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1 Introduction

The complete tree-level S-matrix of a large variety of field theories of massless particles are

now known (or conjectured) to have a description in terms of contour integrals over M0,n,

the moduli space of n-punctured Riemann sphere [1–13]. Some of these theories are Yang-

Mills, Einstein gravity, Dirac-Born-Infeld, and the U(N) non-linear sigma model [12, 13].

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
8

The new formulas for the scattering of n particles are given as a sum over multidimensional

residues [14] on M0,n.

The position of n punctures on a sphere can be given using inhomogenous coordi-

nates as {σ1, σ2, . . . , σn}. Three of them can be fixed using PSL(2,C) transformations,

say σ1, σ2, σ3. Therefore the space is n − 3 dimensional and we are working locally on

a patch isomorphic to Cn−3. The next step in the construction is a rational map from

Cn−3 → Cn−3 which is a function of the entries of a symmetric n × n matrix, sab, with

vanishing diagonal, i.e., saa = 0, and all rows adding up to zero. These are the coordinates

of the space of kinematic invariant for the scattering of n massless particles. The explicit

form of the map is {σ4, σ5, . . . , σn} → {E4, E5, . . . , En} with

Ea(σ) =

n∑
b=1,b 6=a

sab
σa − σb

for a ∈ {1, 2, . . . , n}. (1.1)

Using this map, scattering amplitudes, denoted as Mn, are defined as the sum over the

residues of ∫ n∏
a=4

dσa|123|2 H(σ, k, ε)

E4(σ)E5(σ) · · ·En(σ)
(1.2)

over all the zeroes of the map {E4, E5, . . . , En}. Here |123| ≡ (σ1 − σ2)(σ2 − σ3)(σ3 − σ1)

and H(σ, k, ε) is a rational function that depends on the theory under consideration and

contains all information regarding wave functions of the particles such as polarization

vectors εµa and momenta kµa . The equations defining the zeroes, E4 = E5 = · · ·En = 0, are

known as the scattering equations [15–23] More explicitly,

Mn =
∑

σ∗∈Z(E)

|123|2H(σ∗, k, ε)

det
(
∂(E4,...En)
∂(σ4...σn)

)∣∣∣
σ∗

(1.3)

where Z(E) is the set of all zeroes of the map. This representation of scattering amplitudes

is known as the Cachazo-He-Yuan (CHY) approach [1, 2, 11, 12].

The zeroes are generically isolated and are the values of σ′s for which the Morse

function on M0,n

φ(σ, σ̄) =
1

2

∑
a< b

sab ln |σa − σb|2 (1.4)

has local extremes1 [13, 18].

In this paper we are not concerned with particular theories. Instead, our aim is to

provide an algorithm for the analytic computation of any integral of the form∫
Γ

n∏
a=4

dσa
|123|2

E4(σ)E5(σ) · · ·En(σ)
F (σ), (1.5)

where Γ is the same contour as above, i.e., a sum over all residues at Z(E). Here F (σ) is

any rational function of only the puncture coordinates σ’s which transforms as

F (σ)→
n∏
a=1

(cσa + d)4F (σ), under σa →
aσa + b

cσa + d
, (1.6)

with ad− bc = 1, i.e., under an PSL(2,C) transformation.

1A Morse function is a real function with non-degenerate critical points [24].
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The transformation of F (σ) ensures that the integral (1.5) is independent of both the

choice of which puncture coordinates to fix and their values. The transformation also

implies that F (σ) is only a function of differences σa − σb which we denote as σab. Clearly

σab = −σba. The only other condition we impose on F (σab) is that all its poles are of the

form σmab for some integer m ≥ 0.

The simplest kind of integrals are defined in terms of the so-called Parke-Taylor fac-

tors [25] defined for a particular ordering of n labels (α(1)α(2) · · ·α(n)) with α ∈ Sn as

1

(α(1)α(2) · · ·α(n))
≡ 1

σα(1)α(2) σα(2)α(3) · · ·σα(n−1)α(n) σα(n)α(1)
. (1.7)

Clearly, any Parke-Taylor factor has half the PSL(2,C) weight needed to construct a valid

F (σab) [1, 12]. One can define integrals labeled by a pair a permutations α, β ∈ Sn using

Fα,β(σab) =
1

(α(1)α(2) · · ·α(n))
× 1

(β(1)β(2) · · ·β(n))
, (1.8)

or more explicitly [2]

m(α|β) ≡
∫

Γ
dµn

1

(α(1)α(2) · · ·α(n))

1

(β(1)β(2) · · ·β(n))
, (1.9)

where we have introduced a shorthand notation for the measure

dµn ≡
n∏
a=4

dσa
|123|2

E4(σ)E5(σ) · · ·En(σ)
. (1.10)

Integrals of the form m(α|β) have been studied in the literature and are known to eval-

uate to a sum over connected tree Feynman graphs with only cubic (trivalent) interactions

which are compatible with the two planar orderings defined by α and β [2]. We review

this result in detail in section 2 and explain how to explicitly evaluate them as a rational

function of the variables sab. Here it suffices to say that these known integrals form the

basic building blocks of our construction and the main result of this work is an algorithm

for writing ∫
Γ
dµnF (σab) = R(m(α|β)), (1.11)

where R is a rational function of its variables with only numerical coefficients.

The reason general integrals are of interest can be seen, for example, in the evaluation

of an n graviton amplitude which contains a term of the form [1, 2, 11]

∫
Γ
dµn

(ε1 · ε2)2

σ4
12

n∏
a=3

 n∑
b=2,b 6=a

εa · kb
σ1b

σabσ1a

2

. (1.12)

In this formula εc, kc are fixed data and after fully expanding (1.12) they can be factored

out leaving arbitrarily complicated integrals of the form (1.11) to be evaluated. Also

motivated by the same physical problem, Kalousios developed a technique, different from

the one presented here, for the computation of general five-point integrals in [26].
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The algorithm we develop is based on three key constructions. The first is a general-

ization of the Kawai-Lewellel-Tye (KLT) relation [27–29]. The KLT relation was originally

discovered as a relation among closed and open string theory amplitudes but since then it

has inspired similar relations in field theory and more recently it found a natural set up

which allows vast generalizations in the CHY representation of amplitudes. We present

the general KLT construction in section 3.

The second result is a classic one from graph theory [30]. Consider an integrand F (σ)

such that it does not have any zeroes. This means that it is only the product of 2n factors

σab in the denominator with a trivial numerator that can be set to unity. Representing each

puncture by a vertex and each σab by an undirected edge connecting vertices a and b one

finds that each F (σ) leads to a unique 4-regular graph GF (not necessarily simple). A classic

result of Petersen guarantees that any 4-regular graph with n vertices is 2-factorable. This

means that GF it is always the union of two 2-regular graphs with n vertices. Petersen’s

result is reviewed in section 4.

The third and final ingredient is an observation regarding the existence of a Hamilto-

nian decomposition of graphs [30, 31]. In order to state the observation let us choose any

2-regular multigraph2 G with n-vertices and no loops. We say that a connected 2-regular

graph with n-vertices, Hconn, is compatible with G if the 4-regular graph obtained from

the union of G and Hconn contains two edge-disjoint Hamilton cycles. The observation is

that out of the (n − 1)! possible connected graphs the number of compatible graphs with

G is always larger than (n− 3)!. This is explained in section 5.

In section 6 all ingredients are combined to produce the final algorithm for computing

the rational function R in (1.11). The algorithm is general but in particular cases it can

be modified to make it much more efficient.

