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Abstract 

In the modern generation, Electric Power has become one of the fundamental needs for humans to 

survive. This is due to the dependence of continuous availability of power. However, for electric 

power to be available to the society, it has to pass through a number of complex stages. Through 

each stage power quality problems are experienced on the grid. Under-voltages and over-voltages 

are the most common electric problems experienced on the grid, causing industries and business 

firms losses of Billions of dollars each year.   Researchers from different regions are attracted by an 

idea that will overcome all the electrical issues experienced in the traditional grid using Artificial 

Intelligence (AI). The idea is said to provide electric power that is sustainable, economical, reliable 

and efficient to the society based on Evolutionary Algorithms (EAs). The idea is Smart Grid. The 

research focused on Power Quality Optimization in Smart Grid based on improved Differential 

Evolution (DE), with the objective functions to minimize voltage swells, counterbalance voltage sags 

and eliminate voltage surges or spikes, while maximizing the power quality. During Differential 

Evolution improvement research, elimination of stagnation, better and fast convergence speed 

were achieved based on modification of DE’s mutation schemes and parameter control selection. 

DE/Modi/2 and DE/Modi/3 modified mutation schemes proved to be the excellent improvement for 

DE algorithm by achieving excellent optimization results with regards to convergence speed and 

elimination of stagnation during simulations. The improved DE was used to optimize Power Quality 

in smart grid in combination with the reconfigured and modified Dynamic Voltage Restorer (DVR). 

Excellent convergence results of voltage swells and voltage sags minimization were achieved based 

on application of multi-objective parallel operation strategy during simulations. MATLAB was used 

to model the proposed solution and experimental simulations. 

 
 
 

KEY TERMS: Smart Grid, Power Quality, Evolutionary Algorithm, Differential Evolution, Multi-
Objective, Optimization, Mutation Schemes, Convergence speed, Dynamic Voltage Restorer, Sags, 
Swells, Power Network, Parallel Operation. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background of the Study 

The modern society has become much more dependent on the continuous availability of electric 

power, and that has made electric power to become one of the human’s fundamental needs of the 

modern age. However, for one to get access to it, a number of complex stages are involved, from the 

generation of power to the transmission, using long distance and short distance transmission lines up 

to where it is distributed to the households and industries. Through each stage there are technical 

issues experienced by the power grid. Under-voltage (voltage sags), over-voltage (voltage swells), 

voltage surges and  voltage spikes are amongst the problems experienced in the power grid, they cause 

mal-operation of the electric equipment, increase in power loss and over burdening of the power 

system (Dhomane, et al., 2016). A modernized power grid (smart grid) is set to overcome all electrical 

issues involved in every stage where the electric power is passed, and that will create a power that is 

sustainable, economical, reliable and efficient to the society as a whole. The term Smart grid has been 

defined by many organizations, one organization defined smart grid as an automated electric power 

grid, that performs based on the analogue or digital information it collects using Information and 

Communication Technology (ICT), such as information about the actions of the suppliers and 

consumers, in order to improve the generation, transmission and distribution of electricity that is 

efficient, reliable, economical and sustainable to the society(Subhalakshmipriya & Suganya, 2015).  

Various researchers from different perspectives are attracted by smart grid’s vision of transforming the 

traditional power grid into an integrated state of the art future generation power grid(KarthiKeyan, et 

al., 2016). The aim of the smart grid concept is to provide electric power quality that is environmental 

free from greenhouse gas, electrical system that is economically evolved and technologically 

integrated, intelligently integrated communication and control system to the power grid, to sustain 

energy for the future generation. However there are still many various goals the smart grid concept 

wishes to archive. The top priority of worldwide energy utility companies at the moment is to increase 

energy efficiency while maintaining a clean environment from greenhouse gases by adopting 

renewable energy sources and an accelerated development of smart grid technology(Ceaki, et al., 

2017).  

Electricity users such as businesses, homes, industrial companies including the electric utilities, are 

much more concerned about the study of power quality and ways to control it. This comes as a result 

of equipment becoming more sensitive to even small changes in the supply voltage, current, and 

frequency. The power disturbance definition defined by most institution states that, power disturbance is 
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any interruption of voltage, current or frequency that opposes normal functioning of the power 

system(Seymour & Horsley, 2008). Reliability of smart grid also depends on power quality, therefore 

making power quality one of the important and responsible aspects in smart grid’s vision(Agarwal & 

Tsoukalas, 2011). 

According to a study conducted by Electric Power Research Institute, 2001, it shows that an 
approximately amount of $45.7 billion is being lost by industries and business firms each year, due to 
power disturbances in USA. Power disturbances are responsible for a loss of an estimated amount of 
$104 billion to $164 billion across all business sectors, and all other quality problems are responsible for 

an estimated amount of $15 billion to $24 billion(Seymour & Horsley, 2008). 
 

Another study of COST OF POOR POWER QUALITY conducted by European Copper Institute described 

Poor Power Quality as any occurrence related to the power networks that is responsible for any 

financial loss. There are many effects cause by poor power quality in large industries, some are 

malfunction and overheating of electrical equipment, power supply failure that results in blowing of 

fuses and tripping of circuit breakers, damage to sensitive equipment such as computers and 

production line control systems and interferences of electronic communications to name few. Such 

occurrences result in system outage, inefficient running and a reduced life span of electrical 

installations. Eventually that result in high running costs of installations, leading to the production 

being stopped and major costs being incurred. Table1 below gives an overview of financial losses due 

to poor power quality installation incidents in different industries, conducted by European Copper 

Institute (Schipman & François Delincé, 2010). 

Table 1.1: Financial loss due to Power Quality incidents(Schipman & François Delincé, 2010). 

 

For the requirements of smart grid concept to be archived, a set of artificial intelligent based methods 

are adopted to assess and solve smart grid’s problems(Ceaki, et al., 2017).  . Evolutionary Algorithms 

(EA) are genetic population-based metaheuristic optimization algorithms that form random search and 
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optimization procedures by following natural evolutionary principles. Evolutionary optimization (EO) 

techniques find and maintain multiple solutions in one single simulation run, while direct search and 

optimization procedures use a single solution update during iterations and they use a deterministic 

transition rule. That’s what distinguishes Evolutionary algorithms from direct search and optimization 

procedures(Okinda & Odero, 2016). There are different types of EAs used in optimization problems, 

one of them being Differential Evolution (DE) Algorithm. Differential Evolution Algorithm has 

remarkably been regarded as one of the most effective global optimizer for optimization problems in 

the research field of science and engineering since its inception in 1995. DE is a Global Optimization 

method that is easy to use, simple to implement, fast and reliable to converge to true optimum, 

therefore these are the facts that make DE to be regarded as one of the best global optimizer(Price, et 

al., 2005). Since DE was introduced by Storn and Price, many new improved DE algorithms have been 

proposed, with most of them focusing on choosing proper control of the parameters(Fang & Jie, 2016). 

The research will focus on power quality optimization in smart grid, based on an improved Differential 

Evolution Algorithm, with the objective functions of counterbalancing voltage sags, minimizing voltage 

swells and eliminating voltage surges or spikes in order to achieve a better voltage profile.  

1.2. Problem statement and Research Question 

 Power distribution system is experiencing lack of improvement compared to the generation and 

transmission in the smart grid concept. Various technologies have been introduced to generation and 

transmission systems, making them evolve and improve under the control of utility companies. For the 

distribution system, it has been difficult for it to evolve and improve, this is due to the number of 

stakeholders involved in the process(KarthiKeyan, et al., 2016).  For that reason, distribution system 

has challenges in delivering best quality power required by households and industries. Sudden over-

voltages (voltage swells, Voltage spikes and voltage surges) and under-voltages (voltage sags) are 

encountered by households and industries, causing damage, inefficient and erratic operation of the 

electric equipment. Electrical disturbances such as power interruptions, transients, harmonics, swells 

and sags are the major contributors towards the poor power quality(Hojabri & Toudeshki, 2013).  

Deficient power quality has a negative Impact towards the reliability and sustainability of electricity to 

the society and future generation, and it also has negative impact to the economy, and that can fail 

smart grid’s mission to provide power that is efficient, reliable, economical and sustainable to the 

modern and future generation. Despite DE algorithm being regarded as one of the best reliable and 

efficient EA method for solving optimization problems, it also has its own limitations. As reported by 

(Prakash, et al., 2016), DE experiences Stagnation and premature convergence.  DE is also extremely 

affected when the algorithm specific parameters are badly adjusted.  

Different control Parameter selections and mutation schemes will be searched and developed in order 

to improve Differential Evolution Algorithm convergence, then a Multi-objective Power quality 

optimization will be developed in smart grid based on the improved differential evolution algorithm, 
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with the objective functions of counterbalancing voltage sags, minimizing voltage swells to the 

required set point and eliminating voltage surges or spikes, in order to achieve a better voltage profile 

in the distribution system, improving efficient operation for electrical equipment and accomplishing a 

requirement for a successful smart grid concept. The following question will be answered: How can 

Power quality be improved in the distribution system to satisfy the standard requirement for a 

successful smart grid concept? 

General Challenges 

 Power distribution system lacks improvement, leading to one of the smart grid’s 

requirement to deliver quality power unfulfilled.  

 It is difficult for the distribution system to improve due to number of stakeholders 

involved. 

 The Distribution system is facing challenges in terms of delivering the best power quality 

to end-users. 

Sub-Problems 

 Unexpected voltage sags and voltage swell are experienced in households and 

industries, resulting in damage, malfunction and inefficient operation to electrical and 

electronics equipment. 

 Reliable and effective electric supply to the society and manufacturing industries is 

strongly affected by voltage sags and swells, leading to smart grid’s mission to provide 

power that is reliable, effective and safe to the society and industries being 

unsuccessful. 

 Differential Evolution experiences stagnated, slow and ineffective convergence when 

solving a global optimization problem and it is severely affected when parameters are 

inadequately modified.  

 

1.3. Research Objectives  

1.3.1.  Main Objective 

The main objective of the study is to improve power quality in Smart Grid distribution system by 

developing an improved DE and applying the improved DE to minimize voltage swells and sags, while 

maximizing the power quality in Smart Grid distribution systems. 

 

1.3.2. Specific Objectives 

The specific objectives of this research are, 
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 To reduce stagnation and premature convergence of the Differential Evolution Algorithm. 

 To investigate a better control for badly adjusted algorithm specific parameters for Differential 

Evolution. 

 To reduce voltage swells, counterbalance voltage sags, and eliminate voltage spikes and surges 

encountered by households and industries. 

 To reduce damage, inefficient and erratic operation of the electric equipment caused by power 

disturbances to the households and industries.  

 

1.4. Limitations 

This research will be limited to… 

 Distribution system and smart grid.  

 Power Quality Control and Optimization. 

 Voltage sags, Voltage swells, Voltage spikes and voltage surges. 

 Computer modeling and simulations for the validation of research results since there is no 

facility to perform the practical experiments. 

 For solving the research problem, Differential Evolution will be used and the schematics that 

will to be focused on are Dynamic Voltage Restorer (DVR), Transient Voltage Surge Suppressors 

(TVSS) and Thyristor Based Static Switch. 

1.5. Hypothesis  

Power quality can be improved if voltage sags, swells, spikes and surges are controlled to the 

best required voltage set point. The instability of the voltage to the end-users influences the 

power to the load not to be stable as well. This is due to direct proportionality between the 

power and the voltage. Power instability causes damage, malfunction and inefficient operation 

to the load. If the voltage to the end-users is stabilized, the power to the load will be stable and 

the load will not experience malfunctions and will operate efficiently. Reliability and 

effectiveness for electric supply to the society and manufacturing industries can also be 

improved by minimizing both voltage sags and swells. Modification of mutation strategies in DE 

can help improve speed, effectiveness and reliable convergence to optimization problem. 

 

1.6. Benefits of the study 

 The study will significantly improve efficient operation of electrical equipment in households 

and industries, preventing product stoppage and interruptions which in return will prevent 

financial losses in large companies and making a significant improvement to the economy of 

the country. 



6 
 

  The society and will be enriched with an improved efficient, sustainable and intelligently 

controlled quality electric power, as well as a better knowledge to maintain that electrical 

power for future generation. 

 The study will also make a significant contribution towards smart grid’s vision and mission to 

better the current power system by delivering economical, sustainable, flexible and efficient 

quality power to the households and industries.  

 The study will expand knowledge in smart grid and Differential Evolution Algorithm for future 

research developments. 

1.7. Methodology Overview 

For this research, Quantitative research method is used, due to its nature of stressing objective 

measurements and mathematical analysis of data gathered through various experiments and 

simulations or through influencing of pre-existing data of statistics employing computational 

strategies. Therefore this research also involves collection, analysis and communication of measurable 

data. Numerical based comparisons of data are done and the results are based and judged on data 

comparisons. The research also involves theory testing and researcher’s opinion based on data analysis 

through publication of obtained results on the conference proceedings. The research problem is of 

technical nature and therefore falls in science and engineering field, therefore quantitative research 

method is a suitable method for this research. 

Under Quantitative research method, Deductive approach is used because of its concern in developing 

hypothesis on the basis of existing theory and designing of research strategies to test the hypothesis, 

therefore this research involves hypothesis based on physical laws and known facts. Experimental 

simulations are made and based on observation of obtained results, the hypothesis is accept or 

rejected. 

For Differential Evolution improvement, the aim is to enhance DE speed on the basis of convergence. 

In consequence of that, the focus is based on modification of mutation schemes and selection of 

control parameters. DE/Rand/1 mutation scheme is selected as a reference for this research due to its 

simplicity to implement and robust convergence.  The modified mutation schemes from DE/Rand/1 

reference are tested using the most commonly used benchmark functions. During simulation tests, the 

selection of control parameter is conducted by tuning population Size (PS), Crossover rate (Cr) and 

Amplification factor (F), in reference to classical mutation schemes and modified mutation schemes in 

order to identify the best combination of control parameters and mutation schemes. There results of 

every simulation are tabled.  

Statistical data analysis table, time complexity table and Simulation figures are used to analyze the 

data collected. The conclusion is made with the aid of analysis of the data collected during 
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experimental simulations. The combination of best mutation scheme and the best tuned parameters 

must give the best convergence and eliminate stagnation in DE algorithm. The benchmark functions 

that are used are Sphere Function, Ackley function, Rastrogin function, Griewank Function, SumPower 

Function, Schwefel Function, Bukin Function and SumSquare Function. 

For optimization of power quality in smart grid, the improved DE is used. The focus of this section is to 

minimize distribution network voltage problems while maximizing the power quality of the network. 

Following are the objective functions focused on during the research:   

1. Counterbalancing voltage sags  
2. Minimization of voltage swells 
3. Elimination of voltage surges or spikes 
4. Maximizing power quality power at near end users.  

 

A circuit schematic to achieve the above mentioned objective functions is developed based on 

combination, reconfiguration and modification of the following previously used schematics and 

devices: Dynamic Voltage Restorer (DVR), Transient Voltage Surge Suppressors (TVSS) and Thyristor 

Based Static Switch. The following components are used for modification of a developed schematics 

circuit: Inductors, Capacitors, diodes and resistors. MATLAB Simulink is used to develop and test the 

circuit schematic.  

After the tests are done on the developed circuit schematic on Simulink, improved DE is applied to 

optimize the developed schematic based on its improved version, with the same objective functions as 

mentioned above. The optimized circuit schematic must be able to minimize voltage swells on the 

distribution network, counterbalance voltage sags experienced on the network and completely 

eliminate voltage surges and spikes from the network, thereby maximizing power quality to the end 

users in order to achieve one of the smart grid’s Vision of providing best power quality to the modern 

and future generation. 

Several simulations under different conditions are made in order to verify that the proposed solution is 

not a fluke and it is able to serve the purpose it’s proposed to serve under different conditions. Data is 

collected during each simulation under each condition. Statistical data analysis table and simulation 

figures are used to analyze the collected data after simulations. Conclusion and opinion is made based 

on the analysis of data. 

1.8. Outline of Final Dissertation 

The final dissertation of the research consists of five chapters. The chapters provides a detailed 

process from the identification of the research problem and the review of the literature to the setting 

up of methods of solving the problems, as well as results that are obtained during the simulation of the 

solution. 
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Chapter 1 gives the review of the identification of the research problem, the objectives and benefits of 

the study and the hypothesis of the research conducted.  

Chapter 2 gives the literature review of the study of power quality optimization in smart grid and 

Differential Evolution Algorithm. The chapter gives the history and overview of the power grid. It gives 

the overview of the selected Distribution network Problems and overview of the selected previously 

used mitigating technics of the power quality problems.  The chapter also gives the theories and 

information that contributes the improvement of Differential Evolution and power quality 

optimization.  

Chapter 3 focuses on Differential Evolution Algorithm improvement with regards to convergence 

speed and elimination of stagnation. The improvement of Differential Evolution focuses on 

modification of mutation strategies and MATLAB tool is used to model the proposed solution. 

Chapter 4 focuses on optimization of smart grid power quality by applying the improved differential 

evolution in combination with a reconfigured and modified Dynamic Voltage Restorer (DVR) as well as 

involving multi-objective optimization using parallel operation strategy. 

Chapter 5 gives the conclusion of the research and the future works. After chapter six, the appendix 

and references follow. The referencing is done using Mendeley referencing tool. 
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CHAPTER 2 

LATERATURE REVIEW  

This chapter gives the review of previously done studies on Smart Grid, Power Quality, Evolutionary 

Algorithms, Differential Evolution and Dynamic Voltage restorer. The chapter further gives theories 

contributing to the proposed study by reviewing Smart grid and its challenges, Multi-Objective 

Optimization, Differential Evolution, Power Quality and Dynamic Voltage restorer. On the above 

mentioned reviews, the chapter attempts to detail every study and theory in other to archive adequate 

understanding on the study. 

