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Abstract.

To solve ODE systems with different time scales which are localized over the compo-
nents, multirate time stepping is examined. In this paper we introduce a self-adjusting
multirate time stepping strategy, in which the step size for a particular component is
determined by its own local temporal variation, instead of using a single step size for the
whole system. We primarily consider implicit time stepping methods, suitable for stiff
or mildly stiff ODEs. Numerical results with our multirate strategy are presented for
several test problems. Comparisons with the corresponding single-rate schemes show
that substantial gains in computational work and CPU times can be obtained.

AMS subject classification (2000): 65L05, 65L06, 65L50.
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1 Introduction.

Standard single-rate time integration methods for ODEs work with time steps
that are varying in time but constant over the components. There are, however,
many problems of practical interest where the temporal variations have different
time scales for different sets of the components. To exploit these local time scale
variations, one needs multirate methods that use different, local time steps over
the components.
In this paper we will consider a simple multirate approach for system of ODEs

w′(t) = F (t, w(t)) , w(0) = w0 ,(1.1)

with given initial value in w0 ∈ Rm. The approximations at the global time levels
tn will be denoted by wn.
Our multirate approach is based on local temporal error estimation. Given
a global time step ∆tn = tn− tn−1, we compute a first, tentative approximation
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at the new time level for all components. For those components for which the
error estimator indicates that smaller steps are needed, the computation is re-
done with 12∆tn. This refinement stage may require values at the intermediate
time level of components that are not refined. These values can be obtained
by interpolation or by a ‘dense output’ formula. The refinement is continued
with local steps 2−l∆tn, until the error estimator is below a prescribed tolerance
for all components. Schematically, with components horizontally and time verti-
cally, the multirate time stepping is displayed in Figure 1.1. Small time steps
will be used for the more active components and larger ones for the less active
components.

Figure 1.1: Multirate time stepping for a time slab [tn−1, tn].

The intervals [tn−1, tn] are called time slabs. After each completed time slab the
solutions are synchronized. In our approach, these time slabs are automatically
generated, similar as in the single-rate approach, but without imposing temporal
accuracy constraints on all components of (1.1).
An important issue in our strategy will be to determine the size of the time
slabs. These could be taken large with many levels of refinements, or small with
few refinements. A decision will be made based on an estimate of the number of
components at which the solution needs to be calculated, including the overhead
due to repeated computations in refined sets.
The problems (1.1) in this paper are assumed to be stiff or mildly stiff. As
basic integration method we will use a simple one-step Rosenbrock method. The
presented strategy can be used with other methods as well, but for multistep
methods additional interpolations of past values will be required in the refine-
ment steps.
The paper is organized as follows. In Section 2 we will briefly discuss related
work on multirate schemes and introduce the Rosenbrock method that will be
used as our basic numerical integration method. In Section 3 the multirate time
stepping is described in detail, together with the time slab strategies. The per-
formance of the schemes is discussed in Section 4 by means of several numerical
experiments. Finally, Section 5 contains the conclusions and an outlook on fur-
ther work.

2 Background material and preliminaries.

2.1 Related work.

The first descriptions of automatic multirate schemes were given by Gear and
Wells [6] for linear multistep methods. As noted before, with multistep methods
interpolations of past values will be needed in general in the temporal refinement
stages.
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In Günther, Kværnø and Rentrop [7] a multirate scheme was introduced which
is based on partitioned Runge–Kutta methods with coupling between active and
latent components performed by interpolation and extrapolation of state vari-
ables. In particular, they introduced the notion of a compound step in which the
macro-step (for latent components) and the first micro-step (for the active com-
ponents) are computed simultaneously. The partitioning into slow (latent) and
fast (active) components is done in advance before solving the problem, based
on knowledge of the ODE system to be solved (in their applications these where
electrical circuits). A related scheme, based on Rosenbrock or ROW methods,
was studied by Bartel and Günther [2]; this will be further discussed in Sec-
tion 4.3. Some stability results for simplified versions of these schemes, applied
to systems of two linear equations, with one fast and one slow component, have
been presented in Kværnø [11].
An algorithm based on finite elements was proposed by Logg [12, 13]. In
a single-rate approach such schemes are computationally akin to fully implicit
Runge–Kutta methods. In the multirate approach this leads to very complicated
implicit relations, which are difficult to solve. Additional remarks on the strategy
used for this scheme can be found in Section 3.3.
Finally we mention that multirate schemes for explicit methods and non-stiff
problems have been examined by Engstler and Lubich [3, 4]. In the first paper
extrapolation is used, and in their strategy the partitioning into different levels
of slow to fast components is obtained automatically during the extrapolation
process. This approach looks quite promising, but for stiff problems and implicit
methods the necessary asymptotic expansions seem difficult to obtain.

