359 research outputs found

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O∗(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cn≤Λ≤cn⋅2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, c≤Λ1n≤(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Combinatorics of the Permutahedra, Associahedra, and Friends

    Full text link
    I present an overview of the research I have conducted for the past ten years in algebraic, bijective, enumerative, and geometric combinatorics. The two main objects I have studied are the permutahedron and the associahedron as well as the two partial orders they are related to: the weak order on permutations and the Tamari lattice. This document contains a general introduction (Chapters 1 and 2) on those objects which requires very little previous knowledge and should be accessible to non-specialist such as master students. Chapters 3 to 8 present the research I have conducted and its general context. You will find: * a presentation of the current knowledge on Tamari interval and a precise description of the family of Tamari interval-posets which I have introduced along with the rise-contact involution to prove the symmetry of the rises and the contacts in Tamari intervals; * my most recent results concerning q, t-enumeration of Catalan objects and Tamari intervals in relation with triangular partitions; * the descriptions of the integer poset lattice and integer poset Hopf algebra and their relations to well known structures in algebraic combinatorics; * the construction of the permutree lattice, the permutree Hopf algebra and permutreehedron; * the construction of the s-weak order and s-permutahedron along with the s-Tamari lattice and s-associahedron. Chapter 9 is dedicated to the experimental method in combinatorics research especially related to the SageMath software. Chapter 10 describes the outreach efforts I have participated in and some of my approach towards mathematical knowledge and inclusion.Comment: 163 pages, m\'emoire d'Habilitation \`a diriger des Recherche

    Splines in geometry and topology

    Get PDF
    This survey paper describes the role of splines in geometry and topology, emphasizing both similarities and differences from the classical treatment of splines. The exposition is non-technical and contains many examples, with references to more thorough treatments of the subject.Comment: 18 page
    • …
    corecore