2.1. Previous researches done on power quality and differential evolution 

2.1.1. Study previously done on smart grid 

The concept Smart grid has been defined differently by many researchers and there have been 

different aspects with the concept of smart grid.  One institution defined Smart Grid as a 

computerized modern age electrical power grid that is entirely networked, controlled, 

instrumented and automated to collect and act on the ICT information in fulfillment to deliver the 

needed power to the end users. Smart Grid is a pure networked intelligent power grid that uses 

Internet Protocol (IP) addresses to link and access major components, such as generators, relays, 

transformers and electrical meters in the power system. Sensors and processors are equipped to 

most components to enable them to intelligently execute information without involving human 

effort. Power resources that are available in the Smart Grid are conventional types of generating 

plants and small-scale renewable Distributed Energy Resources (Nygard, & Ranganathan, 2011). 

The focus of Smart Grid is to provide quality power that meet 21st century demand which co-

operative generation and storage options that fulfills customer’s needs considering the changes 

and the challenges. The key goal of smart grid is to encourage active customer involvement and 

decision making as well as to build the functional environment in which both power utilities and 

electricity users influence each other (Phuangpornpitaka & Tiab, 2013). Many researchers have 

used the Artificial Evolutionary process known as Evolutionary Algorithms to find the results in 

smart grid research problems. However that’s because  Evolutionary algorithms are capable of 

performing solutions that are approximate to almost all types of problems since they do not make 

assumptions about the underlying fitness landscape, and that can be concluded because of its 

success in solving problems in diverse fields as engineering where it solves the optimization 

problems (Jung, et al., 2017). Power Quality problems in Smart Grid has been one of the focus 

subject by many researchers in developing an intelligent power Grid, below is how different 

researchers approached power quality problems and smart grid. 
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Smart grid technology is associated with various interesting ideas from various researchers, with a 

common goal of bettering the new age power system. Some of the research Institutes have 

focused on smart grid capability of self-healing. However, for smart grid to be able to do the self-

healing, a fault detection technology has to be considered, necessary fault isolation equipment 

must be equipped in the grid and automated recovery of the system has be configured(Bush, 

2014). For all the above mentioned sections of self-healing to operate, a smart grid Information 

and communication Technology (ICT) is required to send and receive information regarding any 

fault problem experienced at a specific part of the grid, the ICT is needed to send information to 

the isolation equipment to isolate the faulty part of the system, and finally the automated 

recovery system requires information to recover operation of the grid. This makes ICT one of the 

focuses on developing intelligent power grid. ICT has a wide range of responsibility on smart grid. 

It includes but not limited to monitoring, protection and control of the grid. However, the growing 

interest on communication networks for smart grid support brings about certain drawbacks, such 

as cyber-attack and complex that leads to instable and inefficient communication on the grid. For 

that, more study branches of smart grid are raised for future research generation(Han, et al., 

2016). 

 

With forever increasing researches about the integration of renewable energy sources in the 

smart grid, it is believed that many power and voltage quality issues are experienced in the grid 

due to their unstable power generation from the solar and wind. A solar System Connected Grid of 

a Controlled Single-Phase Voltage with a Functionality of Power Quality Conditioner was 

proposed. The focus was to introduce a photovoltaic system of a single-phase type that provides 

support to grid voltage and harmonic distortion compensation at the point of common coupling 

(PCC). The problem was approached by using a controlled voltage converter that acts as a shunt 

controller for voltage quality improvement in case of small voltage dips and nonlinear loads 

presence. To stabilize and improve voltage profile, shunt controllers were used as generators of 

static Var in power systems and they were also used for current harmonics and unbalanced load 

current compensation. It was also studied that by independently adjusting the active and reactive 

power, voltage frequency and amplitude of the grid are determined. The conclusions were based 

on control of frequency and voltage drop through active and reactive power respectively 

(Guerrero, 2006). The study was presented by the following formulas, where angle of power δ is 

small, therefore sinδ ≅δ and cosδ ≅1. 

 

δ ≅ 
𝑋𝑃𝐴

𝑉𝐴𝑉𝐵
       (2.1) 

 

VA – VB ≅  
𝑋𝑄𝐴

𝑉𝐴
       (2.2) 
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The study based on the Shunt Controller was made and it was found that, Shunt devices are 

normally adopted for compensation of small voltage variations which are controllable by injection 

of reactive power. The shunt controller can be controlled by current or voltage. When the 

converter is controlled by current it can be represented as a component of grid that adjusts grid 

reactive output power according to the grid voltage variations to support the grid voltage. During 

the occurrence of voltage sag, the load voltage is supported by reactive power provided by the 

converter and the grid current Ig has a reactive component that is dominant. The following 

formulas present the study. 

Īg + Īc = Īload       (2.3) 

Īg = 
𝑉𝐿𝐺̅̅ ̅̅ ̅̅

𝑗𝜔𝐿
           (2.4) 

The grid current amplitude depends on the grid impedance value where VLg is the voltage drop of 

the inductance. Under normal conditions, the shunt controller supplies a compensating current Ic = 

Iload if it supplies all the active and reactive power requested by load, these causes the system to 

operate as in island mode and Ig = 0. The simulation and experiment of the proposed study was 

conducted. It was noticed that for Voltage sag compensation, the load voltage remains constant 

and equal to the desired voltage level during voltage dip. In order to compensate the load voltage, 

reactive current injected into the grid by shunt-connected converter, and the current is mainly 

capacitive. For Voltage harmonic compensation, the load voltage appears highly distorted before 

connecting the shunt converter, and the voltage THD is around 17%. The introduction of voltage 

harmonics is caused by the distorting load in the system where the voltage THD is 2%.The shunt-

converter compensates voltage harmonics when connected to the grid. The results confirm the 

proposed solution validity in case of voltage dips and nonlinear loads (Mastromauro & Liserre, 

2009). However there were still other voltage quality problems not covered such as voltage swells 

and total power interruption on the smart grid.  

 

Another researcher pointed out that the increase of Distributed generation such as solar system 

generation causes over-voltage problems in low and medium voltage distribution networks, while 

under voltage problems could be led by the charging of electric vehicles during the night(Akhtar, 

et al., 2017). Another research was conducted based on the voltage quality problems that are 

found in the smart grid due to Photovoltaic (PV) power generation and charging of electric vehicle 

on low voltage distribution systems. Voltage Control by Smart Loads (SL) in Distribution Networks 

was proposed. A smart load configuration with one converter was previously reported and 

developed, however it had limitations. The limitations were due the dependence of its active and 

reactive power consumption on each other, therefore a simultaneous control was impossible for 

both active and reactive power of the Smart Load, only one of them could be controlled (either 

active or reactive power) to control the supply voltage, depending on the resistance over 

reactance(R/X) ratio of the system(Akhtar, et al., 2017). The limitations were overcame by a 

proposed improvement of a back to back configured additional shunt converter to assist 
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exchanged active power by the series converter, which increased smart load’s  flexibility without 

any energy storage required(Akhtar, et al., 2017).  AC-to-DC Bidirectional converters were used, 

with the ac side connected to the power grid. The inserted voltage magnitude VES and phase angle 

θES were set to be controlled by converter 1. Voltage Vdc across the dc link was maintained by 

connecting converter 2 parallel to the supply, supporting exchanged active power by series 

converter 1. The voltage at the supply (VC) was expressed as the phasor sum of the voltage (VNC) of 

NC load and the compensator voltage (VES). 

 

VC∠⍬C = VNC∠∅NC + VES∠⍬ES     (2.5) 

where θC denotes the supply voltage phase angle, θES denotes the compensator voltage phase and 

φNC denotes the angle of NC load impedance. The above equation was further expressed as, 

 

V2
c = V2

NC + V2
ES + 2VNCVES cos(∅NC -⍬ES)    (2.6) 

 

VNC = -VES cos(∅NC -⍬ES) ±√𝑉𝐶
2 − 𝑉𝐸𝑆

2 sin(∅𝑁𝐶 − ⍬𝐸𝑆)2   (2.7) 

F(VC, VES, ⍬ES)        (2.8) 

 

PSL = PNC = 
𝑉𝑁𝐶
2 cos(∅𝑁𝐶)

𝑍𝑁𝐶
       (2.9) 

QSL = QES + QNC       (2.10) 

QSL = 
±𝑉𝐸𝑆𝑉𝑁𝐶

𝑍𝑁𝐶
+

𝑉𝑁𝐶
2 sin(∅𝑁𝐶)

𝑍𝑁𝐶
      (2.11) 

 

The effectiveness of voltage control by SLQs and SLBCs was compared by running simulations on 

MATLAB Simulink under various conditions, which are under-voltage and over-voltage conditions. The 

load was connected at the far end of the feeder during the simulation, and the results were taken. The 

results showed that, on normal load (NL), the voltage supply goes up to a maximum of 1.086 p.u. 

during midday, while during the late evening peak it goes as low as 0.925 p.u. According to the report, 

SLBC could restore back the voltage within the allowable range of ±0.05 p.u. On the other hand, SLQ 

could only restore the voltage in under-voltage situation, and it could not restore voltage in case of 

over-voltage situation. SLQ and the SLBC acts like a Normal Load under voltage supply within the 

permissible range of ±0.05 p.u., which results in overlapping traces.  A larger change was noticed on NC 

load voltage (VNC) for SLBC as compared to the NC load voltage (VNC) for the SLQ. Observed Power 

variations explained the voltage responses. The observation showed that SLBC’s active and reactive 

power increases above or decreases below the normal value to restore the system voltage during the 

over-voltage or under-voltage condition. However, in SLQ situation, an increase in active power is 

followed by a large decrease in the reactive power, which makes SLQ less effective in regulating the 

supply voltage as compared to SLBC(Akhtar, et al., 2017). 
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2.1.2. Study previously done on Power Quality 

A study was proposed for Voltage Control in Distribution Networks based on theoretic game 

Perspective. The focus of the study was to seek contribution in the compensation domain of reactive 

power by stabilizing local controllers of Volt/VAr. However the study used the approach of a dynamical 

system that is nonlinear with non-incremental local Volt/VAr control, casting of the Volt/VAr dynamics 

as a game, and the leveraging of the Theorem of fixed-point as well as mapping argument relating 

directly to contraction (Zhou, et al., 2016). The employments of nonlinear alternative current power 

flow models that are exact, were to be used in order to characterize the nature of Volt/VAr. The use of 

a reverse-engineering method was to be used to place the non-incremental Volt/VAr control with 

nonlinear dynamical system as a game, where each node behaves as a “selfish player” who employs its 

local control function as a best-response technique for its own cost function minimization. The method 

was used to prove the equivalence of equilibrium of the Volt/VAr control dynamics and equilibrium of 

the resulting game, and also to prove the uniqueness and existence of the equilibrium by providing 

leverage to the theorem of fixed-point as well as mapping argument contraction (Zhou, et al., 2016). 

During the approach of the study the following formulas were derived. v0; pc; pg; qc were given 

constants, and reactive powers qg = (qg
1………qg

n) were control variables. The power flow model 

formula was found to be: 

P𝑖𝑗 = 𝑝𝑐𝑗 − 𝑝𝑔𝑗 + ∑ 𝑃𝑗𝑘 + 𝑟𝑖𝑗ℓ𝑖𝑗𝑘:(𝑗,𝑘)∈ℒ       (2.12) 

Q𝑖𝑗 = q𝑐𝑗 − q𝑔𝑗 + ∑ 𝑄𝑗𝑘 + 𝑥𝑖𝑗ℓ𝑖𝑗𝑘:(𝑗,𝑘)∈ℒ       (2.13) 

𝑣j = 𝑣𝑖 −2(𝑟𝑖j P𝑖j + 𝑥𝑖j Q𝑖j) + (𝑟𝑖𝑗
2 +𝑥𝑖𝑗

2 )ℓ𝑖j      (2.14) 

ℓ𝑖j 𝑣𝑖 = 𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2          (2.15) 

The power flow equation was represented as: 

𝐹 (𝑃, 𝑄, ℓ, 𝑣, q) = 0         (2.16) 

For the local volt/VAr control on the network power distribution, the aim was to modify the reactive 

power outputs qg = (qg
1………qg

n) so that the node voltages 𝑣 = (𝑣1…...𝑣n) are maintained within a given 

range around their nominal values. The Volt/VAr was modeled to be as a control mechanism feedback 

with state ((𝑡); (𝑡)), where the state of the current ((𝑡); q(𝑡)) is mapped to the new injections of reactive 

power q(t + 1). Most of the time q(𝑡 + 1) is either completely or partly determined by a certain control 

function of Volt/VAr. For a voltage control game, the reactive power q(𝑡+1) is the solitary solution of 

the following optimization problem:  

q(𝑡 +1) = arg min𝑞𝑖𝝐𝝮𝞨 𝑢𝑖(𝑞𝑖; 𝑣𝑖(𝑡)),        (2.17) 

where, 
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(;) := 𝐶𝑖(𝑞𝑖) + 𝑞𝑖𝑣𝑖           (2.18) 

The results motivate to cast the dynamics as a game. Each node is viewed as a player with technique 

space and a cost function (;()). During the simulation setup the alternative current power flow model 

was computed by MATLAB tool MATPOWER. The piece wise linear droop control functions ware used 

with their slopes to be determined and analyzed. It was assumed that all the control functions have 

identical acceptable voltage range: 

[0.98𝑝.𝑢., 1.02𝑝.𝑢.], i.e., 𝛿𝑖 = 0.04𝑝.𝑢. , ∀𝑖 ∈ 𝒩.      

The effects of reactive power injections upon voltage values was examined by fixing the reactive power 

injections of all inverters as 0 except one of them at the bus. One of the inverters on the bus bar that 

was not fixed was swept with the reactive power injections from-1MW to 1MW with granularity of 

0.1MW and the recording of the effect of voltage changes at all buses was made. The results of the 

same nature were noticed by engaging any other inverters. It was concluded that in order to 

analytically characterize the local Volt/VAr control dynamics equilibrium and convergence with 

nonlinear power flow model, the dynamical system is reverse-engineered with non-incremental 

control as a voltage control game. The uniqueness, convergence and existence of the equilibrium are 

found by the theorem of fixed-point and mapping argument pertinent contraction. The results are also 

extended to the incremental Volt/VAr controls.  

Another research on Voltage quality problems was done, based on Bio-inspired Evolutionary 

Algorithms Applied to Volt/VAr Control Optimization Problem in Smart Grid Context.  The research 

employed the use of Evolutionary Algorithms methods to solve Voltage quality optimization Problem, 

using an improved Volt/VAr Control, based on configuration of distribution system approach. As 

reported, the approach allowed a full harmonious combination between the equipment used for 

control of reactive power and voltage. The approach also allowed system’s global optimization with 

functional objectives that are flexible. VVC is also able to adjust to any network remodeling and level of 

penetration by distributed generation in the system. However three EA methods were selected to 

solve the voltage quality problem in smart grid and all the selected methods were to be compared 

after the results were obtained. The aim was to minimize network’s technical losses, maintain levels of 

the voltage within the limits that are acceptable in network buses and to lower switching operations. 

That was achieved by using VRs and OLTC set tapping positions, and the state of SCs. The problem was 

transformed and became a multi-objective nonlinear optimization problem with equality and 

inequality constraints(Paulo & Kagan, 2016). However, the approach had its limitations, being the 

computational time respond needed to execute VVC optimization due to the extent of the problem 

search space. The VVC was evaluated using a trapezoidal membership function and the decision 

membership function, and it was determined by a group of membership functions associated with 

switching operations, voltage profile and power losses (Paulo & Kagan, 2016). The following equation 

was determined: 
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𝛶D = 𝛶J * 𝛶V * 𝛶S         (2.19) 

where (ϒJ) is power lose membership function, (ϒV) is voltage profile membership function, given by 

grades arithmetic mean for each bus and (ϒS) is switching operations membership function, given by 

grades arithmetic mean for each switching equipment. 

The formulation of VVC optimization problem was found by (ϒD) maximum value or by objective 

function (f) minimum value, given by 

Min f = 1 – 𝛶D          (2.20) 

The problem was formulated in such a way that, taps for OLTC, Voltage regulator and status of the 

capacitor banks that minimizes the objective function f, needed to be found, subject to the constraints 

that are following: 

The equation of the power flow was presented as follows: 

g(P, Q, V, 𝛿) = 0         (2.21) 

P, Q is active and reactive power that is injected to the network buses. 

V = [V1, …, Vi, …, Vn]t = modules of bus voltage     (2.22) 

𝛿 = [𝛿1,…,𝛿I,…,𝛿n]t = angles of bus voltage      (2.23) 

Constraint of voltage level of the buses: 

Vmin < Vi < Vmax          (2.24) 

where VMIN is the allowed minimum voltage, Vmax is the allowed maximum voltage and Vi is bus i 

voltage. 

Equations of constraints of equipment switching operations are as follows: 

NSVRj < LimSVR  j = 1, … , NVR       (2.25) 

NSSCk < LimSSC  k = 1, … , NSC       (2.26)   

where NSOLTC is the performance number of switching operations by OLTC, NSVRj is the performance 

number of switching operations by VRj and NSSCk is the performance number of switching operations 

by SCk in 24 hours. LimSOLTC  is the switching operations daily limits for OLTC, LimSVR is the switching 

operations daily limits for VRs and LimSSC is the switching operations daily limit for SCs. NVR is network’s 

number of voltage regulators and NSC is network’s number of shunt capacitors(Paulo & Kagan, 2016). 
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2.1.3. Study Previously done on other Evolutionary Algorithms 

The three Evolutionary Algorithms being a Canonical Genetic algorithm, Memetic Algorithm, and Ant 

Colony Optimization were applied for the search of the solution using C++ tool. The Optimization of 

VVC was done on a distribution system with 13.8 kV, 2990 bus supplier, OLTC transformer and six 

shunt capacitors for seven controlling equipment. 
+

−
5% to nominal voltage was the required voltage 

limit. Each algorithm ran 20 times for the optimization of the VVC, for the substation load curve with 

the highest demand and the result ware tabled showing the worst, best, average and success rate (SR) 

values of the objective function for each algorithm. 