2.2 The Rosenbrock ROS2 method.

Our multirate strategy is designed for one-step methods. In this paper we
will use the two-stage second-order Rosenbrock ROS2 method [9] as our basic
numerical integration method. To proceed from tn−1 to a new time level tn =
tn−1 + τ , the method calculates

wn = wn−1 +
3
2
k̄1 +

1
2
k̄2 ,

(I − γτJ)k̄1 = τF (tn−1, wn−1) + γτ
2Ft(tn−1, wn−1) ,

(I − γτJ)k̄2 = τF (tn, wn−1 + k̄1)− γτ
2Ft(tn−1, wn−1)− 2k̄1 ,

(2.1)

where J ≈ Fw(tn−1, wn−1). The method is linearly implicit: to compute the
internal vectors k̄1 and k̄2, a system of linear algebraic equations is to be solved.
Method (2.1) is of order two for any choice of the parameter γ and for any
choice of the matrix J . Furthermore, the method is A-stable for γ ≥ 1

4 and it

is L-stable if γ = 1± 1
2

√
2. In this paper we use L-stability with γ = 1− 1

2

√
2,

since this gives smaller error coefficients in the local truncation error than the
value γ = 1 + 1

2

√
2. For the local error estimation within the variable step size

control we use the embedded first-order formula

wn = wn−1 + k̄1 .(2.2)
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We note that with our multirate approach, during the refinement step compo-
nent values may be needed that are not included in this refinement. For example,
components of w(t) that are not refined may only be known in tn−1 and tn; miss-
ing components will then be found by interpolation, and the Ft term in (2.1)
will be approximated by

˜Ft(tn−1, wn−1) =
1
τ
(F (tn, wn−1)− F (tn−1, wn−1)) .(2.3)

This will not affect the order of the method. In all examples the exact Jacobian
matrix J = Fw(tn−1, wn−1) will be used. For large practical problems a suitable
approximation can be more efficient if that leads to more simple linear algebra
systems.
The advantage of a Rosenbrock method is that only linear systems need to
be solved. Implicit Runge–Kutta methods could also be used in our multirate
approach, but then special attention should be given to the stopping criteria in
Newton iterations. Making a large global time step with these methods might re-
quire many Newton iterations to get an iteration error smaller than a prescribed
tolerance for the active spatial regions. But an accurate approximation is not
needed there, because the numerical solution will be computed in the refinement
steps. Therefore weighted norms should be used in the stopping criteria.

2.3 Variable step size control.

Let us consider an attempted step from time tn−1 to tn = tn−1 + τn with
step size τn. Suppose this is done with two methods of order p and p− 1, giving
the numerical solutions wn and wn, respectively. By comparing wn with wn we
obtain an estimate for the local error,

En = ‖wn − wn‖∞ .(2.4)

Here the maximum norm is used because we aim at errors below the tolerance
for all components.

Having the estimate En and a tolerance Tol specified by the user, two cases
can occur: En > Tol or En ≤ Tol . In the first case we decide to reject this time
step and to redo it with a smaller step size τnew, where we aim at Enew = Tol .
In the second case we decide to accept the step and to continue the integration
from tn to tn+1. In both cases we continue with a time step of size

τnew = ϑ τn
p
√

Tol/En ,(2.5)

where the safety factor ϑ < 1 serves to make the estimate conservative so as to
avoid repeated rejections.

This form of variable step size selection is standard; see for example [8, 14].
We will use it in two ways in our multirate approach: to select the time slabs
and to determine the components for which smaller step sizes are to be taken.
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3 Multirate time stepping strategy.

The time integration interval [0, T ] will be partitioned into synchronized time
levels 0 = t0 < t1 < . . . < tN = T . The length of the time slab [tn−1, tn] will be
denoted by ∆tn.

3.1 Strategy I: uniform treatment within time slabs.

3.1.1 Processing of one time slab.

Consider a single time slab [tn−1, tn], as illustrated in Figure 1.1. Suppose that
the approximation wn−1 at time tn−1 is known, and that we want to obtain an
approximation wn at the new time level. First we perform a single step with
step size ∆tn and using an error estimator we determine the components for
which the computation of the solution should be refined, that is, performed with
a smaller time step. We refine for those components for which the estimated
local error is larger than the prescribed tolerance Tol . This set of components is
denoted as J1.
Refinement is done by doubling of the number of time steps for the selected set
of components. So for all components in J1 we recalculate the solution using two
steps of size 12∆tn. After this refinement phase we have the numerical solution
for the set of components J1 at time levels tn−1/2 and tn. We then define J2
as the subset of components from J1 in which the estimated local error is still
larger than the tolerance at either tn−1/2 or tn, and for all components from J2
we recalculate the solution using four time steps of size 14∆tn. This is repeated
until the error estimator indicates that there is no need of smaller steps anymore.
The processing of a time slab is then finished.
The interface, at the transition between the solutions obtained using differ-
ent time step sizes, should be treated properly. For some components from the
refinement set we will need solution values of components where we do not refine.
For example, in a first refinement step the solution is advanced for a part of
the components using the halved time step 12∆tn. For the Rosenbrock method
(2.1) this will require the values of the components at the time levels tn−1, tn
and tn−1/2. At time level tn−1 and tn these values are available from the solution
that has been computed with the coarse step ∆tn. At the intermediate time level
tn−1/2 we use interpolation based on the information available at tn−1 and tn;
this information consists of approximate solution values wk and approximate
derivative values w′k = F (tk, wk) for k = n− 1, n.
In our tests, with the second-order method (2.1), we have examined linear in-
terpolation based on wn−1 and wn, and quadratic interpolation based on wn−1,
w′n−1 and wn. For the numerical experiments presented in Section 4 both inter-
polations gave nearly identical results.
In general, the order of the interpolation should be related to the order of
the time stepping method. With a basic integration method of order p, the
error in one step will be ∼ ∆tp+1n . Interpolation with a q-th order polynomial
will introduce an interpolation error ∼ ∆tq+1n at the components in which we
interpolate. Since we are interested in the errors in the maximum norm, the



