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Retrieving Soil and Vegetation Temperatures From
Dual-Angle and Multipixel Satellite Observations
Zunjian Bian , Hua Li , Frank M. Göttsche , Ruibo Li, Yongming Du , Huazhong Ren , Biao Cao,

Qing Xiao , and Qinhuo Liu

Abstract—Land surface component temperatures (LSCTs), i.e.,
the temperatures of soil and vegetation, are important parameters
in many applications, such as estimating evapotranspiration and
monitoring droughts. However, the multiangle algorithm is affected
due to different spatial resolution between nadir and oblique views.
Therefore, we propose a combined retrieval algorithm that uses
dual-angle and multipixel observations together. The sea and land
surface temperature radiometer onboard ESA’s Sentinel-3 satel-
lite allows for quasi-synchronous dual-angle observations, from
which LSCTs can be retrieved using dual-angle and multipixel
algorithms. The better performance of the combined algorithm
is demonstrated using a sensitivity analysis based on a synthetic
dataset. The spatial errors in the oblique view due to different
spatial resolution can reach 4.5 K and have a large effect on the mul-
tiangle algorithm. The introduction of multipixel information in a
window can reduce the effect of such spatial errors, and the retrieval
results of LSCTs can be further improved by using multiangle
information for a pixel. In the validation, the proposed combined al-
gorithm performed better, with LSCT root mean squared errors of
3.09 K and 1.91 K for soil and vegetation at a grass site, respectively,
and corresponding values of 3.71 K and 3.42 K at a sparse forest site,
respectively. Considering that the temperature differences between
components can reach 20 K, the results confirm that, in addition to
a pixel-average LST, the combined retrieval algorithm can provide
information on LSCTs. This article demonstrates the potential of
utilizing additional information sources for better LSCT results,
which makes the presented combined strategy a promising option
for deriving large-scale LSCT products.
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I. INTRODUCTION

LAND surface temperature (LST) is a key parameter in
surface physical processes, such as the energy budget and

water cycle, and plays an essential role in applications, such as
weather prediction, surface drought monitoring and agricultural
yield estimation [1]–[3]. In the last three decades, a dramatic
development has occurred in LST retrieval from satellite data,
including the following algorithms: single-channel [4], two-
channel split-window (SW) [5], Day/Night algorithm [6], and
temperature emissivity separation [7], [8]. Moreover, various
LST products have been generated at both local and global scales
[1]. One of the main limitations of these products is that the
retrieved LST reflects only pixel-average temperatures rather
than physical temperatures of land surface components, such as
soil and vegetation. Mixed pixels with apparently isothermal
components usually occur because the spatial resolution of
geostationary and polar-orbit satellites is approximately 1.0–5.0
km. For spatially coarse satellite data, knowledge of the land
surface component temperatures (LSCTs) in a pixel seems more
desirable for accurately recording the surface temperature state.
Moreover, there are numerous studies describing the useful-
ness of LSCT in applications, e.g., for improved estimates of
evapotranspiration with a two-source energy balance model
[9] drought monitoring with a modified temperature vegetation
dryness index [10], and vegetation growth monitoring with a
crop water stress index [11].

A number of radiative transfer models have been proposed to
explain the physical relationship between LSCTs and thermal
infrared (TIR) observations [12]–[15], which can be considered
a prerequisite for LSCT retrieval. Based on these approaches,
a large part of previous LSCT research focused on obtaining
more accurate results by introducing more complex models [16],
[17]. However, recent studies have concluded that practical and
robust algorithms may be more useful for retrieving LSCTs from
satellite data. A considerable amount of literature has focused
on such algorithms and has been published for different types
of TIR observations. The respective literature was reviewed by
Zhan et al. [18], who classified LSCT retrieval algorithms into
four types: multiangle, multichannel, multitemporal, and mul-
tipixel/multiresolution algorithms. However, to the best of our
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knowledge, no practical algorithm for retrieving LSCTs from
satellite data yet exists that is sufficiently robust to be integrated
into an operational processing chain. So far, all multichannel
algorithms have suffered from high autocorrelation between the
observations, which is due to slight differences in TIR emissivity
between soil and vegetation [19]. Similar complications are
faced by multipixel/multiresolution algorithms over relatively
homogeneous surfaces [20]. An ill-posed problem may occur
for the multitemporal algorithm because two or more unknown
LSCTs are introduced when one observation at different times
is added [21]. Relative to the abovementioned algorithms, the
multiangle algorithm has received the most attention and has
generally been identified as a good tool [12]. The feasibility
and limitations of LSCT retrieval from along track scanning
radiometer (ATSR) data were described in [22]. Li et al. [23]
and Jia et al. [24] succeeded in retrieving soil and vegetation
temperatures using dual-angle LSTs that were retrieved with an
SW algorithm applied to ATSR series data. The difficulties in
LSCT retrieval not only are due to uncertainty in atmospheric
correction and fractional vegetation cover (FVC) but also are
caused by differences in spatial resolution between nadir and
oblique views, particularly over heterogeneous surfaces [25].

Considering the characteristics of the various algorithms, a
joint application of several algorithms may be helpful for a multi-
angle algorithm, particularly for the effect of different spatial res-
olution between nadir and oblique views. Furthermore, there has
been considerable progress in the availability of suitable satellite
data: the sea and land surface temperature radiometers (SLSTRs)
onboard Sentinel-3 A and B satellites (launched in February
2016 and April 2018, respectively) provide quasi-synchronous
dual-angle observations and continuity for the Advanced ATSR.
Thanks to this new data source, LSCT retrievals with multian-
gle and multipixel algorithms have become considerably more
feasible. Therefore, it is desirable to make full use of SLSTR
observations and to explore suitable strategies for combining the
two algorithms so that robust LSCT estimates can be obtained.