Section 7 is devote to examples that not only illustrate the use of the algorithm but

also give the explicit Hamiltonian decompositions needed for the computation of the most

general six-point integral.

In section 8 we end with discussions including future directions and physical appli-

cations in the form of novel relations among amplitudes. The appendix has a detailed

explanation of how to implement Petersen’s theorem. The implementation is not far from

being the actual proof so it a good way to gain intuition on why the theorem holds.

2 Definition of building blocks

The aim of this work is to provide an algorithm for the reduction of contour integrals on

the moduli space of an n-punctured sphere of the form∫
dµnF (σ) (2.1)

2In this work we use the terminology graph and multigraph interchangeably. In fact, the restriction to

simple graphs is never necessary.
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in terms of a basis of known integrals. Ensuring that the integrand is PSL(2,C) invariant

implies that F (σ) has the form

F (σ) =
1

(12 · · ·n)(γ(1)γ(2) · · · γ(n))
f(rijkl), (2.2)

where (12 · · ·n) is the canonical Parke-Taylor and (γ(1)γ(2) · · · γ(n)) is a Parke-Taylor

factor with a γ ∈ Sn ordering (see (1.7) for the Parke-Taylor factor definition). f is a

rational function of rijkl which are general cross ratios, i.e.,

rijkl ≡
σijσkl
σilσjk

. (2.3)

Of course, the choice of Parte-Taylor factor is completely arbitrary and can be conveniently

made depending on the case. The measure dµn was defined in (1.10) and is reviewed below.

In this section we discuss the basic building blocks which are special contour integrals

with f(rijkl) = 1 and whose values are explicitly known [2, 4, 9]. The building blocks are

labeled by a pair of permutations α, β ∈ Sn/Zn. The reason one has to mod out by cyclic

permutations Zn is obvious from the definition

m(α|β) ≡
∫

Γ
dµn

1

(α(1)α(2) · · ·α(n))

1

(β(1)β(2) · · ·β(n))
. (2.4)

Recall that (α(1)α(2) · · ·α(n)) ≡ σα(1)α(2)σα(2)α(3) · · ·σα(n−1)α(n)σα(n)α(1) and the mea-

sure is

dµn ≡
n∏
a=4

dσa
|123|2

E4E5 · · ·En
. (2.5)

An explicit evaluation of the integral m(α|β) would involve solving the equations [4, 8, 9,

26, 32, 33]

Ea(σ) =

n∑
b=1,b 6=a

sab
σa − σb

= 0 for a ∈ {4, 5, . . . , n}. (2.6)

These equations have (n − 3)! solutions as proven in [1, 32] and the data sab can be

taken to be the components of a symmetric n × n matrix of complex entries such that

s11 = s22 = · · · snn = 0 and
n∑

b=1,b 6=a
sab = 0 for a ∈ {1, 2, . . . , n}. (2.7)

Once the solutions are found one computes the Jacobian matrix

Φab =


sab
σ2
ab

a 6= b,

−
∑n

c=1,c 6=a
sac
σ2
ac

a = b.
(2.8)

Defining Φ123
123 as the (n− 3)× (n− 3) minor of Φ obtained by deleting rows and columns

1, 2, 3, one has that

m(α|β) =

(n−3)!∑
I=1

|123|2

det Φ123
123

1

(α(1)α(2) · · ·α(n))

1

(β(1)β(2) · · ·β(n))

∣∣∣∣
σa=σ

(I)
a

, (2.9)

where σ
(I)
a denotes the value of σa on the Ith solution.
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Solving the equations Ea = 0 is a nontrivial task when n > 5 as for generic values

of sab and after finding a Groebner basis one is faced with an irreducible polynomial of

degree (n− 3)!.

Luckily, it is easy to make a simple proposal for what m(α|β) evaluates to and then

prove that it is the right answer. This was done in a series of papers [2, 11, 32]. Here we

simply quote the result and use these integrals as building blocks for generic ones.

2.1 Evaluating m(α|β)

Consider any connected tree graph T with n vertices of degree3 one and n − 2 vertices of

degree three. Associating a label {1, 2, . . . , n} to the vertices of degree 1 one can assign

a rational function of sab to T as follows. Every internal edge e, i.e. not connected to a

degree one vertex, divides the graph T into to graphs TL and TR if the edge e was removed.

Let the subset of vertices of degree one from {1, 2, . . . , n} which lie on TL be SL and those

on TR be SR. Then it is easy to show that∑
a,b∈SL

sab =
∑

a,b∈SR

sab (2.10)

as a consequence of (2.7). Therefore this is a quantity that can be associated with the edge

e and we denote it as

P 2
e ≡

∑
a,b∈SL

sab. (2.11)

The reason for the notation is that in physical applications this is the norm of a Lorentz

vector.

The rational function associated with the graph T is then

w(T ) ≡
∏

e∈Eint
T

1

P 2
e

, (2.12)

where Eint
T is the set of all internal edges of T . In physics terminology, T is a Feynman

diagram in a massless cubic scalar theory and w(T ) is the value of the graph obtained by

using Feynman rules.

A given diagram T can be drawn on a plane in a variety of ways. Each way of doing

so defines a cyclic ordering of the labels {1, 2, . . . , n}. We say that T is consistent with an

ordering α ∈ Sn/Zn if α is one of the possible orderings obtained when T is drawn on a

plane. Let us denote the set of all graphs T consistent with the ordering α by Γ(α).

Now we can state the main result of this subsection. The integral

m(α|β) = (−1)q
∑

T∈Γ(α)
⋂

Γ(β)

w(T ) , (2.13)

where q was defined in [2] and will not be relevant for our purposes.4

3The degree of a vertex is defined as the number of edges incident to the vertex.
4For more details see the equation (3.4) in [2].
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Figure 1. Feynman diagram contributing for m(1234 | 1243).

2.2 Examples

Let us consider some simple examples in order to illustrate the use of the general for-

mula (2.13). The first one is the four-point integral with the canonical ordering

m(1234 | 1234) =
1

s12
+

1

s14
, (2.14)

which is a trivial computation using (2.12) and (2.13). One can also find different orderings

α and β such that its result is just one Feynman diagram, for example

m(1234 | 1243) =
1

s12
, (2.15)

which is the diagram given in figure 1.

More interesting examples are the five-point computations. For instance, with α and

β in the canonical ordering one obtains

m(12345 | 12345) =
1

s12s45
+

1

s12s34
+

1

s23s15
+

1

s23s45
+

1

s15s34
. (2.16)

In five points we can also have two different orderings with intersection on only one Feynman

diagram, for example

m(12345 | 12534) =
1

s12s34
, (2.17)

with diagram in figure 2.

In addition, the m(α|β) five-point integrals have more properties than the m(α|β) four

point matrix. For example, one can think in a Parke-Taylor with an α ordering as a vector

and the matrix element m(α|β) as the inner product among two of them. So, a natural and

interesting question arises, given a Parke-Taylor with a particular ordering, what is its or-

thogonal space? for instance, at four points, there does not exist two orthogonal orderings.

But, in five points, every Parke-Taylor with an α ordering has a 1-dimensional orthogonal

space. For example, let us consider the canonical ordering (12345), its orthogonal space is

generated by the Park-Taylor (14253), i.e.

m(12345 | 14253) = 0. (2.18)

3 Generalized KLT

In this section we introduce the first result needed for the computation of general integrals.