142 V. SAVCENCO, W. HUNDSDORFER AND J. G. VERWER

choice q = p is natural. On the other hand, it was observed, also for higher-order
methods, that taking q = p− 1 often produces an order of accuracy equal to p
for the whole scheme, due to damping and cancellation effects. A proper analysis
for these effects is lacking at present.

3.1.2 Choosing the size of the time slabs.

The size of the time slabs will be determined automatically while advancing
in time. When we are done with the processing of the n-th time slab of size ∆tn,
the size of the next time slab is taken as

∆tn+1 = 2
sn+1τ∗n+1 ,(3.1)

where sn+1 is the estimated (desired) number of levels of refinement for the
(n+1)-st time slab, and τ∗n+1 is the optimal step size which would give us an
estimated error smaller than the given tolerance if we were to use a single-rate
approach for the next time step from tn to tn+τ

∗
n+1. Both sn+1 and τ

∗
n+1 will be

estimated using information from the last time slab. In general, sn+1 may not
coincide with the actual number of levels of refinement that will be taken; we will
usually refine until the estimated error is smaller than the imposed tolerance.
The estimations for sn+1 and τ

∗
n+1 will be discussed in the next subsections.

For the first time slab we use s1 = 0, meaning that we would like to make
a single time step with an estimated error less than the prescribed tolerance Tol
at all components. The size of the first time slab ∆t1 is estimated using a small
prescribed test step size τ0 together with the step size control formula

∆t1 = ϑ τ0
p
√

Tol/E0 ,(3.2)

where the safety factor ϑ, the tolerance Tol and the order p of the method are
as in (2.5), and E0 is the maximum norm of the estimated local error for the
test step from 0 to τ0. In the numerical experiments presented in this paper we
use the ROS2 method (p = 2) with ϑ = 0.9 and τ0 = 10

−4.
If the time integration is near an output point or the endpoint T , it should be
verified whether tn + ∆tn+1 > T , and in that case we reset ∆tn+1 = T − tn.
In our implementation an additional check of the new time slab size ∆tn+1
is made. This is to cover a situation where shortly after the last accepted time
level tn the solution suddenly becomes active. When after the global time step
of size ∆tn+1 has been performed it turns out that refinement is needed for
each component, then the size of the time slab is deemed too large. In that case
a smaller size ∆tnew will be selected by making a new estimate τ

∗
new based on

the newly available information and we also set snew = max(0, sn+1 − 1). Such
rejections will only occur in exceptional situations, with the sudden appearance
of new active terms in the equations.

3.1.3 Estimation of τ∗n+1.

Using the information available from the n-th time slab we can estimate the
value of τ∗n+1 for the next time slab. This is done using the standard step size
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control technique; the only difference is that for each component we use the infor-
mation from the last available local time steps from the last time slab [tn−1, tn].
For example, in the time slab depicted in Figure 3.1, in order to estimate τ∗n+1,
we will use the information from the hatched areas where the last local time
steps before tn have been taken.

Figure 3.1: Time steps used for the estimation of τ∗n+1.

After each level of refinement we know which components we already have
refined (recall that for the k-th level of refinement this set of components is
denoted by Jk) and which components we ought to refine in the next level of
refinement. Therefore, after the k-th level of refinement, for all components in
Jk \ Jk+1, we estimate

τ
(k)
n+1 = ϑ 2

−k
∆tn

p
√

Tol/Ek(3.3)

based on the local step sizes 2−k∆tn in the k-th level of refinement and on Ek,
which is the maximum norm of the estimated error for the last time step at this
level of refinement. The estimate in (3.3) represents the step size which would
give us a local error smaller than the tolerance for all components from Jk \Jk+1
if all is going well. The safety factor ϑ makes the estimate conservative.
After having finished with all levels of refinement we determine τ∗n+1 by

τ∗n+1 = min
(

τ
(0)
n+1, τ

(1)
n+1, τ

(2)
n+1, . . .

)

.(3.4)

Expression (3.4) gives us an estimate of a step size with which we expect a local
error smaller than the tolerance for all the components.

