major
languages. In addition participants will receive data from all previous SRE corpora as well as Switchboard
corpora that contain transcripts and the Fisher corpus with transcripts. To obtain this set, participants must
sign the LDC data license agreement which outlines the terms of the data usage.

Additionally, LDC will be releasing selected data resources from the IARPA Babel Program for use in
the open training condition. All training sets will be available directly from the LDC6.

Participants are encouraged to submit results for the contrastive open training condition to demonstrate
the value of additional data.

5SRE16 segments will be single channel so this field is always ”a”
6http://www.ldc.upenn.edu
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5 Evaluation Rules and Requirements

SRE16 is conducted as an open evaluation where the test data is sent to the participants who process the
data locally and submit the output of their systems to NIST for scoring. As such, the participants have
agreed to process the data in accordance with the following rules:

• The participants agree to abide by the terms guiding the training conditions (fixed or open).

• The participants agree to process at least the fixed training condition.

• The participants agree to process each trial independently. That is, each decision for a trial is to be
based only upon the specified test segment and target speaker enrollment data. The use of informa-
tion about other test segments and/or other target speaker data is not allowed.

• The participants agree not to probe the enrollment or test segments via manual/human means such
as listening to the data or producing the transcript of the speech.

• The participants agree not to produce manual/human annotations of the unlabeled training data,
such as employing a service like Amazon’s Mechanical Turk. Informal listening and spectral analysis
of subsets of the audio are acceptable.

• The participants are allowed to use any automatically derived information for training, development,
enrollment, test segments, provided that the automatic system used conforms to the training data
condition (fixed or open) for which it is used.

• The participants are allowed to use information available in the SPHERE header.

• The participants can submit up to three systems per training condition. Bug-fix does not count toward
this limit.

In addition to the above data processing rules, participants agree to comply with the following general
requirements:

• The participants agree to have one or more representatives at the evaluation workshop to present a
meaningful description of their system(s). Evaluation participants failing to do so will be excluded
from future evaluation participation.

• The participants agree to the guidelines governing the publication of the results:

– Participants are free to publish results for their own system but must not publicly compare their
results with other participants (ranking, score differences, etc.) without explicit written consent
from the other participants.

– While participants may report their own results, participants may not make advertising claims
about winning the evaluation or claim NIST endorsement of their system(s). The following lan-
guage in the U.S. Code of Federal Regulations (15 C.F.R. § 200.113) shall be respected7: NIST
does not approve, recommend, or endorse any proprietary product or proprietary material. No reference
shall be made to NIST, or to reports or results furnished by NIST in any advertising or sales promotion
which would indicate or imply that NIST approves, recommends, or endorses any proprietary product or
proprietary material, or which has as its purpose an intent to cause directly or indirectly the advertised
product to be used or purchased because of NIST test reports or results.

– At the conclusion of the evaluation NIST generates a report summarizing the system results
for conditions of interest, but these results/charts do not contain the participant names of the
systems involved. Participants may publish or otherwise disseminate these charts, unaltered
and with appropriate reference to their source.

7See http://www.ecfr.gov/cgi-bin/ECFR?page=browse
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– The report that NIST creates should not be construed or represented as endorsements for any
participant’s system or commercial product, or as official findings on the part of NIST or the U.S.
Government.

6 Evaluation Protocol

To facilitate information exchange between the participants and NIST, all evaluation activities are con-
ducted over a web-interface.

6.1 Evaluation Account

Participants must sign up for an evaluation account where they can perform various activities such as
registering for the evaluation, signing the data license agreement, uploading the submission and system
description. To sign up for an evaluation account, go to https://sre.nist.gov. The password must be at least
12 characters long and must contain a mix of upper and lowercase letters, numbers, and symbols. After the
evaluation account is confirmed, the participant is asked to join a site or create one if it does not exist. The
participant is also asked to associate his site to a team or create one if it does not exist. This allows multiple
members with their individual accounts to perform activities on behalf of their site and/or team (e.g., make
a submission) in addition to performing their own activities (e.g., requesting workshop invitation letter).

• A site is defined as a single organization (e.g., NIST)

• A team is defined as a group of organizations collaborating on a task (e.g., Team1 consisting of NIST
and LDC)

• A participant is defined as a member or representative of a site who takes part in the evaluation (e.g.,
John Doe)

6.2 Evaluation Registration

One participant from a site must formally register his site to participate in the evaluation by agreeing to the
terms of participation. For more information about the terms of participation, see Section 5.

6.3 Data License Agreement

One participant from each site must sign the LDC data license agreement to obtain the training data for the
fixed training condition and Babel data for the open training condition.

6.4 Submission Requirements

Each team must participate in the fixed training condition. Teams are encouraged to participate in the
open training condition to demonstrate the gains that can be achieved with unconstrained amounts of
data. For each training condition, the team can submit up to three systems and must designate one as the
primary system that NIST uses for cross-team comparisons. There should be one output file for each training
condition per system.

Each team is required to submit a system description at the designated time (see Section 7). The evalu-
ation results are given only after the system description is received.
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6.4.1 System Output Format

The system output file is composed of a header and a set of records where each record contains a trial given
in the trial file (see Section 4.2) and a log likelihood ratio output by the system for the trial. The order of
the trials in the system output file must follow the same order as the trial list. Each record is a single line
containing 4 fields separated by tab character in the following format:

modelid<TAB>segment<TAB>side<TAB>llr<NEWLINE>

where
modelid - The enrollment identifier
segment - The test segment identifier
side - The channel (always ”a” for SRE16 since the data is single channel)
llr - The log likelihood ratio

For example:
modelid segment side llr

1001 sre16 dtadhlw sre16 a 0.79402

1001 sre16 dtaekaz sre16 a 0.24256

1001 sre16 dtaekbb sre16 a 0.01038

There should be one output file for each training condition for each system. NIST will make available
the script that validates the system output.

6.4.2 System Description Format

Each team is required to submit a system description. The system description must include a brief descrip-
tion of the systems/algorithms used to produce the results and a timing report. The timing report describes
the CPU execution time that is required to process the test set as if running on a single CPU and as a mul-
tiple of real-time for the data processed. The timing report should identify the time for creating models
from the enrollment data and the time needed for processing the test segments. The timing report should
include the CPU(s) utilized and the amounts of memory used. The system description should follow the
IEEE conference proceeding template. A copy of the template is available on the SRE16 website.

7 Schedule
Milestone Date

Evaluation plan published March 2016
Registration period April 19 - September 13, 2016

Training data available May, 2016
Evaluation data available to participants September 20, 2016

System output due to NIST October 11, 2016
Preliminary results released October 25, 2016

Post evaluation workshop co-located with SLT in San Juan, Puerto Rico December 11-12, 2016
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