In the 80’s Kawai, Lewellen and Tye (KLT) found a relation connecting scattering ampli-

tudes of closed strings to the sum of products of open strings amplitudes [27–29]. While

– 7 –
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Figure 2. Feynman diagram contributing for m(12345 | 12534).

closed string amplitudes are computed on the sphere and hence are permutation invari-

ant, open strings are defined as sums over partial amplitudes. Each partial amplitude is

computed on a disk where the external states are inserted on the boundary and therefore

possess an ordering. Thanks to the Bern-Carrasco-Johansson relations (BCJ) [34], the

modern version of the KLT formula can be written as (for more details see [35–39])

M closed
n =

∑
α̂,β̂∈Sn−3

Mopen
n (1, α̂, n, n− 1)Sstring(α̂|β̂)Mopen

n (1, β̂, n− 1, n) , (3.1)

where permutations of {2, 3, . . . , n − 2} are denoted α̂ and β̂. In the formula above,

Sstring(α̂|β̂) is called the KLT momentum kernel [40] and it is a somewhat complicated

function of the variables sab whose explicit form is not relevant at this point.

The string theory formula (3.1) has a field theoretic analog obtained by taking the

infinite tension limit and it relates amplitudes of gravitons to that of gluons. More explic-

itly [28, 29, 34, 38, 40],

Mgravitons
n =

∑
α̂,β̂∈Sn−3

Mgluos
n (1, α̂, n, n− 1)S(α̂|β̂)Mgluons

n (1, β̂, n− 1, n). (3.2)

Here S(α̂|β̂) is the infinite tension limit of Sstring(α̂|β̂).

In [12], it was realized that the field theory KLT relation (3.2) and many generalizations

naturally follow from the CHY representation of amplitudes.

Let us summarize the construction with special emphasis on the structures needed in

section 6.

Consider any contour integral as a starting point (sp), it plays the role of Mn in (3.1),

Isp =

∫
dµnI(σ), (3.3)

with an integrand that can be separated into two parts

I(σ) = IL(σ)IR(σ), (3.4)

where each “half-integrand” has half the PSL(2,C) weight of the full integrand. Examples

of such integrands and half-integrands were studied in the previous section with Parke-

Taylor factors being the half-integrands.

The evaluation of (3.3) is given by

(n−3)!∑
I=1

|123|2

det Φ123
123

IL(σ)IR(σ)

∣∣∣∣
σa=σ

(I)
a

. (3.5)

Let us denote the combination det Φ123
123/|123|2 as det′Φ.

– 8 –
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Introducing an (n−3)!×(n−3)! diagonal matrix in solution space DIJ = det′Φ(σ
(I)
a )δIJ

and (n− 3)!-dimensional vectors ~IL and ~IR one finds a matrix form of (3.5)

Isp = ~IL
T
D−1 ~IR. (3.6)

The next step is to find an alternative representation of the matrix D in terms of a (n −
3)! × (n − 3)! matrix but this time in the ordering space. A natural candidate is to

consider a submatrix of the (n − 1)! × (n − 1)! matrix whose entries are given by m(α|β)

with α, β ∈ Sn/Zn.

More explicitly, the definition in (2.4) gives

m(α|β) =

(n−3)!∑
I=1

1

det′Φ

1

(α(1)α(2) · · ·α(n))

1

(β(1)β(2) · · ·β(n))

∣∣∣∣
σa=σ

(I)
a

. (3.7)

This time it is convenient to introduce a rectangular (n − 1)! × (n − 3)! matrix Q with

entries

QIα =
1

(α(1)α(2) · · ·α(n))
× 1

det′Φ

∣∣∣∣
σa=σ

(I)
a

(3.8)

so that

m(α|β) =

(n−3)!∑
I,J=1

QIαDIJQ
J
β . (3.9)

Next we divide the discussion into the derivation of the standard KLT result (3.2) and

then its most general form.

3.1 Standard KLT

Let us first discuss how to recover the standard KLT formula in its modern version [27–

29, 34, 38] before proceeding to the more general discussion. As discussed above one has

to select an (n− 3)!× (n− 3)! submatrix of the matrix m(α|β). The choice that leads to

the modern version of the KLT formula is

m(1, α̂, n− 1, n|1, β̂, n, n− 1) ≡ mKLT(α̂|β̂) , (3.10)

with α̂, β̂ ∈ Sn−3 permutations of the remaining n − 3 labels. Once the choice has been

made two square matrices can be defined

Û Iα̂ ≡ QI1,α̂,n,n−1, V̂ I
β̂
≡ QI

1,β̂,n−1,n
. (3.11)

Finally, it is possible find a representation for D

mKLT = ÛTDV̂ ⇒ D = (V̂ )−1mKLT(ÛT)−1. (3.12)

Using this formula in (3.6)

Isp = ~IL
T
D−1 ~IR = (Û ~IL)T (mKLT)−1 V̂ ~IR. (3.13)

– 9 –
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It is easy to recognize that

(Û ~IL)(1, α̂, n, n− 1) =

∫
dµn

IL(σ)

(1, α̂, n, n− 1)
, (3.14)

(V̂ ~IR)(1, β̂, n− 1, n) =

∫
dµn

IR(σ)

(1, β̂, n− 1, n)
.

When applied to gravity and Yang-Mills amplitudes (3.13) becomes the standard KLT

formula (3.2). Even though it is not used in this work, let us make this more explicit for

completeness. In [1] gravity and Yang-Mills amplitudes are computed as follows

Mgravitons
n =

∫
dµn(Pf ′Ψ(ε, k, σ))2, (3.15)

Mgluons
n (α) =

∫
dµn

Pf ′Ψ(ε, k, σ)

(α(1)α(2) · · ·α(n))
,

where Ψ(ε, k, σ) is some 2n× 2n matrix whose precise form can be found in [1]. Now it is

clear how this leads to the KLT formula directly. Moreover, it shows that the momentum

kernel S(α̂|β̂) = (mKLT)−1(α̂|β̂).

3.2 General KLT

Let us now discuss the more general construction. It is clear that the same steps can be

followed as in the standard KLT construction if one chooses a general (n−3)!×(n−3)! sub-

matrix of the matrix m(α|β). However, not all sub-matrices are allowed as the construction

requires the computation of its inverse. It turns out that m(α|β) has vanishing determinant

and so do some of its (n− 3)!× (n− 3)! sub-matrices.

Let L and R be both subsets of permutations Sn/Zn with (n − 3)! elements. We say

that L and R are independent if the matrix with entries

mL|R ≡ {m(α|β) : α ∈ L, β ∈ R} (3.16)

has non-vanishing determinant.

Provided L and R are independent one can obtained a formula for Isp of the form

Isp =
∑

α∈L,β∈R
(UIL)α (mL,R)−1

α,β (VIR)β , (3.17)

where we have defined

UIα ≡ QIα , α ∈ L, (3.18)

VIβ ≡ QIβ , β ∈ R,

and

(UIL)α =

∫
dµn

IL(σ)

(α(1)α(2) · · ·α(n))
, α ∈ L, (3.19)

(VIR)β =

∫
dµn

IR(σ)

(β(1)β(2) · · ·β(n))
, β ∈ R .

This is the most general form of the KLT relation that is needed in the algorithm

presented in section 6.
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3.3 Examples

In this subsection we give a simple example to show how the standard KLT construction

can be used in the computation of residue integrals. After that, we formulate an example

where the standard KLT is not enough.

Let us start with an example where the standard KLT construction suffices. Consider

the five point integral

Isp =

∫
dµ5

1

(12345)

1

(12)(345)
. (3.20)

Recall the general definition given in the introduction which applied to this case implies

(12) = σ12σ21 and (345) = σ34σ45σ53. This integral is not of the form studied in section 2.