3.1.4 Estimation of sn+1.

The estimation of sn+1 will be based on the anticipated amount of work needed
to cover a unit of time. The multirate approach will introduce component-time
points where the solution is computed several times, and this should be taken
into account of course.
We suppose that the amount of work required for advancing one time step in
m components is proportional to mr with r ≥ 1. In the experiments presented in
this paper we use the two-stage Rosenbrock method (2.1) as our time integration
method. At each stage of this method one vector-function evaluation is done and
one system of linear algebraic equations with a band matrix is solved. Therefore,
in this paper we can consider r = 1.
Suppose the n-th time slab has been processed using sn levels of refinement,
and that in the k-th level of refinement mk components were refined, where
m0 = m. Since 2

k time steps were taken at this level of refinement to cover the
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time slab, the amount of work involved with the k-th level of refinement is 2kmrk.
The amount of work per time unit for the processing of the entire time slab is
therefore considered to be

C =
1
∆tn

(

mr0 + 2m
r
1 + · · ·+ 2

snmrsn
)

.(3.5)

In order to estimate the optimal amount of work per time unit we also study
two hypothetical (virtual) computations for this last time slab. In the first case
we consider what would have happened if we had taken the size of the time slab
2l times smaller than ∆tn, and in the second case what would have happened if
we had taken the size twice as large as ∆tn. In both cases we can estimate the
amount of work per unit time, and this can be compared to the actual amount C.
This information will then be used for the next time slab.
For the first hypothetical case, let us assume we go back to the n-th time slab
and redo it with ∆t′n =

1
2l∆tn, that is, 2

l times smaller than the actual ∆tn.
Then we would start with a time step of size ∆t′n on the whole spatial domain
(m0 = m points). The number of components involved in the first refinement,
with two steps of size 12∆t

′
n =

1
2l+1∆tn, can be estimated to be ml+1, because

that was the number of components used in the actual computation with this
time step. In the same way we can estimate that in the k-th level of refinement
we would refine in ml+k components and that sn − l levels of refinement would
be used. Hence, the amount of work per time unit for this hypothetical case
would be approximately

C′ =
1
∆t′n

(

mr0 + 2m
r
l+1 + · · ·+ 2

sn−lmrsn
)

.(3.6)

If C′ < C, we estimate that this hypothetical step would have given an improve-
ment in the amount of work, compared to the actual computation that has been
done.

Lemma 3.1. Let ρ =
(

1
2

)1/r
. The value of C′ in (3.6) attains its minimum for

l∗ = max{ l : ml > ρm} .(3.7)

Proof. Denote the right-hand side of (3.6), with ∆t′n = 2
−l∆tn, by C

′
l . Then

it is easily seen that

C′l−1 < C
′
l (resp. C

′
l−1 > C

′
l) ⇐⇒ ml < ρm (resp. ml > ρm) .(3.8)

For the value l∗ in (3.7) we have

m = m0 ≥ m1 ≥ · · · ≥ ml∗ > ρm ≥ ml∗+1 ≥ · · · ≥ msn .

It thus follows from (3.8) that

C′0 > C
′
1 > · · · > C

′
l∗
and C′l∗ ≤ C

′
l∗+1 ≤ · · · ≤ C

′
sn
,

which provides the proof of the lemma.
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If l∗ > 0, then an improvement in amount of work per unit step could have
been obtained if the n-th time slab had been done with fewer levels of refinement
and a smaller size of the time slab. Therefore, for the (n+1)-st time slab we try
to improve the performance by taking

sn+1 = sn − l∗ .(3.9)

If l∗ = 0, there was apparently no need to decrease the number of levels of
refinement. But then more efficiency might be possible with a time slab of larger
size (with more levels of refinement) than in the actual computation. This leads
us to the second hypothetical case.
If the size of the n-th time slab had been two times larger than ∆tn, that is

∆t′′n = 2∆tn, then one time step of size ∆t
′′
n for all the components (m0 = m

points) would have been performed, followed by refinement steps. Suppose that
the first level of refinement would have involved m∗ components. The second
level of refinement then would take four time steps of size 14∆t

′′
n =

1
2∆tn. In

the processing of the original time slab of size ∆tn we needed time steps of
this size in m1 components. Therefore, it can be assumed that for the second
level of refinement in the virtual step, refinement would also take place on m1
components. Similarly, the k-th level of refinement can be assumed to involve
mk−1 components. In total we would have sn+1 levels of refinement. The amount
of work per time unit for this case would thus be approximately

C′′ =
1
∆t′′n

(

mr0 + 2m
r
∗ + 2

2mr1 + · · ·+ 2
sn+1mrsn

)

.(3.10)

In this case, taking the size of the time slab two times larger than ∆tn, would
give us an expected improvement in work per time unit if C > C′′, that is,

m∗ < ρm , ρ =
(1
2

)1/r
.(3.11)