In this article, we explore an LSCT retrieval to use SLSTR
multiangle and multipixel observations together. The combined
retrieval algorithm is evaluated with surface measurements
from two sites covered by grass and sparse forest canopies,
respectively. Furthermore, the combined algorithm has been
analyzed using a synthetic dataset for the Heihe River Basin
and comparisons with the individual multiangle algorithm. The
outline of this article is as follows. Section II considers the
study area and data sources, which include satellite data and
surface measurements. Section III describes LSCT retrieval
with multiangle and multipixel algorithms. Section IV provides
analysis results obtained for a synthetic dataset and validates
retrieved LSCT results with surface measurements. Section V
discusses the limitations of the evaluation and retrieval proce-
dure. Finally, Section VI presents a short summary and provides
the conclusion.

II. MATERIALS

A. Input SLSTR Data

In this study, LSCT retrieval was performed using SLSTR
dual-angle data. SLSTR is a dual scan temperature radiometer,

which has been selected for the low earth orbit (800–830 km
altitude) ESA Sentinel-3 operational mission as a part of the
Copernicus Program [26]. The planned period of operation is
20 years. The wavelength range of SLSTR encompasses the
visible and near-infrared (VNIR, 0.555, 0.659, and 0.865 μm),
shortwave infrared (SWIR, 1.375, 1.61, and 2.25 μm), TIR
(3.74, 10.85, and 12.0 μm), and TIR fire (TIRf, 3.74 and 10.85
μm) bands. The spatial resolution of the VNIR/SWIR and TIR
data were regridded to 500 and 1000 m in the SLSTR level-1
product, respectively. To date, a number of studies have reported
practical applications of the SLSTR data [27]. The data used in
this study were obtained from Sentinel 3A. While Sentinel 3A
data are obtained each day, dual-angle data are obtained only
approximately every 4 days, since, in oblique view, the swath
across the track (∼740 km) is smaller than in nadir view (∼1400
km).

Currently, SLSTR level-2 LST products associated with the
nadir view are officially provided. The retrieval of this product
also utilizes Sentinel-3 Ocean and Land Color Imager (OLCI)
data and Sentinel-2 Multi-Spectral Instrument (MSI) data [28].
Here, SLSTR level-2 LST is not used because the analysis of
the retrieved LSCT is more consistent and intuitive if nadir and
oblique LSTs are obtained by a single algorithm. The vegetation
growing season, which in the studied regions lasts approximately
from day of year (DOY) 120 to 270 of 2017, was selected. Only
daytime data were used because at nighttime, temperature differ-
ences between land surface components are usually small. Cloud
and water vapor content (WVC) information was extracted from
SLSTR level-1 products [29].

B. Input Emissivity Data

For each pixel, the emissivity of its soil and vegetation com-
ponents and its canopy must be known before the correspond-
ing LSCTs can be retrieved. In this study, soil and vegetation
emissivity were input, and canopy (=pixel effective) emissivity
was calculated using the vegetation cover fraction method [28],
which is based on the normalized difference vegetation index
(NDVI) [30]

εi = fs εs,i + fvεv,i + dε (1)

fv =
NDVI−NDVIs
NDVIv −NDVIs

(2)

fs = 1− fv (3)

where εs,i, εv,i, and εi represent the soil, vegetation, and canopy
emissivity for SLSTR channel i = 8, 9, respectively; fs and
fv represent the visible proportion of soil and vegetation, re-
spectively; and dε represents a cavity term, which accounts for
multiple scattering effects. NDVIs and NDVIv represent the
NDVI values for bare soil and fully vegetated surfaces: based
on statistics in this study, they were set to 0.061 and 0.947,
respectively. The soil emissivity εs was set pixel by pixel based
on a reference background emissivity, which was obtained from
the physically retrieved ASTER GEDv3 emissivity product [31].
The vegetation emissivity εv was set for each surface class in
the MODIS IGBP land cover type product. Detailed information
about the LSE calculation can be found in [30].



5538 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 1. Study areas and station locations of (a) Arou, China. (b) Evora,
Portugal. (c) Displays the Heihe River basin for which the synthetic dataset
was generated.

TABLE I
LOCATION AND LAND COVER INFORMATION OF EACH SITE

C. LSCT In-situ Measurements

In this article, LSCT measurements for algorithm evaluation
were obtained from the Arou, China, and Evora, Portugal sites
(see Fig. 1). Detailed location and land cover information for
each site is shown in Table I.

1) Arou Station: The Arou site (38.0565 N, 100.4643 E) is
located in the Heihe River basin in northwest China. The in-situ
measurements at Arou were obtained from a meteorological
station operated as part of the Heihe Watershed Allied Telemetry
Experimental Research (HiWATER) campaign. In HiWATER
three key experimental areas (KEAs) were selected to conduct
intensive and long-term observations: a cold region experimental
area in the mountain cryosphere of the upper reaches, an artificial
oasis experimental area in the middle reaches, and a natural oasis
experimental area downstream [32]. Arou station (AR) belongs
to the cold region experimental area and has an elevation of
3033 m. The underlying canopy of the meteorological station is
low grass, and the main vegetation type is alpine meadow. At
this station, meteorological parameters such as air temperature,
humidity, soil temperature and moisture, wind speed, down-
ward shortwave and longwave radiances, and surface brightness
temperatures (BTs) were obtained 5.0 m above the surface.
The data used are available online1 [33]. Soil temperatures
measured at 0 cm depth were selected as ground truth values for