The idea is then to find a way of writing it in terms of the building blocks of section 2.

Let the KLT basis be given by permutations (1, α̂, 32) and (1, α̂, 23) with α̂ permuta-

tions of {4, 5}.
Using the KLT formula one has

Isp =
∑

α̂,β̂∈perm(4,5)

m(12345|1, α̂, 32)(mKLT)−1

α̂,β̂

∫
dµ5

1

(12)(345)(1, β̂, 23)
. (3.21)

At first sight it seems that the problem has been made worse as one has to now deal with

two new integrals ∫
dµ5

1

(12)(345)(14523)
,

∫
dµ5

1

(12)(345)(15423)
. (3.22)

However, it is simple to check that

(12)(345)(14523) = (12354)(12543) , (12)(345)(15423) = (13542)(12345). (3.23)

This means that we have succeeded in expressing Isp in terms of the building blocks.

Using the explicit form of the building blocks one finds that∫
dµ5

1

(12345)

1

(12)(345)
=

∑
α̂,β̂∈perm(4,5)

(Û ~IL)α̂ (mKLT)−1

α̂,β̂
(V̂ ~IR)β̂ (3.24)

=
1

s12 s34
+

1

s12 s45
+

s15

s2
12 s34

+
s14

s2
12 s45

+
s15

s2
12 s45

,

where the mKLT(1, α̂, 32|1, β̂, 23) matrix is given by

mKLT(1, α̂, 32 | 1, β̂, 23) =

(
− 1
s23 s14

− 1
s23 s45

1
s23 s45

1
s23 s45

− 1
s23 s15

− 1
s23 s45

)
(3.25)

and the vectors

(Û ~IL)(1, α̂, 32) =

(
− 1

s12 s45
− 1

s23 s45
,

1

s12s45
+

1

s12s34
+

1

s23s15
+

1

s23s45
+

1

s15s34

)
,

(V̂ ~IR)(1, β̂, 23) =

(
1

s12 s45
, − 1

s12 s45

)
. (3.26)
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In this simple example we have solved a non-trivial integrand just using the building blocks

and the standard KLT approach. Note that the matrix (3.25) and the vectors (3.26) are not

simple. Very nicely, one can also use the original KLT approach in order to obtain a simpler

matrix and vectors [27–29]. For example, let us consider the following decomposition

Isp =
∑

α̂∈L,β̂∈R

(Û~IL)α̂ (mKLT)−1

α̂,β̂
(V̂ ~IR)β̂ , (3.27)

where

L = {(1, α̂(4), 3, α̂(5), 2)} = {(14352), (15342)}, (3.28)

R = {(1, β̂(4), β̂(5), 2, 3)} = {(14523), (15423)}, (3.29)

and

(Û ~IL)α̂ = m(12345|1, α̂(4), 3, α̂(5), 2) , (3.30)

(V̂ ~IR)β̂ =

∫
dµ5

1

(12)(345) (1, β̂, 23)
. (3.31)

It is trivial to show that the (mKLT)α̂,β̂ matrix is given by

mKLT(α̂|β̂) =

(
1

s14 s25
0

0 1
s15 s24

)
(3.32)

and the vectors

(Û ~IL)α̂ =

(
1

s12 s34
,

1

s12s34
+

1

s15s34

)
,

(V̂ ~IR)β̂ =

(
1

s12 s45
,
−1

s12 s45

)
, (3.33)

so the computation of (3.20) becomes trivial. One can easily check that∫
dµ5

1

(12345)

1

(12)(345)
=

∑
α̂∈L,β̂∈R

(Û~IL)α̂ (mKLT)−1

α̂,β̂
(V̂ ~IR)β̂ (3.34)

=
1

s12s45

(
s14s25

s12s34
− s15s24

s34

(
1

s12
+

1

s15

))
,

which agrees with (3.24).

Finally, consider the following six-point integral∫
dµ6

1

(123456)

1

(12)(34)(56)
. (3.35)

It turns out that choosing a KLT basis of (n − 3)! = 6 permutations where three labels

are fixed to some particular locations is not enough in this case. One can show that it is

not possible to find such a set so that when multiplied with (12)(34)(56) always gives a

product of two six-point Parke-Taylor factors. In section 7 we present an explicit set of

six permutations that do give rise to two Parke-Taylor factors in all six cases and hence a

building block.

– 12 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
8

4 Petersen’s theorem

In this section we present the second key result needed for the algorithm in section 6.

Consider a special class of integrands F (σ) defined by rational functions with no zeroes.

This means that F (σ) has 2n factors σab in the denominator and a trivial numerator which

can be taken to be unity. We denote this kind of integrands as Fd(σ). The required

PSL(2,C) transformation of Fd(σ) implies that each label a must appear exactly in four

factors. In this section all integrands F satisfy these special properties, i.e. F (σ) = Fd(σ).

An integrand with these properties is uniquely determined by a graph (GF ) with n

vertices constructed by including an (non-oriented) edge connecting a and b for every factor

of σab in the denominator of Fd(σ). Note that the same factor can appear more than once

and hence the graph is not simple in general.5 To illustrate this morphism we give a simple

example. Let us consider the rational function

Fd(σ) =
1

(123)(345)(561)(246)
. (4.1)

Using the previous rules, the graph associated with the function Fd(σ), which we have

called GF , is given by the pair GF = (VF , EF ), where VF and EF are the vertex and edge

sets, respectively

VF = {1, 2, 3, 4, 5, 6} , (4.2)

EF = {[1; 2], [2; 3], [1; 3], [3; 4], [4; 5], [3; 5], [5; 6], [1; 6], [1; 5], [2; 4], [4; 6], [2; 6]},

where [a; b] = [b; a] (non-oriented graph). The line drawing of the graph GF is given in

figure 3.

The graph associated with any integrand Fd(σ) has the property that every vertex has

degree exactly four. These are called 4-regular. In general a graph where each vertex has

degree k is called k-regular.

A result of Petersen dating back to 1891 states that every 4-regular graph G with n

vertices contains a 2-factor. A 2-factor is a 2-regular subgraph of G with n vertices. Of

course, after removing all the edges in G from such a 2-factor one is left with another

2-regular graph with n vertices [30, 31].

It should now be clear why this theorem is useful in our construction. Given any

function Fd(σ) and its associated graph GF , find the two 2-regular subgraphs implied by

Pertersen’s theorem6 and denote them by GLF and GRF . Then it is possible to write

Fd = FLd × FRd , (4.3)

where

FLd =
1∏

e∈GL
F
σve,ue

, FRd =
1∏

e∈GR
F
σve,ue

, (4.4)

5Graphs with multiple edges connecting two vertices are also called multigraphs.
6This decomposition is not unique.
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Figure 3. Graph GF .

Figure 4. 2-Factor decomposition of GF .

with ve and ue the end vertices of the e edge. Given that GLF and GRF are 2-regular, FLd
and FRd both transform as half integrands and the generalized KLT construction can be

used to decompose ∫
dµnFd (4.5)

as a sum over product of simpler integrals. The concept of “simpler” will be made precise

in sections 5 and 6.

For example, in the graph represented by figure 3 it is simple to see the following two

2-factors given in figure 4 and therefore.

FLd =
1

(123456)
, FRd =

1

(135)(246)
.