 

 

Table 2.1: SR values of the objective function for each algorithm(Paulo & Kagan, 2016). 

Method Objective function values SR (%) 

Worst Best Average Std. Dev. 

Canonical GA 0,6922 0,0000 0,1482 0,2075 20 

GA variant 0,2000 0,0000 0,0215 0,0436 45 

MA 0,0179 0,0000 0,0045 0,0077 75 

ACO 0,1632 0,0000 0,0082 0,0356 95 

 

 However it was noticed that MA and ACO had a quick convergence to the best solution and MA took 

longer than other algorithms.  52 seconds was taken by MA to find the solution while 20 seconds was 

taken by ACO to find the solution(Paulo & Kagan, 2016). Taking Differential Evolution (DE) technique 

into account, a simulation was ran of Harmonic elimination PWM Method by Differential Evolution 

Optimization Technique. DE has been regarded as one of the most effective stochastic real-parameter 

optimization algorithm at present(Vijayakumar1 & Devalalitha2, 2014).  

2.1.4. Study Previously done on Differential Evolution 

DE is regarded most effective because of its simplicity and efficiency which enables it to solving 

problems related to multi objective, dynamics and many other optimization problems. DE has three 

evolutionary functions, being mutation function, crossover function and selection function (Gopal & 

Bansal, 2016). Mutation function randomly generates variations to existing individuals to present new 

information into the population(Ganbavale, 2014). Details of the functioning that creates mutation 

vectors 𝑣𝑖,𝑔  at each generation g, based on the population of the current parent {𝑋1,𝑖,0 = (𝑥1,𝑖,0, 𝑥2,𝑖,0, 

𝑥3,𝑖,0, … …, 𝑥𝐷,𝑖,0)|𝑖 =1,2,3, …., 𝑁𝑃}. The crossover function performs an exchange of information 

between different individuals in the current population. The final trial vector is formed by binomial 

crossover operation. The selection operator passes a driving force towards the most favourable point 
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by preferring individuals of better fitness. The selection operation selects the better one from the 

parent vector 𝑋𝑖, and the trial vector 𝑢𝑖, according to their fitness values f (・).  

Table 2.2: DE optimized and unoptimized values(Vijayakumar & Devalalitha, 2014). 

 

 

Figure 2.1: comparison of DE optimized and unoptimized values (Vijayakumar, et al., 2016) 

The above Table 3 and Figure1 show the comparison of DE optimised and unoptimized simulated 

values of the 1st, 5th, 7th, 11th, 13th, 17th, 19th and 23rd Harmonics elimination in three phase voltage-

source inverter. The aim of the research was to implement optimal switching strategies for harmonics 

elimination in the three phase voltage-source inverter using DE algorithm technique(Vijayakumar & 

Devalalitha, 2014). The 5th, 7th, 11th, 13th, 17th, 19th and 23rd values of the optimized harmonics can be 

seen that they are approaching zero (0) compared to the unoptimized values. The declining in value of 

the above mentioned harmonics shows that the harmonics are eliminated in the three phase voltage-

source inverter and that clearly shows the effectiveness of using DE algorithm technique for 

optimization problems. 
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Despite DE being regarded as the most effective global optimization algorithm, it has its own 

drawbacks. Many researchers have worked on improving DE to effectively solve global optimization 

related problems.  One research was carried out based on improvement of DE for unconstrained 

optimization problems. It was reported that DE’s rapid convergence and excellent capability of global 

search makes it more appropriate for parallel structure than conventional evolutionary 

algorithms(Fang & Jie., 2016). With DE tendency of suffering from premature convergence, an 

improvement was proposed based on dynamic mutation and Opposition-based Learning Strategy 

(OBL). For new mutation function, Gaussian and Cauchy were major distribution functions of the 

random variable during the construction of new mutation operator. For OBL, its feasible solution and 

opposite direction solution were the main ideas when applied to optimal algorithm.  

Xi = (xi
1 ,xi

2,...,xi
ND)   search region feasible solution, where  xj ∈ [aj,  bj].                (2.27) 

x-i
j = aj +  bj – xi

j   defines opposite points.       (2.28) 

However, with numerical experiments, opposite elite solution proved to be more effective compared 

to ordinary solution. The table below shows the comparison between the results of Improved DE (IDE) 

and the ordinary DE. Symbol f denotes the benchmark functions used to evaluate the optimization 

effectiveness of the IDE algorithm(Fang & Jie., 2016). 

Table 2.3: comparison between DE and IDE results(Fang & Jie, 2016). 

 

Analysis based on the numerical experiment above showed that IDE performs better than the standard 

DE for all the benchmark functions with local search ability and worse on global search ability. But IDE 

is able to balance the local and global search better the standard DE.  

2.1.5. Study Previously done on Dynamic Voltage Restorer 

Many researchers have worked on the power quality study and many solutions have been developed, 

one of them being a Dynamic Voltage Restorer (DVR). The DVR’s main function discussed by many 

studies is to compensate voltage sag at times of fault occurrence. Power Quality Research Group at the 

Universiti Tenaga Nasional made a study on DVR solution for power quality and defined DVR as a 
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power electronics device that compensates voltage sags by injecting three-phase voltage in series and 

in synchronism with the distribution feeder voltages(Ramasamy, , et al., 2005). However the results 

were not entirely satisfactory mainly because the method concentrated mainly on compensation of 

voltage sags during fault occurrence. Proposed was an improved DVR controller with two objectives, 

the first objective concentrating on voltage sags, while the second objective concentrating on voltage 

total harmonic distortion (THD). An improved and effective version of particle swarm optimization 

algorithm, namely a chaotic accelerated particle swarm optimization (CAPSO)) was used to determine 

the proportional integral controller coefficients of DVR. The coefficients were determined in a way that 

the main objective of optimization algorithm was considered as voltage sags and voltage THD was 

considered as its second objective. A suitable objective function was proposed for the optimization 

process by fuzzifying the objectives(Shamsi-nejad, Khooban & Khalghani, 2014). By comparison based 

on performance, a bi-objective PSO based controller showed an improvement since it involves both 

voltage sag and voltage THD problems as compared to the mono-objective type controller that focused 

only on voltage sags in terms of power quality indices. However, the results of the bi-objective 

optimization based DVR control study by (Shamsi-nejad, Khooban & Khalghani, 2014) suggested a 

great improvement to the DVR method of optimizing power quality. During the research, each object 

was defined in a membership function form in environment of fuzzy sets and they were then combined 

using appropriate weighting factors in a satisfactory fuzzy objective function form. Two objective 

functions linear combination formula for both voltage sags and voltage THD was developed. 

𝐹 = −(𝑤1 𝑢𝑇 + 𝑤2 𝑢𝐷)        (2.29) 

Where µT is voltage THD membership function and µD is sensitive load voltage sag membership 

function, w1 and w2 are weighting factors corresponding to µT and µD objects, respectively. Both 

objects have to convert to fuzzy membership function in order to have a better optimization 

performance. The results were obtained by simulation of the proposed solution on Simulink matlab 

and they were compared with the standard approach used before. The following results were obtained 

and compared. 

Table 2.4: Different indices in both algorithms(Shamsi-nejad, Khooban & Khalghani, 2014) 

 

It was concluded that the use of heuristic PSO algorithms achieved a better coefficients set for PI 

controller and the PI adjusted by the algorithms was said to be better than classical PI controller. It was 

also concluded that an improvement of the voltage sag and voltage THD was made by controller 

coefficients adjustment based on bi-objective optimization algorithm. 
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Another study on the power quality was conducted by Amin Safari and Meisam Farrokhifar. They 

suggested that Optimum Reconfiguration of network could help improve Quality and Reliability in 

Distribution System. In their study they also suggested that network quality level can significantly be 

increased by presence of distributed generation (DG). In this instance, number of generated voltage 

sags and the total number of interruptions were calculated by monitoring voltage magnitude of each 

bus for the test system. The simulation performed for the test results involved the distribution system 

of 33 bus test in absence and presence of distributed generations. The first mode was conducted in the 

absence of DGs in the network, for second mode, three DGs were present and allocated in the bus 

numbers of 10, 20 and 24. It was noticed that voltage profile can be directly affect by presence of 

distributed generations. The reconfiguration was done and it was noticed that the number of power 

interruptions had better condition to the customers after reconfiguration even at the presence DGs to 

the grid. It was concluded that reconfiguration of network can develop distribution network, but 

network reconfiguration can significantly enhance distribution system indices in presence of 

distributed generations (Amin Safari, Meisam Farrokhifar, 2016). 

Most researchers have concentrated mainly on the compensation of under-voltage being the main 

function of the voltage quality problem. However only few have touched the compensation of over-

voltage and that being the voltage swell type of the over-voltage which is said to be 10%  over 

voltage(Hafezi & Faranda, 2016). Other over-voltage types such as voltage surges and voltage spikes 

have been ignored in researches of voltage quality and they also contribute to the poor voltage quality 

supplied to the consumers. Voltage surges and voltage spikes which are primarily caused by lightning 

strikes are difficult to ignore as they can cause a serious damage to the household’s appliances and 

equipment. An improvement of a single Multi-Objective Voltage and Power Quality Optimization 

regulating method will be researched and developed that will control and optimize the delivered 

voltage and power to the best quality standard required by the end-users using the Differential 

Evolution with the first function being the compensation of under-voltage such as voltage sags, the 

second function being the reduction of the over-voltages to the required set point voltage and the 

third function being the mitigation of the extra over-voltages such as voltage spikes and voltage surges 

in the distribution section of the smart grid. 

2.2. Theory contributing towards the research 

2.2.1. Smart grid overview 

The whole world has a common goal to archive in electrical power field, economical sustainable, 

flexible and efficient power supply to the society. Smart Grid being the solution to that, researchers 

from across the globe have gathered and are working together to archive Smart Grid, the solution to a 

dynamic supply of electricity. Smart Grid involves different techniques and different technologies, and 

each technique performs in a distinct manner and symmetry, depending on commercial attractiveness, 

and local needs, therefore leading to smart grid not having a universal definition (Capriglione, et al., 
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2016).  Different visions for smart grid technology have been aligned by researchers, organizations and 

institutions. Here are some of the smart grid visions by researchers and institutions, smart grid 

communications vision, smart grid Renewable energy resources, Smart Grid Automation and Controls 

technology vision.  

2.2.2. Smart Grid vision on communications  

With communication being one of the key components in smart grid’s vison (Gungor & Hancke, 2010), 

the IEEE lays out three basic aspects to be considered in Smart Grid’s communication network. Space, 

time and entropy are three basic communication features. Space is the distance over which 

information must be communicated. Time is the period taken for information to be transported to its 

destination over that distance. Entropy is a measure of complexity, which in this case refers to 

transmission of information and electricity (Bush, 2013). The architecture of the electric power grid 

and its supporting communication network are reciprocally related. Power grid applications that are 

unable be handled by local control are supported by Communication network, and this relationship 

drives the communication model in smart grid. According to (Bush, 2013), space in communication is 

defined by the following acronyms and illustrated by Figure 2.2 bellow. 

• HAN: Home Area Network, relates to power consumption. 

• NAN/FAN: Neighbourhood Area Network/Field Area Network. Relates to power generation and 

consumption. 

• MAN: Metropolitan Area Network. Relates to power distribution. 

• WAN: Wide Area Network. Relates to power transmission. 

 

Figure 2.2: Communication network illustration with regards to space in Smart Grid (Bush, 2013). 
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Time is very important for control stability and it is related to transmission of signal as well as message 

length and transmission frame. Time in communication network is Influenced by unite size of protocol 

data and packetization delay, as well as by arranging delays into a queue along the path (Bush, 2013). 

Entropy is associated with measurement of power grid complexity and the corresponding of 

information volume that is communicated. Based on (Bush, 2013), an increase in electric power grid 

complexity requires an increase in communication network throughout and in the beneath capacity of 

channels for sufficient support of control system of the Smart Grid. the information that is needed to 

be communicated by the control system becomes harder to compress as the parameters of power of 

interest become less reciprocally related, and at the extreme situation of completely decorrelation of 

parameters, the distributed stochastic control system will require infinite bandwidth for 

communication and therefore becomes uncontrollable(Bush, 2013). 

Wired and wireless are two main communication media used to transmit data in the communication 

network and they support different communication technologies that can be used in Smart Grid. 

However there are advantages and disadvantages between these communication media. For instance 

wireless medium has freedom of connection to difficult or unreachable areas and low-cost 

infrastructure. On the other hand the transmission path nature of wireless medium may cause the 

signal to go weaker as the connection distance increases and their functions depend on batteries 

often. For wired medium, their functions are independent of batteries and they don’t experience signal 

interference problems, however their infrastructure is costly and sometimes it is difficult for them to 

reach other locations (Gungor, et al., 2011). With information flow required from sensor and electrical 

appliances to smart meters, and from smart meters to utility’s data centres, the following 

communication technologies can be used in Smart Grid: Zigbee, Wireless Mesh, Cellular Network 

Communication, powerline Communication and Digital Subscriber Lines. 

a. ZigBee is a wireless communications technology that uses proportionately low power, data 

rate, complexity, and deployment cost (Gungor, et al., 2011). It is the most suitable technology 

for home automation, energy monitoring, smart lightning, and automatic meter reading. 

According to (Peizhong, Iwayemi, & Zhou, 2011), ZigBee and ZigBee Smart Energy Profile (SEP) 

have been realized as the most suitable communication standards for residential network of 

Smart Grid domain by the U.S. National Institute for Standards and Technology (NIST). 

 

b. Wireless Mesh network is a composed set of nodes flexible network, where new nodes can join 

the group and each node can behave as an independent router. The characteristic of self-

healing of the network activates the communication signals to find another route via the 

enabled nodes, in case any node drops out on the network (Gungor, et al., 2011).  
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c. Existing cellular network technology can be an excellent option for communication between 

power utilities and smart meters and between far nodes. Based on (Gungor, et al., 2011), the 

existing communications infrastructure can make power utilities to avoid additional operational 

costs and time for building a dedicated communications infrastructure. Cellular network 

solutions also enable deployments spreading of smart metering to a wide area environment. 

The available cellular communication technologies to utilities for smart metering deployments 

are 2G, 2.5G, 3G, WiMAX, and LTE. 

 

d. Powerline communication (PLC) is a technique that transmits high-speed (2–3 Mb/s) data 

signals from one device to the other using the existing powerlines (Gungor, et al., 2011). Due to 

the successful implementations of AMI in urban areas where other solutions struggle to meet 

the needs of utilities and direct connection with the meter, PLC has been the first choice for 

communication with the electricity meter (Lewis, Igic & Zhongfu, 2009).  

 

 

e. Digital Subscriber Lines (DSLs) is a digital high-speed data transmission technology that makes 

usage of the voice telephone network wires. Frequencies greater than 1 MHz are commonly 

seen through an ADSL enabled telephone line (Laverty, et al., 2010). Installation costs are 

reduced by the already existing infrastructure of DSL lines. For this reason, many companies 

chose DSL technology for their smart grid projects (Gungor, et al., 2011). 

Below Figure 2.3 demonstrates the Communication network infrastructure for smart grid optimization 

with regards to communication. 
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Figure 2.3: Smart Grid communication Infrastructure (Gungor, et al., 2011). 

 

2.2.3. Smart Grid Automation and Controls technology vision 

Control systems and automation technology are the most influential components in Smart Grid’s vision 

of delivering economical and efficient power to the consumers. Control technology is driven by 

technical components such as sensors, actuators, computing Algorithms, user interfaces and 

communications. New opportunities for application of control concepts, theory, and algorithms are 

brought forward by improvements in all of these areas (Samad & Annaswamy, 2017). In Smart Grid, 

human effort is reduced by use of software algorithms which can process the data faster, non-stop and 

perform control actions on behalf of the humans. Sophisticated control algorithms use the exchange of 

information on the communication links to generate control action which fulfils several economical 

and operational constraints in Smart Grid (Khanna, 2012). Following the review of control elements 

mentioned above. 
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a. Sensors and Instrumentation  

Smart metering is one example of sensors and instrumentation and it is deployed for 

automated meter reading at remote side away from the utility. It is an improvement from 

manual meter reading where personnel had to physically access installed meters. Smart meters 

are used to measure power consumption by consumers and are installed in customer facilities 

such as residential, small commercial buildings and industrial business locations (Samad & 

Annaswamy, 2017). Another important measurement development is Phasor measurement 

units (PMU). PMUs measure electrical wave data from transmission lines on an electrical grid 

using a common time source for synchronization. The synchronous real timestamps compares 

current and voltage values at different points on the grid (Samad & Annaswamy, 2017). 

Waveform data is transmitted with microsecond-accuracy timing and at frequencies that are 

multiples of the line frequency (50/60 Hz). Home automation hubs that integrate energy, 

security, entertainment, and other functions and can serve as sensors for associated 

parameters (Samad & Annaswamy, 2017). 

