28 research outputs found

    Comparison study of microarray meta-analysis methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-analysis methods.</p> <p>Results</p> <p>We compare eight meta-analysis methods, five existing methods, two naive methods and a novel approach (mDEDS). Comparisons are performed using simulated data and two biological case studies with varying degrees of meta-analysis complexity. The performance of meta-analysis methods is assessed via ROC curves and prediction accuracy where applicable.</p> <p>Conclusions</p> <p>Existing meta-analysis methods vary in their ability to perform successful meta-analysis. This success is very dependent on the complexity of the data and type of analysis. Our proposed method, mDEDS, performs competitively as a meta-analysis tool even as complexity increases. Because of the varying abilities of compared meta-analysis methods, care should be taken when considering the meta-analysis method used for particular research.</p

    Multiplex meta-analysis of RNA expression to identify genes with variants associated with immune dysfunction

    Get PDF
    ObjectiveWe demonstrate a genome-wide method for the integration of many studies of gene expression of phenotypically similar disease processes, a method of multiplex meta-analysis. We use immune dysfunction as an example disease process.DesignWe use a heterogeneous collection of datasets across human and mice samples from a range of tissues and different forms of immunodeficiency. We developed a method integrating Tibshirani's modified t-test (SAM) is used to interrogate differential expression within a study and Fisher's method for omnibus meta-analysis to identify differentially expressed genes across studies. The ability of this overall gene expression profile to prioritize disease associated genes is evaluated by comparing against the results of a recent genome wide association study for common variable immunodeficiency (CVID).ResultsOur approach is able to prioritize genes associated with immunodeficiency in general (area under the ROC curve = 0.713) and CVID in particular (area under the ROC curve = 0.643).ConclusionsThis approach may be used to investigate a larger range of failures of the immune system. Our method may be extended to other disease processes, using RNA levels to prioritize genes likely to contain disease associated DNA variants

    High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments are becoming increasingly common in biomedical research, as is their deposition in publicly accessible repositories, such as Gene Expression Omnibus (GEO). As such, there has been a surge in interest to use this microarray data for meta-analytic approaches, whether to increase sample size for a more powerful analysis of a specific disease (e.g. lung cancer) or to re-examine experiments for reasons different than those examined in the initial, publishing study that generated them. For the average biomedical researcher, there are a number of practical barriers to conducting such meta-analyses such as manually aggregating, filtering and formatting the data. Methods to automatically process large repositories of microarray data into a standardized, directly comparable format will enable easier and more reliable access to microarray data to conduct meta-analyses.</p> <p>Methods</p> <p>We present a straightforward, simple but robust against potential outliers method for automatic quality control and pre-processing of tens of thousands of single-channel microarray data files. GEO GDS files are quality checked by comparing parametric distributions and quantile normalized to enable direct comparison of expression level for subsequent meta-analyses.</p> <p>Results</p> <p>13,000 human 1-color experiments were processed to create a single gene expression matrix that subsets can be extracted from to conduct meta-analyses. Interestingly, we found that when conducting a global meta-analysis of gene-gene co-expression patterns across all 13,000 experiments to predict gene function, normalization had minimal improvement over using the raw data.</p> <p>Conclusions</p> <p>Normalization of microarray data appears to be of minimal importance on analyses based on co-expression patterns when the sample size is on the order of thousands microarray datasets. Smaller subsets, however, are more prone to aberrations and artefacts, and effective means of automating normalization procedures not only empowers meta-analytic approaches, but aids in reproducibility by providing a standard way of approaching the problem.</p> <p>Data availability: matrix containing normalized expression of 20,813 genes across 13,000 experiments is available for download at . Source code for GDS files pre-processing is available from the authors upon request.</p

    Meta-analysis approach as a gene selection method in class prediction: Does it improve model performance? A case study in acute myeloid leukemia

    Get PDF
    Background: Aggregating gene expression data across experiments via meta-analysis is expected to increase the precision of the effect estimates and to increase the statistical power to detect a certain fold change. This study evaluates the potential benefit of using a meta-analysis approach as a gene selection method prior to predictive modeling in gene expression data. Results: Six raw datasets from different gene expression experiments in acute myeloid leukemia (AML) and 11 different classification methods were used to build classification models to classify samples as either AML or healthy control. First, the classification models were trained on gene expression data from single experiments using conventional supervised variable selection and externally validated with the other five gene expression datasets (referred to as the individual-classification approach). Next, gene selection was performed through meta-analysis on four datasets, and predictive models were trained with the selected genes on the fifth dataset and validated on the sixth dataset. For some datasets, gene selection through meta-analysis helped classification models to achieve higher performance as compared to predictive modeling based on a single dataset; but for others, there was no major improvement. Synthetic datasets were generated from nine simulation scenarios. The effect of sample size, fold change and pairwise correlation between differentially expressed (DE) genes on the difference between MA- and individual-classification model was evaluated. The fold change and pairwise correlation significantly contributed to the difference in performance between the two methods. The gene selection via meta-analysis approach was more effective when it was conducted using a set of data with low fold change and high pairwise correlation on the DE genes. Conclusion: Gene selection through meta-analysis on previously published studies potentially improves the performance of a predictive model on a given gene expression data