Although this example is very simple, finding the decomposition into two 2-factors of a

general 4-regular graph can be a daunting exercise. In appendix A we provide an explicit

algorithm for finding two 2-factors GLF and GRF and a sketch of the proof of Pertersen’s

theorem.

5 Hamiltonian decomposition

In this section we present the third and final ingredient needed for the general algorithm.

Recall the example presented in section 3.3∫
dµ5

1

(12345)(12)(345)
. (5.1)
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The KLT procedure worked because we were able to find Parke-Taylor factors such that

(12)(345)× (14523) = (12354)× (12543), (5.2)

(12)(345)× (15423) = (13542)× (12345).

It is clear that by combining Petersen’s theorem with the KLT construction one would be

able to compute any integral with a trivial numerator if a decomposition of the form (5.2)

was always possible. This is the main subject of this section and we start by introducing

some terminology standard in the graph theory literature.

A 4-regular graph G is said to have a Hamiltonian decomposition if G has two edge-

disjoint Hamiltonian cycles H1 and H2 [30].

Let us remind the reader what a Hamiltonian cycle is. In any connected graph with n

vertices one can ask if there is a connected closed path that visits all vertices exactly once.

Such a closed path, i.e., collection of edges, is called a Hamiltonian cycle.

We are going to assume that we are given a generic 2-regular graph GR with n vertices,

for example when n = 5 we can consider the graph associated to the denominator (12)(345).

If the 2-regular graph GR is connected then we do not have to continue since it is already of

the form needed. Assume that the 2-regular graph is made out of m disconnected 2-regular

graphs, each with the corresponding Parke-Taylor factor, (r1)(r2) · · · (rm).

We say that an n-point Parke-Taylor factor (α(1)α(2) · · ·α(n)) is compatible with a

general combination (r1)(r2) · · · (rm) if the union of both graphs, which is obviously a

4-regular graph, has a Hamiltonian decomposition. In our more physical terminology,

(α(1)α(2) · · ·α(n)) is compatible with (r1)(r2) · · · (rm) if

(r1)(r2) · · · (rm)× (α(1)α(2) · · ·α(n)) = (β(1)β(2) · · ·β(n))× (γ(1)γ(2) · · · γ(n)) (5.3)

for some β, γ ∈ Sn/Zn.

How many permutations α ∈ Sn/Zn are compatible with a given form (r1)(r2) · · · (rm)

seems to be a complicated question in general. However we have made an extensive com-

puter search and have found strong evidence that not only the number is always larger than

(n− 3)! but it becomes much larger than (n− 3)! as n increases. In the next subsection we

discuss the results obtained in the computer search as well as a conjecture for the precise

number when every (ra) in (r1)(r2) · · · (rm) contains exactly two elements.

We restrict our search to the cases where all (ra)’s except one have exactly two elements

(i.e., are bubbles) and the cases where all (ra) except one have exactly three element (i.e.,

are triangles).

5.1 Bubbles and one polygon

Let us start with 2-regular graphs of the form

(12)(34) . . . (2m− 1, 2m)(2m+ 1, 2m+ 2, . . . , 2m+ k). (5.4)

The graph is then given by m bubbles and one polygon with k sides. The total number of

vertices is n = 2m+ k.
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1

16

6

144

1

2

3

4

5

6

20032

Poly.
B

6,336

491,904

1,096 9,440

65,184 723,360

1,518

92,712

13,160 126,032

480

28,416

2,588,160

347,996,160

1,325,682

Table 1. Number of compatible Parke-Taylor factors to the graph obtained by combining bubbles

(vertical-B) with various polygons (horizontal-Poly).

The results from our computer search are presented in table 1.

Recall that the numbers presented in the table are the total numbers of permutations

that are compatible with the corresponding 2-regular graph. It is easy to see that the

number in the table are always greater than (n − 3)! = (2m + k − 3)! (except for n = 4

when it is equal) and that the ratio increases as n gets larger.

Quite nicely, we have been able to find a sequence of numbers that reproduces the case

k = 2 for all m tested and this is why we conjecture the following.

Consider the 2-regular graph with 2s vertices which is made out of s bubbles (here

s = m + 1 since the polygon added to the m bubbles in the table is also a bubble). The

number of compatible Parke-Taylor factors is given by

2s−2(s− 1)!A(s) , (5.5)

where A(s) is the number of types of sequential s-swaps moves for the travelling sales-

man problem which has a closed formula presented as sequence A001171 in the OEIS

webpage [41, 42].

It is interesting to note that the case of only bubbles is the one with the least number

of compatible permutations for a given number n of vertices. Using the closed formula, it

is possible to find the ratio of (5.5) to (n− 3)! = (2s− 3)! as s goes to infinity,

r(s) =
2s−2(s− 1)!A(s)

(2s− 3)!
∼ π

2
s . (5.6)

5.2 Triangles and one polygon

Finally, we consider the case in which we have several triangles and only one polygon with

k vertices. Clearly the case of one triangle and k = 2 is already in the table 1. The results

for this new computer search are presented in table 2.

Once again, it is clear that the number of compatible Parke-Taylors is larger than

(n− 3)! and the ratio grows with the number of vertices.
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1

2

3

Poly.
T

6

1,404

42 264 1,920 16,284 154,098

14,760 141,264

1,607,296

1,111,968

Table 2. Number of compatible Parke-Taylor factors to the graph obtained by combining triangles

(vertical-T) with various polygons (horizontal-Poly).

6 Main algorithm

In this section we present the main algorithm for the decomposition of an integral of a

general rational function F in terms of the building blocks m(α|β).

6.1 Reduction of the numerator

A general function F can have a numerator which can be taken, without loosing of gen-

erality, to be a monomial in the variables σab. Let us define cross ratios to be the basic

PSL(2,C) invariant functions

rabcd ≡
σabσcd
σadσbc

. (6.1)

It is clear that by choosing any pair of Parke-Taylor factors, say

{(γ(1)γ(2) · · · γ(n)), (123 · · ·n)}, (6.2)

to multiply F , one gets an SL(2,C) invariant function which can be expressed in terms of

cross ratios, i.e.,

(γ(1)γ(2) · · · γ(n))(123 · · ·n)F =
m∏
I=1

raI ,bI ,cI ,dI . (6.3)

for some value of m ≥ 0.

Using this we choose as our starting point a representation for F of the form

F =
1

(γ(1)γ(2) · · · γ(n))(123 · · ·n)

m∏
I=1

raI ,bI ,cI ,dI . (6.4)

The following is a procedure which might not be the most efficient in particular cases but

it is general. Let us isolate the mth cross ratio and write

F = FL × FR

=

(
1

(γ(1)γ(2) · · · γ(n))

)
×

(
1

(12 · · ·n)

m−1∏
I=1

raI ,bI ,cI ,dI ×
σam,bmσcm,dm
σam,dmσbm,cm

)
. (6.5)
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Use the KLT procedure to separate the left and right factors (defined by the parenthesis)

by using a basis of (n − 3)! Parke-Taylor factors of the form 1/(cm, dm, am, α) where α is

some permutation of the n− 3 left over labels. Applying this procedure one finds that∫
dµnF =

∑
α,β

m(γ(1)γ(2) · · · γ(n) | cm, dm, am, α) S(α|β)

∫
dµn

FR
(cm, dm, am, β)

.

Now we are left with the computation of new integrals in which the factor σcm,dm in then

numerator has been canceled by the same factor arising in the expansion of (cm, dm, am, α).

More explicitly we now have to compute

FR
(cm, dm, am, β)

=

(
1

(12 · · ·n)

m−1∏
I=1

raI ,bI ,cI ,dI

)
×
(

σam,bm
σam,dmσbm,cmσdm,amσam,β1 · · ·σβn−3,cm

)
.

