9,079 research outputs found

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Enhancing FastSLAM 2.0 performance using a DE Algorithm with Multi-mutation Strategies

    Get PDF
    FastSLAM 2.0 is considered one of the popular approaches that utilizes a Rao-Blackwellized particle filter for solving simultaneous localization and mapping (SLAM) problems. It is computationally efficient, robust and can be used to handle large and complex environments. However, the conventional FastSLAM 2.0 algorithm is known to degenerate over time in terms of accuracy because of the particle depletion problem that arises in the resampling phase. In this work, we introduce an enhanced variant of the FastSLAM 2.0 algorithm based on an enhanced differential evolution (DE) algorithm with multi-mutation strategies to improve its performance and reduce the effect of the particle depletion problem. The Enhanced DE algorithm is used to optimize the particle weights and conserve diversity among particles. A comparison has been made with other two common algorithms to evaluate the performance of the proposed algorithm in estimating the robot and landmarks positions for a SLAM problem. Results are accomplished in terms of accuracy represented by the positioning errors of robot and landmark positions as well as their root mean square errors. All results show that the proposed algorithm is more accurate than the other compared algorithms in estimating the robot and landmark positions for all the considered cases. It can reduce the effect of the particle depletion problem and improve the performance of the FastSLAM 2.0 algorithm in solving SLAM problem

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Stochastic Game Theory: Adjustment to Equilibrium Under Noisy Directional Learning

    Get PDF
    This paper presents a dynamic model in which agents adjust their decisions in the direction of higher payoffs, subject to random error. This process produces a probability distribution of players' decisions whose evolution over time is determined by the Fokker-Planck equation. The dynamic process is stable for all potential games, a class of payoff structures that includes several widely studied games. In equilibrium, the distributions that determine expected payoffs correspond to the distributions that arise from the logit function applied to those expected payoffs. This "logit equilibrium" forms a stochastic generalization of the Nash equilibrium and provides a possible explanation of anomalous laboratory data.bounded rationality, noisy directional learning, Fokker- Planck equation, potential games, logit equilibrium, stochastic potential.

    Oscillatory Dynamics in Rock-Paper-Scissors Games with Mutations

    Get PDF
    We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude.Comment: 25 pages, 9 figures. To appear in the Journal of Theoretical Biolog
    • …
    corecore