 

b. Actuation 

Actuation involves control of automated mechanism which can make effective changes on the 

power grid. Example of actuation is control of active power which is achieved by adjusting 

generator to balance the power grid, as well as for auxiliary services such as regulation of 

frequency (Samad & Annaswamy, 2017).  Smart Inverter is one of the most important 

components in actuation. Inverters convert DC power from solar photovoltaic systems into AC 

power which is fed to the Smart Grid for transmission and distribution to the consumers. Smart 

inverters provide intensified communication and control functions, bringing more flexibility and 

intelligence for conversion and injection of reactive power. Another example of actuation is 

FACTS devices such as reactors and capacitor banks which are used for control of flow of 

electricity in transmission lines. Modern developments have resulted in intensified capabilities 

of control through real-time reactive power injection and absorption control, furnishing 

opportunities for distributed voltage and frequency control (Samad & Annaswamy, 2017). On-

load tap changers, switched capacitors, and static VAR compensators are examples of 

additional actuators that provide capable response over a wide range of time constants, 

ranging from milliseconds to minutes (Annaswamy, 2013). 

 

c. Computational Platforms 

Advanced control algorithms, computational hardware, Operating Systems and web browser 

are all examples of computational platforms due to the fact that a program code is executed for 

them to operate their duties. Computational platform place a very important role is control 

system of the Smart Grid by automating systems through coding. Computational platform 

require suitably capable processors for execution and their computational speeds depend on 
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the scale and complexity of the problem. Computational hardware has improved across the 

grid, from system operators to utilities to consumers (Samad & Annaswamy, 2017). 

 

 

2.2.4. Smart Grid Renewable Energy Sources vision 

The aim of Smart Grid vision on renewable energy sources is to achieve a greenhouse gas free electric 

power, economical, efficient and flexible power that is able to supply remote side areas such as rural 

areas.  Therefore, the use of distributed renewable energy sources such as solar and wind is the best 

solution to clean, sustainable and affordable electric power in societies. Different countries are 

encouraging generation of electricity by renewable energy sources in order to decarbonize the power 

generation (Kanjiya & Khadkikar, 2013). Smart grid technologies enable high levels of renewable 

energy sources to be included in an electrical power system and it offer benefits such reduced 

operational costs and a more efficiently operated electricity system (Atasoy, Akinç & Erçin, 2015). 

Energy storages are integrated as part of renewable energy source technology in smart grid. According 

to (Atasoy, Akinç & Erçin, 2015) review, Energy storage can be integrated at different levels of the 

electrical system in smart grid vision. Following are the levels energy storage can be integrated on: 

 Generation level: Arbitrage, balancing and reserve power, etc. 

 

 Power Grid level: voltage control, frequency control, capacity support, investment deferral, etc. 

 

 End-user level: peak shaving, cost management, etc. 

 

Wind generation is one part used for integration of renewable energy sources. With its nature of using 

wind for electricity generation, it achieves cheap and clean generation of electricity to smart grid.  The 

output electricity of wind turbines depends on the wind kinetic energy. The speed of the Wind 

fluctuates greatly in a short period of time, which determines the great fluctuation of wind power 

output in the short period of time. Wind fluctuations are very low in seasonal and annual periods, and 

the output of wind electric power has the statistical properties in the long term (Zhang, et al., 2017). 

For efficient generation of electric power, the amount of air entering the turbine must be equal to the 

amount of air leaving the turbine. According to Betz’s law, a maximum of wind power is achievable 

with 59.3% of the total kinetic energy of the air flowing through the turbine (Grogg, 2005).  

Solar energy is one of the most favourable renewable energy resources for bulk power generation for 

smart grid application. In this case solar energy is converted into electric power by means of 

photovoltaic cells (Wan, et al., 2015). Photovoltaic power generation has introduced significant 

environmental and economic interests to the public social awareness, such as carbon dioxide emissions 

reduction (Hosenuzzaman, et al., 2015). Photovoltaic system is made up of arranged solar panels to 
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absorb and convert photons into electricity, inverter to convert DC voltage to AC voltage, as well as 

supporting cabling and other auxiliary electrical components to put together an operational system 

(Okwu, et al., 2017). Photovoltaic system may also employ a system for solar tracking to intensify the 

system's overall performance and include charge controller, which is an integrated battery solution 

(Okwu, et al., 2017). Following Figures illustrates Photovoltaic system. 

 

 

Figure 2.4: Photovoltaic Solar panels (Okwu, et al., 2017). 

 

 

Figure 2.5: Block diagram for Photovoltaic solar system (Okwu, et al., 2017). 
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2.3. Power problems in Smart grid 

It is difficult to discuss and study power quality problems, this is because of different terminologies 

used to describe existing power disturbances, and that creates more confusion in attempting to solve 

power quality issues. The Institution of Electrical and Electronic Engineers (IEEE) tried to address the 

issue of using different terminologies by developing standards that include definition of power 

disturbance. The general definition of power disturbance states that, power disturbance is any 

interruption of voltage, current or frequency that opposes normal operation of the power system 

(Seymour & Horsley, 2008).Poor power quality causes malfunction and overheating of electrical 

equipment, power supply failure that results in blowing of fuses and tripping of circuit breakers, 

damage to sensitive equipment such as computers and production line control systems and 

interferences of electronic communications to name few. Such occurrences result in system outage, 

inefficient running and a reduced life span of electrical installations. Eventually that result in high 

running costs of installations, leading to the production being stopped and major costs being incurred 

(Schipman & François Delincé, 2010). Following are types of power quality problems encountered in 

power grid. 

a. Transients 

There are two types of transient disturbances, impulsive and oscillatory. Impulsive transient is 

a sudden extra-rise of voltage or current above normal operational voltage or current level that 

occurs unidirectional in polarity (either positive or negative) (Dugan, et al., 2004). It is 

categorised by its speed of occurrence on the event of disturbance. Impulsive transients can 

rise within 5 ns (nanoseconds) from steady state to the peak of the impulse. Impulsive 

transients are normally caused by Electrostatic Discharge, poor grounding, lightning, utility fault 

clearing and switching of inductive loads. Other terms used to refer to impulsive transients are, 

surges and spikes. The occurrence of impulsive transient can cause data loss or corruption to 

PCs and control instrumentation for production lines and physical damage to equipment 

(Seymour & Horsley, 2008). 

 

 
Figure 2.6: Positive impulsive transient (Seymour & Horsley, 2008).  
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Oscillatory transient is a sudden variation in voltage and current’s steady-state condition of the 

signal at unidirectional limits (either positive or negative), oscillating at the frequency of the 

natural system. Oscillatory transient makes the signal of the power to alternately rise and then 

shrink very fast (Seymour & Horsley, 2008). Oscillatory transients occur when capacitive and 

inductive loads such as capacitor banks and motors are turned off. Oscillatory transients can 

cause disruption to electronic equipment and a rise in the dc link voltage of the adjustable 

speed drives, resulting in tripping of the adjustable speed drives. According to (Seymour & 

Horsley, 2008), transient disturbances cause most damaging to household and industrial 

electrical equipment and appliances. Transient Voltage Surge Suppressors (TVSS) such as metal 

oxide varistor (MOV) are normally used to overcome the impulse transients while line reactors 

and chokes are used to overcome oscillatory transients. 

 

 
Figure 2.7: Oscillatory transient caused by automatically switching in capacitor banks (Seymour & 

Horsley, 2008). 

 

b. Power interruptions  

Power interruption is a complete loss of power supply to a particular location and it has four 

categories, depending on duration of occurrence. The first one is instantaneous interruption 

which lasts from 0.5 to 30 cycles, momentary interruption lasts from 30 cycles to 2 seconds, 

while temporal interruption lasts from 2 seconds to 2 minutes and sustained interruption takes 

more than 2 minutes until power is restored, depending on the fault sustained in the power 

grid banks (Seymour & Horsley, 2008). There are many causes of power interruptions in the 

society and industries, but most come as a result of power supply grid damage caused by 

lightning strikes, destructive weather(high winds, heavy snow or ice on lines, etc.), equipment 

failure, animals, trees, , basic circuit breaker tripping and vehicle accidents.  Another cause of 

power interruption in the commercial power systems is protective devices such as automatic 

circuit reclosers. Power interruptions can result in disruption, damage to equipment, and 

downtime to homes industrial places. Power interruptions can also cause loss of valuable data 

in business computer due to corruption of information during power interruption and product 
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ruination during downtime and that can result in cost losses in production companies. Good 

design and frequent maintenance of utility systems can reduce power interruptions in 

industries and communities. Other solutions to power interruptions are employing mitigating 

devices such as motor generator and uninterruptible power supply (UPS) (Seymour & Horsley, 

2008). Other terms associated with power interruptions are, power outage, power cut, power 

out, power failure and power blackout.  

 

 
Figure 2.8: Sustained power interruption (Liftarn (talk), 2009) 

 

c. Voltage Sag / Under-voltage 

Voltage sag is defined as a reduction of the operational voltage level between 10 to 90% of the 

root mean square voltage, for the duration of 0.5 cycle to 1 min (Anand, Mahamadnayeem & 

Atre, 2014), (Thakur & Singh, 2017). Voltage sags are usually caused by switching on loads with 

heavy start-up currents such as industrial motors which can draw six times or more of its 

normal running current while starting, causing a great voltage dip to the rest of the circuit it 

resides on. Voltage sags cause damage to equipment, data corruption in industrial computers 

and errors in industrial processing production lines (Seymour & Horsley, 2008). Voltage sags 

can be mitigated by providing alternative power starting sources separate from the one that 

loads sensitive electrical equipment for heavy loads and loads with heavy start-up currents. UPS 

equipment, motor generators, and system design techniques can also mitigate voltage sags. 

Under-voltages come as a result of long-term problems that cause sags. Under-voltages can 

cause overheating in motors, and can lead to the failure of loads that are nonlinear such as 

power supplies of computer. Solutions for voltage sags also apply to under-voltages. 
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Figure 2.9a: voltage sags(Seymour & Horsley, 2008).    Figure 2.9b: under-voltage(Seymour & Horsley, 2008). 

 

 

d. Voltage Swell / Over-voltage 

Voltage swell is the reverse form of voltage sag, swell is defined as the increase of the root 

mean square voltage level from 110% to 180% above the operational voltage level with 

duration of more than 3 cycles (Thakur & Singh, 2017). Voltage Swells are caused by switching-

on heavy or reactive equipment such as motors, transformers, motor drives or power factor 

correction equipment (Edomah, 2009). Other causes of voltage sags are sudden reductions of 

large loads, single-phase fault on a three-phase system as well as high-impedance neutral 

connections (Seymour & Horsley, 2008). Voltage swells can cause lights flickering, data errors, 

degradation of electrical contacts and insulation and semiconductor damage in electronic 

equipment. Solutions for Voltage sags mitigation are UPS systems, ferroresonant control 

transformers and power line conditioners. Over-voltages are extension of voltage swell and 

they come as a result of long-term problems that cause voltage swells. Solutions for voltage 

swells also apply to over-voltages. 

 

 
Figure 2.10a: Voltage swells(Seymour & Horsley, 2008).  Figure 2.10b: Over-voltage(Seymour & Horsley, 2008). 

 

e. Waveform Distortion 

There are five categories for waveform distortion disturbances, DC offset, Harmonics, Inter-

harmonics, Notching and Noise. DC offset are induced direct currents and voltages in ac 

distribution systems and they come as a result of failure of rectifiers within the many ac to dc 

conversion technologies that have rapidly increased modern equipment. DC offsets can cause 

instability in electronic load equipment, overheating and saturation of transformers, resulting in 

transformer not being able to deliver full power to the load. DC offset in the system can be 
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mitigated by replacing the faulty equipment that creates dc offset problem (Seymour & 

Horsley, 2008). 

 

 
Figure 2.11 DC offset(Seymour & Horsley, 2008). 

 

 Harmonic distortion is the fundamental sine wave corruption at frequencies that are multiples 

of the fundamental. Harmonic distortion is caused by transformer overheating, neutral 

conductors, circuit breaker tripping and loss of synchronization on timing circuits that are 

dependent upon a clean sine wave trigger at the zero crossover point. Harmonic distortions are 

mitigated by installing harmonic filters, K-rated transformers and over-sizing the neutral 

conductors. 

 

 
Figure 2.12: Harmonics distortion waveform(Seymour & Horsley, 2008) 

 

 Inter-harmonics come as a result of forced signal on the voltage supply by electrical equipment 

such as induction motors, static frequency converters and arcing devices. Inter-harmonics cause 

visual flickering of incandescent lights and displays and they can also cause possible heat and 

communication interference (Seymour & Horsley, 2008). They can be mitigated by UPS 

systems, filters and line conditioners.  

 

 
Figure 2.13: Inter-harmonics waveform distortion(Seymour & Horsley, 2008). 

 

Notching is defined as a periodic disturbance of voltage and it is caused by electronic devices 

such as light dimmers, variable speed drives and arc welders under normal operation. Notching 

is mitigated by UPSs and filter equipment.  
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Figure 2.14: Notching waveform(Seymour & Horsley, 2008). 

 

Noise is defined as unwanted current or voltage superimposed on the power system current or 

voltage waveform. Noise is caused by control circuits, power electronic devices, switching 

power supplies, arc welders and radio transmitters. Noise can cause equipment malfunction, 

data errors, long-term component failure, hard disk failure and distorted video displays. Noise 

can be mitigated by Isolating the load via a UPS, install a grounded and shielded isolation 

transformer, relocating the load away from the interference source, installing noise filters, 

cable shielding (Seymour & Horsley, 2008). 

 

 
Figure 2.15: Noise waveform(Seymour & Horsley, 2008). 

 

f. Voltage Fluctuations 

A Voltage fluctuation is defined as a systematic change of the waveform of voltage or a series of 

random variations of small measurable voltages, namely 95 to 105% of nominal at a low 

frequency below 25 Hz(Seymour & Horsley, 2008). Voltage fluctuations are caused by load 

exhibiting current variations and arc furnaces on the transmission and distribution system. They 

can cause flickering of incandescent lamps. Solutions to voltage fluctuations could be relocation 

of sensitive equipment, removing the offending load and installing power line conditioning and 

UPS devices.  

 

 
Figure 2.16: Voltage fluctuations(Seymour & Horsley, 2008). 
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g. Frequency Variations 

Frequency variation can be experienced in poor power infrastructure and situations where 

generator is heavily loaded and can cause a motor to run slower or faster to synchronise the 

input power frequency. Frequency variations cause inefficient running of the motor and can 

lead to excessive degradation of the motor and more heating of the motor through razed motor 

speed and additional current draws. Mitigation for frequency variation can be done by 

repairing, correcting or replacing power sources causing the frequency variation (Seymour & 

Horsley, 2008).  

 
Figure 2.17: Frequency variations(Seymour & Horsley, 2008). 

 

 

2.4. Dynamic Voltage Restorer 

Researchers have developed many solutions to overcome poor power quality on society and industries. 

However the most commonly used solution is dynamic voltage restorer (DVR) due to its high efficiency 

and fast response. A DVR is a power electronic device that is employed to inject a dynamically 

controlled voltage in series and in synchronism with the operational voltages for voltage sag and swell 

compensation and that helps to regulate the load voltage profile during the voltage quality events and 

allows control of real and reactive power exchange between the DVR and the distribution system 

(Brumsickle, et al., 2001), (Ramasamy, et al., 2005). DVR is mostly installed in a distribution system, 

located between the power supply and the sensitive load feeder at the point of common coupling 

(PCC) and it can be considered as a variable or controllable voltage source (Jena, et al., 2011). Figure 

2.18 shows the location of the DVR in the distribution system. 
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Figure 2.18: DVR location in Power system(Jena, et al., 2011). 

DVR consists of four major parts. 

a.  The first part is Voltage Source Inverter (VSI). VSI converts the direct current (DC) voltage it 

collects from the Storage unit to Alternate Current (AC) voltage before it passes the 

transformer unit. VSI has a high current ratings and low voltage ratings hence step up 

transformer is employed to boost the voltage injected (Ramasamy, et al., 2005).  

b. The second part is Injection Transformers. Injection Transformer is connected between the VSI 

AC terminals and the passive filters. Their main purpose is to inject the inverted AC voltage to 

the sensitive load in order to compensate voltage sags or impose voltage swells towards the 

sensitive load. 

c. The third part on DVR is Passive Filters. Passive filters are located at the high voltage side of the 

injection transformers to filter harmonics (Ramasamy, et al., 2005). 

d. The forth part of the DVR is Energy storage. Batteries, flywheels and Superconducting Magnetic 

Energies can be used to provide real power for compensation as it is necessary when large 

voltage sag occurs (Ramasamy, et al., 2005). Figure 2.19 shows DVR schematic diagram. 

e. The fifth part is the circuit of dc charger which is allocated two main duties, the primary duty is 

to recharge the energy source after the event of voltage sag compensation, and the secondary 

duty is to keep a continuous voltage of the dc link at the nominal dc link voltage level (Jena, et 

al., 2011). 
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Figure 2.19: DVR schematic Diagram (Ramasamy, et al., 2005). 

The main objective of the DVR is to inject a dynamically controlled voltage VDVR generated by a forced 

commutated inverter in series to the bus voltage by means of the injection transformer(Jena, et al., 

2011).  Following Figure 2.20 is the equivalent DVR circuit diagram. 

 

Figure 2.20: Equivalent DVR circuit diagram(Jena, et al., 2011). 

Following are DVR voltage compensation formulas according to (Jena, et al., 2011), 

 

VDVR = VL + ZTHIL - VTH        (2.30) 

where 
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VL    =    the desired load voltage magnitude. 

ZTH    =    the load impedance. 

IL      =    the load current. 

VTH    =   the system voltage during fault condition. 

The ZTH impedance of the system depends on the load bus fault level. When the VTH voltage of the 

system drops, DVR injects VDVR series voltage from the VSI through injection transformer, to maintain 

VL the desired load voltage magnitude. 