1[Online]. Available: http://hiwater.westgis.ac.cn/english/index.asp

validating retrieved soil temperature. In many previous studies,
retrieved vegetation temperatures were validated using in-situ
air temperatures, which is considered to be acceptable for dense
forest canopies. However, the selected vegetation sites do not
meet this criterion. Therefore, ground truth values for validat-
ing vegetation temperature were obtained from known surface
composition at the station and measured soil temperatures as
follows:

R′
v,m =

Rm − (1− ε) ·R↓
a,m − fs · εs ·R′

s,m

fv · εv (4)

where R′
s,m and R′

v,m represent the measured thermal radi-
ances of soil and vegetation, respectively; R↓

a,m represents the
measured downward thermal radiance from the atmosphere;
and Rm represents the measured thermal radiance leaving the
canopy. Because two Apogee SI-111 TIR radiometers were
operated together at AR, their measurements can check each
other and were selected to provide BTs for calculating Rm. The
uncertainty of SI-111 radiometers was ±0.2 K over the relevant
range. Both radiometers observed the surface at nadir with a
spectral range of 8–14 μm and a half-angle field of view of 22°.
The target footprint of the radiometers was 12.82 m2. R↓

a,m was
obtained from a Kipp & Zonen CNR1 energy balance sensor.
Surface BTs and meteorological conditions were automatically
measured every 10 min and recorded by a Campbell CR1000
datalogger. The emissivities of the soil and vegetation were
set to 0.965 and 0.985, respectively. The pixel emissivity was
calculated using an NDVI-based method as mentioned above
in (1).

2) Evora Station: Evora (EVO) station (38.5403 N, 8.0033
W) is located approximately 12 km southwest of the town of
Evora in the Alentejo region of Portugal. The station was set
up in a large area with homogeneous surface cover to minimize
complications from spatial scale mismatches between ground-
based and satellite sensors. The dominant vegetation types at
the station are isolated groups of evergreen cork oak trees and
grassland. Several studies of LST product validation have been
performed with in-situ measurements from this site [34].

EVO uses separate Heitronics KT-15.85 IIP infrared radiome-
ters to measure the relevant surface component temperatures,
i.e., the background (grass and ground) and a tree crown, as
well as sky radiance at a 53° zenith angle; all measurements
are recorded once per minute. The KT-15.85 IIP radiometer has
a spectral range of 9.6–11.5 μm and a temperature resolution
of 0.03 K with an uncertainty of ±0.3 K over the relevant
range [35]. Temperatures of the ground and tree crown were
measured under a view angle of approximately 30°, for which
angular emissivity variation of soil and grass can still be re-
garded as negligible. The target footprint of the radiometers
was approximately 14 m2 with a height of 25 m [36]. The sky
radiances measured at a 53° zenith angle were used to estimate
downwelling atmospheric radiance [37], [38]. With known com-
ponent emissivities and after removing the reflected atmospheric
radiance from the measured surface radiances, land surface
component BTs can be converted to temperatures and be used
for validating LSCT results. At EVO, the effective emissivity of
ground and tree were set to 0.968 and 0.993, respectively [39].

http:&sol;&sol;hiwater.westgis.ac.cn&sol;english&sol;index.asp
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According to [34], the surface composition temperature was
also calculated using these measured component temperatures.
It should be mentioned that because the grass was dry and low
there during summer, the measurements for background were
used to validate the retrieval results of soil directly.

D. Synthetic Dataset

1) Study Area: Due to the limited availability of suitable
in-situ measurements, which include LSCT and top-of-canopy
observations, a synthetic dataset was used for performing a
sensitivity analysis. As a study area, the Heihe River basin was
selected [see Fig. 1(c)], which is a typical inland river basin.
Because water-stressed ecosystems are massively distributed
and easily affected by climate change, studies on LST/LSCT,
evapotranspiration estimation, and drought prediction are of
high importance and considerable practical value in this study
area. As a good area for studying the processes and mechanisms
of an eco-hydrological system, several comprehensive remote
sensing experiments have been performed in this basin, e.g., the
Heihe Basin Field Experiment, Watershed Allied Telemetry Ex-
perimental Research and HiWATER [32], [40]–[42]. The study
area consists of many typical arid and semi-arid landscapes.
In the upstream cold region, the main vegetation types are
alpine grassland, alpine meadow, valley bush, and juniper. In
the middle stream, the artificial oasis with irrigation from rivers
is the main ecosystem, in which corn, wheat, and vegetables are
planted. In the downstream Heihe River basin, barren desert or
sparsely vegetated surfaces are strongly dominant, whereas, in
small areas along the river, there are natural oases with Populus
euphratica and Tamarix canopies.

2) Generation of Top-of-Canopy FVC and BT: The purpose
of the sensitivity analysis was to study the relative performance
of the combined strategy compared to the multiangle algo-
rithm, while the atmospheric correction procedures remained
unchanged. Therefore, in the synthetic dataset, SLSTR data for
top-of-canopy FVC and BT were generated instead of generating
top-of-atmosphere VNIR and TIR observations and considering
data uncertainties by adding errors. Following this approach, the
retrieved NDVI maps were used to set the viewing proportion
of soil and vegetation in nadir and oblique views. The SLSTR
TOC thermal radiances in nadir and oblique views can be gen-
erated pixel by pixel using the reference temperatures and the
components’ visible proportions and emissivities as follows:

Bi (Tj,r) = (fv,jεv + dε)Bi (Tv,r) + fs,jεsBi (Ts,r)

j = n, o (5)

where Bi(Tj,r) represents the generated SLSTR thermal ra-
diance; Ts,r and Tv,r represent the reference temperatures of
ground and vegetation, respectively; and Bi represents the
Planck function at a channel i, which converts surface tempera-
ture to radiance. The LSCT retrieval was performed at 10.85μm.
The subscript j indicates nadir or oblique view. The multiple
scattering effect between components was accounted for with
the vegetation term (dε) in (5) according to [43]. It should
be mentioned that the LST map of the study area retrieved in
nadir view on July 15, 2017, was selected to provide reference

Fig. 2. Spatial distributions of the (a) LST and (b) NDVI on July 15, 2017 in
the Heihe River basin.

temperatures because spatial relationships between neighboring
pixels impact the multipixel algorithm. For each pixel, vegeta-
tion temperature was assumed to be the reference LST-5 K, and
soil temperature was assumed to be the reference LST+5 K.
The visible proportions of components were calculated using
(2) and (3). Fig. 2(a) and (b) displays the spatial distributions of
the reference LST and NDVI maps used in the synthetic dataset,
respectively. To avoid the impact from pure pixels, only pixels
with FVC values larger than 0.10 and differences in FVC under
nadir and oblique views larger than 0.03 were selected for the
analysis.

3) Retrieval Noise: In this study, retrieval noise was cate-
gorized into spatial and angular errors. The spatial error was
required to account for different spatial resolutions between
nadir and oblique views, and only oblique observations had
added noise. The TIR radiance (Bi, e) and FVC (fv,o, e) with
spatial errors can be calculated using a weight-averaging method
as follows:

Bi, e =
∑
ξ,η

Bi (To,r,ξ,η) · pξ,η (6)

fv,o, e = e−LAIe·G/uo (7)

LAIe =
∑
ξ,η

LAIξ,η · pξ,η (8)

where To,r,ξ,η and LAIξ,η represent the oblique BT and leaf
area index (LAI) for a pixel, respectively, with column and row
numbers of ξ and η; pξ,η represents the weight of each pixel.
According to viewing angles of SLSTR, a 3× 3 window was
used, and the weights of the center pixel and the surrounding
pixel were 1.0 and 0.375, respectively. The LAI for each pixel
was retrieved based on an exponential formula from nadirfs with
a homogeneous assumption of pixel leaves [44]. In addition,
according to radiative transfer theories, LSCT retrieval would
also be affected by uncertainties in atmospheric correction,
visible proportions, and component emissivities. Unlike com-
ponent emissivity, atmospheric correction and FVC are more
easily affected by different viewing angles. Therefore, angular
errors due to these two factors were included in the sensitivity
analysis. The error due to atmospheric correction was considered
in top-of-canopy BT. Based on the above considerations, angular
errors with a normal distribution were added to the oblique BT
(ΔT ) and FVC (Δf ), and the SLSTR data used in the LSCT
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Fig. 3. LSCT retrieval procedure for SLSTR data. Black dotted box: input data. Blue and red boxes: atmospheric correction and LSCT combined retrieval,
respectively.

retrieval are calculated as

T
′
o,r = B−1

i,e +ΔT (μBT , σBT ) (9)

f
′
o,v = fo,v,e +Δf (μFVC, σFVC) (10)

where T
′
j,r and f

′
j,v represent the generated BT and FVC,

respectively; μ and σ represent the mean and standard devia-
tion, respectively; and B−1

i,e represents an inverse process of the
Planck function from thermal radiance to BT. According to the
uncertainty analysis in [30] and [45], the uncertainties associated
with the angular variations in LST retrieval were considered by
setting σBT to 0.25 K and 0.75 K with μBT = 0. Based on
[46], angular errors in FVC were included by setting μFVC to 0
and σFVC to 0.03 and 0.09.

III. METHOD

A. Retrieval Procedure

Fig. 3 illustrates the proposed LSCT retrieval procedure.
Before the combined retrieval algorithm (red box) can be per-
formed, an atmospheric correction (blue box) is applied to the
TIR input data: this is possible because SLSTR observes the
Earth in two thermal channels (8 and 9) under two viewing
angles, which allows an LST retrieval performed with SW and
dual-angle algorithms. In this study, although LSTs are retrieved,
surface actual emissions are used in LSCT retrieval, which
are calculated by blackbody emission of a pixel multiplied by
its emissivity. Therefore, the LST retrieval process is called
atmospheric correction, and the SW algorithm was adopted. The

remainder of this section mainly describes the strategy for the
algorithm using both multiangle and multipixel observations.

B. Atmospheric Correction

In this study, atmospheric correction was included in the LST
retrieval, which was performed in the nadir and oblique views
using a generalized SW algorithm proposed in [47] as follows:

LSTj = b0 +

(
b1 + b2

1− ε̄

ε̄
+ b3

Δε

ε̄2

)
T8 + T9

2

+

(
b4+b5

1− ε̄

ε̄
+ b6

Δε

ε̄2

)
T8 − T9

2
+ b7(T8− T9)

2

(11)

where b0 − b7 are the SW coefficients; T8 and T9 represent the
top-of-atmosphere BTs in SLSTR channels 8 (10.85 μm) and
9 (12.0 μm), respectively; and ε̄ and Δε are the mean and the
differences of emissivity ε8,j and ε9,j in SLSTR channels 8 and
9, respectively. In-depth details on the SW algorithm are readily
found in the published literature [28], [30], [45], [48]. The
SW coefficients were determined by fitting (11) to a synthetic
dataset obtained with MODTRAN 5.2 [49] for data from the
ASTER spectral library [50] and Seebor V5.2 atmosphere profile
library [51]: we used 81 emissivity spectra, including for natural
samples of vegetation, water, ice, snow, rock, sand and soil, and
4948 daytime atmospheric profiles to obtain a globally repre-
sentative data collection. A wide range of surface temperatures
was considered, with values varying from T0-20 K to T0+4 K
at 5 K steps and from T0-5 K to T0+29 K at 5 K steps for cold
(T0≤280 K) and warm (T0>280 K) conditions, respectively,
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Fig. 4. Observations for (a) multiangle and (b) multipixel algorithms over a
vegetation-soil canopy.

