691 research outputs found

    Analysis of the Local Quasi-Stationarity of Measured Dual-Polarized MIMO Channels

    Full text link
    It is common practice in wireless communications to assume strict or wide-sense stationarity of the wireless channel in time and frequency. While this approximation has some physical justification, it is only valid inside certain time-frequency regions. This paper presents an elaborate characterization of the non-stationarity of wireless dual-polarized channels in time. The evaluation is based on urban macrocell measurements performed at 2.53 GHz. In order to define local quasi-stationarity (LQS) regions, i.e., regions in which the change of certain channel statistics is deemed insignificant, we resort to the performance degradation of selected algorithms specific to channel estimation and beamforming. Additionally, we compare our results to commonly used measures in the literature. We find that the polarization, the antenna spacing, and the opening angle of the antennas into the propagation channel can strongly influence the non-stationarity of the observed channel. The obtained LQS regions can be of significant size, i.e., several meters, and thus the reuse of channel statistics over large distances is meaningful (in an average sense) for certain algorithms. Furthermore, we conclude that, from a system perspective, a proper non-stationarity analysis should be based on the considered algorithm

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied

    Methodologies for Future Vehicular Digital Twins

    Full text link
    The role of wireless communications in various domains of intelligent transportation systems is significant; it is evident that dependable message exchange between nodes (cars, bikes, pedestrians, infrastructure, etc.) has to be guaranteed to fulfill the stringent requirements for future transportation systems. A precise site-specific digital twin is seen as a key enabler for the cost-effective development and validation of future vehicular communication systems. Furthermore, achieving a realistic digital twin for dependable wireless communications requires accurate measurement, modeling, and emulation of wireless communication channels. However, contemporary approaches in these domains are not efficient enough to satisfy the foreseen needs. In this position paper, we overview the current solutions, indicate their limitations, and discuss the most prospective paths for future investigation.Comment: Submitted to IEEE Intelligent Transportation Systems Magazin

    Stationarity analysis of V2I radio channel in a suburban environment

    Get PDF
    Due to rapid changes in the environment, vehicular communication channels no longer satisfy the assumption of wide-sense stationary uncorrelated scattering. The non-stationary fading process can be characterized by assuming local stationarity regionswith finite extent in time and frequency. The local scattering function (LSF) and channel correlation function (CCF) provide a framework to characterize the mean power and correlation of the non-stationary channel scatterers, respectively. In this paper, we estimate the LSF and CCF from measurements collected in a vehicle-to-infrastructure radio channel sounding campaign in a suburban environment in Lille, France. Based on the CCF, the stationarity region is evaluated in time as 567 ms and used to capture the non-stationary fading parameters. We obtain the time-varying delay and Doppler power profiles fromthe LSF, and we analyze the corresponding root-mean-square delay and Doppler spreads. We show that the distribution of these parameters follows a lognormal model. Finally, application relevance in terms of channel capacity and diversity techniques is discussed. Results show that the assumption of ergodic capacity and the performance of various diversity techniques depend on the stationarity and coherence parameters of the channel. The evaluation and statistical modeling of such parameters can provide away of tracking channel variation, hence, increasing the performance of adaptive schemes

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Experimental study on the impact of antenna characteristics on non-stationary V2I channel parameters in tunnels

    Get PDF
    This paper analyses the experimentally-assessed dual-polarized (DP) mobile channel in a tunnel environment at 1.35 GHz under traffic conditions. We investigate the impact of antenna polarization and radiation pattern on the non-stationary vehicle-to-infrastructure (V2I) channel. Basic channel evaluation metrics are examined including path gain, co-polarization ratio (CPR), and cross-polarization discrimination (XPD). In addition, the stationarity region is estimated using the channel correlation function approach, and used to calculate the time-varying delay and Doppler power profiles. Statistical models are presented for parameters like CPR, XPD, RMS delay and Doppler spreads, where the lognormal distribution provides the best fit. The polarization and the opening angle of the antennas into the propagation channel are found to strongly influence the observed non-stationarity of the channel. They impact the degree of multipath richness that is captured, thus providing different path gain, delay and Doppler spreads. Based on our analysis, the directional antenna with vertical polarization provides the longest stationarity time of 400 ms at 90 km/h, as well as the highest path gain and lowest dispersion. Furthermore, the DP channel capacity is calculated and its dependence on different normalization approaches is investigated. We propose a more accurate normalization for the DP channels that takes the conservation of energy into account. Moreover, the subchannels correlation coefficients are determined. While the condition number is found to be low on average, the correlation results show high correlation among the DP subchannels. As conclusion, we show how the CPR and XPD play the main role in providing multiplexing gain for DP tunnel channels

    Dual-Polarized Ricean MIMO Channels: Modeling and Performance Assessment

    Full text link
    In wireless communication systems, dual-polarized (DP) instead of single-polarized (SP) multiple-input multiple-output (MIMO) transmission is used to improve the spectral efficiency under certain conditions on the channel and the signal-to-noise ratio (SNR). In order to identify these conditions, we first propose a novel channel model for DP mobile Ricean MIMO channels for which statistical channel parameters are readily obtained from a moment-based channel decomposition. Second, we derive an approximation of the mutual information (MI), which can be expressed as a function of those statistical channel parameters. Based on this approximation, we characterize the required SNR for a DP MIMO system to outperform an SP MIMO system in terms of the MI. Finally, we apply our results to channel measurements at 2.53 GHz. We find that, using the proposed channel decomposition and the approximation of the MI, we are able to reproduce the (practically relevant) SNR values above which DP MIMO systems outperform SP MIMO systems.Comment: submitted to the IEEE Transactions on Communication
    corecore