We still need an estimate for m∗. Let v = wn − w̄n be the difference between
one step in the embedded Rosenbrock method (2.1), (2.2) computed in the n-th
time slab with step size ∆tn, and let En = ‖v‖∞ be the norm of this estimated
local error. Then En ∼ (∆tn)

p
, with order p = 2 for the present Rosenbrock

combination. In the first stage of our hypothetical step, starting from tn−1 with
time step 2∆tn, we would expect an estimated local error of size 2

pEn. Consider
the index set

I1 = { i : |vi| > 2
−pTol} ,(3.12)

where vi is the i-th component of the vector v. Then m∗ will be approximately
equal to the number of elements |I1| in this set. This estimate of m∗ can be
determined during the actual processing of the time slab without significant
extra work. If

|I1| < ρm ,(3.13)
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then it is expected that a larger time slab with more refinement levels would
have been more efficient. For the next time slab we then take sn+1 = sn+1. We
note that a larger increase of refinement levels could be considered in a similar
way, but it seems better to be conservative about this, because sn+1 = sn + 1
will already lead (approximately) to a doubling of the size of the time slab (if
τ∗n+1 ≈ τ

∗
n).

Summarizing, after having completed the n-th time slab with sn levels of
refinement, we choose for the next time slab

sn+1 =

{

sn + 1 if (3.13) is satisfied ,

sn − l∗ if (3.13) is not satisfied ,
(3.14)

where l∗ ≥ 0 is defined by (3.7). Together with (3.1) and (3.4) this determines
the size ∆tn+1 of the new time slab. The actual number of levels of refinements
will be determined by the error estimations. The sn+1 in (3.14) is merely an
indication for this. In our experiments the sn+1 was usually equal to the number
of levels of refinements, but sometimes it was one more or one less.

3.2 Strategy II: recursive two-level approach.

The time slab processing strategy presented in the above generally works very
well, but in some cases a modification is desirable.
It may happen that the strategy takes very large time slabs with a large number
of refinement levels. Then the smallest time steps are used throughout the entire
time slab. Although this is only for a subset of components, it can be inefficient if
the local temporal variation changes drastically inside this large time slab. Then
the small time steps may be needed only in some part of the time slab [tn−1, tn].
In such a situation our strategy can be improved by applying the refinements
not on the whole time slab but just for the required, smaller time intervals.
Let us consider a time slab [tn−1, tn] with known approximation wn−1. As
before, we start with a single step ∆tn = tn−tn−1, and use the error estimator to
determine the components where we should refine in time. For those components
the time slab is divided into two smaller sub-slabs with size 12∆tn. Next, each of
these sub-slabs is processed separately, in a similar way as the initial ‘global’ time
slab. This is a recursive processing strategy, which stops when the error estimator
indicates that there is no need of further subslabs. A simple illustration for two
levels of refinement is given in Figure 3.2.
This modified time slab size processing strategy is considered in combination
with a slightly modified time slab estimation. In the modified version the time

Figure 3.2: Example of a time slab created by the original strategy I (left) and the
modified strategy II (right).
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slabs have a different structure; they are no longer uniform over the whole time
slab. Therefore, not all the rationale from the previous time slab size estimation
strategy can be used directly for the modified version.

The size of a time slab can still be determined using the same formula

∆tn+1 = 2
sn+1τ∗n+1.(3.15)

The value for τ∗n+1 can be determined using exactly the same procedure as
in our original multirate strategy. The desired number of the levels of refine-
ment sn+1 was determined on the basis of values of the number of components
m0,m1, . . . ,msn in the levels of refinement for the n-th time slab. For the mod-
ified strategy these numbers of components are not constant anymore over the
time slab. Still, for the new time slab we have as a first guess that the refine-
ment will proceed uniformly as in the last local steps before tn. Therefore, the
estimations of the amount of work is done in the same way as before, but now
with values of ml based on the last available local steps before tn. Using these
values ml we can determine the desired number of levels of refinement following
the same procedure and rationale as in our original strategy. The size of the time
slab obtained in this way is the optimal size which can be obtained based on the
last information from the previous time slab.

3.3 Comparison to existing time slab strategies.

Another time slab strategy has been presented by Jansson and Logg [10] for
the multi-adaptive Galerkin time-stepping algorithm of Logg [12, 13]. In their
strategy a time slab is created by first computing a desired time step for all
components. The size of the time slab is then taken as ∆t = θτmax with τmax
the maximum over the desired time steps and θ ∈ (0, 1) a fixed parameter. The
components are then partitioned into two sets. The components in the group with
large time steps are integrated with time step θ∆t. The remaining components
are processed by a recursive application of the same procedure.
In this multi-adaptive Galerkin approach, the resulting implicit systems for
all refinements are solved simultaneously. This is the main difference with our
approach. We first solve the coarse step, and then, successively, the refined steps.
This leads to some overhead because in the refined regions the solution is com-
puted repeatedly. On the other hand, with our approach the implicit systems
are all relatively simple; basically the same as in a single-rate approach for (1.1)
but with fewer points mk in the refined steps. The dimension of the implicit
systems in the approach of Logg will be very much larger than m, the number of
components in (1.1), so these systems will be very hard to solve. For this reason
a damped functional (fixed point) iteration is used in [10], but that can easily
lead to a very large number of iterations per time slab.
In our case the size of a time slab is computed from the minimum time step
over the components and an expected number of levels of refinement. In our
strategy the sizes of the time slabs and the numbers of levels of refinement are
automatically adjusted to get an optimal amount of work per time unit.



