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ABSTRACT
This paper contains a comparison of the asymptotic stability properties for two multirate
strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test
problem and the differences between the results are discussed. The considered multirate
schemes use Rosenbrock type methods as the main time integration method and have one
level of temporal local refinement. Some remarks on the relevance of the results for 2 x 2 test
problems are presented.
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1 Introduction

Many practical applications give rise to systems of ordinary differential equations
(ODEs) with different time scales which are localized over the components. To solve
such systems multirate time stepping strategies are considered. These strategies inte-
grate the slow components with large time steps and the fast components with small
time steps. In this paper we will focus on two strategies: the recursive refinement

strategy proposed in [4, 7] and the compound step strategy used in [1, 3, 9, 10]. We
will analyze these multirate approaches for solving systems of ODEs

w′(t) = F (t, w(t)), w(0) = w0, (1.1)

with w0 ∈ R
m.

In the recursive refinement strategy, given a global time step τ , a tentative ap-
proximation at the new time level is computed first. For those components, where
the error estimator indicates that smaller steps would be needed, the computation is
redone with a smaller time step 1

2
τ . At this refinement stage, the values at the in-

termediate time levels of components which are not refined might be needed. These
values can be calculated by using interpolation or a dense output formula. During a
single global time step the refinement procedure can be recursively continued until the
local errors for all components are below a given tolerance, hence the name ’recursive’.
In our comparison in this paper we consider only the most simple case with one level
of refinement.

In the compound step strategy (sometimes also called mixed compound-fast [10])
the macro-step τ (for the slow components) and the first micro-step of a smaller
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size (for the active components) are computed simultaneously. Again, the values at
the intermediate time levels of the slow components are obtained by interpolation or
dense output. This strategy may require values at the macro-step time level of the
fast components. These values can be obtained by extrapolation. The integration is
followed by a sequence of micro-steps for the fast components, until the time integration
is synchronised with the slow components. In this paper in the compound step strategy
also only micro steps of size 1

2
τ are considered for the comparison with the recursive

refinement strategy.
The values at the macro-step time level for the active components are calculated

twice in the recursive refinement strategy, the first time during the global step and
the second time during the refinement step. The compound step strategy avoids this
extra work, however the partitioning in slow and fast components for this strategy
has to be done in advance before solving the system. With the recursive refinement
strategy, implicit relations of the same structure as with singlerate time stepping are
obtained. The refinement step leads to a system of smaller size. With the compound
step strategy the compound step has a somewhat more complicated structure.

In this paper we consider multirate schemes for systems with two levels of activity,
slow and fast. It should be noted, however, that with the recursive refinement strategy
it is easy to extend these schemes to multirate schemes with more levels of activity;
for example, the multirate time stepping strategy presented in [7] can be used. With
the compound step strategy handling more levels of activity is not easy.

In this paper we study and compare asymptotic stability of these two multirate
strategies for linear problems in R

2. Our particular interest is to see how the ex-
trapolation of the fast components affects the asymptotic stability of the scheme. A
time integration method is called asymptotically stable if its amplification matrix S

satisfies ||Sn|| → 0 when n → ∞. A method is asymptotically stable if and only if
all eigenvalues of S are inside the unit disk. Asymptotic stability does not guarantee
stability, but it can help us with understanding the instability of some schemes. We
also discuss the relevance of the results for the simple test equation in R2 for some
interesting higher-dimensional systems.

The contents of this paper is as follows. In Section 2 we introduce the Rosen-
brock ROS1 and ROS2 methods which will be used as our basic numerical integration
methods. In Section 3 we describe the 2 × 2 test problem for which the asymptotic
stability domains are determined. The two multirate versions of ROS1 and ROS2 will
be analysed in Sections 4 and 5. Some remarks on the relevance of the results for the
2 × 2 test problem are presented in Section 6. Section 7 is devoted to a property of
the eigenvalues of the partitioned Rosenbrock methods. Finally, Section 8 contains the
conclusions.

