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Multirate Numerical Integration for Stiff ODEs

V. Savcenco and R.M.M. Mattheij

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands

Summary. This paper contains an overview of a self-adjusting multirate method.
A simple extension which allows the improvement of the efficiency of the method is
introduced. The performance of the extended and the original method is compared
for a test problem.

1 Introduction

For the numerical solution of systems of ODEs there are many methods avail-
able. These methods use time steps that are varying in time, but are constant
over the components. However, there are many problems of practical inter-
est, where the temporal variations have different time scales for different sets
of the components. For example, cellular phones consist of coupled digital
and analogue sub-circuits, which operate in nano- and micro-seconds, respec-
tively. The motion of the particles around a star, which attracts mass from
a secondary star, in astrophysics is described by a large system of ordinary
differential equations. In this system the components, that correspond to the
particles near the center, are much faster than those corresponding to the
distant ones. To exploit these local time scale variations, one needs multi-
rate methods that use different, local time steps over the components. In these
methods big time steps are used for the slow components and small time steps
are used for the fast ones.

Various multirate methods were developed for solving systems with differ-
ent time scales. The first descriptions of multirate schemes were given by Gear
and Wells [4] for multistep methods. Sand and Skelboe [9] studied the sta-
bility of backward Euler multirate methods. Multirate methods for non-stiff
problems have been examined by Engstler and Lubich [3]. A multirate scheme
based on the partitioned Runge-Kutta methods was introduced by Giinther,
Kveerng and Rentrop [5]. In [1, 13, 14] multirate methods have been applied
to the modeling of electrical networks. Multirate methods for hyperbolic con-
servation laws were studied by Constantinescu and Sandu [2].
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A multirate method based on the Rosenbrock methods, together with a
self-adjusting partitioning strategy was introduced and analyzed in [7, 10, 11,
12]. In this paper we present an overview of this method and suggest a way to
improve it. The comparison of the numerical results obtained with the original
and extended strategy is presented.

The paper is organized as follows. In Section 2 we will introduce the Rosen-
brock methods which will be used as our basic numerical integration methods
and describe the multirate time stepping strategy. The performance of the
extended version of the multirate strategy for a test problem is discussed in
Section 3. Finally, Section 4 contains the conclusions.

2 A Multirate time stepping strategy

We will consider multirate methods for solving systems of ODEs
w'(t) = F(t,w(t),  w(0) =wo, (1)

with given initial solution wy € R™. The approximations at the global time
levels t,, will be denoted by w,,.

Our multirate time stepping strategy is based on local temporal error
estimation. For a given time step At,, = t,,—t,_1, we compute a first, tentative
approximation at the new time level for all components. For those components
for which the error estimator indicates that the local temporal error is larger
than a given tolerance T'ol, the computation is redone with smaller steps. The
refinement is recursively continued until the error estimator is below T'ol for all
components. Schematically, with components horizontally and time vertically,
the multirate time stepping is displayed in Figure 1.

Fig. 1. Multirate time stepping for a time slab [tn—1,ts].

In the original strategy [12], the refinement is performed by recalculating
the required components with halved steps. For many problems, the time
steps needed for the active components are much smaller than those needed
for the slow ones. In such cases it is more efficient to immediately recompute
the active components with more than two smaller steps instead of doing
several halving recursive refinements. Therefore in this paper we will extend
the original strategy and will assume that the number of smaller time steps
at the refinement stage can be also larger than two. Using ideas from [12], it
is possible to design an adaptive procedure of choosing the size of the time
slabs for the extended strategy.
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2.1 Main time integration methods

In this paper we will use the Rosenbrock methods [6] as our basic numerical
integration methods. To proceed from ¢, to t, = t,_1 + 7, an s-stage
Rosenbrock method calculates

Wp = Wp—1 + szkz 5 (2)
i=1
i—1 OF ¢
ki=71F |t,_1+ T, w1+ j;onjkj + Ta(tnflvwnfl) j;%jkj
oF
+A/i7—27(tn717wn71)7 L= 17"'787 (3)

ot

where o, vij, @i, 7, by are real parameters defining the method and 7 denotes
the step size. For the local error estimation withing the variable step size
control we use the embedded formula

S
Wy = Wp—1 + Zgikia (4)
i=1
which uses the same k;-values as (2), but has different weights.