148 V. SAVCENCO, W. HUNDSDORFER AND J. G. VERWER

4 Numerical experiments.

In this section we will present numerical results for several test problems. We
consider the behaviour of both our strategies: Multirate I (with uniform treat-
ment within time slabs) and Multirate II (with the recursive two-level approach).
The results are compared to the single-rate approach, also using the Rosenbrock
pair (2.1) and (2.2).
As measure for the amount of work we consider primarily the number of com-
ponents for which the solution is computed during the whole integration, where
the fact that with our multirate approach some solution components will be
computed several times at certain time levels is taken into account. For practi-
cal purposes the CPU time is more relevant, but this depends strongly on the
programming language and environment. Some resulting computing times for
a C-program will be discussed.
As mentioned before, the amount of work per step for m components in these
experiments is estimated as mr with r = 1. Tests with r = 2, which is obviously
a wrong value here, produced quite similar results. In general, the choice of r will
depend on the problem and linear algebra solver. The tests with r = 2 indicate
that an optimal estimate for r is not critical for the performance of our multirate
schemes.
One of the test problems is an ODE system from circuit analysis, the other two
are obtained from partial differential equations (PDEs) by standard second-order
central discretization of the spatial derivatives on fixed uniform grids (fourth-
order central differences were also tried and the results were very similar). The
resulting semi-discrete systems are simply considered as ODE test problems in
these numerical experiments.
For the results reported here we used quadratic interpolation to obtain missing
component values. Linear and cubic interpolation were also tried and the results
were nearly identical; this simply indicates that the interpolation errors are not
significant in these tests. Linear interpolation could potentially lower the order
of accuracy, which is two for the ROS2 method, and therefore quadratic inter-
polation is our preferred interpolation here. As mentioned before, with a higher
order basic time stepping method, also the order of interpolation should be in-
creased. For a number of Runge–Kutta and Rosenbrock methods dense output
formulas are available [8] which can also be considered.
The errors presented in the tables below are the maximum errors over the
components at the output times T , with respect to a time-accurate ODE refer-
ence solution. The reference solutions have been computed by using very small
tolerance values.

4.1 An ODE system obtained from semi-discretization: a reaction-diffusion
problem with traveling wave solution.

For our first test problem we consider the semi-discrete system obtained from
the reaction-diffusion equation

ut = εuxx + γu
2(1− u),(4.1)
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for 0 < x < L, 0 < t ≤ T . The initial- and boundary conditions are given by

ux(0, t) = ux(L, t) = 0 , u(x, 0) = (1 + eλ(x−1))−1 ,(4.2)

where λ = 1
2

√

2γ/ε. If the spatial domain had been the whole real line, then
the initial profile would have given the traveling wave solution u(x, t) = u(x −
αt, 0) with velocity α = 1

2

√
2γε. In our problem, with homogeneous Neumann

boundary conditions, the solution will still be very close to this traveling wave
provided the end time is sufficiently small so that the wave front does not come
close to the boundaries. The parameters are taken as γ = 1/ε = 100 and L = 5,
T = 3. In space we used a uniform grid of m = 1000 points and standard
second-order differences, leading to an ODE system in Rm. An illustration of
the semi-discrete solution at various times is given in Figure 4.1 with (spatial)
components horizontally.

Figure 4.1: Traveling wave solution for problem (4.1)–(4.2) at various times.

In Table 4.1 the errors (in the maximum norm with respect to the reference
ODE solution at time T ) and the amount of work (number of space-time points
for the integration interval [0, T ]) are presented for different tolerances. From
these results it is seen that a substantial improvement in amount of work is
obtained for this problem. For the single-rate scheme, the number of space-time
points where the solution is computed is almost seven times larger. Moreover,
the error behavior of the multirate scheme is very good. We have roughly a pro-
portionality of the errors and tolerances, and the errors of the multirate scheme
are approximately the same as for the single-rate scheme.

Table 4.1: Errors and work amount for (semi-discrete) problem (4.1)–(4.2).