where T0 is the temperature of the lowest layer of the atmo-
spheric profiles. Furthermore, the coefficients were determined
for different viewing zenith angles (VZAs) and WVC values:
VZAs were 3°, 14.9°, 38.6°, 44.5°, 51.2°, 58°, and 65°, while
WVC was subdivided into six classes—i.e., [0, 1.5], [1, 2.5], [2,
3.5], [3, 4.5], [4, 5.5], and [5, 7.8] in units of g/cm−2. Based on
illuminating and viewing geometries, the same SW coefficients
were used for nadir and oblique view observations. Because the
top-of-canopy thermal emissions at nadir and oblique views are
required for LSCT retrieval, pixel-average radiances must be
multiplied by the corresponding pixel emissivity

Li,j = Bi (LSTj) · εi,j (12)

where Li,j represents the top-of-canopy thermal radiance and
subscripts i and j refer to the spectral band and view angle,
respectively.

C. LSCT Retrieval

After atmospheric correction, top-of-canopy average thermal
radiances of a pixel are obtained in nadir and oblique views.
The average thermal radiance (Li,j) of a pixel can be expressed
in terms of the contributions from its sub-pixel components as
follows:

Li,j =

N∑
k=1

fj,k εi,j,kBi (LSTk) (13)

where LSTk and fk represent the temperature and visible
proportion of component k, respectively; subscript i refers to
the spectral band; and subscript j corresponds to the different
observations used by the algorithms (see Fig. 4). In a multipixel
algorithm, subscript j indexes the different pixels within a
window; in a multiangle algorithm, it refers to the observations
made over a pixel under different viewing angles. fk,jεk,i is the
so-called effective emissivity, which represents the contribution
of a component to top-of-canopy radiance [52], [53]. It should
be mentioned that although multiple scattering effects are not
explicitly expressed in (13), the simple estimation used in [30]
was adopted for vegetation. In the combined algorithm, LSCT
retrieval is performed for the observations in SLSTR channel
8 for each satellite overpass. It should be noted that due to the
limited number of observations only average soil and vegetation

temperatures can be calculated, regardless of the temperature
difference between sunlit and shaded areas.

1) Simple Multiangle and Multipixel Algorithm: Based on
(13), the multiangle algorithm can be expressed in matrix form:

−→
La = W · −→ma (14)

where
−→
La is a vector with TIR observations under different

viewing angles, W is a matrix containing the components’
effective emissivities, and −→ma is a vector with the blackbody
thermal radiances of the components. The directional emissivity
characteristics of each component are described by the column
vectors in matrix W , while each of its row vectors describes the
radiative contribution of the components in a certain viewing
direction. Because the visible proportions and emissivity of the
components are assumed to be known, the multiangle retrieval
procedure can be viewed as a simple linear solution problem.
For SLSTR, the number of observations, i.e., nadir or oblique
views, at each time is equal to that of component temperatures.
Therefore, the blackbody thermal radiances of the components
can be retrieved as follows:

−→ma = W−1 · −→La. (15)

The multipixel algorithm proposed by Zhan et al. [20] was
selected for LSCT retrieval, which expresses the spatial distri-
bution of the thermal radiance of a component within a window
as a quadratic function of two variables, i.e., the row and column
numbers. (13) can then be rewritten as follows:

Li,j =

N∑
k=1

fj,k εi,j,k
(
ak,0 + ak,1ξj + ak,2ηj + ak,3ξ

2
j

+ak,4η
2
j + ak,5ξjηj

)
(16)

where ak,0-ak,5 are unknown coefficients for component k in the
multipixel algorithm; ξj and ηj are the column and row numbers
of pixel j, respectively; and N is the number of components. A
set of TIR observation equations in the selected window can also
be rewritten in matrix form

−→
Lp = H · �X (17)

where
−→
Lp is the vector of TIR observations of different pixels,

H is a matrix of coefficients associated with ξj and ηj , and �X
is a vector containing the unknown coefficients (ak,0-ak,5).
Because the visible proportions and emissivity of components
are assumed to be known, the set of (17) can be solved when
the number of available pixels in the selected window is larger
than the number of unknown coefficients (6×N). Once the co-
efficients are obtained, the thermal radiance of each component
k can be calculated using weighted averaging with a Gaussian
function as follows:

mp, k =

M∑
j=1

Fj,n

(
ak,0 + ak,1ξj + ak,2ηj + ak,3ξ

2
j

+ak,4η
2
j + ak,5ξjηj

)
(18)

Fj =
1

2πσ2
e−(ξj

2+ηj
2)/2σ2

(19)
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where M represents the number of pixels in a selected window.
It should be mentioned that the weight coefficients (Fk,n) cal-
culated by the Gaussian function were normalized.

Following [23] and [24], the multiangle LSCT retrieval can
be performed for each pixel. Following [20], LSCT can be
retrieved from multipixel observations in nadir view. In this
study, the multipixel observations in both nadir and oblique
views were used in (17), which enables a multiangle retrieval
under an assumption using a quadratic function for multipixel
information. In this study, a 5× 5 window was selected for re-
trieving coefficients �X by using a least-squares method: usually,
this provides enough equations when only soil and vegetation
components are considered.