2.2 Interface treatment

During the refinement stage, values at the intermediate time levels of compo-
nents which are not refined might be needed. These values can be obtained
by use of dense output built in the time integration method

S
wr(tp—1 +07) = wp_1 + 3 _bi(O)k;,  0<O<1. (5)
i=1
Proper interface treatment is very important for multirate schemes. Use of
dense output of order lower than the order of the main time integration
method can lead to order reduction.

It is well known that use of Rosenbrock methods for problems with stiff
source terms can lead to order reduction. During the refinement step, sub
problems with stiff source terms have to be solved. An easy applicable tech-
nique, to avoid the order reduction, was proposed in [11]. Assuming that g(t)
is a component of F(t,w(t)), this technique suggests that the source terms
9(tn—1 + ;7)) + viT¢ (tn—1) in a Rosenbrock method (3) of order p shall be
replaced by gn—1, with g,_1 = [gn—1,:] chosen as

P
gn1 =y _ Brer*g®(t, 1), (6)
k=0

where B = [a;; + 7;;] € R®*® and e = [1] € R®.
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3 Numerical test

In this section we will present numerical results for a test problem. We con-
sider the behavior of both strategies: original [12] and extended (where refine-
ment with more than two steps is possible). The results are compared to the
single-rate approach, also using the same basic time integration method. As a
measure for the amount of work we consider the total number of components
at which solutions are computed over the complete time integration interval,
multiplied by the number of stages of the method. The fact that with the
multirate approach some solution components are computed several times at
certain time levels is taken into account. As the basic time integration method,
for solving this problem, we use the two-stage second-order Rosenbrock ROS2
method [8].

3.1 An Inverter Chain Problem

An inverter is an electrical sub-circuit which transforms a logical input signal
to its negation. The inverter chain is a concatenation of several inverters,
where the output of an inverter serves as input for the succeeding one. An
inverter chain with an even number of inverters will delay a given input signal
and will also provide some smoothing of the signal.

The model for m inverters consists of the equations

{ W (1) = Usp — w1 () = Tg(usm(t), wi (1)),
WH(1) = Unp — w5() = Tg(wj 1 (8),wy(8),  j=2,...,m,

where

2

g(u,v) = (max(u — Unyes, 0))2 — (max(u — v — Unres, 0)) " (8)

The coefficient 7" serves as stiffness parameter. We solve the problem for a
chain of m = 500 inverters with " = 100, Usnres = 1 and Uy, = 5. The initial
condition is

w;(0) = 6.247-1072 for j even, w;(0) =5 for j odd. (9)
The input signal is given by

-5 for 5<t<10,
for 10<t<15,

(17 —t) for 15 <t <17,
otherwise.

Ui (t) = (10)

Ol O

An illustration of the solution for some of the even components is given in
Figure 2.
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Fig. 2. Solution components w;(t), j = 2,126, 250, 374,498, for problem (7)—(10).

In Table 1 the errors at output time 7' = 130 (measured in the maximum
norm with respect to an accurate reference solution) together with the amount
of work are presented for several tolerances for the single-rate method and
the extended multirate strategy. The speedup for both original and extended
strategies is calculated.

It is seen from the table that a substantial improvement in amount of work
is obtained for this problem. For the single-rate scheme, the amount of work is
almost 18 times larger than for the extended multirate scheme. Moreover, the
error behavior of the multirate scheme is very good. We can also see that for
this problem we get a considerably larger speedup for the extended strategy
compared to the original strategy.

Table 1. Errors and work amount for problem (7)—(9).

Single-rate Multirate (extended) Speedup
tol error work error ‘ work ||original ‘extended
5-107%|[1.44 - 107 1| 45649872([1.47 - 1072| 2846068 8.7 16.0
1074((3.94 - 1072| 94524592(7.16 - 1073| 5512400 13.0 17.1
5-1075([1.37 - 1072|131413560||3.24 - 107%| 6980676 13.5 18.8
1075((2.04 - 1073(287207252(|9.22 - 10~ *| 14332486 11.1 20.0

4 Conclusions

In this paper we made on overview and extended the multirate time stepping
strategy introduced in [7, 10, 11, 12].

As seen from the numerical tests, the efficiency of time integration methods
can be significantly improved by using large time steps for inactive compo-
nents, without sacrificing accuracy. Comparing the results obtained for the
original and the extended strategies, we do have preference for the extended



6

V. Savcenco and R.M.M. Mattheij

approach, where the values of the active components can be recalculated by

the

use of more than two smaller time steps.
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