Single-rate Multirate I Multirate II

Tol error work error work error work

10−3 3.2 · 10−3 818818 3.4 · 10−3 188138 2.1 · 10−3 124356

5 · 10−4 1.9 · 10−3 1128127 1.9 · 10−3 246962 2.2 · 10−3 149763

10−4 4.8 · 10−4 2431429 5.1 · 10−4 411466 5.4 · 10−4 308685

5 · 10−5 2.5 · 10−4 3408405 2.7 · 10−4 550723 2.7 · 10−4 428549

10−5 5.3 · 10−5 7528521 5.5 · 10−5 1153759 5.7 · 10−5 1064115

Measurements of CPU times (for a C-program) showed that for this problem
the single-rate scheme was approximately four times more expensive than the
multirate schemes. This factor four is less than the factor seven in space-time
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points; this is due to overhead with the multirate schemes for determining the
time slabs and refinement regions.
The multirate strategy II (recursive two-level approach) works somewhat bet-
ter for this problem than strategy I, in particular for the larger tolerances. In
Figure 4.2 the space-time grid is shown on which the solution was calculated for
strategy I with tolerance value Tol = 2 · 10−2. (With this large tolerance the
structure of the grid is better visible than with small tolerances.) One nicely
sees that the refinements move along with the steep gradient in the solution.
From the more detailed picture (enlargement on part of the domain), it is seen
that there is some redundancy in the fine level computations: in each time slab
the fine level domains form a rectangle, and this is the reason why the strat-
egy II is more efficient for this problem. Figure 4.3 shows the space-time grid for
strategy II, again with Tol = 2 · 10−2.

Figure 4.2: Space-time grid for problem (4.1)–(4.2) with strategy I. The right picture
gives an enlargement for a part of the domain.

Figure 4.3: Space-time grid for problem (4.1)–(4.2) with strategy II. The right picture
gives an enlargement for a part of the domain.

4.2 An ODE system obtained from semi-discretization: the Allen–Cahn equa-
tion.

The second test consists of a semi-discrete version of the Allen–Cahn equation

ut = εuxx + u(1− u
2) ,(4.3)
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for t > 0, −1 < x < 2, with initial- and boundary conditions

ux(−1, t) = 0 , ux(2, t) = 0 , u(x, 0) = u0(x) .(4.4)

We take ε = 9 · 10−4 and initial profile

u0(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tanh((x+ 0.9)/(2
√
ε)) for − 1 < x < −0.7 ,

tanh((0.2− x)/(2
√
ε)) for − 0.7 ≤ x < 0.28 ,

tanh((x− 0.36)/(2
√
ε)) for 0.28 ≤ x < 0.4865 ,

tanh((0.613− x)/(2
√
ε)) for 0.4865 ≤ x < 0.7065 ,

tanh((x− 0.8)/(2
√
ε)) for 0.7065 ≤ x < 2 .

(4.5)

This problem is an extended version version of the bistable problem considered
in [5].
For this problem we used a uniform space grid of 400 points with second-order
central differences. Figure 4.4 shows a time-accurate numerical solution. The
nonlinear reaction term in (4.3) has u = 1 and u = −1 as stable equilibrium
states, whereas the zero solution is an unstable equilibrium. The solution of
(4.3)–(4.5) starts with three ‘wells’, see Figure 4.4. The first well, on the left,
persists during the integration interval. The second well is somewhat thinner
than the others and it collapses at time t ≈ 41, whereas the third well collapses
at t ≈ 141.

Figure 4.4: Evolution of the solution for problem (4.3)–(4.5).

To test the performance of the schemes, the output was considered for T = 142.
At this output point, the solution is still changing in the second well; for larger
times the solution becomes steady-state and then all errors vanish. In Table 4.2
the errors (measured in the maximum norm with respect to the reference ODE
solution) and the amount of work (number of space-time points) for different
tolerances are presented. For this problem there is again a significant improve-
ment in work with the multirate schemes compared to the single-rate scheme.
Strategy II again behaves slightly better for this problem than strategy I. The
error behavior of both multirate schemes is excellent: the errors are close to – or
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Table 4.2: Errors and work amount for (semi-discrete) problem (4.3)–(4.5).

Single-rate Multirate I Multirate II

Tol error work error work error work

5 · 10−4 3.8 · 10−3 102255 3.0 · 10−3 48342 3.6 · 10−3 36811

10−4 2.2 · 10−3 217743 1.5 · 10−3 85241 1.1 · 10−3 66360

5 · 10−5 1.2 · 10−3 303958 1.0 · 10−3 107920 1.3 · 10−3 75653

10−5 2.8 · 10−4 664858 2.5 · 10−4 257473 2.6 · 10−4 227554

5 · 10−6 1.3 · 10−4 935533 1.1 · 10−4 355627 1.2 · 10−4 324501

even smaller than – the errors of the single-rate scheme. As in the other tests,
this shows that our multirate strategies behave very robustly.
In CPU times the factor gained with the multirate schemes, compared to the
single-rate scheme, was a factor two approximately. As for the previous problem
this is somewhat less than the factors for the number of space-time points due
to overhead.

4.3 An inverter chain problem.

An inverter is an electrical sub-circuit which transforms a logical input signal
to its negation. The inverter chain is a concatenation of several inverters, where
the output of an inverter serves as input for the succeeding one. An inverter
chain with an even number of inverters will delay a given input signal and will
also provide some smoothing of the signal.
A detailed description of a mathematical model for an inverter chain is given
in [1]. The model for m inverters consists of the equations

{

w′1(t) = Uop − w1(t)−Υg
(

uin(t), w1(t)
)

,

w′j(t) = Uop − wj(t)−Υg
(

wj−1(t), wj(t)
)

, j = 2, . . . ,m ,
(4.6)

where

g(u, v) =
(

max(u− Uthres, 0)
)2
−
(

max(u− v − Uthres, 0)
)2
.(4.7)

The coefficient Υ serves as stiffness parameter. Following [1, 2], we solve the
problem for a chain of m = 500 inverters with Υ = 100, Uthres = 1 and Uop = 5.
The initial condition is

wj(0) = 6.247 · 10
−3 for j even, wj(0) = 5 for j odd.(4.8)

The input signal is given by

uin(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t− 5 for 5 ≤ t ≤ 10 ,

5 for 10 ≤ t ≤ 15 ,
5
2 (17− t) for 15 ≤ t ≤ 17 ,

0 otherwise.