2 Numerical integration methods ROS1 and ROS2

As the basic methods for the multirate schemes in this paper we use two Rosenbrock
methods [5]. The first method is a one-stage method, called in this paper ROS1, which
for non-autonomous systems w′(t) = F (t, w(t)) is given by

wn = wn−1 + k1 ,

(

I − γτJ
)

k1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,
(2.1)

where wn denotes the approximation to w(tn) and J ≈ Fw(tn−1, wn−1). The method
is of order two if γ = 1

2
. Otherwise the order is one. The method is A-stable for any

γ ≥ 1

2
and L-stable for γ = 1. In this paper we use γ = 1

2
.
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The second method is the two stage second order method, to which we will refer
to as ROS2,

wn = wn−1 + 3

2
k̄1 + 1

2
k̄2 ,

(

I − γτJ
)

k̄1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,

(

I − γτJ
)

k̄2 = τF (tn, wn−1 + k̄1) − γτ2Ft(tn−1, wn−1) − 2k̄1 ,

(2.2)

where J ≈ Fw(tn−1, wn−1). The method is also linearly implicit (to compute the
internal vectors k̄1 and k̄2, a system of linear algebraic equations is to be solved), and
it is of order two for any choice of the parameter γ and for any choice of the matrix
J . Furthermore, the method is A-stable for γ ≥ 1

4
and it is L-stable if γ = 1 ± 1

2

√
2.

In this paper we use γ = 1 − 1

2

√
2.

Other possible values of the parameter γ were also considered (γ = 1 for ROS1;
γ = 1

2
and γ = 1 + 1

2

√
2 for ROS2). These values gave similar results and conclusions.

2.1 Interpolation and extrapolation

For given approximations wn−1 ≈ w(tn−1), wn ≈ w(tn), the multirate schemes will
require an intermediate value wI (tn− 1

2

) ≈ w(tn− 1

2

). In this paper we consider three
types of interpolation: linear

wI(tn− 1

2

) =
1

2
(wn−1 + wn) , (2.3)

forward quadratic

wI(tn− 1

2

) =
3

4
wn−1 +

1

4
wn +

1

4
τF (tn−1, wn−1), (2.4)

and backward quadratic

wI(tn− 1

2

) =
1

4
wn−1 +

3

4
wn − 1

4
τF (tn, wn) . (2.5)

With the ROS2 method we could also use what we call ”embedded” quadratic in-
terpolation, which uses the stages values of the method and avoids explicit evaluations
of F :

wI (tn− 1

2

) = wn−1 +
1

8(1 − 2γ)
(5 − 12γ) k1 +

1

8(1 − 2γ)
(1 − 4γ) k2 . (2.6)

This interpolation mimics the quadratic interpolation based on w(tn−1), w(tn) and
w′(tn−1 + γτ),

wI(tn− 1

2

) =
1

4(1− 2γ)
((3 − 4γ)wn−1 + (1 − 4γ)wn + τF (tn−1+γ , wn−1+γ)) .

However for γ = 1 ± 1

2

√
2 the interpolation (2.6) coincides with (2.5). In the case

of ROS1 with γ = 1

2
, backward quadratic interpolation is equivalent to the forward

quadratic interpolation.
For the compound step strategy also extrapolation is needed: wE(tn) ≈ w(tn).

Again, we consider three types of extrapolation: linear

wE(tn) = 2wn− 1

2

− wn−1 , (2.7)
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forward quadratic

wE(tn) = 4wn− 1

2

− 3wn−1 − τF (tn−1, wn−1) , (2.8)

and backward quadratic

wE(tn) = wn−1 + τF (tn− 1

2

, wn− 1

2

) . (2.9)

3 The linear test problem in R2

Usually, linear stability analysis of an integration method is based on the scalar
Dahlquist test equation w′(t) = λw(t), λ ∈ C. For multirate methods the scalar
problem cannot be used. Instead we consider a similar test problem, a linear 2 × 2
system

w′(t) = Aw(t) , w =

(

u

v

)

, A =

(

a11 a12

a21 a22

)

. (3.1)

We denote
Z = τA , zij = τaij . (3.2)

We will assume that the first component u of the system is fast and the second com-
ponent v is slow. Thus, to perform the time integration from tn−1 to tn = tn−1 + τ

we will complete two time steps of size 1

2
τ for the first component and one time step

of size τ for the second component.
We denote

κ =
a22

a11

, β =
a12a21

a11a22

. (3.3)