2) Bayesian Combination Strategy: In the above simple
combined algorithm, the multiangle retrieval was performed
using observations in a window. The retrieved result for a pixel
would inevitably be affected by surrounding pixels. To reduce
this effect, a multiangle retrieval was performed again using
observations from a pixel, and a Bayesian strategy was adopted
to combine retrieved results from a window and a pixel. The
maximal posterior probability of the blackbody thermal radiance
of components can then be calculated with (20), where the sensor
noise and component radiance are assumed to have a Gaussian
distribution.

�m =
(
W TC−1

D W +C−1
M

)−1
(
W TC−1

D

−→
La +C−1

M
−→mp

)
(20)

where �m is a vector containing the results of the Bayesian
combined algorithm; CD is the covariance matrix associated
with measured and modeled observations;CM is the covariance
matrix associated with measured and a priori thermal radi-
ances of the components [12]; −→mp is the vector containing the
components’ thermal radiances as determined with the simple
combined algorithm; and

−→
La and W have the same meaning as

in the multiangle algorithm described above. In this study, the
Bayesian strategy determines the weights of a priori information−→mp and multiangle information from a pixel to result �m, and the
determination criteria are mainly based on the intensity of the
pixel angular effect. When the pixel angular effect is weak, the
reliability of retrieval results from

−→
La is reduced, and the result

�m is mainly determined by −→mp.

IV. RESULTS

A. Sensitivity Analysis for Synthetic Data

The various input data are associated with a certain uncer-
tainty. Therefore, the effect of this uncertainty on the proposed
LSCT retrieval algorithm must be analyzed. Because LSCT
in-situ data are scarce, a synthetic dataset for the Heihe River
basin was used to conduct a sensitivity analysis. The effects due
to different spatial and angular errors were analyzed. The evalua-
tion results under different vegetation types and FVC differences
were also provided. In this sensitivity analysis, results retrieved
by the multiangle, simple and Bayesian combined algorithms
were compared.

1) Evaluations Results for Different Retrieval Errors: Fig. 5
displays the evaluation results for three algorithms when dif-
ferent spatial and angular errors were added. In Fig. 5(a) and
(b), the retrieved results were affected only by different spatial
resolutions between nadir and oblique views. Such spatial errors
can reach 4.5 K, and as they increased, the retrieval perfor-
mance for multiangle algorithm significantly decreased with root
mean squared errors (RMSEs) larger than 10.0 K. The simple
combined algorithm performed better, whereas large RMSEs
also appeared, particularly for Ts, which induced the effect
from surrounding pixels in a multipixel algorithm. In a simple
combined algorithm, the difference in RMSEs between Ts and
Tv can be explained by the fact that Ts can be significantly
affected by varying FVCs because of the large temperature
difference between its sunlit and shaded areas. In Fig. 5(c)–(f),
angular errors in BTs and FVCs increased, and RMSEs for
three algorithms increased, particularly for cases with low spatial
errors. In Fig. 5(c)–(f), RMSEs for cases with large spatial errors
were slightly lower than those in Fig. 5(a) and (b), which can
be attributed to less data in these cases and unstable retrieved
results. Table II displays the total RMSEs for Ts and Tv in Fig. 5.
As the spatial errors increased, the RMSE for Ts increased from
1.22 to 1.70 K, and that for Tv increased from 1.95 to 3.06
K. Among these algorithms, the Bayesian combined algorithm
performed best. By comparing the results between multiangle
and simple combined algorithms, the multipixel information
can be found useful to reduce the effect due to different spatial
resolutions between nadir and oblique views. By comparing the
results between simple and Bayesian combined algorithms, the
result retrieved from multiangle observations for a pixel can
improve the result, whereas its function weakened as angular
errors increased.

2) Evaluation for Different Vegetation Types: Several com-
plex and diverse ecosystems exist in the study area. Therefore,
LSCTs retrieved for different vegetation types were provided
in Fig. 6(a) and (b). The study area was classified into five
main land cover types: grassland, cropland, sparse forest, barren
or sparsely vegetated, and other. No angular errors of BT and
FVC were introduced. Similar RMSE trends were found for
three retrieval algorithms regardless of vegetation types. Slight
differences were found between cropland and barren types.
Compared to the other four types, the RMSEs of cropland were
slightly higher and lower for Ts and Tv, respectively. In contrast,
the RMSEs for barren land were slightly lower and higher for
Ts and Tv , respectively. This phenomenon can be attributed to
the different canopy structures of these types. In this context, a
further analysis was performed to link the evaluation results to
FVC [see Fig. 6(c) and (d)]. As FVC increased, the RMSEs for
Ts and Tv increased and decreased, respectively. The difference
in RMSE between cropland and barren types can be explained
by the fact that their FVCs were 0.55 and 0.31, respectively. In
addition, by comparing the three algorithms, the RMSEs of the
multiangle algorithm sharply varied with FVC.

3) Evaluation for Different FVC Differences: In addition to
FVC, the evaluation results of LSCT, particularly for the multi-
angle algorithm, would also be affected by FVC difference ac-
cording to analysis in [23] and [24]. Fig. 7 displays the evaluation
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Fig. 5. LSCTs retrieved by the multiangle, simple and Bayesian combined algorithms with spatial error due to different spatial resolutions. (a) and (b) correspond
to induced errors with σBT = 0.0 K and σFVC = 0.0. (c) and (d) correspond to induced errors with σBT = 0.25K and σFVC = 0.03. (e) and (f) correspond
to induced errors with σBT = 0.75K and σFVC = 0.09.

