1,104 research outputs found

    Compatible and incompatible abstractions in Bayesian networks

    Get PDF
    The graphical structure of a Bayesian network (BN) makes it a technology well-suited for developing decision support models from a combination of domain knowledge and data. The domain knowledge of experts is used to determine the graphical structure of the BN, corresponding to the relationships and between variables, and data is used for learning the strength of these relationships. However, the available data seldom match the variables in the structure that is elicited from experts, whose models may be quite detailed; consequently, the structure needs to be abstracted to match the data. Up to now, this abstraction has been informal, loosening the link between the final model and the experts' knowledge. In this paper, we propose a method for abstracting the BN structure by using four 'abstraction' operations: node removal, node merging, state-space collapsing and edge removal. Some of these steps introduce approximations, which can be identified from changes in the set of conditional independence (CI) assertions of a network

    Optimal compromise between incompatible conditional probability distributions, with application to Objective Bayesian Kriging

    Full text link
    Models are often defined through conditional rather than joint distributions, but it can be difficult to check whether the conditional distributions are compatible, i.e. whether there exists a joint probability distribution which generates them. When they are compatible, a Gibbs sampler can be used to sample from this joint distribution. When they are not, the Gibbs sampling algorithm may still be applied, resulting in a "pseudo-Gibbs sampler". We show its stationary probability distribution to be the optimal compromise between the conditional distributions, in the sense that it minimizes a mean squared misfit between them and its own conditional distributions. This allows us to perform Objective Bayesian analysis of correlation parameters in Kriging models by using univariate conditional Jeffreys-rule posterior distributions instead of the widely used multivariate Jeffreys-rule posterior. This strategy makes the full-Bayesian procedure tractable. Numerical examples show it has near-optimal frequentist performance in terms of prediction interval coverage

    Bayesian Networks for Evidence Based Clinical Decision Support.

    Get PDF
    PhDEvidence based medicine (EBM) is defined as the use of best available evidence for decision making, and it has been the predominant paradigm in clinical decision making for the last 20 years. EBM requires evidence from multiple sources to be combined, as published results may not be directly applicable to individual patients. For example, randomised controlled trials (RCT) often exclude patients with comorbidities, so a clinician has to combine the results of the RCT with evidence about comorbidities using his clinical knowledge of how disease, treatment and comorbidities interact with each other. Bayesian networks (BN) are well suited for assisting clinicians making evidence-based decisions as they can combine knowledge, data and other sources of evidence. The graphical structure of BN is suitable for representing knowledge about the mechanisms linking diseases, treatments and comorbidities and the strength of relations in this structure can be learned from data and published results. However, there is still a lack of techniques that systematically use knowledge, data and published results together to build BNs. This thesis advances techniques for using knowledge, data and published results to develop and refine BNs for assisting clinical decision-making. In particular, the thesis presents four novel contributions. First, it proposes a method of combining knowledge and data to build BNs that reason in a way that is consistent with knowledge and data by allowing the BN model to include variables that cannot be measured directly. Second, it proposes techniques to build BNs that provide decision support by combining the evidence from meta-analysis of published studies with clinical knowledge and data. Third, it presents an evidence framework that supplements clinical BNs by representing the description and source of medical evidence supporting each element of a BN. Fourth, it proposes a knowledge engineering method for abstracting a BN structure by showing how each abstraction operation changes knowledge encoded in the structure. These novel techniques are illustrated by a clinical case-study in trauma-care. The aim of the case-study is to provide decision support in treatment of mangled extremities by using clinical expertise, data and published evidence about the subject. The case study is done in collaboration with the trauma unit of the Royal London Hospital

    Automated Translation and Accelerated Solving of Differential Equations on Multiple GPU Platforms

    Full text link
    We demonstrate a high-performance vendor-agnostic method for massively parallel solving of ensembles of ordinary differential equations (ODEs) and stochastic differential equations (SDEs) on GPUs. The method is integrated with a widely used differential equation solver library in a high-level language (Julia's DifferentialEquations.jl) and enables GPU acceleration without requiring code changes by the user. Our approach achieves state-of-the-art performance compared to hand-optimized CUDA-C++ kernels, while performing 20−100×20-100\times faster than the vectorized-map (\texttt{vmap}) approach implemented in JAX and PyTorch. Performance evaluation on NVIDIA, AMD, Intel, and Apple GPUs demonstrates performance portability and vendor-agnosticism. We show composability with MPI to enable distributed multi-GPU workflows. The implemented solvers are fully featured, supporting event handling, automatic differentiation, and incorporating of datasets via the GPU's texture memory, allowing scientists to take advantage of GPU acceleration on all major current architectures without changing their model code and without loss of performance.Comment: 11 figure

    ML + FV = ♡\heartsuit? A Survey on the Application of Machine Learning to Formal Verification

    Get PDF
    Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from training data. In this paper, we postulate that they are complementary in practice, and explore how ML helps FV in its classical approaches: static analysis, model-checking, theorem-proving, and SAT solving. We draw a landscape of the current practice and catalog some of the most prominent uses of ML inside FV tools, thus offering a new perspective on FV techniques that can help researchers and practitioners to better locate the possible synergies. We discuss lessons learned from our work, point to possible improvements and offer visions for the future of the domain in the light of the science of software and systems modeling.Comment: 13 pages, no figures, 3 table

    Modeling knowledge states in language learning

    Get PDF
    Artificial intelligence (AI) is being increasingly applied in the field of intelligent tutoring systems (ITS). Knowledge space theory (KST) aims to model the main features of the process of learning new skills. Two basic components of ITS are the domain model and the student model. The student model provides an estimation of the state of the student’s knowledge or proficiency, based on the student’s performance on exercises. The domain model provides a model of relations between the concepts/skills in the domain. To learn the student model from data, some ITSs use the Bayesian Knowledge Tracing (BKT) algorithm, which is based on hidden Markov models (HMM). This thesis investigates the applicability of KST to constructing these models. The contribution of the thesis is twofold. Firstly, we learn the student model by a modified BKT algorithm, which models forgetting of skills (which the standard BKT model does not do). We build one BKT model for each concept. However, rather than treating a single question as a step in the HMM, we treat an entire practice session as one step, on which the student receives a score between 0 and 1, which we assume to be normally distributed. Secondly, we propose algorithms to learn the “surmise” graph—the prerequisite relation between concepts—from “mastery data,” estimated by the student model. The mastery data tells us the knowledge state of a student on a given concept. The learned graph is a representation of the knowledge domain. We use the student model to track the advancement of students, and use the domain model to propose the optimal study plan for students based on their current proficiency and targets of study
    • 

    corecore