(4.9)
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An illustration of the solution for some of the even components is given in
Figure 4.5.

Figure 4.5: Solution components wj(t), j = 2, 126, 250, 374, 498, for problem (4.6)–(4.9).

In Table 4.3 maximal errors over tn ∈ [0, T ], T = 130, and over all compo-
nents (measured with respect to an accurate reference solution) together with
the amount of work and CPU times (in seconds) are presented for several tol-
erances for the single-rate scheme and the multirate strategy II. Similar as for
the previous examples, the amount of work is taken as the number of compo-
nents at which solutions are computed over the integration interval [0, T ]; this
is proportional to the number of scalar function evaluations (4.7).
It is seen from the table that for the prescribed tolerances we get roughly
a factor 10 of improvement in work and a factor 6 improvement in CPU time
with the multirate scheme, whereas for each given tolerance the errors of the
multirate scheme are somewhat smaller than with the single-rate scheme.
In Figure 4.6 the component-time grid is shown on which the solution was cal-
culated with tolerance value Tol = 5 ·10−2. For this large tolerance the structure
of the grid is better visible than for smaller tolerances, but still only every tenth
global step is displayed in the left picture to make it more clear. Again it is seen
that the refinements are properly adjusted to the steep gradients in the various
components of the solution.
The same problem served as a numerical test for a multirate W-method in [2],
where for each time slab a partitioning of the components in two classes, slow
(latent) and fast (active), was used; the partitioning was based on a monitor
function suited for this particular problem. Inside a time slab, all fast compo-
nents were then solved with the same small step sizes (micro-steps). In this way
a factor 3.7 of improvement in work was obtained compared to the single-rate

Table 4.3: Errors and work amount for problem (4.6)–(4.8).

Single-rate Multirate II

Tol error work CPU error work CPU

5 · 10−4 1.74 · 10−1 28938500 19.75 1.12 · 10−1 3314690 3.74

1 · 10−4 3.91 · 10−2 62379000 42.64 2.41 · 10−2 4795878 6.36

5 · 10−5 2.10 · 10−2 87384000 59.72 1.88 · 10−2 6456558 8.81

1 · 10−5 6.07 · 10−3 193494000 132.32 3.84 · 10−3 17358472 21.65
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Figure 4.6: Component-time grid for problem (4.1)–(4.2) with strategy II. The right
picture gives an enlargement for a part of the components and time interval.

scheme. With our strategy this factor is much higher. This seems mainly due to
the dynamic partitioning into several classes, together with the choices for the
size of the time slabs and local time steps found by estimating the total amount
of work.
Apart from the partitioning, the most important difference between [2] and our
approach is the use of a ‘compound step’ in [2], whereby the slow components and
the first (micro-) step for the fast components are solved simultaneously. Here
extrapolation (from fast to slow components) and interpolation (from slow to fast
components) is incorporated. In this way some of the overhead in our approach
is avoided, because there are no coarse step values that are later overwritten,
but such compound steps will become very complicated if the components are
partitioned into more than two classes.

5 Conclusions.

In this paper we presented self-adjusting multirate time stepping strategies for
stiff ODEs. The step size for a particular system component is determined by
the local temporal variation of the solution, in contrast to the use of a single step
size for the whole set of components as in the traditional (single-rate) methods.
Numerical experiments confirmed that the efficiency of time integration methods
can be significantly improved by using large time steps for inactive components,
without sacrificing accuracy.

Although our two strategies produced results not too far apart, we do have
a slight preference for the recursive two-level approach (strategy II) over the
uniform treatment within time slabs (strategy I). Cases can be constructed with
very large time slabs where strategy II will be much more efficient than strategy I.

Compared to the approaches in [2, 7] and [12, 13], our multirate approach
avoids the use of compound steps or very large implicit systems. On the other
hand, there is some overhead with our approach, because in the refined compo-
nent sets the solution is computed repeatedly. We do think, however, that for
many problems simplicity will be preferable. Since the structure of the problems
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with the refined steps is the same as for the original problems, only on smaller
component sets, linear algebra solvers suitable for the single-rate scheme can
still be used.
As basic time stepping method, we used in this paper a second-order Rosen-
brock method with an embedded first-order method. Except for the interpola-
tion, the multirate approach can be applied without adjustments to higher-order
methods. Preliminary experiments with fourth-order Rosenbrock schemes are
promising.
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