(6.6)

Now we can repeat the KLT procedure for each such new integrals. Once again we take

the left and right factors as those collected in parenthesis in (6.6) but this time we use a

basis of the form 1/(am, bm, dm, α). This gives rise to integrals on the right of the form∫
dµn

σam,bm
(σam,dmσbm,cmσdm,amσam,β1 · · ·σβn−3,cm)

1

(am, bm, dm, α)
, (6.7)

which after expanding (am, bm, dm, α) and canceling the factor σam,bm in the numerator

becomes an integral of the special kind discussed in section 4. We leave the computation

of such integrals to the next subsection.

On the left side of the KLT formula one has(
1

(am, bm, dm, β) (12 · · ·n)

m−1∏
I=1

raI ,bI ,cI ,dI

)
. (6.8)

But this is identical in structure to the starting point (6.4) but with m − 1 cross ratios.

Iterating the procedure one ends up reducing the computation of the original integral∫
dµn

(
1

(γ(1)γ(2) · · · γ(n))

)
×

(
1

(12 · · ·n)

m−1∏
I=1

raI ,bI ,cI ,dI ×
σam,bmσcm,dm
σam,dmσbm,cm

)
(6.9)

to that of integrals of the special form∫
dµn

1∏
e∈G σve,ue

, (6.10)

where G is some 4-regular graph with n vertices.

6.2 Finding a compatible KLT basis

This is the final step of the algorithm. Consider any integral of the special type as the ones

found above ∫
dµn

1∏
e∈G σve,ue

. (6.11)
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If the integrand can be written as the product of two Parke-Taylor factors then this integral

is of the form m(α|β) and it is the end of the procedure. This is the ideal point to introduce

more of the mathematical terminology corresponding to our physical issue. A Parke-Taylor

factor of the integrand corresponds to a Hamilton cycle of G. Therefore, if G has two edge-

disjoint Hamilton cycles we stop.

Assuming that G does not have two edge-disjoint Hamilton cycles, using Petersen’s

theorem as described in section 4 we write (6.11) as∫
dµn

1∏
e∈GL

σve,ue
× 1∏

e∈GR
σve,ue

, (6.12)

where both GL and GR are 2-regular graphs of n-vertices. This means that the left and

the right factors can be used as the starting points in a KLT decomposition.

The next step is based on the existence of compatible Parke-Taylor factors as discussed

in section 5. Recall that a Parke-Taylor factor (α(1)α(2) · · ·α(n)) is said to be compatible

with a 2-regular graph, say GL, if the union of the two graphs, which is a 4-regular graph,

admits a Hamiltonian decomposition, i.e., it is the union of two edge-disjoint Hamilton

cycles (see section 5 for definitions and more details).

In section 5 we gave computer-based evidence for the fact that for any 2-regular graph,

the number of compatible Parke-Taylor factors is larger than (n−3)!. We now also assume

that from the set of compatible graphs of GL and of GR it is possible to choose (n− 3)! of

each, denoted as L andR such that they are independent in the sense defined in section 3.2.

For the reader’s convenience we recall that L and R are said to be independent of the

(n− 3)!× (n− 3)! matrix

mL|R = {m(α|β) : α ∈ L, β ∈ R} (6.13)

is not singular.

Under these assumptions we take L and R in order to build a generalized KLT relation

that expresses ∫
dµn

1∏
e∈GL

σve,ue
× 1∏

e∈GR
σve,ue

(6.14)

as a sum over product of∫
dµn

1(∏
e∈GL

σve,ue

)
(α(1)α(2) · · ·α(n))

(6.15)

and ∫
dµn

1(∏
e∈GL

σve,ue

)
(β(1)β(2) · · ·β(n))

(6.16)

where α and β define graphs that are GL and GR compatible respectively.

By definition of GL and GR compatibility both integrals (6.15) and (6.16) can be

written as the product of two Parke-Taylor factors, e.g., ∏
e∈GL

σve,ue

 (α(1)α(2) · · ·α(n)) = (ρ(1)ρ(2) · · · ρ(n))(ρ′(1)ρ′(2) · · · ρ′(n)) (6.17)
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for some ρ, ρ′ ∈ Sn and therefore∫
dµn

1(∏
e∈GL

σve,ue

)
(α(1)α(2) · · ·α(n))

= m(ρ|ρ′) (6.18)

as desired.

7 All six-point integrals

In this section we illustrate the techniques introduced in previous sections in the case of

six-point integrals. Starting with a general integral∫
dµ6F (σ) (7.1)

one can use the reduction procedure explained in the previous section to turn it into

combinations of the special integrals studied in section 4 which have a constant numerator.

More explicitly, we are left with the computation of integrals of the form∫
dµ6

1∏
1≤a<b≤6 σ

wab
ab

(7.2)

with wab ≥ 0, waa = 0 and
∑n

b=1wab = 4 for all a ∈ {1, 2, . . . , n}.
As explained in section 4, the matrix wab, with wba = wab, is the adjacency matrix of

a 4-regular graph GF [30, 31]. Employing Petersen’s theorem any such integrand can then

be decomposed as ∫
dµ6

1∏
e∈GL

F
σve,ue

× 1∏
e∈GR

F
σve,ue

(7.3)

where GLF and GRF are two 2-regular graphs that provide one of the possible decompositions

of GF .

Each one of the 2-regular graphs GLF and GRF is one of the following options: a hexagon;

a square and a bubble; two triangles; or three bubbles.

The last step is to find two sets of six Parke-Taylor factors L and R such that all

Parke-Taylor factors in L (R) are compatible with GLF (GRF ). Of course, the two sets L and

R must also be independent. Once this is found, the KLT procedure of section 3 completes

the computation in terms of the basic building blocks m(α|β).

At this point is clear that our only remaining task in this section is to provide explicit

sets of Parke-Taylor factors which are compatible with each one of the possible 2-regular

graph.

Clearly, there is nothing needed when the 2-regular graph is a hexagon as it is by

itself a Parke-Taylor factor and therefore compatible with all 5! Parke-Taylor factors at

six-points.

7.1 A bubble and a square

Consider the configuration of labels for a bubble and a square given in figure 5. Clearly,

any other assignments of labels can be obtained from this one by a simple relabelling. An

independent basis of compatible six Parke-Taylor factors chosen from the 32 possible ones

is given in figure 6.
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Figure 5. A bubble and a square geometry.

Figure 6. Compatible cycles with a bubble and a square.

Figure 7. Two triangles geometry.

7.2 Two triangles

Consider the configuration of labels for two triangles given in figure 7. An independent

basis of compatible six Parke-Taylor factors chosen from the 42 possible ones is given in

figure 8.

7.3 Three bubbles

Finally, consider the configuration of labels for three bubbles given in figure 9.

From the table 1, we know that the total number of 2-regular compatible graphs with

three bubble is 16. These 16 Parke-Taylor factors are given in figure 10. In the next

section we choose an independent basis of compatible six Parke-Taylor factors from the 16

possibilities given in figure 10, in order to solve the non-trivial example (3.35).
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Figure 8. Compatible cycles with two triangles.

Figure 9. Three Bubbles.