The load current can also be expressed in the below form: 

IL = (PL + jQL)/V        (2.31) 

If VL is placed as a reference, then the formula can be written as, 

VDVR∠0 + VL ∠0 + ZTH ∠(𝛽 − 𝜃) − VTH ∠𝛿     (2.32) 

∝, 𝛽, 𝛿 are angles of VDVR, ZTH and VTH respectively. 𝜃 is the load power angle and can be obtained by 

the following formula, 

𝜃 = 𝑡𝑎𝑛−1(
𝑄𝐿

𝑃𝐿
)       (2.33) 

where QL and PL is load reactive and active power respectively. 

The complex power injection of the DVR can be written as, 

SDVR = VDVRIL
*       (2.34) 

During DVR operation, VDVR is equals to Zero (VDVR = 0) when there is no fault being experienced on the 

sensitive load, therefore the mode is standby mode. Whenever the sensitive load experiences the 

fault, DVR senses the voltage magnitude difference through the control system and it would inject the 

correct amount of voltage level to compensate or to superimpose the fault on the sensitive load. 

Therefore the mode is injection/boosting mode (VDVR > 0). 

2.4.1 DVR Compensation Techniques  

There are different techniques of compensation in DVR employed to maintain constant load voltage 

depending on the type of load – whether it is phase sensitive, magnitude sensitive, or both. The study 

and analysis of reaction of the load to magnitude change, phase disturbance or both is required and 

compensation method is selected based on reflection of disturbance as more severe and critical on the 

load (Remya, et al., 2018). Different voltage injection methods are discussed below.  
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In-phase Voltage Compensation Technique  

The technique of in-phase voltage compensation is the most suitable method for sensitive loads 

magnitude. Without considering the pre-fault conditions, it restores the load voltage by injecting the 

lost voltage in phase with the supply voltage (Buxton, 1998). Since the compensated voltage is in 

phase with the supply voltage, the energy storage for active power compensation required. According 

(Remya, et al., 2018), this technique does not address the phase jumps. Both real and reactive powers 

are involved in load voltage restoration during in-phase compensation (Remya, et al., 2018). 

Pre-sag Compensation Method 

Pre-sag compensation technique is used in order to compensate both phase jumps and magnitude. The 

complementary voltages of nature in magnitude, harmonics and wave shape are injected by the DVR 

to compensate the difference between the pre-fault and fault voltage (Remya, et al., 2018).The load 

voltage after and before fault is in synchronize with both magnitude and phase. This technique is 

suitable for balanced and unbalanced sags with or without phase jumps (Meyer, 2008). The technique 

also ensures large voltage injection capability. For this compensation method, large energy source 

storage is required to supply the active and reactive power to the inverter (Remya, et al., 2018).  

Energy Minimized Compensation Method 

According to (Remya, et al., 2018), the type of voltage disturbance and the type of compensation 

technique gives indication to which amount of real and reactive power required by the DVR for 

compensating a particular disturbance. The compensation of zero active power is achieved by injecting 

the voltage in quadrature with the current of the load (Danbumrungtrakul, et al., 2017). For this 

technique, the energy storage capacity is reduced and the reduction is inversely proportional to the 

depth of the sag. According to (Chiang, et al., 2005), this technique is not suitable for sensitive loads 

sag mitigation with high power factor (Remya, et al., 2018).  

2.5. Multi-Objective Optimization 

Multi-objective optimization is a procedure that minimizes or maximizes objectives that are under 

imposed constraints. It is a mathematical or algorithmic tool that is characterized by two or more 

objectives (Adekoya & Helbig, 2017). In multi-problem optimization, two or more objectives are 

usually on conflict, therefore the evolutionary algorithm are required to search the best optimal 

solution(Reyes-Sierra & Coello, 2006). Different multi-objective strategies have been applied to the 

problems where the correct clustering solution corresponds to a trade-off between two or more 

clustering metrics(Lezama, Rodrıguez-Gonz´alez & de Cote, 2016). One strategy used in multi-

objective optimization is Pareto Front. Pareto front is the set of all Pareto efficient allocations, 

conventionally shown in graph. It allocates resources from an impossible situation, making one 

individual or preference criterion best optimal without making individual or preference criterion worse 
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optimal(Chaves-Gonz´alez & P´erez-Toledano, 2015). Pareto front is represented by Pareto-optimal 

solutions. The measure of performance of the multi-objective problems depends on a well dispersed 

set of optimal solutions in the Pareto Front (Suganthi, et al., 216). A multi-objective problem can be 

mathematically formulated as follows: 

Minimize F(𝑥) = [ f1(𝑥),…,fm(𝑥) ] 

Subject to:  

g(𝑥) = 0 j = 1,…M      (2.35) 

h(𝑥) = 0 k = 1,…,K     (2.36) 

 

where  

F(𝑥) is made up of m conflicting objective functions, 

𝑥 = the decision vector, 

gj = the jth equality constraint 

hk = the kth inequality constraint. 

It is quite usual in multi-objective optimization that one objective improved leads to deterioration of 

the other, therefore it is not possible to have a single solution that fulfils all the objective functions. 

The best solution that could be used instead for multi-objective optimization simulations is Pareto 

optimal solutions. From the Pareto optimal Front, it is needed to find the best solution that could be 

used instead, which includes all the objective functions (Suganthi, et al., 216).  

According to (Caramia &Dell’olmo, 2088), A single-objective optimization problem from its basis can 

be represented as follows: 

𝑚𝑖𝑛𝑓(𝑥)      (2.37) 

𝑥 ∈ 𝑆,       (2.38) 

where 𝑓 is a scalar function and 𝑆 is the (implicit) set of constraints that can be defined as follow: 

𝑆 =  {𝑥 ∈ 𝑅𝑚 ∶ ℎ(𝑥) = 0, 𝑔(𝑥) ≥ 0}.    (2.39) 

Therefore the multi-objective optimization expression is mathematically described as follows: 

𝑚𝑖𝑛[𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]    (2.40) 
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𝑥 ∈ 𝑆,       (2.41) 

where 𝑛 > 1 and 𝑆 is the constraints set defined above. The objective space is the property at which 

the objective vector occupies, and the attained set is the image of the feasible set under𝐹. The set is 

expressed as follows: 

𝐶 =  {𝑦 ∈ 𝑅𝑛 ∶ 𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝑆}.   (2.42) 

The concept of scalar of optimality does not directly apply in the multi-objective setting, instead the 

notion of Pareto optimality is introduced. Essentially, a vector 𝑥 ∗∈ 𝑆 is said to be Pareto optimal for a 

multi-objective problem if all other vectors 𝑥 ∈ 𝑆 have a higher value for at least one of the objective 

functions 𝑓𝑖, with 𝑖 = 1, . . . , 𝑛, or have the same value for all the objective functions(Caramia 

&Dell’olmo, 2088). Following are Pareto optimality definitions according to (Marler & Arora, 2004). 

Pareto Optimality definitions 

Definition 1. Pareto Optimal: A point, 𝑥 ∗∈ 𝑋, is Pareto optimal 𝑖𝑓𝑓,no another point exists, 𝑥 ∈ 𝑋, 

such that 𝐹(𝑥) ≤ 𝐹(𝑥 ∗), 𝑎𝑛𝑑𝐹𝑖(𝑥) < 𝐹𝑖(𝑥 ∗) for at least one function. According to (Athan & 

Papalambros 1996), (Chen et al. 2000), all Pareto optimal points lie on the boundary of the feasible 

criterion space Z. In most cases algorithms give solutions that may not be Pareto optimal but able to 

satisfy other criteria and making them important for practical applications. For instance, the following 

definition defines weakly Pareto optimal.  

Definition 2. Weakly Pareto Optimal: A point, 𝑥 ∗∈ 𝑋, is weakly Pareto optimal 𝑖𝑓𝑓 there does not 

exist another point, 𝑥 ∈ 𝑋, such that 𝐹(𝑥) < 𝐹(𝑥 ∗).  

A point is weakly Pareto optimal if there is no other point that improves all of the objective functions 

simultaneously. In contrast, a point is Pareto optimal if there is no other point that improves at least 

one objective function without weakening the other function (Marler & Arora, 2004). Therefore Pareto 

optimal points are weakly Pareto optimal, but weakly Pareto optimal points are not Pareto optimal. All 

Pareto optimal points may be categorized as being either proper or improper. The idea of proper 

Pareto optimality and its relevance to certain algorithms is defined bellow. 

Definition 3. Properly Pareto Optimal: A point, 𝑥 ∗∈ 𝑋, is properly Pareto optimal (in the sense of 

Geoffrion) if it is Pareto optimal and there is some real number 𝑀 > 0 such that for each 𝐹𝑖(𝑥) and 

each 𝑥 ∈ 𝑋 satisfying 𝐹𝑖(𝑥) < 𝐹𝑖(𝑥 ∗), there exists at least one 𝐹𝑗(𝑥) such that 𝐹𝑗(𝑥 ∗) < 𝐹𝑗(𝑥) 

and 
𝐹𝑖(𝑥∗)−𝐹𝑖(𝑥)

𝐹𝑗(𝑥)−𝐹𝑗(𝑥∗)
≤ 𝑀. If a Pareto optimal point is not proper, it is improper. The quotient is referred to 

as a trade-off , and it represents the increment in objective function 𝑗 resulting from a decrement in 

objective function 𝑖. Definition 3 requires that the trade-off between each function and at least one 

other function be bounded in order for a point to be properly Pareto optimal (Marler & Arora, 2004). 
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2.6. DIFFERENTIAL EVOLUTION ALGORITHM 

Introduced in 1995 by Storn and Prince, Differential Evolution (DE) has already dominated the 

evolutionary optimization research for computing and engineering field due to its advantageous 

characteristics. DE is an Evolutionary Optimization method that is easy to use, simple to implement yet 

efficient in solving optimization problem, it is fast and reliable to converge to true optimum. DE is one 

of the Evolutionary Algorithms (EA) and it is classified as a population–based, derivative free 

metaheuristic optimization algorithm that mimics Charles Darwinian evolution and evolves a 

population of individuals from one generation to another by corresponding evolutionary operations 

such as mutation, crossover and selection(Ganbavale, 2014).  

 

Figure 2.21: Steps involves differential evolution algorithm(Ganbavale, 2014). 

DE is a derivative-free continuous optimizer of objective function in nature, it converts parameters as 

numbers of floating-points and handles them with simple addition, subtraction, and multiplication 

arithmetic operations and creates new points that are the mutations of existing points. Therefore a 

parent vector mutated by DE in the population with a scaled difference of other randomly selected 

individual vectors(Ganbavale, 2014). The resultant mutation vector and the corresponding parent 

vector are crossed over to create a trial or offspring vector. During the one-by-one selection process of 

each set of offspring and parent vectors, the one with a better fitness value survives and enters the 

next generation. The process is repeated for each parent vector and all parent-offspring pair survivors 

become the parents of a new generation in the evolutionary search cycle. The evolutionary search 

stops when the algorithm converges to the true optimum solution or when a certain termination 

criterion such as the number of iterations is reached(Ganbavale, 2014). Following are analogous 

evolutionary operations taken during optimization of objective function by DE. 

 

 



42 
 

2.6.1. Population Structure 

Differential Evolution’s most implementation capability retains a set of vector populations which 

contain Np D-dimensional vectors of real-valued parameters(Price, et al., 2005). Vectors, 𝑋𝑖,𝑔  that have 

previously been discovered to be acceptable either as starting points, or by comparing them with other 

vectors, make the current population, represented by P𝑋:  

P𝑋, 𝑔, = (𝑋𝑖,  ),   𝑖 =0,1,…,Np – 1, g=0,1,…gmax,   (2.43) 

𝑋𝑖,,  = (𝑥j,𝑖,𝑔  ),  𝑗 = 0,1,…,D – 1,     (2.44) 

Indices start with 0 to make ease dealing with modular arithmetic and arrays. The generation to which 

a vector belongs is denoted by index, g=0,1,…gmax,. A Population index, 𝑖, which operates from 0 to 

Np – 1 is allocated for each vector. Parameters within vectors are indexed with𝑗, which operates from 

0 to D – 1. Once initialized, DE mutates vectors that are randomly chosen to create an intermediate 

agent population, Pv, ,, of Np mutant vectors, V𝑖,𝑔  :  

PV, 𝑔, = (V𝑖,  ),   𝑖 =0,1,…,Np – 1, g=0,1,…gmax,   (2.45) 

V𝑖,  = (𝑣 j,𝑖,𝑔  ),  𝑗 = 0,1,…,D – 1,     (2.46) 

In the current population, each vector is then reunited with a mutant vector to create a trial 

population, Pu, of Np trial vectors, u𝑖,: 

Pu, 𝑔, = (u𝑖,  ),   𝑖 =0,1,…,Np – 1, g=0,1,…gmax,   (2.47) 

u𝑖,  = (𝑢 j,𝑖,𝑔  ),   𝑗 = 0,1,…,D – 1,     (2.48) 

Trial vectors overwrite the mutant population during recombination so that a single array can hold 

both populations(Price, et al., 2005). 

2.6.2. Initialization 

Before initiation of population, for each parameter both upper and lower bounds must be specified. 

The values of 2D can be collected into two, D-dimensional initiation vectors, bL and bU, for which 

subscripts L and U symbolises the lower and upper bounds, respectively. After initialization bounds 

have been specified, a random generator of number allocates each parameter of every vector a value 

from within the prescribed range(Price, et al., 2005).. For example, the initial value (g = 0) of the jth 

parameter of the ith vector is  

𝑥j,,0 = randj(0,1) . ( bj,U - bj,L ) + bj,L .     (2.49) 

The random number generator, randj(0,1), reverts a random number that is uniformly distributed from 

within the range [0,1), i.e., 0 ≤ randj(0,1) < 1, the subscript, j, gives an indication of a new generated 
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random value for each parameter. The variable is initialized with a real value regardless whether it is 

integral or discrete since DE considers all variables as floating-point values internally regardless of their 

type.  

2.6.3. Mutation 

After DE is initialized, it recombines and mutates the population to produce a population of Np trial 

vectors. A randomly sampled, scaled vector difference is added by differential mutation to a third 

vector(Price, et al., 2005). Equations 2.50, 2.51 and 2.52 shows how to combine three different, 

randomly chosen vectors to create a mutant vector, 𝑣 𝑖,  : 

 

DE/rand/1   𝑣𝑖,g = 𝑋𝑟0, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,)                                         (2.50) 

       DE/ current-to-rest/1        𝑣𝑖,g = 𝑋𝑖, + 𝐹𝑖 (𝑋𝑏𝑒𝑠𝑡, – 𝑋𝑖,) + 𝐹𝑖 (𝑋𝑟1, – 𝑋𝑟2,)          (2.51) 

DE/best/1   𝑣𝑖,g = 𝑋𝑏𝑒𝑠𝑡, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,)                 (2.52) 

 

The mutation factor, F ∈ (0,1+), is a positive real number that controls the population evolution rate. 

While there is no upper limit on F, effective values are occasionally greater than 1.0. The base vector 

index, r0, can be determined in a number of different ways, but for now it is pretended to be a vector 

index that is randomly chosen that is different from the target vector index, i. Except for being 

different from each other and from both the target and base vector indices, the difference vector 

indices, r1 and r2, are also randomly selected once per mutant(Price, et al., 2005).  

2.6.4. Crossover 

Sometimes referred to as discrete recombination, uniform crossover is employed by DE to complement 

the differential mutation search strategy. Crossover creates trial vectors out of parameter values that 

have been copied from two different vectors. DE crosses each vector with a mutant vector: 

𝑢𝑖,𝑔 = (𝑢1,𝑖,𝑔, 𝑢2,𝑖,𝑔, …  . , 𝑢𝐷,𝑖,𝑔)                              (2.53) 

𝑢𝑗,, ={
𝑣𝑗, 𝑖, 𝑔…… 𝑖𝑓𝑟𝑎𝑛𝑑𝑗(0,1) ≤ 𝐶𝑟𝑖𝑜𝑟𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑗, 𝑖, 𝑔……… 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                      (2.54) 

The crossover probability, Cr ∈ [0,1], is a user-defined value that controls the parameter values fraction 

that are copied from the mutant. Uniform crossover compares Cr to the output of a uniform random 

number generator, randj(0,1) to determine which source contributes a given parameter. If the random 

number is less than or equal to Cr, the trial parameter is inherited from the mutant, 𝑣𝑖,; otherwise, the 
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parameter is copied from the vector, 𝑥𝑖,𝑔. Furthermore, the trial parameter with randomly chosen 

index, jrand, is taken from the mutant to ensure that the trial vector does not duplicate 𝑥𝑖,. Cr only 

approximates the true probability pCr, because of this additional demand, that a trial parameter will be 

received from the mutant(Price, et al., 2005).  

2.6.5. Selection 

If the trial vector, 𝑢𝑖, has an equal or lower objective value than that of its target vector, 𝑥𝑖, it replaces 

the target vector in the next generation; otherwise, the target keeps its place in the population for at 

least one more generation (Eq. 2.55). By comparing each trial vector with the target vector from which 

it inherits parameters, DE more tightly integrates recombination and selection than do other EAs: 

𝑋𝑖,+1 =  {
𝑢𝑖, 𝑔 …… 𝑖𝑓𝑓(𝑢𝑖, 𝑔) < 𝑋𝑖, 𝑔
𝑋𝑖, 𝑔 …………… 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                               (2.55)    

 

Once the new population is installed, the process of mutation, recombination and selection is repeated 

until the optimum is located, or a pre-specified termination criterion is satisfied, e.g., the number of 

iterations reaches a pre-set maximum, gmax (Price, et al., 2005).  

