2,677 research outputs found

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    Computation of Contour Integrals on M0,n{\cal M}_{0,n}

    Get PDF
    Contour integrals of rational functions over M0,n{\cal M}_{0,n}, the moduli space of nn-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on M0,n{\cal M}_{0,n}. The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen's theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.Comment: 36+11 p

    Discrete Riemann Surfaces and the Ising model

    Full text link
    We define a new theory of discrete Riemann surfaces and present its basic results. The key idea is to consider not only a cellular decomposition of a surface, but the union with its dual. Discrete holomorphy is defined by a straightforward discretisation of the Cauchy-Riemann equation. A lot of classical results in Riemann theory have a discrete counterpart, Hodge star, harmonicity, Hodge theorem, Weyl's lemma, Cauchy integral formula, existence of holomorphic forms with prescribed holonomies. Giving a geometrical meaning to the construction on a Riemann surface, we define a notion of criticality on which we prove a continuous limit theorem. We investigate its connection with criticality in the Ising model. We set up a Dirac equation on a discrete universal spin structure and we prove that the existence of a Dirac spinor is equivalent to criticality

    Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions

    Get PDF
    A greedily routable region (GRR) is a closed subset of R2\mathbb R^2, in which each destination point can be reached from each starting point by choosing the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygons with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles, but can be solved optimally for trees in polynomial time. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.Comment: full version of a paper appearing in ISAAC 201

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime
    • …
    corecore