46 research outputs found

    Comparison of the asymptotic stability properties for two multirate strategies

    Get PDF
    This paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test problem and the differences between the results are discussed. The considered multirate schemes use Rosenbrock type methods as the main time integration method and have one level of temporal local refinement. Some remarks on the relevance of the results for 2 x 2 test problems are presented

    Construction of high-order multirate Rosenbrock methods for stiff ODEs

    Get PDF
    Multirate time stepping is a numerical technique for efficiently solving large-scale ordinary differential equations (ODEs) with widely different time scales localized over the components. This technique enables one to use large time steps for slowly varying components, and small steps for rapidly varying ones. Multirate methods found in the literature are normally of low order, one or two. Focusing on stiff ODEs, in this paper we discuss multirate methods based on the higher-order, stiff Rosenbrock integrators. Special attention is paid to the treatment of the refinement interfaces with regard to the choice of the interpolant and the occurrence of order reduction. For stiff, linear systems containing a stiff source term, we propose modifications for the treatment of the source term which overcome order reduction originating from such terms and which we can implement in our multirate method

    Multirate numerical integration for stiff ODEs

    Get PDF

    A multirate time stepping strategy for stiff ODEs

    Get PDF
    To solve ODEs with different time scales which are localized over the components, multirate time stepping is examined. In this paper we introduce a self-adjusting time stepping strategy, in which the step size for a particular component is determined by its own local temporal variation, instead of using a single step for the whole system. We primarily consider implicit time stepping methods, suitable for stiff or mildly stiff ODEs. Numerical results for our multirate strategy are presented for several test problems. Comparisons with the corresponding single-rate schemes show that substantial gains in computational work and CPU times can be obtained
    corecore