2.7. Conclusion 

This chapter has presented the overview, definition and challenges encountered in smart grid. It has 

also outlined different methods used to better smart grids mission such has integration of wind and 

solar energy for economical purpose. The chapter further outlined previously done studies of 

differential evolution, DVR and power quality. It also highlighted sections that are key to archive 

Differential Evolution improvement and optimization of power quality in smart grid. The following 

chapter will apply theories and contribution studies to archive improved Differential Evolution. 

 

 

 

 

 

 

 



45 
 

CHAPTER 3 

IMPROVED DIFFERENTIAL EVOLUTION BASED ON MUTATION STRATEGIES 

This chapter attempts to improve Differential Evolution Algorithm by modifying DE’s mutation 

strategies. On the process, the chapter gives overview of classical Differential Evolution and it outlines 

modified strategies of DE. The chapter further outlines the methodology and steps taken during 

simulations to validate the proposed study. In this chapter the analysis of the results are made and the 

conclusion is made based on the experiment conducted. 

3.1. Differential Evolution overview   

Much attention from various researchers and research institutions has been received by Differential 

Evolution (DE) since its introduction by Storn and Price twenty years ago. DE’s acknowledgement 

involves its simplicity, speed, robustness and reliability to converge to true optimum when optimizing 

an objective function. DE has received much more success in series of benchmark academic 

competitions, real world optimization applications and black box global optimization competitions, 

leading to a big recognition and interest from both researchers and practitioners(Opara, & Arabas, 

2017), (Wu, et al., 2017). As discussed in previous chapter, DE employs the basis of population 

randomly determined sequence search method instead of mathematical operations that are complex 

(Zheng, et al., 2017). By trait, DE is recognized as a reliable and efficient global optimizer for variety of 

optimization fields such as multimodal optimization, constrained and unconstrained optimization, and 

multi-objective optimization (Wu, et al., 2017).  

Besides DE algorithm being looked upon as one of the best reliable and efficient EA method for solving 

problems of optimization, it also has its own drawbacks. DE encounters stagnation, which in-turn 

disintegrates its performance. Stagnation is a state whereby the process of searching for optimum 

stops running before finding a global optimal solution. Stagnation is different from premature 

convergence in a sense that population remains diverse and not converged after the occurrence of 

stagnation, but the process of optimization does not continue (Lampinen & Zelinka, 2009). When the 

stagnation occurs, the algorithm is caused not to get better solutions from the candidate solutions that 

are newly developed, even though the multiform of the population is retained (Zheng, et al., 2017). 

Chances of stagnation occurrence depend on the availability of number of different potential trial 

vectors and their survival chances in the following generations (Zheng, et al., 2017).  

In this chapter, the improvement of DE is proposed, on the basis of modification of mutation schemes 

and control parameters tuning. The research looks to improve the convergence speed of DE without 

encountering stagnation, thereby improving DE reliability on problem optimization. Once DE is 

improved it will be employed for power quality optimization in smart grid. DE’s performance is 

determined by mutation function, this is due to the fact that new solutions are created from randomly 
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selected individuals from population scaled by mutation factor (Leon & Xiong, 2014), therefore it plays 

an important role during problem optimization, unlike Genetic Algorithm which is affected by 

crossover function during optimization process(Thangaraj, Pant & Abraham, 2010). DE’s general 

notation is presented as DE/X/Y/Z, where X denotes the mutation vector, Y denotes the number of 

difference vectors used and Z denotes the exponential or binomial crossover scheme (Thangaraj, Pant 

& Abraham, 2010). As reported by (Opara, & Arabas, 2017), Differential mutation contains two parts, 

selection of base vector and summing of the difference vectors.   

3.1.1. Classical Differential Evolution 

DE algorithm is one of the based populated stochastic evolutionary algorithm that construct random 

search and optimization procedures by following Charles Darwin’s natural evolutionary principles. The 

term Differential Evolution is due to a special type of difference vector exists, as explained in 

(Chattopadhyay, Sanyal & Chandra, 2011). During optimization process, DE retains candidate solutions 

population and produces new candidate solutions by combining existing candidate solutions according 

to their simple formulae. The best candidate solution with better fitness on the optimization problem 

is retained (Sagoo ,2012).Unlike other evolutionary algorithms, DE employs selection of only three 

control parameters, being Mutation Factor (F), Population Size (PS) and Crossover rate (Cr).  According 

to (Penunuri, et al., 2015), number of generations (gmax) is not recognized as a control parameter, since 

some stopping criteria is need on the simulation. However, it is very helpful to have an estimation 

number of generations (gmax) in order to avert a very long running time of the program. Mutation 

factor F value can be selected on the ranges from 0.1 to 2.0 while the Crossover rate value can be 

selected on the ranges from 0.1 to 1.0. Population size is determined by the Dimensions D of the 

optimization problem, where the values from 5D to 10D are proposed. However, the values are 

extended from 2D up to 40D (Penunuri, et al., 2015).  

As discussed in chapter 2.6, DE uses three evolutionary functions during problem optimization, being 

mutation function, crossover function and selection function. Mutation function produces variations 

randomly to existing individuals to furnish new communicated knowledge into the population. The 

functioning produces mutation vectors at each generation stage, based on the population of the 

current parent (Ganbavale, 2014). Detailed mutation strategy equations are presented on chapter 

2.6, equations (2.50)-(2.52).  

The crossover function executes an exchange of communicated knowledge between different 

individuals in the current population. The final trial vector is created by binomial crossover operation 

(Ganbavale, 2014). Detailed crossover function equations are presented on chapter 2.6, equations 

(2.53)-(2.54).    

The selection function is a bridge for a driving force towards the most favorable point by preferring 

individuals of better fitness. The selection operation selects the better individual vector from the 
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parent vector and the trial vector, according to their fitness values (Ganbavale, 2014). Detailed 

selection function equations are presented on chapter 2.6, equation (2.55).    

 

3.2. DE Improvement 

Two factors have been put into consideration for DE improvement, control parameter tuning to obtain 

the suitable combination to be employed on a selected mutation scheme is first factor. At this instance 

the mutation scheme selected is DE/rand/1 because of its fast and best convergence. DE/rand/1 is the 

most frequently used scheme due to its simplicity and best optimum convergence during problem 

optimization (Wu, Lee & Chien, 2011). Modification of selected mutation scheme is the second factor. 

The developing of three modified mutation schemes is done by putting responsibility to Mutation 

Factor F on mutation formula. As reported by (Tayal & Gupta, 2012), mutation is the element that 

separates one DE strategy from the other. Mutation is accountable for expansion and exploration of 

the search space in order to obtain the optimum solution for a given optimization problem, by 

combining different parameter vectors in such a manner that a new population vector, termed donor 

vector is created(Chattopadhyay, Sanyal & Chandra, 2011). Mutation F is accountable for the 

differential variation amplification (Chattopadhyay, Sanyal & Chandra, 2011)-(Sarker, Elsayed & Ray, 

2014). In in this modification instance, mutation factor F will also be employed to amplify the base 

vector 𝑋𝑟0 in order to explore much wider search space for better optimum solution. For the first 

modification, the individual vector 𝑋𝑟0 is squired and divided by mutation factor F with reference from 

chapter 2 equation (2.50), (Price, et al., 2005), as shown in the equation (3.1) below. The equation will 

be named DE/Modi/1, 

 

DE/Modi/1     𝑣𝑖, = (𝑋𝑟0)2, ÷ F𝑖 + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,)                              (3.1) 

 

where, 

  

𝑟0, 𝑟1, 𝑟2 = difference integers uniformly chosen from the set {1,2, … . . , 𝑁 }\{𝑖} , 

 

𝑋𝑟1, − 𝑋𝑟2,= difference vector to mutate the parent, 
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𝑋𝑟0, = base vector 

 

𝐹𝑖 = mutation factor which the ranges of (0, 1+) interval  

 

On the second modification, the parent vector is multiplied by the mutation factor F. At this instance 

the individual vector is not squired as shown in the next equation. The equation will be named 

DE/Modi/2 

 

DE/Modi/2   𝑣𝑖, = F𝑖 × 𝑋𝑟0, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,)                                          (3.2) 

 

The third and final modification involves three factors applied to the individual vector. First, the base 

vector 𝑋𝑟0 is squired as done on the first modification of equation (3.1), secondly, the base vector 𝑋𝑟0 

is it is multiplied by the mutation factor F , and thirdly, it is divided by 2 as shown in the equation 

below. The equation will be named DE/Modi/3 

 

DE/Modi/3   𝑣𝑖, =F𝑖 × (𝑋𝑟0)2 ÷ 2 + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,)                              (3.3) 

 

3.3. Methodology 

Following are steps that were employed during simulation of the DE improvement by means of 

mutation scheme modification and tuning of control parameter. The following benchmark functions 

were used to during simulation of the experiment: Sphere Function, Ackley function, Rastrogin 

function, Griewank Function, SumPower Function, Schwefel Function, Bukin Function and SumSquare 

Function.  DE/rand/1 is selected for the experiment. 

Step 1: Psue-code of DE/rand/1 is done on matlab and the control parameters Settings are done in the 

following manner: the constant parameters: PS = 50, D = 2, I_max = 200. The varying parameters:, Cr = 

[0.1 – 1.0], F = [0.1–2.0].  

Step 2: Each above-mentioned benchmark function is assessed by varying F and C from 0.1 to 2.0 and 

from 0.1 to 1.0 respectively so that the perfect set of values that makes a fast convergence on the 

optimization process is determined.  
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Step 3: The determined F and C set values are then employed without being varied in three mutation 

schemes modified. At this instance the determined F/C set Combination values are 0.2/0.2, 0.2/0.3, 

0.2/0.5, 0.2/0.7, 0.2/0.9, 0.1/0.9, 0.4/0.9, 0.6/0.9 and 0.8/0.9. All the convergence results of all the 

mentioned benchmark functions above during F/C combination are tabled and will be used for 

comparison with the convergence results that are obtained on the mutation schemes modified.  

Step 4: The classical mutation scheme DE/rand/1 equaion is modified on the basis of the mutation 

schemes modifications mentioned above. Following are the control parameters on the mutation 

schemes modified, PS = 50, D = 2, F = 0.2, 0.1, 0.4, 0.6 and 0.8, C = 0.9, 0.2, 0.3, 0.5, 0.7 and 0.9, I_max 

= 200. 

Step 5: simulations are done in all the benchmark functions for convergence speed for DE/Modi/1, 

DE/Modi/2 and DE/Modi/3. All results are tabled for comparison with the DE/rand/1 results. 

Step 6: Time complexity and statistical data will be determined.  

Following is Differential Evolution pseudo-code presented with one of the modified mutation scheme 

DE/Modi/3. 

 

Figure 3.1: pseudo- code of DE/Modi/3. 
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3.4. Results 

The Following results were obtained during simulation of the eight benchmark functions. The following 

parameters were employed for all simulations: I_max = 200 iterations, D = 2, PS = 50 and F/C 

combination = 0.2/0.2, 0.2/0.3, 0.2/0.5, 0.2/0.7, 0.2/0.9, 0.1/0.9, 0.4/0.9, 0.6/0.9 and 0.8/0.9. 

Following are the table parameters: F/C is Mutation Factor/ Crossover rate combination used for 

simulations. Ttot is the total time in seconds (s) taken for a function to complete running during 200 

Iterations, it is determined by tic toc psue-code in MATLAB. Fit is the fitness of the optimized function 

Tc is the time in seconds (s) taken for a function to start convergence during simulation. Tc is 

determined by the following formula: 

Tc = (Ttot × I_t)/I_max      (3.4) 

Where Ttot is the total running time of a function, 

I_t is the iteration number where the function starts to converge. I_t is determined with reference to 

Figure 3.2, where X value of 95 is the I_t and the Y value is the minimum best fitness value for a 

function. Following are the results of DE/rand/1 strategy, DE/Modi/1 strategy, DE/Modi/2 strategy and 

DE/Modi/3 strategy. 
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TABLE 3.1A: DE/rand/1 Results 
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TABLE 3.2A: DE/Modi/1 Results 
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TABLE 3.2B: DE/Modi/1 Results 
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TABLE 3.3A: DE/Modi/2 Results 
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TABLE 3.3B: DE/Modi/2 Results 
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TABLE 3.4A: DE/Modi/3 Results 
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TABLE 3.4B: DE/Modi/3 Results 
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From the DE/rand/1 results, table 3.1A and 3.1B, it can be noticed that the convergence of most 

functions is robust during the parameter combination F/C of 0.2/0.9, with convergence time (Tc) values 

being the lowest on most functions, except for Schwefel and Griewank function which have their 

lowest Tc values on F/C of 0.2/0.2 and 0.1/0.9 respectively. It can also be noticed that Griewank 

function takes too long to converge after the run has been started, with an average Tc value of 4.12 

seconds from a total running time (Ttot)  of 8.4 seconds, making  51% convergence time. 
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On DE/Modi/1 results on table 3.2A and 3.2B, it can be noticed that Tc is worse on DE/Modi/1 

compared to DE/Rand/1 on Ackley, Schwefel, Griewank and Bukin function. For Rastrigin, Sphere, 

SumPower and SumSquare function, Tc is better on DE/Modi/1 compared to DE/Rand/1. With 

Griewank and Bukin function results, minimal optimum is not reached during DE/Modi/1 simulation, 

making DE/Rand/1 a better mutation scheme compared to DE/Modi/1.  

For the Results of DE/Modi/2 on table 3.3A and 3.3B, the mutation scheme has the best results 

compared to previously discussed schemes above. All Functions research minimal optimum, the 

convergence time is minimum compared to the previously discussed results.  On this mutation strategy 

the F/C parameter combination of 0.1/0.9 gave the best minimum convergence time with best 

minimum fitness for all the benchmark functions used on the simulations, making it the best 

combination that can be used with DE/Modi/2 mutation scheme. 

From the results of DE/Modi/3 on table 3.4A and 3.4B, there is a slim deviation of convergence time Tc 

between DE/Modi/2 and DE/Modi/3. Making F/C combination of 0.1/0.9 the reference due to its 

minimum convergence time and robust convergence fitness, Tc has improved for all the functions 

except for Griewank function which slightly dropped improved compared to DE/modi/2.  

The statistical data for mutation strategies determines the best, average and worse convergence time 

Tc of the mutation strategies. In this case the best Tc is ranged between 70%-100%, average Tc being 

69%-50% and worse Tc being between 49%-0%. The following formula was used to determine the set 

points of Tc for every function: 

Tset = (1 - %) x Ttot       (3.5) 

where % is the set percentage for a particular range. Tset is the targeted Tc in seconds (s) for best, 

average or worse. Ttot being the average total run time in seconds for each function. The set points for 

Tc best, Tc worse and Tc average were determined and the number of best, average and worse Tc was 

determined for every mutation strategy. Following is the table that analyses number of best, average 

and worse Tc for each mutation strategy. 

TABLE 3.5: Statistical Data for Mutation strategies 

Mutation Strategies Best Average Worse 

DE/RAND/1 7 45 20 

DE/Modi1 30 6 32 

DE/Modi2 61 6 5 

DE/Modi3 59 10 3 

 

On the statistical data table above, it can be observed that DE/rand/1 has large number of average 

convergence time and DE/modi/1 has a worse convergence time, compared to the rest of the 
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strategies, making it the slowest strategy in terms of fast convergence. DE/modi/2 and DE/modi/3 have 

the best convergence time compare to the other two strategies, making them the fasted strategies 

with regards to convergence.  

Schwefel function was selected to determine the time complexity for each mutation strategy Tc form 

F/C combination 0f 0.4/0.9, 0.2/0.9 and 0.1/0.9. The following formula was used to calculate the 

Complexity: 

 

C = (T0.4/0.9 – T0.2/0.9 ) / T0.1/0.9       (3.6) 

 

TABLE 3.6: Time complexity 

Mutation Strategies T0.4/0.9 T0.2/0.9 T0.1/0.9 c 

DE/RAND/1 2.99 2.45 1.98 0.27 

DE/Modi1 1.43 1.61 1.33 0.14 

DE/Modi2 1.48 0.7 0.51 1.53 

DE/Modi3 1.12 0.6 0.47 1.11 

 

On table 3.6 it can be noted that the largest complexity is assigned to DE/Modi/2 and DE/Modi/3. 

Following figures show the simulated fitness value of the functions obtained during research. 

 

Figure 3.2: Rastrigin’s fitness vs iterations. 
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Figure 3.3: Schwefel’s fitness vs iterations. 

 

Figure 3.4: Ackley’s fitness vs iterations. 

 

Figure 3.5: Rastrigin’s fitness vs iterations. 
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Figure 3.6: Sum-Power’s fitness vs iterations. 

 

Figure 3.7: Sum-Square’s fitness vs iterations. 

 

Figure 3.8: Griewank’s fitness vs iterations. 
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Figure 3.9: Bukin’s fitness vs iterations. 

 

3.5. Conclusion  

From the basis of the results above, it is observed that the results of DE/Modi/1 are deficient of 

convergence speed and robustness, achieving only 41.67% of time of best convergence. For 

DE/Modi/3, the best convergence time is 81.94%, showing improvement compared to classical 

DE/Rand/1.  The best convergence speed and strong convergence results are achieved on DE/Modi/2 

with 84.72% of the best time of convergence compared to the rest of the modified strategies. 