It will be assumed that
a11 < 0 and a22 < 0 . (3.4)

Then, both eigenvalues of the matrix A have a negative real part if and only if det(A) >

0. This condition can also be written as

β < 1 . (3.5)

We can regard κ as a measure for the stiffness of the system, and β indicates the
coupling between the fast and slow part of the system. For this two-dimensional
test equation we will consider asymptotic stability whereby it is required that the
eigenvalues of the amplification matrix of the multirate method are less than one in
modulus. Instead of z11 ≤ 0 and β < 1 it is convenient to use the quantities

ξ =
z11

1 − z11

, η =
β

2 − β
, (3.6)

which are bounded between −1 and 0, and −1 and 1, respectively.

4 Asymptotic stability for multirate ROS1

4.1 Recursive refinement strategy

In our recursive strategy, first we take the global step

wn = wn−1 + k1 ,

(I − γZ) k1 = Zwn−1 ,
(4.1)
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from which we also obtain an approximation vI (tn− 1

2

) for the second component at
the intermediate time level tn− 1

2

by interpolation.
We continue with the first update step for the first component

un− 1

2

= un−1 + k̃1 ,

(

1 − 1

2
γz11

)

k̃1 =
1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv′I (tn−1) ,

(4.2)

where the time derivative term is approximated by

τv′I (tn−1) = vn − vn−1 (4.3)

without loosing the second order of the method.
At this point we have an numerical approximation of the solution at time tn− 1

2

,

wn− 1

2

=

(

un− 1

2

vI(tn− 1

2

)

)

. (4.4)

We proceed with the second update step

un = un− 1

2

+ k̂1 ,

(

1 − 1

2
γz11

)

k̂1 =
1

2
(z11un− 1

2

+ z12vI(tn− 1

2

)) +
1

4
γz12τv′I (tn− 1

2

) ,
(4.5)

where, again, we approximate

τv′I (tn− 1

2

) = vn − vn−1 , (4.6)

without loosing the second order of the method. The final numerical value of the
solution at time tn is now given by

wn =

(

un

vn

)

. (4.7)

4.2 Compound step strategy

In the compound step strategy, the first micro step for the first component

un− 1

2

= un−1 + k1 ,

(

1 − 1

2
γz11

)

k1 =
1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv′I (tn−1)

(4.8)

and the time step for the second component

vn = vn−1 + k̂1 ,

(1 − γz22) k̂1 = (z21un−1 + z22vn−1) + γz21τu′
I(tn−1)

(4.9)

are computed at the same time. Then we continue with the second micro step for the
first component

un = un− 1

2

+ k̃1 ,

(

1 − 1

2
γz11

)

k̃1 =
1

2
(z11un− 1

2

+ z12vI (tn− 1

2

)) +
1

4
γz12τv′I (tn− 1

2

) .
(4.10)
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The time derivative terms are approximated by

τu′
I(tn−1) = 2(un− 1

2

− un−1) , (4.11)

τv′I (tn−1) = vn − vn−1 , (4.12)

τv′I (tn− 1

2

) = vn − vn−1 . (4.13)

Since these approximations are used for the τ 2Ft term in (2.1), it follows that the
order of the method does not change by (4.11)-(4.13).

4.3 Results

Both considered strategies can be written in the form of partitioned Rosenbrock meth-
ods (see for example [2]). Therefore the eigenvalues of the amplification matrix of the
multirate schemes depend just on three parameters κ, η and ξ (see Section 7). The
domains of asymptotic stability are shown in the Figures 1–4 for both strategies and
all considered types of interpolation. We present these domains in the (ξ, η)-plane for
three values of κ = 10j , j = 0, 1, 2. We observe that for these multirate schemes the
stability region decreases with the increasing of κ.

From Figure 1 and Figure 2 it is seen that the combination of ROS1 and linear
interpolation is unconditionally stable for both multirate strategies if the coupling
parameter η ≥ 0. For the η < 0 case, both strategies have instability regions which in-
crease when κ becomes large. In this case stability regions for the recursive refinement
strategy are somehow larger than for the compound step strategy.