7.4 Explicit example

As an explicit illustration of the full procedure we end this section with the computation

of the integral we left open at the end of section 3.3

Isp =

∫
dµ6

1

(123456)

1

(12)(34)(56)
, (7.4)

with its associated graph given in figure 11. On the r.h.s. the canonical Parke-Taylor

(IL(σ)) does not have any incompatibility with the standard KLT approach, but, for the

three bubbles (IR(σ)) the standard KLT construction is not enough. The idea is to find

a set of six cycles (six Parke-Taylor) such that the union of each one of them with the

three bubbles graph can be decomposed in two-disjoint Hamiltonian cycles (i.e. in two

Parke-Taylor).

From the figure 10 we choose the following set

R = {(145326), (145236), (164523), (153246), (154623), (154236)}. (7.5)

In order to check that these six elements are compatibles with the three bubbles we, in

figure 12, give an Hamiltonian decomposition. Therefore, the integrand

1

(12)(34)(56)(β)
,
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Figure 10. Compatible cycles with three Bubbles.

with β ∈ R, can be written as the product of two six-point Parke-Taylor factors and hence

their integrals are part of the building blocks.

So far, we have just found a “right base”, i.e. a linearly independent7 R set given

in (7.5). Now, it is necessary to find a “left base”, i.e. a L set which must satisfy the

following two conditions:

7Remember, the set is linearly independent using the m(α|β) inner product.
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Figure 11. Graph representation of the integrand I(σ) = IL(σ)IR(σ), where IL(σ) = 1
(123456) ,

IR(σ) = 1
(12)(34)(56) .

Figure 12. Hamiltonian decomposition of (12)(34)(56)(β), β ∈ R. The red lines give one Hamil-

tonian cycle and the black lines form the other one (disjoint cycles).

(1) the matrix defined by the inner product mL,R(α|β), with α ∈ L and β ∈ R, is not

singular;

(2) the α′s elements, α ∈ L, must be compatibles with the left integrand IL(σ), i.e. they

admit a Hamiltonian decomposition (see section 5), such as it happened on the “right

side” (see figure 12).

In our example (7.4), the left integrand, IL(σ) = 1
(123456) , is the canonical Parke-Taylor,

therefore the second condition is automatically satisfied (product of two Parke-Taylor). If

we defines the left set (L) with the same elements of the right set, i.e. L ≡ R, then one can

show that the matrix mL,R(α|β) is not singular. However, note that this is a huge matrix
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since that the diagonal elements are Parke-Taylor squared.8 We define the left set such

that its intersection with the right base is disjoint (L∩R = ∅), in order to avoid terms with

Parke-Taylor squared in the matrix. For example, choosing the linearly independent set

L = {(126534), (125634), (125643), (124365), (124653), (136524)}, (7.6)

one can check that the matrix mL,Rα|β , α ∈ L and β ∈ R, given by

B[14 : 345]
s35 s26

0 0 0 0 0

0 −(s14 s25 s36)−1 0 0 0
B[14 : 136]
s25 s36

0 0
B[25 : 123]
s13 s46

0 (s13 s46 s123)−1 (s13 s25 s245)−1

0 0 0 (s24 s15 s234)−1 −B[46 : 24]
s35 s135

0

0 0 (s13 s46 s123)−1 0
B[123 : 246]

s13 s46
0

0 0 0
B[36 : 234]
s15 s24

0 (s24 s36 s245)−1


with si1i2···ij ≡ (ki1 + ki2 + · · ·+ kij )

2 and

B[i1 · · · ik : j1 · · · jm] ≡ 1

si1···ik
+

1

sj1···jm
(7.7)

is not singular. Moreover, the vectors defined as

(UIL)α =

∫
dµ6

1

(123456)(α)
, α ∈ L, (7.8)

(VIR)β =

∫
dµ6

1

(12)(34)(56)(β)
, β ∈ R, (7.9)

are given by

(UIL)α =
(
B[56 : 345]
s12 s34

, −(s12 s34 s56)−1, B[34 : 123]
s12 s56

, B[12 : 234]
s34 s56

, (s12 s56 s123)−1, 0
)
,

(VIR)β =
(
B[56 : 345]
s12 s34

, −(s12 s34 s56)−1, B[34 : 456]
s12 s56

, B[12 : 234]
s34 s56

, B[34 : 123]
s12 s56

, B[12 : 234]
s34 s56

)
.

Finally, we can write the answer of the (7.4) integral as a rational function of the m(α|β)

building blocks

Isp =

∫
dµ6

1

(123456)

1

(12)(34)(56)
=

∑
α∈L, β∈R

(UIL)α (mL,R)−1
α|β (VIR)β . (7.10)

8L ≡ R is a good left base if the left integrand is also given by three bubbles, i.e. for a total integrand

given by the graph

.
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We have been able to solve a non-trivial integral using the algorithm described in this

paper. In addition, one can note, such as it was done in the Hamiltonian decomposition

section, that it is possible to split the geometry of the 4-regular graph (initial integrand)

and to study them separately as two 2-regular graphs.

8 Discussions

In this paper we provided an algorithm for the computation of contour integrals of the form∫
dµnF (σ) (8.1)

where F (σ) is a general rational function with the SL(2,C) transformations of two Parke-

Taylor factors and therefore can be written, without loss of generality, as

F (σ) =
1

(12 · · ·n)(γ(1)γ(2) · · · γ(n))

m∏
i=1

r(i) (8.2)

where r(i) are cross ratios of the positions of four punctures and m is an arbitrary positive

integer. These integrals appear in many physical applications and hence having an algo-

rithm for their computation is important for the study of a variety of theories. The contour

and measure are defined using the critical points of a Morse function on M0,n [13, 18, 24]

φ(σ, σ̄) =
1

2

∑
1≤a<b≤n

sab ln |σa − σb|2. (8.3)

This function is a universal part of the “action” that controls correlation functions that

compute scattering amplitudes in string theory. One of the most pressing issues is to find

a direct connection with string theory computations. It is well known that in the Gross-

Mende limit of string amplitudes (which is a certain tensionless limit and thus opposite

from field theory) correlations functions also localize to the critical points of (8.3) [18].

Constructions based on ambitwistor space have been very successful but still do not provide

a direct link with a limit of string theory [3, 6, 10, 13]. The approach of Berkovits that uses

an infinite tension limit of string theory in the pure spinor formalism is clearly connected

to string theory but is not directly connected to the CHY formulas for gravity and Yang-

Mills [5, 7, 43]. It is reasonable to hope that a direct connection of CHY formulas to a limit

of string theory may teach us new lessons on how string theory is connected to field theory

and how the tools developed in this work can extend to applications in string theory.

A simple byproduct of this work is its application to produce a variety of field theoretic

relations. One of the simplest examples is a relation that expresses double-trace amplitudes

of gluons in the Einstein-Yang-Mills theory discussed in [11, 12] to single trace amplitudes

and scalar amplitudes [1, 2]. To see the relation consider the CHY formula for a double-

trace amplitude with gluons 1, 2, . . . ,m in the first trace and gluons m+ 1,m+ 2, . . . , n in

the second,

A(2)(1, 2 . . . ,m : m+ 1,m+ 2, . . . , n) =

∫
dµn

s12···m
(12 · · ·m) (m+ 1 m+ 2 · · · n)

Pf ′Ψ .
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The graph of the integrand is simply the product of two polygons and hence one can find a

basis of (n− 3)! permutations (Parke-Taylor factors) that are compatible with that graph.