Otherwise 0.1/0.9 F/C combination provided the convergence that is rapid and strong during 

DE/Modi2 and DE/Modi3 simulation session, becoming best Mutation Factor/ Crossover Rate 

combination for the DE/Modi2 and DE/Modi3 mutation strategies. Conclusion can be drawn that DE 

convergence speed improvement has been achieved through modified Mutation strategies DE/Modi2 

and DE/Modi/3 with 0.1/0.9 F/C combination. DE/Modi2 and DE/Modi/3 modified mutation strategies 

with F/C combination of 0.1/0.9 can be employed in future due to their fast and effective convergence 

speed, robust convergence and ability to optimize Griewank and Bukin function which classical 

DE/rand/1 was not able to optimize to minimum optimal point.  
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CHAPTER 4 

DYNAMIC VOLTAGE RESTORER BASED POWER QUALITY OPTIMIZATION 

USING IMPROVED DIFFERENTIAL EVOLUTION ALGORITHM. 

This chapter proses the optimization of power quality by employing Dynamic Voltage 

restorer and improved differential evolution while minimizing two objective functions. The 

gives overview of smart grid and power quality, it further outlines mathematical modelling 

of DVR compensator and improved DE. I this chapter the experiment is conducted and it is 

verified by simulations and the conclusion is made based on the findings of analysis of the 

results obtained during simulations. 

4.1. Smart Grid overview  

The rapid growth and development of smart home technologies and production systems 

technologies in the industries, has led researchers to take a great consideration towards the 

quality of the power needed to supply those new smart technological developments.  

However, smart technological developments need a quality power supply that is smart, 

sustainable, economical, reliable, efficient and pollution free to the environment. Smart grid 

is the best innovative idea to those requirements.  Smart Grid is a modernized automated 

power grid that is set to overcome the challenges that have previously been experienced by 

a classical power grid. The challenges that have been experienced by the classical power 

grid are air pollution to the environment due to fossil fuels, black outages, poor power 

quality to sensitive electric appliances and equipment, un-economical, unreliable and un-

efficient power supply to the society and industrial businesses. Smart grid is set to consider 

employing a large number of distributed energy sources, renewable energy sources and 

demand response program coupled energy storage devices(Melhem, et al., 2018). 

Therefore the existing distribution systems would be intensified(Casolino, et al., 2017). 

However this chapter looks at one of the challenges that the classical power grid 

experiences, namely power quality. 

4.2. Power Quality overview 

 Power quality has been the subject of many researchers, due to the effects it causes on the 

daily life of society and industries. Electrical disturbances such as power interruptions, 

transients, harmonics, swells and sags are the major contributors towards the poor power 

quality in smart grid(Hojabri, & Toudeshki, 2013). However, Voltage sags and swells are the 

most contributing electrical disturbances of poor power quality compared to all other 

mentioned power disturbances due to their frequent occurrence in the power 

systems(Thakur & Singh, 2017). Voltage sag is a reduction of the operational voltage level 

between 10 to 90% of the root mean square voltage, for the duration of 0.5 cycle to 1 min, 

while Voltage swell is the increase of the root mean square voltage level from 110% to 180% 

above the operational voltage level with duration of more than 3 cycles(Thakur & Singh, 
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2017).  Voltage sags are sometimes caused by power suppler during the period of heavy 

demand. Another cause of voltage sags mostly experienced in industries is during the period 

where heavy plant pulls down the supply voltage during the start-up of heavy load such as 

Compressors and pumps, which require a high start-up current and switch in and out on a 

frequent basis(Edomah, 2009). Voltage Swells are caused by switching-on heavy or reactive 

equipment such as motors, transformers, motor drives or power factor correction 

equipment(Edomah, 2009). These mentioned power disturbances result in fluctuations of 

production rates, incorrect operation of equipment, lighting systems dimming, drop out of 

relays and contactors, damage of electronic equipment and unreliable data in equipment 

test(Edomah, 2009).   

This research looks to improve power quality by considering the Dynamic Voltage Restorer 

method to compensate voltage swells and voltage sags, based on improved Differential 

Evolution Algorithm, with two objective functions, one, to minimize voltage swells and two, 

to minimize voltage sags in the smart grid. In this case Reliability of smart grid also depends 

on power quality, therefore making power quality one of the important and responsible 

aspects in smart grid’s vision (Agarwal & Tsoukalas, 2011). A Restorer (DVR) has been 

frequently used for compensation of voltage sags and swells due to its ability to be 

controlled, high efficiency and its fast response (Messiha, et al., 2017). 

Since in this research the focus is to minimize both voltage sag and voltage swell, therefore 

a multi-objective Differential Evolution algorithm will be used, as they are extensively used 

to solve such conflicting objectives. Due to the conflicting nature of the objective functions, 

a number of optimal solutions known as Pareto Front will always get resulted for a multi-

objective problem (Suganthi, et al., 216). With Differential Evolution Algorithm (DE) being 

one of the robust and effective Evolutionary Algorithm, smart grid optimization will look to 

employee improved DE in order to fulfil power quality that is efficient and reliable to the 

society and industries.   

4.3. Proposed multi-objective power quality optimization based on 

improved differential evolution 

For poor power quality to be overcome in smart grid, two objective functions must be 

minimized, being voltage sags and voltage swell. For implementing of the fast and effective 

multi-objective power quality optimizer based on DE, the below circuits are used to 

demonstrate the robust and effective method to overcome poor power quality in smart 

grid. Figure 4.1 shows a power system that is assisted by DVR. The system consists of the 

power supply, supplying sensitive RL load, masked control circuit, battery powered inverter 

connected to the injecting transformer for voltage compensation during fault.  The other 

parts of the circuit are connected in such a way that voltage sag and voltage swells are 

created to the system for experiment purpose. Figure 4.2 shows the control circuit of the 

DVR system. The purpose of the control circuit is to sense a type of fault from the power 
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system circuit and be able to send a signal to the inverter. The inverter mosfets will be 

turned on to allow the inverter to give power to the transformer to inject the required 

voltage level for compensation. It is represented by Figure 4.5 and it is a voltage 

compensation system. The control system uses Phase Locked Loop (PLL) system to sense 

fault and to synchronize the load voltage level. It can also be noticed that the injected 

voltage by transformer passes through the series capacitor where the voltage is filtered for 

harmonics before it is supplied to the load. Figure 4.3 and Figure 4.4 represent the Voltage 

swell fault generator and voltage sag fault generator respectively. During normal operation 

of the system, the voltage across to the sensitive RL load is expressed in equation (4.1) 

below.  

 

Figure 4.1: DVR system for Sag and swell Compensation. 

 

Figure4.2: Control Circuit for DVR 
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Figure 4.3: Voltage swell fault generator 

 

Figure 4.4: Voltage sag fault generator 

 

Figure 4.5: Voltage Compensator system 

VRL = VSP x sin (2 × π × f × t)       (4.1) 

where,  
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VL    = sensitive RL load voltage in volts (V), 

VSP   = the supply voltage from the AC source in volts (V), 

f       = the ac voltage supply frequency in hertz (Hz) 

t       = time in seconds (s). 

At this stage there is no heavy load switched on that could disturb the normal operation of 

the sensitive RL load on the system. During when the heavy load is switched on to the 

system, the voltage sags are caused, reducing the operational voltage level of the sensitive 

RL load momentarily. Following is the expression during abnormal operation of the system 

caused by voltage sags due to switching on of the heavy load. 

VLSAG   = {VRL – VF × [H (t-t1) – H (t-t2)]} × sin (2 × π × f × t)    (4.2) 

where,  

VLSAG = sensitive RL load voltage during voltage sag disturbance in volts (V),  

VF = the reduction or increment voltage level in volts (V) due to disturbance’ 

H = Heaviside step response, 

t1 = time when the sag disturbance starts in seconds (s), 

t2 = time when the sag disturbance ends in seconds (s). 

VF is the amount of voltage that is subtracted from normal voltage level during the 

reduction of the operational voltage level or added to the normal voltage level that results 

in the increase of normal voltage level above the operational voltage level due to voltage 

sags and swells respectively. In the case of voltage sags, VF is subtracted for a period of (t1 – 

t2), resulting to a system disturbance for that period. In the case of voltage swells 

disturbance, VF is added for a period of (t1 – t2), as expressed in the following equation 

(Saveca & Wang & Sun, 2019 ), 

 VLSWELL   = {VRL + VF × [H (t-t3) – H (t-t4)]} × sin (2 × π × f × t)    (4.3) 

where,  

VLSWELL = sensitive RL load voltage during voltage swell disturbance in volts (V), 

t1 = time when the swell disturbance starts in seconds (s), 

t2 = time when the swell disturbance ends in seconds (s). 

Following are equations for DVR’s action during the voltage compensation for voltage sags 

and voltage operational level correction during the voltage swells respectively. For voltage 
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sag compensation, there must be a zero disturbance. Therefore during voltage sags 

disturbance where VF creates that disturbance in the system, to compensate and be on zero 

disturbances, equal value of voltage that is same as of VF is needed on the system but in 

opposite polarity of the one of VF. Therefore, 

0 = VF    –   VC          (4.4) 

VF   =   – VC         (4.5) 

VCOMP   = {-VC × [H (t-t1) – H (t-t2)]} × sin (2 × π × f × t)   (4.6) 

where, 

VC        = the added voltage for compensation or counterbalancing of operational voltage 

level during DVR action. 

VCOMP   = DVR voltage compensation for voltage sags 

Therefore VC is variable during DVR action in order to certify the objective requirements. 

The load voltage after compensation becomes as follows, 

 

VL   = VLSAG   –   VCOMP          (4.7) 

For voltage swell correction on the system, the similar action as of voltage sag 

compensation is performed by DVR for operational voltage level correction during voltage 

swell disturbance with reference to equation (4.4). In this case the action happens in 

opposite polarity from the voltage sag compensation. 

–VF   =    VC         (4.8) 

VCORR   = {VC × [H (t-t3) – H (t-t4)]} × sin (2 × π × f × t)    (4.9) 

where, 

VCORR   = DVR operational voltage level correction for voltage swells. 

Therefore the load voltage after correction becomes as follows. 

VL   = VLSWELL   –   VCORR         (4.10) 

For voltage sag and swell optimization based on DE, the equations becomes as follows, 

VSAGmin   = VL   –   VLSAG        (4.11) 

J1 = VSAGmin+   VCOMP          (4.12) 

VSWELLmin   = VL   -   VLSAG       (4.13) 
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J2 = VSWELLmin+   VCORR          (4.14) 

where 

VSAGmin  = voltage sag occurrence  

VSWELLmin = voltage swell occurrence 

J1  = First objective function 

J2   = Second objective function 

J1 and J2 are multi-objectives to be minimized in smart grid based on proposed Differential 

Evolution, with VC being the variable to be controlled during voltage sag compensation and 

voltage swell counterbalancing.  

For optimization of abovementioned objective functions J1 and J2, a multi-objective 

Differential Evolution based on parallel operation strategy will be used. The advantage of 

the parallel operation multi-objective optimization is that, two more objective functions 

don’t conflict with each other during optimization due to the fact that,  the objective 

functions run parallel once they reach mutation function up until selection,  therefore 

creating a room for one objective function to be optimized effectively to the maximum or to 

the minimum set target. During operation, the objective functions are initialized with the 

same control parameters and same limitations. Before mutation operation is introduced, 

the functions are parallelized, therefore interring the mutation operation in parallel. The 

functions run parallel until they reach selection operation, therefore resulting in a separate 

Pareto set graphic presentation. Multi-objective optimization is discussed in chapter 2.5 and 

formulas for mutation, crossover and selection functions where the multi-objective 

functions will go through during optimization respectively are discussed from chapter 2.6.3 

to 2.5.5. 

The proposed DE will be used to optimize the above-mentioned multi-objectives based on 

developed mutation strategies. DE/Modi/2 and DE/Modi/3 are the mutation strategies to 

be used and to be compared with DE/Rand/1 mutation strategy because it is the most 

commonly used strategy due to its simplicity and best convergence during optimization of 

the problem (Wu, Lee & Chien, 2011) and they are discussed in details in chapter 4.2. 

DE/Modi/1 will not be used due to poor performance, lack of robustness and convergence 

speed, after it just made 41.67% of best convergence time during (Saveca, Wang & Sun, 

2018 ) simulation 

4.4. Methodology 

The following steps were taken during simulation of multi-objective functions on power 

quality optimization in smart grid based on improved DE in order to validate the research. 

DE/rand/1 is selected for comparison against the improved mutation strategies. 
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Step 1: The system is modelled as shown on Figure 4.1 and Figure 4.2 in matlab Simulink in 

order to demonstrate the DVR action practically. First the simulation is run with DVR 

disconnected from the system in order to see load voltage behavior before DVR. Secondly 

the DVR is connected to the system and the load voltage is recorded. 

Step 2: The system in Figure 4.1 and Figure 4.2 is coded in MATLAB script file in order to 

simplify the multi-objective optimization. The simulation is run and the load voltage 

behavior is recorded by means of graphs. 

Step 3: The improved DE is introduced to optimize the multi-objective functions J1 and J2. 

The best combination of parameters is used based on (Saveca & Wang & Sun, 2018 )  

conclusion. According to (Saveca & Wang & Sun, 2018 ), the best mutation factor F and 

Crossover rate combination is 0.1 and 0.9 respectively, due to their robust convergence. The 

other control parameter settings are as follows, D = 2, PS = 50, I_max = 200, where D is the 

dimension, PS is population size and I_max is the maximum Iterations.  

Step 4: Multi-objective functions J1 and J2 are optimized using DE/rand/1, DE/Modi/2 and 

DE/Modi/3strategies. Each strategy is ran 5 times in order to check the consistence of the 

strategy. The results are recorded on the tables for comparison of each strategy. 

Following is the pseudo- code for DE with one of the modified mutation scheme DE/Modi/3. 

 

Figure 4.6: DE/Modi/3 pseudo- code for multi-objective  



68 
 

4.5. Results and discussion 

During results experiment the operation load voltage is specified to be 400 volts during 

normal operation. Therefore any load voltage under or over the specified amount is deemed 

a fault and therefore the system should rectify it For experiment purpose, the extra voltage 

representing voltage swells and the cut out voltage representing voltage sags has been 

specified as 50 volts extra and 50 volts under respectively. Following are results taken during 

simulations of multi-objective power quality optimization in smart grid based on the 

proposed DE. Following are Simulation settings used during simulation. 

Hardware specification: 

Lenovo   G40 

Processor` Intel core(TM)i5-4210U CPU @ 1.70GHz  2.40GHz 

RAM installed 4GB 

System Type 64-bit operating system, x 64-based processor 

Software: MATLAB 2017a 

Control Parameter Settings 

N=2;     Number of variables 

M=50;     Populations size 

F=0.1;    Mutation factor 

C=0.9;    Crossover rate 

I_max=200;   Max iteration time 

Run=1;       The number of test time 

X_max=[50,50];  Upper bound 

X_min=[-50,-50];  Lower bound 

The first results are taken before the proposed DE algorithm is implemented. 
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Output 

 

Figure 4.7: Load voltage behavior with DVR disconnected from the system. 

Figure 4.7 shows three graphs, the top graph shows the load terminal voltage behavior, the 

middle graph shows the DVR response to the load voltage and the bottom graph shows the 

load voltage behavior due to system voltage. It can be noticed that when the system is 

subjected to the disturbances, the load voltage is affected. On the system it can be seen that 

voltage sags disturbs the system after 0.15 seconds and lasts up to 0.27 seconds. During that 

period, the load voltage is also affected with same disturbance for the same period. The 

next disturbance which is voltage swells is recorded between 0.37 seconds to 0.43 seconds. 

The load voltage response is the same as of the terminal voltage for the period between 

0.37seconds to 0.43 seconds. The DVR response shows maximum response due to the fact 

that it is not connected to the system, therefore it senses 0 volts from the load because it is 

not connected to the system. 

 

Output 

 

Figure 4.8: Load voltage behavior with DVR connected to the system. 

The DVR is connected to the system for the results on Figure 4.8. With the same graph 

configuration as on Figure 4.7, the same voltage disturbances are recorded on the same 

periods as on Figure 4.7 when the DVR is connected to the system. It can be noticed that 

when voltage sags and voltage swell occur, the load voltage is not disturbed due to the 
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compensation voltage and level voltage correction from DVR as soon as it senses voltage 

imbalance to the system.  On the middle graph representing DVR behavior, it can be noticed 

that when the load voltage is not experiencing any disturbances on the system, the DVR 

does not inject any compensation voltage or level correction voltage, therefore it reads 0 

volts from 0 seconds up to 0.15 seconds, accept for the overshooting it experiences for the 

first period from 0seconds to 0.06 seconds. From 0.15 seconds to 0.27 seconds it can be 

noticed that it injects a certain amount of voltage in the same polarity of the operation 

voltage to compensate for voltage sags.  From 0.27seconds to 0.37 seconds it can be noticed 

going back to 0 volts for that period. From 0.37 seconds to 0.43 seconds it can be noticed 

that the system experiences voltage swell disturbance. For that period the DVR injects a 

certain amount of voltage in opposite polarity of the operational voltage in order to oppose 

a certain amount of overvoltage in the system so that a balanced voltage level is achieved. 

From 0.43 seconds to 0.5 seconds the DVR falls back to 0 volts again because the system is 

now healthy. 

Following are results of the load voltage behavior based on m.file script coding during the 

disturbances, voltage sag compensation, voltage swells correction and multi-objectives to 

be minimized after effects of correction. 

 

 

 

Figure 4.9: Load voltage during voltage sag disturbance. 

Figure 4.9 shows the voltage sag disturbance which starts after 0.2 seconds and lasts up to 

0.6 seconds, making a period of 0.4 seconds disturbance. 
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Figure 4.10: Compensation voltage from DVR. 

On Figure 4.10, with reference to Figure 4.9, it can be noticed that the compensation 

voltage of 50 volts is injected to the system to compensate for voltage sags. It can also be 

noticed that voltage injection starts after 0.2 seconds and lasts up to 0.6 seconds before it 

falls back to 0 volts injection. 