For the ROS1 with forward quadratic interpolation (Figure 3 and Figure 4), both
multirate schemes become unstable for large κ, except the trivial case η = 0. Both
strategies have almost the same stability regions. The recursive refinement strategy
has slightly larger stability area for η > 0. For η < 0 there exist a small set of points
(close to ξ = −0.8) where the compound step strategy is asymptotically stable but the
recursive refinement strategy is unstable. However, in general the recursive refinement
strategy in the experiments in this section is slightly more stable.

The case η ≥ 0 is relevant to the semi-discrete systems which are obtained by the
central spatial discretization of the heat equation. The results obtained here suggest
that the both strategies, based on ROS1 and linear interpolation, are stable for these
semi-discrete systems. The results also show that for both strategies it is not possible
to have an unconditionally stable second order multirate scheme based on ROS1. Using
linear interpolation/extrapolation we get better stability properties, however we may
lose one order due to stiffness (see the analysis in [4]).

5 Asymptotic stability for multirate ROS2

5.1 Recursive Refinement Strategy

In our recursive strategy, first we take the global step

wn = wn−1 +
3

2
k̄1 +

1

2
k̄2 ,

(I − γZ) k̄1 = Zwn−1 , (5.1)

(I − γZ) k̄2 = Z(wn−1 + k̄1) − 2k̄1 ,

from which we also obtain an approximation vI (tn− 1

2

) for the second component at
the intermediate time level tn− 1

2

by interpolation.
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Figure 1: Recursive refinement, ROS1 with linear interpolation. Asymptotic stability do-
mains (gray areas) for κ = 1, 10, 100.
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Figure 2: Compound step, ROS1 with linear interpolation. Asymptotic stability domains
(gray areas) for κ = 1, 10, 100.
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Figure 3: Recursive refinement, ROS1 with forward quadratic interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.
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Figure 4: Compound step, ROS1 with forward quadratic interpolation. Asymptotic stability
domains (gray areas) for κ = 1, 10, 100.
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We continue with the first update step for the first component

un− 1

2

= un−1 +
3

2
k̃1 +

1

2
k̃2 ,

(

1 − 1

2
γz11

)

k̃1 =
1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv′I (tn−1) , (5.2)

(

1 − 1

2
γz11

)

k̃2 =
1

2
(z11(un−1 + k̃1) + z12vI(tn− 1

2

)) − 1

4
γz12τv′I (tn−1) − 2k̃1 ,

where the time derivative term is approximated with

τv′I (tn−1) = vn − vn−1 . (5.3)

Since this approximation is used for the τ 2Ft term in (2.2), it follows that the order
of the method does not change by (5.3).

At this point we get the numerical approximation of the solution at time tn− 1

2

wn− 1

2

=

(

un− 1

2

vI(tn− 1

2

)

)

. (5.4)

We proceed further with the second update step

un = un− 1

2

+
3

2
k̂1 +

1

2
k̂2 ,

(

1 − 1

2
γz11

)

k̂1 =
1

2
(z11un− 1

2

+ z12vI(tn− 1

2

)) +
1

4
γz12τv′I (tn− 1

2

) ,

(

1 − 1

2
γz11

)

k̂2 =
1

2
(z11(un− 1

2

+ k̂1) + z12vn) − 1

4
γz12τv′I (tn− 1

2

) − 2k̂1 ,

(5.5)

where, again, we approximate

τv′I (tn− 1

2

) = vn − vn−1. (5.6)

The final numerical value of the solution at time tn is given by

wn =

(

un

vn

)

. (5.7)

5.2 Compound step strategy

In the compound step strategy, the first micro step for the first component

un− 1

2

= un−1 +
3

2
k̄1 +

1

2
k̄2 ,

(

1 − 1

2
γz11

)

k̄1 =
1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv′I (tn−1) , (5.8)

(

1 − 1

2
γz11

)

k̄2 =
1

2
(z11(un−1 + k̄1) + z12vI (tn− 1

2

)) − 1

4
γz12τv′I (tn−1) − 2k̄1

and the time step for the second component

vn = vn−1 +
3

2
k̂1 +

1

2
k̂2 ,

(1 − γz22) k̂1 = (z21un−1 + z22vn−1) + γz21τu′
I (tn−1) , (5.9)

(1 − γz22) k̂2 = (z21uE(tn) + z22(vn−1 + k̂1)) − γz21τu′
I(tn−1) − 2k̂1
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are computed at the same time. Then we continue with the second micro step

un = un− 1

2

+
3

2
k̃1 +

1

2
k̃2 ,

(

1 − 1

2
γz11

)

k̃1 =
1

2
(z11un− 1

2

+ z12vI(tn− 1

2

)) +
1

4
γz12τv′I (tn− 1

2

) , (5.10)

(

1 − 1

2
γz11

)

k̃2 =
1

2
(z11(un− 1

2

+ k̃1) + z12vn) − 1

4
γz12τv′I (tn− 1

2

) − 2k̃1.

