202 research outputs found

    Control and observer design for non-smooth systems

    Get PDF

    HAPTIC AND VISUAL SIMULATION OF BONE DISSECTION

    Get PDF
    Marco AgusIn bone dissection virtual simulation, force restitution represents the key to realistically mimicking a patient– specific operating environment. The force is rendered using haptic devices controlled by parametrized mathematical models that represent the bone–burr contact. This dissertation presents and discusses a haptic simulation of a bone cutting burr, that it is being developed as a component of a training system for temporal bone surgery. A physically based model was used to describe the burr– bone interaction, including haptic forces evaluation, bone erosion process and resulting debris. The model was experimentally validated and calibrated by employing a custom experimental set–up consisting of a force–controlled robot arm holding a high–speed rotating tool and a contact force measuring apparatus. Psychophysical testing was also carried out to assess individual reaction to the haptic environment. The results suggest that the simulator is capable of rendering the basic material differences required for bone burring tasks. The current implementation, directly operating on a voxel discretization of patientspecific 3D CT and MR imaging data, is efficient enough to provide real–time haptic and visual feedback on a low–end multi–processing PC platform.

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    Get PDF
    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    An adaptive framework for changing-contact robot manipulation

    Get PDF
    Many robot manipulation tasks require the robot to make and break contact with other objects in the environment. The interaction dynamics of such tasks vary markedly before and after contact. They are also strongly influenced by the nature and physical properties of the objects involved, i.e., by factors such as type of contact, surface friction, and applied force. Many industrial assembly tasks and human manipulation tasks, e.g., peg insertion, stacking, and screwing, are instances of such `changing-contact' manipulation tasks. In such tasks, the interaction dynamics is discontinuous when the robot makes or breaks contact but smooth at other times, making it a piecewise continuous dynamical system. The discontinuities experienced by a robot during such tasks can be harmful to the robot and/or object. Designing a framework for smooth online control of changing-contact manipulation tasks is a challenging open problem. To complete any manipulation task without data-intensive pre-training, the robot has to plan a motion trajectory, and execute this trajectory accurately and smoothly. Many methods have been developed for the former part of the problem in the form of planners that compute a suitable trajectory while considering relevant motion constraints and environmental obstacles. This thesis focuses on the relatively less-explored latter (i.e., plan execution) part of the problem in the context of changing-contact manipulation tasks. It does so by developing an adaptive, task-space, hybrid control framework that enables efficient, smooth, and accurate following of any given motion trajectory in the presence of piecewise continuous interaction dynamics. The framework makes three key contributions. The first contribution of this thesis addresses the problem of controlling a robot performing continuous-contact tasks in the presence of smoothly-changing environment dynamics. Specifically, we provide a task-space control framework that incrementally models and predicts the end-effector wrenches, and uses the discrepancies between the predicted and measured values to revise the predictive (forward) model and to achieve smooth trajectory tracking by adapting the impedance parameters of a force-motion controller. The second contribution of the thesis expands our framework to handle interaction dynamics that can be discontinuous due to making and breaking of contacts or due to discrete changes in the environment. We formulate the piecewise continuous interaction dynamics of the robot as a hybrid dynamical system with previously unknown discrete dynamic modes. We propose a corresponding hybrid framework that incrementally identifies new or existing modes, and adapts the parameters of the dynamics models within each such mode to provide smooth and accurate tracking of the target motion trajectory. The third contribution of the thesis focuses on handling contact changes and reducing discontinuities in the interaction dynamics during mode transitions. Specifically, we develop a framework with a contact anticipation model that incrementally and probabilistically updates its estimates of when contact changes occur due to making or breaking contact, or changes in the properties of objects. The estimated contact positions are used to guide a transition to (and from) special `transition phase' controllers whose parameters are adapted online to minimise discontinuities (i.e., to minimise spikes in force, jerk etc) in the regions of anticipated contacts. The stated contributions and each part of the framework are grounded and evaluated in simulation and on a physical robot performing illustrative changing-contact manipulation tasks on a tabletop. We experimentally compare our framework with some baselines to demonstrate the importance of building an incremental, adaptive framework for such tasks. In particular, we compare our controller for continuous-contact tasks with representative baselines in the adaptive control literature, and demonstrate the benefits of an incrementally-updated predictive (forward) model. We also experimentally evaluate the ability of our hybrid framework to accurately identify and model the dynamics of discrete dynamic (contact) modes, and justify the need for online updates by comparing the performance of a state of the art offline methods for hybrid dynamical systems. Finally, we evaluate the ability of our framework to accurately estimate contact positions and minimise discontinuities in the interaction dynamics in motion trajectories involving multiple contact changes

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors
    • …
    corecore