TABLE II
STATISTICAL INFORMATION FOR THREE RETRIEVAL ALGORITHMS UNDER DIFFERENT RETRIEVAL ERRORS

results for three algorithms with FVC difference. As the FVC
difference increased, the RMSEs for retrieved results for the
multiangle algorithm decreased. Because of the large spatial ef-
fects, the decline was not significant. The RMSEs for the simple
combined algorithm slightly varied and increased in some cases.
It should be mentioned that as the FVC difference increased, the
increasing difference in RMSE between simple and Bayesian
combined algorithms benefitted from the improvement of the
multiangle algorithm. In addition, according to Bayesian theory,

the weight of the pixel multiangle algorithm also increased.
However, as angular errors increased, the difference between
simple and Bayesian combined algorithms decreased.

B. LSCT Validation Based on In-situ Measurements

In this article, LSCTs retrieved from SLSTR data were vali-
dated against in-situ measurements from TIR radiometers. The
RMSEs of LSCT results retrieved by the combined algorithm
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Fig. 6. (a) and (b) correspond to Ts and Tv RMSEs of the three algorithms for different vegetation types. (c) and (d) correspond to Ts and Tv RMSE of the three
algorithms with FVC.

were found to be lower than approximately 3.0 K according to
sensitivity analysis. In addition to removing cloud-contaminated
data, data with differences between retrieved and in situ LSCTs
larger than 9.0 K were removed based on 3-sigma criteria
[28]. Fig. 8(a) and (b) displays the in-situ measured and re-
trieved component and pixel-average temperatures at the AR and
EVO sites, respectively. The red/blue belts represent tempera-
ture differences between the weighted average and individual
soil/vegetation components. Because of the different climates,
the temperatures at the AR site decreased considerably during
the observation period, whereas those at the EVO site increased
slightly. At both sites, the change in component temperatures
and pixel-average temperatures was consistent, and soil temper-
atures were significantly larger than vegetation temperatures.
Most temperature differences between soil and vegetation were
less than 10 K at the AR site, whereas they reached 20 K at the
EVO site. This difference may be explained by the fact that the
vegetation component at the EVO site consists of tree crowns,
whereas the vegetation component at the AR site consists of
grass.

Fig. 9(a) and (d) shows in-situ LSCTs versus LSCTs retrieved
with the combined algorithm for sites AR and EVO, respectively.
At AR, the RMSE for Tv was lower than that for Ts, with values
of 1.91 K and 3.09 K, respectively. The strong overestimation
of Ts (bias of 1.68 K) is mainly due to several points at high
temperatures. The RMSEs for Ts and Tv at the EVO site were
3.71 K and 3.42 K, respectively, and slightly larger than those at
the AR site. There were some underestimations and overestima-
tions for Ts and Tv , respectively, with corresponding bias values

of −1.83 K and 1.64 K. The results retrieved by the multiangle
and simple combined algorithms at these two sites are also shown
in Fig. 9(b), (c), (e), and (f). The RMSEs for the multiangle
and simple combined algorithms were larger than that for the
Bayesian combined algorithm. At the AR site, the Ts and Tv

RMSEs of the multiangle algorithm were 3.50 K and 1.94 K,
respectively, whereas the corresponding values at the EVO site
were 3.71 K and 3.75 K, respectively. For the simple combined
algorithm, the Ts and Tv RMSEs at the AR site were 3.89 K
and 2.45 K, respectively, while the corresponding values at the
EVO site were 3.83 K and 3.62 K, respectively. The coefficient
of determination (R2) for the Bayesian combined algorithm
was larger than the corresponding values for the multiangle and
simple combined algorithms. Furthermore, fewer of the results
retrieved with the multiangle and simple combined algorithms
satisfied the threshold condition (<9 K) than for the Bayesian
combined algorithm: at the AR and EVO sites, the number
of valid data points for the Bayesian combined algorithm was
38, whereas it was 28 and 36 for the multiangle and simple
combined algorithms, respectively. The generally low number
of data points may also partially explain the relatively small
differences in performance between algorithms.

V. DISCUSSION

A. Evaluation Problems

Recently, LSCT retrievals have attracted more attention be-
cause more detailed subpixel temperature information is re-
quired by many applications. Previous studies usually performed
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Fig. 7. LSCTs retrieved by the multiangle, simple and Bayesian combined algorithms with FVC difference between nadir and oblique views. (a) and (b) correspond
to cases without angular errors, (c) and (d) correspond to induced errors with σBT = 0.25K and σFVC = 0.03, and (e) and (f) correspond to induced errors with
σBT = 0.75K and σFVC = 0.09.

Fig. 8. Temporal variation of measured and retrieved surface temperatures at (a) AR and (b) EVO.
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Fig. 9. In-situ LSCT versus retrieved LSCT at sites (a)–(c) AR and (d)–(f) EVO. The presented LSCTs were retrieved with the (a), (d) Bayesian combined, (b),
(e) multiangle, and (c), (f) simple combined algorithms using SLSTR data from DOY 120 to 270 in 2017.