The time derivative terms are approximated by

τu′
I(tn−1) = 2(un− 1

2

− un−1) , (5.11)

τv′I (tn−1) = vn − vn−1 , (5.12)

τv′I (tn− 1

2

) = vn − vn−1 . (5.13)

Again, these approximations will not affect the order of the method.
A multirate scheme based on a slightly different second order Rosenbrock method

and compound step strategy was considered in [2]. Linear extrapolation and quadratic
interpolation were used.

5.3 Results

Again, both considered strategies can be written in the form of a partitioned Rosen-
brock methods (for example by adding some artificial extra stages to the original
method). Therefore the eigenvalues of the amplification matrix of the multirate
schemes will depend on three parameters κ, η and ξ (see Section 7).

The domains of asymptotic stability are shown in the Figures 5–10 for both strate-
gies and all considered types of interpolation/extrapolation. We present these domains
in the (ξ, η)-plane for three values of κ = 10j , j = 0, 1, 2. From Figures 5 and 6 it is
seen that the combination of ROS2 and linear interpolation is unconditionally stable
for both multirate strategies if η ≥ 0. An instability region appears at η close to
−1. The instability region for the recursive refinement strategy is smaller than for the
compound step strategy.

For ROS2 with forward quadratic interpolation (Figures 7 and 8), both multirate
schemes become unstable for large κ, unless η = 0. In this case the recursive refinement
strategy has larger stability regions than the compound step strategy. A curious fact
is that for κ = 1 and κ = 10 the recursive refinement strategy is stable almost for all
the values of η when ξ = ξ∗, where ξ∗ is a number close to −0.9. For κ = 100 this
property is not valid anymore.

Figure 9 shows that the combination of ROS2 and backward quadratic interpolation
is almost unconditionally stable for the recursive refinement strategy. There is a small
set of points in the bottom-right corner of the domain where this strategy is unstable.
As shown in Figure 10, the compound step strategy used with ROS2 and backward
quadratic interpolation has large instability regions, which in this case is a disadvantage
of this strategy in comparison with the recursive refinement strategy.

In the case of linear and forward quadratic interpolation, for both strategies stabil-
ity regions decrease with the increase of κ. However, in the case of backward quadratic
interpolation, the stability region of the recursive refinement strategy increases with the
increase of κ. The compound step strategy, used with backward quadratic interpola-
tion, has irregular large stability regions, which shows that it can lead to unpredictable
stability problems.
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Figure 5: Recursive refinement, ROS2 with linear interpolation. Asymptotic stability do-
mains (gray areas) for κ = 1, 10, 100.
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Figure 6: Compound step, ROS2 with linear interpolation. Asymptotic stability domains
(gray areas) for κ = 1, 10, 100.
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Figure 7: Recursive refinement, ROS2 with forward quadratic interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.
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Figure 8: Compound step, ROS2 with forward quadratic interpolation. Asymptotic stability
domains (gray areas) for κ = 1, 10, 100.
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Figure 9: Recursive refinement, ROS2 with backward quadratic interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.
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Figure 10: Compound step, ROS2 with backward quadratic interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.

In this section we showed some results for ROS2 with the choice γ = 1− 1

2

√
2. We

also performed some tests for γ = 1 + 1

2

√
2 and γ = 1

2
. The results we obtained are

very similar to the ones with γ = 1 − 1

2

√
2. The asymptotic instability regions were

a bit larger for γ = 1 + 1

2

√
2 than for γ = 1 − 1

2

√
2. The only significant difference

was that ROS2 with γ = 1

2
and backward quadratic interpolation was as unstable as

ROS2 with γ = 1

2
and forward quadratic interpolation.