Recall that by being compatible we mean that the union of the graph associated to a

permutation and the two polygons admits an edge-disjoint Hamiltonian decomposition. In

other words, it can be expressed as the union of two Parke-Taylor factors. Denoting such

as a basis as a left basis L and choosing any other convenient basis as a right basis R
one has

A(2)(1, 2 . . . ,m : m+ 1,m+ 2, . . . , n) = s12···m
∑

α∈L,β∈R
m(α′|α′′)

(
mL|R

)−1

α|β
A(1)(β), (8.4)

with

m(α′|α′′) ≡
∫
dµn

1

(α)(12 · · ·m) (m+ 1 m+ 2 · · · n)
=

∫
dµn

1

(α′)(α′′)
(8.5)

and where α′ and α′′ are the two edge-disjoint Hamilton cycles that decompose

(α) (12 · · ·m) (m+ 1 m+ 2 · · · n).

It would be interesting to explicitly construct the bases L andR such that the relation (8.4)

takes its simplest possible form. Also interesting is to find a possible string theoretic origin

for this relation. It is clear that there are plenty of relations such as (8.4) which connect

very different kinds of objects. In fact, these new kind of relations greatly extend the large

class already found using KLT in [12] which linked theories such as the special Galileon with

the U(N) nonlinear σ model. The algorithm presented in section 6 is completely general

but it is not the most efficient one in particular cases. It would be interesting to select

certain families of integrals that appear in particular theories and refine the algorithm to

make it the most efficient possible. One way to improve the efficiency is by selecting basis of

permutations L and R such that the matrix mL|R is as sparse as possible. Finally, finding

direct mathematical application of contour integrals over M0,n could lead to yet another

link between the elegant math of Riemann surfaces and that of graph theory. One closely

related link was established by using Strebel differentials [44] which provide a connection

between the decorated moduli space, M0,n × (R+)n and ribbon graphs [45]. It would be

fascinating to find connections with this or other constructions.
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A Algorithm and Petersen’s theorem

Before stating the Petersen’s Theorem it is useful to give an algorithm to find a decom-

position of any 4-regular graph in two edge-disjoint 2-factors, in order to elucidate the

Petersen’s Theorem.

A.1 Algorithm

The main aim of this algorithm is to show in a simple way how to obtain two edge-disjoint

2-regular spanning9 graphs from one 4-regular graph, i.e.

GF = GLF ∪ GRF

where the “∪” symbol means the union of the edge sets.10

The algorithm is divided in four fundamental steps. In order to better understand it

we give an example in each step using the graph drew in the figure 3.

• Eulerian Path (EP)

The first step of the algorithm is to find an Eulerian path. An Eulerian path is a trail

in a graph which visits every edge exactly once. Since we are working with 2k-factor

undirected graphs, k ∈ N+, then the existence of an Eulerian path is guaranteed and,

in addition, every Eulerian path is closed, i.e. it is a cycle [30, 31].

An Eulerian orientation of an undirected graph GF is an assignment of a direc-

tion to each edge of GF such that, at each vertex ai, the indegree of ai (number of

incoming edges) equals the outdegree of ai (number of outgoing edges).

There are several algorithms to get an Eulerian path but we do not discuss them

in this paper [30, 31]. In order to unify the notation we denote the cycle defined by

the trail {[a1; a2], [a1; a2], . . . , [an−1; an], [an; a1]} as

(a1a2 . . . an) ≡ {[a1; a2], [a2; a3], . . . , [an−1; an], [an; a1]},

where the orientation of the path is given by the ordering of the edges in the set.

With a view to understand better the Eulerian path concept we have found two

of them on the example given in the figure 3.

Note that on each vertex there are two incoming and two outgoing edges, such

as it was said above.

• Bipartite graph

After finding an Eulerian path, the second step is to construct a bipartite graph from

this EP. Thus, we must define what is a bipartite graph.

Bipartite graph. A bipartite graph G is a graph whose vertex-set V can be par-

titioned into two subsets U and W , such that each edge of G has one endpoint in U

and one endpoint in W . The pair U,W is called a (vertex) bipartition of G, and U

and W are called the bipartition subsets [30, 31].

9A Spanning graph is a subgraph such that its vertex set is the same as the original graph.
10The vertex sets are the same for the two 2-regular graphs and the 4-regular graph, i.e. VF = V L

F = V R
F .
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Figure 14. Bipartite graphs.

Using the EP found in the first step one can associate a bipartite graph G′F to

the original graph GF . The idea is simple, since on each vertex there are two incoming

and two outgoing edges then one can split each vertex in two, one of them contains the

incoming edges (we call them the blue vertices) and the other one contains the out-

going edges (we call them the yellow vertices). This procedure generates a bipartite

graph G′F , where the bipartition is given by the blue and yellow vertices, i.e.

U ′F = {Blue Vertices}, W ′F = {Yellow Vertices},

and therefore each edge of G′F has one endpoint in U ′F and one endpoint in W ′F .

Using this procedure on the Eulerian paths given in the figure 13 one obtains the

following where we have kept the orientation of the edges on the bipartite graph, but

this is not necessary. Note that the two bipartite graphs in figure 14 are 2-regular.

• 1-Factor (perfect matching)

The third step is to identify two edge-disjoint (disjoint sets of edges) 1-Factors in the

bipartite graph G′F . By definition, a 1-Factor in a graph G is a 1-regular spanning
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Figure 15. Two edge-disjoint 1-Factor graphs.

subgraph, i.e. there is a set of edges without common vertices and connects all vertices

of the graph G (perfect matching). Moreover, since we have found a bipartite 2-

regular graph in the step 2, then there is a theorem which implies the existence of a

perfect matching in it [30, 31]:

Theorem A.1. Every r-regular bipartite graph G with r > 0 is 1-factorable, i.e.

there are r edges-independent 1-Factors.11

This powerful theorem means that the bipartite 2-regular graphs G′F obtained in

the step 2 have two edge-disjoint 1-Factors. These 1-Factors can be obtained easily.

First of all, one should detect all cycles in the bipartite 2-regular graph G′F and after

that, one should remove alternate edges in each cycles. This procedure generates one

1-factor and the other one is given by the edges removed.

In the bipartite graph given by the figure 14a we have found two edge-disjoint

1-Factors and in the bipartite graph (figure 14b) we choose the following two edge-

disjoint 1-Factors given in figures 15 and 16.

• Identifying vertices

The last step is very simple. The idea is just to identify the blue and yellow vertex

with the same label in each 1-Factor graph, as it is given in figure 16, and so one

obtains the decomposition of the 4-regular graph GF in two edge-disjoint 2-regular

graphs (GLF , G
R
F ).

In the figures 18 and 19 we show graphically the whole algorithm using the two

Eulerian paths found in the example of the step 1. Note that we have obtained two

different decompositions. The first one (figure 18) is one Parke-Taylor factor and two

11This theorem is not proved in this paper.
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Figure 17. Identifying Vertices.

triangles

Fd =
1

(123)(345)(561)(246)
= FLd F

R
d , FLd =

1

(135)(246)
, FRd =

1

(123456)
,

and the second one (FigA.5b) is two Parke-Taylor factors

Fd =
1

(123)(345)(561)(246)
= FLd F

R
d , FLd =

1

(153246)
, FRd =

1

(126543)
.

A.2 Petersen’s theorem

Now, we are able to state the Petersen’s Theorem [30, 31], which was sketching previously

with the algorithm.

Theorem A.2 (Petersen’s theorem). Every 2k-regular graph G, with k ∈ N+, is 2-

factorable.

In the particular case when k = 2 one has that every 4-regular graph is two factorable,

i.e., there are two edge-disjoint 2-regular graphs.
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Figure 18. Algorithm. Two edge-disjoint decomposition, first option.
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