    Transcriptome meta-analysis reveals a central role for sex steroids in the degeneration of hippocampal neurons in Alzheimer’s disease

    Get PDF
    BACKGROUND: Alzheimer’s disease is the most prevalent form of dementia. While a number of transcriptomic studies have been performed on the brains of Alzheimer’s specimens, no clear picture has emerged on the basis of neuronal transcriptional alterations linked to the disease. Therefore we performed a meta-analysis of studies comparing hippocampal neurons in Alzheimer’s disease to controls. RESULTS: Homeostatic processes, encompassing control of gene expression, apoptosis, and protein synthesis, were identified as disrupted during Alzheimer’s disease. Focusing on the genes carrying out these functions, a protein-protein interaction network was produced for graph theory and cluster exploration. This approach identified the androgen and estrogen receptors as key components and regulators of the disrupted homeostatic processes. CONCLUSIONS: Our systems biology approach was able to identify the importance of the androgen and estrogen receptors in not only homeostatic cellular processes but also the role of other highly central genes in Alzheimer’s neuronal dysfunction. This is important due to the controversies and current work concerning hormone replacement therapy in postmenopausal women, and possibly men, as preventative approaches to ward off this neurodegenerative disorder

    Detecting disease-associated genes with confounding variable adjustment and the impact on genomic meta-analysis: With application to major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detecting candidate markers in transcriptomic studies often encounters difficulties in complex diseases, particularly when overall signals are weak and sample size is small. Covariates including demographic, clinical and technical variables are often confounded with the underlying disease effects, which further hampers accurate biomarker detection. Our motivating example came from an analysis of five microarray studies in major depressive disorder (MDD), a heterogeneous psychiatric illness with mostly uncharacterized genetic mechanisms.</p> <p>Results</p> <p>We applied a random intercept model to account for confounding variables and case-control paired design. A variable selection scheme was developed to determine the effective confounders in each gene. Meta-analysis methods were used to integrate information from five studies and post hoc analyses enhanced biological interpretations. Simulations and application results showed that the adjustment for confounding variables and meta-analysis improved detection of biomarkers and associated pathways.</p> <p>Conclusions</p> <p>The proposed framework simultaneously considers correction for confounding variables, selection of effective confounders, random effects from paired design and integration by meta-analysis. The approach improved disease-related biomarker and pathway detection, which greatly enhanced understanding of MDD neurobiology. The statistical framework can be applied to similar experimental design encountered in other complex and heterogeneous diseases.</p

    A Practical Meta-Analysis of Prayer Efficacy in Coping with Mental Health

    Get PDF
    Given the large number of people who identify as religious in the United States and the large number of the overall population diagnosed with a mental illness, there is a need for linking an easily accessible practice like prayer to a common and often painful problem of managing mental health symptoms. Using a Practical Meta-Analysis, this research project examined prayer’s efficacy when used as a coping strategy to relieve mental health symptoms. A Practical Meta-Analysis is a statistical method that synthesizes findings from multiple research studies and provides a quantitative measure of an intervention’s efficacy as a whole. Of 598 articles located in five databases searched, the thirteen included studies produced thirty unique effect sizes that were used in the Practical Meta-Analysis calculations. The meta-analysis’ result was an average effect size of -0.0184 with a p-value of 0.3665, which is a small, yet insignificant magnitude. However, when considering the overall group of included studies, sixty percent of these studies showed prayer being associated with improved mental health symptoms. The findings of this study support the need for future research on how prayer can be a helpful intervention for people to use in coping with mental health symptoms

    A Practical Meta-Analysis of Prayer Efficacy in Coping with Mental Health

    Get PDF
    Given the large number of people who identify as religious in the United States and the large number of the overall population diagnosed with a mental illness, there is a need for linking an easily accessible practice like prayer to a common and often painful problem of managing mental health symptoms. Using a Practical Meta-Analysis, this research project examined prayer’s efficacy when used as a coping strategy to relieve mental health symptoms. A Practical Meta-Analysis is a statistical method that synthesizes findings from multiple research studies and provides a quantitative measure of an intervention’s efficacy as a whole. Of 598 articles located in five databases searched, the thirteen included studies produced thirty unique effect sizes that were used in the Practical Meta-Analysis calculations. The meta-analysis’ result was an average effect size of -0.0184 with a p-value of 0.3665, which is a small, yet insignificant magnitude. However, when considering the overall group of included studies, sixty percent of these studies showed prayer being associated with improved mental health symptoms. The findings of this study support the need for future research on how prayer can be a helpful intervention for people to use in coping with mental health symptoms
    corecore