The main result of this section is that for the recursive refinement strategy there
exists a second order multirate scheme, based on ROS2 and backward quadratic in-
terpolation, which is unconditionally asymptotically stable (except for a very small
region). For the compound step strategy it is not possible to have a second order
multirate scheme with this stability property.

6 Relevance of the linear 2 × 2 test problem

Asymptotic stability guarantees ||Sn|| → 0 as n → ∞. This also implies boundedness
of

M = sup
n≥0

||Sn|| , (6.1)

but this bound M may depend on τ and A, and in particular on the stiffness of the
problem. There is also lack of theory which would extend the results of stability
analysis for multirate schemes for the linear 2 × 2 test equation to general systems of
ODEs. Therefore, in order to see how relevant the asymptotic stability results for the
linear 2 × 2 test problem are we did some stability tests in Rm to determine M for
some interesting matrices A. In this section we consider m = 50 and we assume that
the first 25 components of the system are fast and the last 25 components are slow.
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We use ROS2 as our main time integration method. Forward quadratic interpolation
showed bad asymptotic stability properties in the 2 × 2 tests and therefore we do not
consider it anymore in the following numerical tests.

6.1 The heat equation

Let us consider the heat equation

ut = duxx . (6.2)

Applying the second order central discretization on a uniform spatial grid leads to a
semi-discrete system

w′(t) = Aw(t) , (6.3)

where A is a m × m matrix

A = µ tridiag(1,−2, 1) (6.4)

and µ > 0 will depend on m and d. For matrices A of type (6.4), with m = 50,
numerical tests for the recursive refinement and compound step strategies based on
ROS2 and backward quadratic interpolation showed boundedness for the powers of
the amplification matrix of the scheme in the maximum norm. From Figure 11 it is
seen that in this case ||Sn||∞ is bounded by 2 and 25, for any choice of n and µ, for the
recursive refinement and the compound step strategy respectively. The bound value
M = 25 for the compound step is much larger than M = 2 for the recursive refinement
strategy. For the compound step strategy M becomes larger with the increase of m;
numerical experiments suggest that for this strategy M = 1

2
m, which can be viewed

as a weak instability.

Figure 11: Problem (6.2). Plot of the bound value M for ROS2 with recursive refine-
ment (left) and compound step (right) strategies, used with linear (solid line) and backward
quadratic interpolation (dashed line).

However, if we consider the heat equation with a non-constant diffusion coefficient

ut = d(x)uxx (6.5)

then with the same spatial discretization we obtain a semi-discrete system (6.3) with

A = diag(µ1, . . . , µm)tridiag(1,−2, 1) . (6.6)

If, for this type of systems, we take µi = 7

6
for i ≤ 25 and µi = 70

3
for i > 25 then

the compound step strategy based on ROS2 and backward quadratic interpolation
becomes unstable. Figure 12 shows that for this choice of the coefficients µi, ||Sn||∞ is
bounded by 2 for any n for the recursive refinement strategy, whereas for the compound
step strategy an exponential growth in n is observed.
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Figure 12: Problem (6.5). Plot of the ln(||Sn||) for ROS2 with recursive refinement (left)
and compound step (right) strategies, used with backward quadratic interpolation.

These numerical results are in accordance with the results obtained for the linear
2 × 2 test problem. The 2 × 2 version of the matrix (6.4) would correspond to κ = 1
and η = 1

7
. Figures 5, 6, 9 and 10 show that for these values of κ and η both multirate

strategies are asymptotically stable. The 2× 2 version of the matrix (6.6) corresponds
to κ = 20, η = 1

7
and ξ = −0.7. For these values the compound step strategy is

asymptotically unstable (Figure 10), but the recursive refinement strategy is stable
(Figure 9).

The numerical tests presented in this subsection suggest that the conclusions ob-
tained in Section 5 are also valid for more general systems. The following hypothesis
can be formulated: the recursive refinement strategy, based on ROS2 and linear or
backward quadratic interpolation, is stable if it is applied to the discrete system ob-
tained by second order spatial discretization of the heat equation. In the same context,
the compound step strategy is stable if is used with linear interpolation, but it can
lead to instabilities when is used with backward quadratic interpolation.

