4 research outputs found

    Retrieving Soil and Vegetation Temperatures From Dual-Angle and Multipixel Satellite Observations

    Get PDF
    Land surface component temperatures (LSCTs), i.e., the temperatures of soil and vegetation, are important parameters in many applications, such as estimating evapotranspiration and monitoring droughts. However, the multiangle algorithm is affected due to different spatial resolution between nadir and oblique views. Therefore, we propose a combined retrieval algorithm that uses dual-angle and multipixel observations together. The sea and land surface temperature radiometer onboard ESA\u27s Sentinel-3 satellite allows for quasi-synchronous dual-angle observations, from which LSCTs can be retrieved using dual-angle and multipixel algorithms. The better performance of the combined algorithm is demonstrated using a sensitivity analysis based on a synthetic dataset. The spatial errors in the oblique view due to different spatial resolution can reach 4.5 K and have a large effect on the multiangle algorithm. The introduction of multipixel information in a window can reduce the effect of such spatial errors, and the retrieval results of LSCTs can be further improved by using multiangle information for a pixel. In the validation, the proposed combined algorithm performed better, with LSCT root mean squared errors of 3.09 K and 1.91 K for soil and vegetation at a grass site, respectively, and corresponding values of 3.71 K and 3.42 K at a sparse forest site, respectively. Considering that the temperature differences between components can reach 20 K, the results confirm that, in addition to a pixel-average LST, the combined retrieval algorithm can provide information on LSCTs. This article demonstrates the potential of utilizing additional information sources for better LSCT results, which makes the presented combined strategy a promising option for deriving large-scale LSCT products

    A physics-constrained machine learning method for mapping gapless land surface temperature

    Full text link
    More accurate, spatio-temporally, and physically consistent LST estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a physics-constrained ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable physical constraints are incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which uses only remote sensing data as input, serves as the pure ML model. Physical constraints (PCs) are coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the PC-LGBM model, which incorporates surface energy balance (SEB) constraints underlying the data in CLM-LST modeling within a biophysical framework. Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST. It also demonstrates a good extrapolation ability for the responses to extreme weather cases, suggesting that the PC-LGBM model enables not only empirical learning from data but also rationally derived from theory. The proposed method represents an innovative way to map accurate and physically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation

    Remote Sensing of Land Surface Phenology

    Get PDF
    Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects
    corecore