LSCT retrieval with an individual algorithm, which frequently
caused large discrepancies in the retrieved results. In this study, a
simple combined algorithm was proposed to together use multip-
ixel and multiangle observations in a window, and then the result
retrieved from multiangle observation for a pixel was introduced
by a Bayesian strategy. The results indicate that the Bayesian
combined algorithm has a more robust performance relative to
the multiangle algorithm and simple combined algorithm, since
it utilizes more available data to reduce RMSE. Nevertheless, the
evaluation and validation of the retrieval algorithms were limited
by the availability of in situ measurements: future validation
work would greatly benefit from additional in situ LSCTs.
Another limitation is linked to the use of a synthetic dataset.
Because of the lack of uncertainty information on the in situ
LSCT, we assumed a combination of spatial and angular errors
based on typical uncertainties in previous studies. Furthermore,
we ignored the directional anisotropy of soil emissivity, since
this kind of information for a component is generally not used in
LST and LSCT retrieval algorithms. However, a non-negligible
directional anisotropy of soil emissivity has been reported in
[54]–[56], which would lower the BTs for SLSTR’s oblique
view. To investigate this concern, we used an empirical model
of soil emissivity for generating synthetic SLSTR BTs as follows
[57]:

εs,o (θv) = εs,n − 8.7× 10−9 × θαv (21)

where εs,n and εs,o(θv) represent soil emissivity at nadir and at
VZA θv (degree), respectively, and α is a parameter describing
the dependency of soil emissivity on the viewing angle, which
here was set to 3.3. When εs,n= 0.955, from nadir to oblique 55°
views, soil emissivity decreased to 0.950. The evaluation results

are shown in Fig. 10, where no angular errors were added. Com-
pared with the results in Fig. 6(c) and (d), the RMSEs for three
algorithms all increased in Fig. 10(a) and (b), particularly for the
case with low FVC. However, although all results deteriorated,
the Bayesian combined algorithm still performed best. It should
be mentioned that the directional anisotropy of soil emissivity
would also affect LST retrieval, and an underestimation of soil
emissivity may result in an overestimation of LST. Because
surface BTs were used in LSCT retrieval, which was calcu-
lated by pixel-average blackbody emission multiplied by the
corresponding emissivity as shown in (12), the overestimation
of LST would be corrected to some extent. Therefore, its effect
was not addressed in this article.

B. Limitations and Future Improvements of the Combination
Algorithm

A possible reason for large LSCT RMSEs in valuation was
that the RMSEs for nadir LSTs were 2.11 K and 1.81 K,
respectively, corresponding to AR and EVO sites. According
to [30], the retrieval accuracy for oblique LSTs may be worse.
Moreover, the retrieval results of LSCT would also be affected
by the uncertainties of other inputs. The original aim for the com-
bined algorithm was to avoid the disadvantage of the multiangle
algorithm due to different spatial resolution between nadir and
oblique views. In addition to LST retrieval, the proposed com-
bined algorithms would also be affected by individual multipixel
and multiangle algorithms. Here, we provide a brief overview
of some disadvantages of the individual algorithms.

1) For a multiangle algorithm, in addition to FVC, directional
anisotropy is an important factor [23], [24]. Large RMSEs for
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Fig. 10. RMSEs of three algorithms with FVC for (a) Ts and (b) Tv with directional anisotropy of soil emissivity.

the multiangle algorithm were mainly observed for pixels with
FVC differences between nadir and oblique views lower than
0.10, which occurred over homogeneous canopies with LAIs
lower than 0.5 or greater than 4.0. When only pixels with FVC
differences larger than 0.10 were considered, the corresponding
values decreased to 1.06 K and 1.37 K.

2) The multipixel algorithm performed worse than in [20],
which can be attributed to the retrieval accuracy of SLSTR’s
LST.

3) The multiangle and multipixel algorithms assume that tem-
perature differences are mainly related to land cover differences,
i.e., soil and vegetation. However, this assumption does not
hold if there are sunlit and shaded areas. The situation becomes
even more complex in mountainous areas, which usually ex-
hibit temperature differences with altitude and between sunlit
and shaded areas due to hill shadows. If only the temperature
difference between the average soil and vegetation is assumed,
LSCT retrieval discrepancies are inevitable in all such cases.

Nevertheless, the combined algorithm using both multiangle
and multipixel observations displayed robust performance and,
therefore, is a good option for actual retrieval tasks. While
we focused on the combination of multiple algorithms, the
combined algorithm would benefit from future improvements
of the individual algorithms and LST retrieval. Considering the
different weaknesses of the individual algorithms, more detailed
knowledge of their performance could be used to improve their
combination. This can be achieved with comparisons and evalu-
ations based on more comprehensive in-situ experiments. For a
more comprehensive investigation of combining algorithms and
data sources, other strategies, e.g., Bayesian model averaging,
support vector machines and artificial neural networks—are also
worth exploring for LSCT retrieval [58].

VI. CONCLUSION

LSCT retrieval methods aim at providing more detailed in-
formation on LST, particularly over heterogeneous surfaces.
Several studies reported that such methods are useful for various
applications, e.g., evapotranspiration estimation and vegetation
monitoring. Based on different types of TIR observations, a

variety of LSCT retrieval algorithms have been proposed, and
their strengths and weaknesses investigated. In the last decade,
the use of methods involving the fusion of multisensor data and
multiple algorithms has increased. The study presented here is
the first attempt to use multiangle and multipixel observations
in a robust LSCT retrieval method. According to an analysis
based on synthetic data, the simple combined algorithm can
significantly reduce the effect from spatial errors in oblique view
by using multipixel and multiangle information in a window, and
the Bayesian combined algorithm can further improve LSCT
results by introducing retrieved results from multiangle informa-
tion of a pixel. For in-situ measurements from grass and sparse
forest sites, the Bayesian combined algorithm retrieved more
LSCTs with lower RMSEs than other algorithms: the RMSEs
of the Bayesian combined algorithm were 3.09 K and 1.91 K for
Ts and Tv at the grass site, respectively, and 3.71 K and 3.42 K at
the sparse forest site, respectively. Considering that temperature
differences between soil and vegetation components can reach
20 K, the retrieved LSCTs add valuable information to pixel-
average LSTs. When algorithms of LST retrieval and individual
LSCT retrieval are developed, the LSCT retrieved results by the
combined algorithm would also be improved.
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