6.2 The advection equation

As a second test problem we consider the advection equation

ut + aux = 0 . (6.7)

Applying the first order upwind discretization on a uniform spatial grid leads to a
semi-discrete system

w′(t) = Aw(t) , (6.8)

where A is a m × m matrix

A = µ tridiag(1,−1, 0) . (6.9)

For the matrices A of type (6.9), numerical tests for the recursive refinement and
compound step strategies based on ROS2 and backward quadratic interpolation showed
uniform boundedness for the powers of the amplification matrix of the scheme. From
Figure 13 it is seen that in this case ||Sn||∞ is bounded by 3 and 35, for any choice of n

and µ, for the recursive refinement and the compound step strategy, respectively. The
bound M = 35 for the compound step strategy is larger than the bound M = 3 for the
recursive refinement strategy. However, for this case (6.9) it was observer in further
numerical tests that both these bounds do not change significantly, with increasing m,
in contrast to (6.4).

We also consider the case of the second order central spatial discretization of the
advection term for the problem (6.7). With this discretization we obtain a semi-discrete
system (6.8) with

A = µ tridiag(1, 0,−1) . (6.10)
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Figure 13: Problem (6.7), first order upwind spatial discretization. Plot of the bound value
M for ROS2 with recursive refinement (left) and compound step (right) strategies, used with
linear (solid line) and backward quadratic interpolation (dashed line).

Numerical tests showed that both multirate strategies used with ROS2 are unstable
for the system (6.8) with matrices A of type (6.10). Figure 14 shows that the infinity
norm of the powers of the amplification matrix S for the case µ = 100 is not bounded.

Figure 14: Problem (6.7), second order central spatial discretization. Plot of the ||Sn|| for
ROS2 with recursive refinement (left) and compound step (right) strategies, used with linear
(solid line) and backward quadratic interpolation (dashed line), ROS2.

Again, the results from this subsection agree with those obtained for the linear 2×2
test problem. The 2 × 2 version of the matrix (6.9) would correspond to κ = 1 and
η = 0. Figures 5-10 show that for these values of κ and η both multirate strategies are
asymptotically stable. The 2 × 2 version of the matrix (6.10) corresponds to η = −1
and ξ = 0. The same Figures show that these values of κ and ξ can lead to asymptotic
instabilities of both strategies. All this suggests that both strategies, based on ROS2
and linear or backward quadratic interpolation, are stable when applied to the semi-
discrete system obtained by first order upwind spatial discretization of the advection
equation. They are unstable if, instead, the second order central spatial discretization
is used.

7 A property of the eigenvalues of the amplification matrix for

partitioned Rosenbrock methods

All multirate schemes considered in this paper can be transformed into a partitioned
Rosenbrock method, for example by adding some artificial extra stages; see [2], for
example.

For a system
u′ = F1(u, v) ,

v′ = F2(u, v) ,
(7.1)

a partitioned Rosenbrock method is given by

un = un−1 +

s1
∑

i=1

b̄ik̄i , (7.2)
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vn = vn−1 +

s2
∑

i=1

b̂ik̂i , (7.3)

k̄i = τF1



un−1 +

i−1
∑

j=1

ᾱij k̄j , vn−1 +

p̄i
∑

j=1

β̄ij k̂j



 +

+ τF1u

i
∑

j=1

γ̄ij k̄j + τF1v

s2
∑

j=1

δ̄ij k̂j , i = 1, . . . , s1 , (7.4)

k̂i = τF2



un−1 +

p̂i
∑

j=1

α̂ij k̄j , vn−1 +
i−1
∑

j=1

β̂ij k̂j



 +

+ τF2u

s1
∑

j=1

γ̂ij k̄j + τF2v

i
∑

j=1

δ̂ij k̂j , i = 1, . . . , s2 , (7.5)

where Fiu = ∂Fi

∂u
and Fiv = ∂Fi

∂v
.

We mention that if
p̄i < i and p̂i < i (7.6)

then the system (7.4-7.5) can be solved by sequentially computing the values of the

pairs (k̄i, k̂i). For each i two linear systems, of the size of the vectors u and v re-
spectively, have to be solved. The recursive refinement strategy leads to a multirate
scheme which can be written as a partitioned Rosenbrock method with property (7.6).
In the compound step strategy the macro step and the first micro step are computed
simultaneously. The micro step uses the information obtained from the interpolation
of the results from the macro step. The macro step uses the information obtained
by the extrapolation of the results from the micro step. The partitioned Rosenbrock
method derived from the multirate scheme obtained with the compound step strategy
does not satisfy (7.6). Therefore for the compound step strategy, (7.4-7.5) can result
in large implicit systems.

In the case of our 2 × 2 linear test problem the system (7.1) can be written as

u′ = a11u + a12v ,

v′ = a21u + a22v .
(7.7)

If we write the method (7.2)-(7.5) in a short form

(

un

vn

)

= S

(

un−1

vn−1

)

, (7.8)

with S = (Sij), i, j = 1, 2, then we can prove the following theorem.

Theorem 1. The eigenvalues of the amplification matrix S can be written as functions
of the three variables z11, z22 and det(Z).

Proof. For the problem (7.7) the formulas (7.4)-(7.5) reduce to

k̄i = z11(un−1 +
i

∑

j=1

ᾱ∗
ij k̄j) + z12(vn−1 +

s2
∑

j=1

β̄∗
ij k̂j) , (7.9)
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k̂i = z21(un−1 +

s1
∑

j=1

α̂∗
ij k̄j) + z22(vn−1 +

i
∑

j=1

β̂∗
ij k̂j) . (7.10)

If we set (un−1, vn−1)
T = (1, 0)T then we get (S11, S21)

T = (un, vn)T . By defining

k̂i = z21k̂
∗
i from (7.9)-(7.10) we obtain

k̄i = z11(1 +

i
∑

j=1

ᾱ∗
ij k̄j) + z12z21

s2
∑

j=1

β̄∗
ij k̂

∗
j , i = 1, . . . , s1 , (7.11)

k̂∗
i = 1 +

s1
∑

j=1

α̂∗
ij k̄j + z22

i
∑

j=1

β̂∗
ij k̂

∗
j , i = 1, . . . , s2 . (7.12)

The solution of system (7.11)-(7.12) depends only on z11, z22 and det(Z). Therefore
we have

S11 = un = 1 +

s1
∑

i=1

b̄ik̄i = f11(z11, z22, det(Z)) , (7.13)

S21 = vn = z21

s2
∑

i=1

b̂ik̂
∗
i = z21f21(z11, z22, det(Z)) . (7.14)

In a similar way, by setting (un−1, vn−1)
T = (0, 1)T one can show that

S12 = z12f21(z11, z22, det(Z)) and S22 = f22(z11, z22, det(Z)) . (7.15)

Finally from

S =

(

f11(z11, z22, det(Z)) z12f21(z11, z22, det(Z))
z21f21(z11, z22, det(Z)) f22(z11, z22, det(Z))

)

(7.16)

the proof of the theorem directly follows.

This property was already observed for some special methods in [4, 6, 8].

8 Conclusions

In this paper we presented a comparison of asymptotic stability properties for the
multirate recursive refinement and the compound step strategies. We also discussed
how the obtained results can be used in the context of stability of the more general
schemes. For most of the tests in the paper the recursive refinement strategy does have
the asymptotic stability regions somewhat larger than the compound step strategy.
Sometimes the difference is very small (ROS1 and quadratic interpolation), in other
cases the difference is significant (ROS2 and backward quadratic interpolation).

The scheme based on the recursive refinement strategy used with ROS2 and back-
ward quadratic interpolation is clearly the favorite among the considered second order
schemes. It has a very small instability region. There are no multirate schemes based
on the compound step strategy, which are of second order for stiff problems and have
good stability properties.

The numerical tests for more general systems presented in the paper gave results
which are in accordance with those obtained for the 2× 2 linear test problem. There-
fore, the simple 2 × 2 case already gives a good indication for stability properties for
more general systems, such as the semi-discrete systems obtained from the spatial
discretization of the heat equation and the advection equation.
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Finally we mention that the compound step strategy, by avoiding the extra work of
doing the macro step for all the components, looses some stability properties compared
to the recursive refinement strategy, and it can also lead to more complex implicit
systems which are difficult to solve. The recursive refinement strategy is very simple
and it has better stability properties.
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