 

Figure 4.11: Load voltage after compensation. 

After voltage compensation DVR, the load voltage goes back to normal operational level as 

it can be noticed on Figure 4.11.  
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Figure 4.12: Load voltage during voltage swell disturbance. 

Figure 4.12 demonstrates the voltage swell disturbance which starts after 0.7 seconds and 

lasts up to 0.8 seconds, making a period of just 0.1 second disturbance. 

 

 

Figure 4.13: Correction voltage from DVR. 

Figure 4.13 shows voltage injected from the DVR’s transformers in opposite polarity of 

operational voltage in order to counter-balance the voltage swells. It can also be noticed 

that the voltage is injected between 0.7 seconds and 0.8 seconds, during which the 

disturbance is taking place. 
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Figure 4.14: Load voltage after correction. 

Figure 4.14 shows the operational load voltage after voltage correction by DVR. It can be 

noticed that after correction the load voltage goes to normal operation, free from 

disturbances. 

 

 

Figure 4.15: Sag and swell effects after voltage correction from DVR. 

Figure 4.15 shows the voltage swells and voltage sags effects after compensation and 

correction on the load voltage. The red painted part represents voltage sags effects while 

the blue part represents voltage swells effect. The two disturbance effects will be minimized 

to minimum by evolutionary algorithm in the following stage bellow. 
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Table 4.1: DE/Rand/1 fitness for Sags and Swells 
DE/Rand/1 

 

Run 
number 

Iteration 
number 

Sags fitness Swells 
fitness 

1 14 1.057e-11 -6.959e-12 

2 18 1.052e-11 -6.935e-12 

3 21 1.055e-11 -6.954e-12 

4 10 1.052e-11 -6.959e-12 

5 14 1.056e-11 -6.959e-12 

DE/Modi/2 
 

Run 
number 

Iteration 
number 

Sags fitness Swells 
fitness 

1 10 5.234e-12 -5.988e-12 

2 11 5.142e-12 -6.837e-12 

3 12 5.376e-12 -6.309e-12 

4 9 5.322e-12 -6.731e-12 

5 10 5.334e-12 -6.745e-12 

DE/Modi/3 
 

Run 
number 

Iteration 
number 

Sags fitness Swells 
fitness 

1 5 4.902e-12 -6.625e-12 

2 6 4.717e-12 -6.322e-12 

3 7 4.873e-12 -6.249e-12 

4 3 4.744e-12 -5.995e-12 
5 5 4.903e-12 -6.790e-12 

Based on the results of DE/rand/1, it can be noticed that both voltage swell and voltage sag 

minimization occurs at same number of iterations. It can also be noticed that for voltage 

swell optimization, the minimization starts from more positive side going more negative 

which indicates the counter-balancing of over-voltage with opposite polarity injected 

voltage to the system. For voltage sag optimization it can also be noticed that the 

minimization goes more positive as an indication of compensating for low voltages on the 

system. On results from DE/Modi/2, it is observed that the optimization process is the same 

as on DE/rand/1 results accept that there is improvement achieved.  The convergence is 

quicker compared to the one of DE/Rand/1. On the results obtained on DE/Modi/3, it is 

noticed that the iterations were convergence occurs are a bit more compared to the ones 

on DE/Modi/2, but are better compared to the ones of classical DE/Rand/1. Swells and Sags 

fitness for DE/Modi/3 is achieved between 9 to 12 iterations, DE/Modi/2 is between 3 and 7 

iterations and for DE/Rand/1 is between 10 and 21 iterations 

Table 4.2: Statistical Data Analysis 
Mutation 
strategy 

Best Average Worse 

DE/Rand/1 2 2 1 

DE/Modi/2 4 1 0 

DE/Modi/3 4 1 0 
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Based on statistical data with regards to convergence against number of iteration, it is 

noticed that classical DE/Rand/1 has 40% best convergence, 40% average convergence and 

only 20% worse convergence. For DE/Modi/2 and DE/Modi/3, their convergence is excellent 

with both having 80% best convergence, 20% average convergence and 0% worse 

convergence. 

 

 

Figure 4.16: Multi-objective minimization based on DE/Rand/1 

 

 

Figure 4.17: Multi-objective minimization based on DE/Modi/2 
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Figure 4.18: Multi-objective minimization based on DE/Modi/3 

 

4.6. conclusion 

Based on the simulation results obtained, it is observed that DVR plays the most important 

role in minimizing power disturbances in the power systems. It is noticed that the DVR does 

not take part in the power network when the operational load voltage is normal, it only 

takes part when it senses operational disturbance from the sensitive load. Then it would do 

the compensation for voltage sags if the disturbance involves under-voltage operation or it 

would do voltage correction if the disturbance involves voltage swells. Therefore it does not 

waist electric power unnecessary instead it operates efficiently. It can also be noticed that 

Improved Differential Evolution is able to do multi-objective optimization efficiently and 

without experiencing any cease of simulation flow and conflict amongst the two objective 

functions. The proposed DE achieved strong and effective convergence in less than 13 

iterations. That indicates efficiency, effectiveness of the improved DE. During voltage 

disturbances optimization it is noticed that the voltage disturbances were minimized up to 

as minimum as 5.234e-11 volts for voltage sags and up to as minimum as -6.873 volts for 

voltage swells and the mutation strategies were consistence with regards to iterations were 

convergence occurs, therefore making the Improved DE suitable for power quality 

optimization in smart grid.  It can be concluded that the inclusion of DVR and improved DE 

in smart grid can achieve a better power quality that is effective to the sensitive loads and 

malfunction and damage to electric equipment by poor power quality can be minimized. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1. Conclusion 

The research objective was to attempt to solve power quality problems in smart grid on the 

basis of application of enhanced based populated stochastic evolutionary algorithm named 

Differential Evolution by means of modified mutation schemes and by application of 

dynamic voltage restorer. Under enhancement of differential evolution, three modifications 

of DE mutation schemes were developed, DE/Modi/1, DE/Modi/2 and DE/Modi/3 with 

reference from classical DE/Rand/1 mutation scheme. Only DE/Modi/2 and DE/Modi/3 

modifications proved success during simulation experiment due to meeting the 

objectiveness of the experiment which was to overcome stagnation of DE during simulation 

and to improve DE’s convergence speed. During simulation experiment done on eight 

benchmark functions including Bukin function and Griewank function, it was discovered that 

classical DE/Rand/1 was not able to optimize Bukin and Griewank to optimum point and the 

optimization lacked convergence speed. With modified DE/Modi/2 and DE/Modi/3 in place, 

Bukin and Griewank functions were optimized to optimum point and their convergence 

speed improved swiftly making 84.72% and 81.95% of the best convergence time 

respectively. It was also discovered that mutation factor crossover rate F/C combination of 

0.1/0.9 also helped the modified DE/Modi/2 and DE/Modi/3 on their success with regards 

to achieving best optimization results during experiment. Both DE/Modi/2 and DE/Modi/3 

proved to be robust, fast and effective when compared to classical DE/Rand/1, deeming the 

experiment successful for DE improvement. 

For the application of the improved differential evolution on attempt to solve power quality 

in smart grid, two objective functions were lined up to be minimized. Voltage sags and 

voltage swells were the obstacles in power quality. DVR application was introduced to solve 

the voltage swells and sags problems and multi-objective optimization technique called for 

optimization of the two objective functions. Parallel operation multi-objective technique 

was developed to attempt to solve the two objective functions without causing conflict with 

each other. During the DVR application experiment it was discovered that DVR is the most 

efficient power compensator due to the fact that it does not take part in the power network 

when the operational load voltage is normal, it only takes part when it senses operational 

disturbance from the sensitive load. It was also discovered that during multi-objective 

optimization in parallel operation, the objective functions are optimized in parallel and 

therefore minimizing chances of them being in conflict during optimization. Overall it can be 

concluded that the research has achieved effective improvement of power quality in smart 

grid by employing DVR and improved Differential evolution, thereby minimizing voltage sags 

and voltage swells, which can be beneficial to households and manufacturing industries by 

reducing the number of damages to electrical appliances and electrical equipment. 
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5.2. Future works 

More research can be done to improve Differential Evolution such as auto scaling of control 

parameters by making a hybrid of Differential Evolution and Particle swarm optimization. 

Other researches that can be done to optimize smart grid’s integration of renewable energy 

sources is making an enhanced control system for attempt to generate bigger watts from 

natural resources and make portable energy grids based on renewables for households and 

hospitals in order to reduce the use of diesel generators for emergency backup.  The other 

research that can be done is introducing smart locomotives that will make the employment 

of renewable energy sources such as solar and wind turbines to operate. That will reduce 

energy costs from diesel and electricity from electric utilities.  
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APPENDICES 

Appendix A: DE matlab code for improved DE based on mutation Strategies: 

% Improved Differential Evolution Based on Mutation 

Strategies% For Smart 

% Grid Optimization. %%Main Code%% 

  

clear all 

    clc 

tic 

    %Common Parameter Setting 

    N=2;        % Number of variables 

    M=50;       % Populations size 

    F=0.5;      % Mutation factor 

    C=0.9;      % Crossover rate 

    I_max=200;  % Max iteration time 

    Run=1;      % The number of test time 

    X_max=[5.12,5.12]; 

    X_min=[-5.12,-5.12]; 

    ibest=1; 

  

    Func=@Rastrigin; 

     

  

    % 2.The whole test loop 

    for r=1:Run 

        iter=0; 

        % 1.Generate MxN matrix 

        for m=1:M 

            for n=1:N 

                X(m,n)=X_min(n)+rand()*(X_max(n)-X_min(n)); 

            end 

        end 

         

     

        for i=1:I_max  % Stop when the iteration large than 

the max iteration time 

  

            iter=iter+1; 

            for m=1:M % For each individual 

                % Mutation 

                [V]=rand1(X,M,F,m); 

                % Check if the element in the V matrix beyond 

the boundary. 

                for n=1:N 

                    if V(1,n)>X_max(1,n) 

                        V(1,n)=X_max(1,n); 

                    end 

                    if V(1,n)<X_min(1,n) 
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                        V(1,n)=X_min(1,n); 

                    end 

                end 

  

                % Crossover put the result in the U matrix 

                jrand=floor(rand()*N+1); 

                for n=1:N 

                    R1=rand(); 

                    if (R1<C || n==jrand) 

                        U(1,n)=V(1,n); 

                    else 

                        U(1,n)=X(m,n); 

                    end 

                end 

  

                % Selection 

                if Func(U(1,:)) < Func(X(m,:)) 

                    Tr=U(1,:); 

                    else 

                    Tr=X(m,:); 

                end 

                % Use the selection result to replace the m 

row 

                X(m,:)=Tr; 

                 

                % Evaluate each individual's fitness value, 

and put the result in the Y matrix. 

                Y(m,1)=Func(X(m,:)); 

                 

            end % Now the 1th individual generated 

  

            % Select the lowest fitness value 

            [y,ind1]=sort(Y,1); 

            Y_min=y(1,1); 

            [Ymin,ind] = min(Y); 

             

            % plot the picture of iteration 

            figure(2); 

            plot(iter,Ymin,'r.'); 

            xlabel('Iteration'); 

            ylabel('Fitness'); 

            title(sprintf('Rastrigin: Iteration=%d, 

Fitness=%9.9f',i,Ymin)); 

            grid on; 

            hold on; 

             

        end % Finish I_max times iteration 

         

        hold off; 

        PlotR(); 

        hold on; 
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        scatter3(X(ind,1),X(ind,1),Ymin,'fill','ro'); 

  

    end % Run 30 times 

    toc 

 

DE/Modi/3 coding 

% DE/Modi/3 Code% 

  

function [V]=rand1(X,M,F,m) 

  

    R=randperm(M); 

    j=R(1); 

    k=R(2); 

    p=R(3); 

    u=R(4); 

    v=R(5); 

    if j==m 

       j=R(6); 

    elseif k==m 

       k=R(6); 

    elseif p==m 

       p=R(6);   

    elseif u==m 

       u=R(6);   

    elseif v==m 

       v=R(6);                      

    end 

    V=(((X(j,:)).^2)*F)/2+F*(X(k,:)-X(p,: 

 

Rastrigin’s Function 

% Rastrigin's Benchmark Function 

  

function y = Rastrigin (X) 

    % Rastrigin's Function 

    A = 10; 

    n = 2; 

    m = 0; 

     

    for i = 1:n 

        m = m + X(i)^2 - A*cos(2*pi*X(i)); 

    end 

     

    y = 10*n + m;    

     

end 
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Rastrigin’s Plot 

%Rastrigin's Plot% 

  

function PlotR() 

  

[X,Y] = meshgrid(-5.12:0.03:5.12,-5.12:0.03:5.12); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = Rastrigin(z); 

    end 

end 

  

figure(1); 

mesh(X,Y,Z); 

title('Rastrigin Function in 2 dimension'); 

axis([-5.5 5.5 -5.5 5.5 0 80]); 

  

end 

Ackley Function 

function y = Ackley(x) 

      n=2; 

      sum1 = 0; 

      sum2 = 0; 

       

      for i = 1:n 

          sum1 = sum1 + x(i)^2; 

          sum2 = sum2 + cos((2*pi) * x(i)); 

      end 

       

      y = 20 + exp(1)-20*exp(-0.2*sqrt(1/n*sum1))-

exp(1/n*sum2); 

       

end 

 

Bukin Function 

function y = bukin (x) 

    % bukin's Function 

     

    x1= x(1); 

    x2= x(2); 

     

    term1 = 100*sqrt(abs(x2-0.01*x1^2)); 

    term2 = 0.01*abs(x1+10); 
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    y = term1+term2;     

     

end 

 

Griewank Function 

function y = Griewank(x) 

  

        n = 2; 

        fr = 4000; 

        s = 0; 

        p = 1; 

         

        for i = 1:n 

            s = s + x(i)^2; 

            p = p * (cos((x(i))/(sqrt(i)))); 

        end 

         

        y = (s/fr)-p+1; 

         

end 

 

 

 

 

Schwefel Function 
 
function y = schw(x) 

  

%  

n = 2; 

s = 0; 

p = 0; 

  

for i = 1:n 

    s = s + abs(x(i)); 

    p = p + abs(x(i)); 

end 

  

y = s + p; 

  

end 

 
Sphere Function 
 
function y = Sphere (x) 

     

      n = 2; 
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      sp = 0; 

     

       

      for i = 1:n 

          sp = sp + x(i)^2; 

          

      end 

       

      y = sp; 

end 

 
 
 

Sum-power Function 
 
function y = SumPower (x) 

     

      n = 2; 

      sp = 0; 

     

       

      for i = 1:n 

          sp = sp + abs(x(i)).^(i+1); 

          

      end 

       

      y = sp; 

end 

 

 
 
 
Sum-Power Function 
 
function y = SumSquuare (x) 

     

      n = 2; 

      sp = 0; 

     

       

      for i = 1:n 

          sp = sp + i*x(i)^2; 

          

      end 

       

      y = sp; 

end 
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Appendix B: DVR Power Quality Optimization 

%POWER QUALITY OPTIMIZATION IN SMART GRID BASED ON IMPROVED 

DIFFERENTIAL 

%EVOLUTION 

clear; 

close all; 

clc; 

V_nom= 400;    % Normal voltage before fault 

Ang_nom= 60;   %phase angle(phase angle in degree b4 fault) 

Ang_pr=Ang_nom*pi/180; 

V_r=V_nom*cos(Ang_pr); 

V_i=V_nom*sin(Ang_pr); 

freq = 50; %frequency in Hz; 

freq_RPS=2*pi*freq; 

V_f=50; 

  

t=0:0.0005:1; 

V_L=V_nom*sin(freq_RPS*t);  

figure(1) 

plot(t,V_L) 

xlabel('time'); 

ylabel('Voltage(V)'); 

title('Normal Voltage'); 

  

  

  

 % input voltage and phase angle after fault.  

 %voltage magnitude after fault. 

  

  

V_sag=((V_nom-V_f.*((heaviside(t-0.20)-heaviside(t-

0.60))))).*sin(freq_RPS*t); 

figure(2) 

plot(t,V_sag); 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Sag disturbance'); 

  

V_comp =((-V_f*((heaviside(t-0.20)-heaviside(t-

0.60))))).*sin(freq_RPS*t); 

figure(3) 

plot(t,V_comp) 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Compansation Voltage from DVR'); 

  

V_ok1 = V_sag - V_comp; 

figure(4) 

plot(t,V_ok1) 

xlabel('time(s)'); 
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ylabel('Voltage(V)'); 

title('Load Valtage after compansation'); 

  

V_dip = V_L - V_sag; 

%figure(5) 

%plot(t,V_dip,'Color',[0 0.7 0]) 

  

%Fault due to Voltage swell to the system. 

  

V_L_swell=((V_nom+V_f*((heaviside(t-0.70)-heaviside(t-

0.80))))).*sin(freq_RPS*t); 

figure(6) 

plot(t,V_L_swell); 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Swell disturbance'); 

%swell wave 

  

V_c = 50; 

V_L_co = V_c*((heaviside(t-0.70)-heaviside(t-

0.80))).*sin(freq_RPS*t); 

figure(7) 

plot(t,V_L_co); 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Correction Voltage from DVR'); 

  

V_ok1 = V_L_swell - V_L_co; 

figure(8) 

plot(t,V_ok1); 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Load Valtage after correction'); 

     

V_swell = V_L - V_L_swell; 

  

J1 = V_dip + V_comp; 

  

     

J2 = V_swell + V_L_co; 

  

figure(9) 

plot(t,J1,'r',t,J2,'b-') 

xlabel('time(s)'); 

ylabel('Voltage(V)'); 

title('Over voltage/low voltage after correction'); 

  

 

 

Multi-Objective Differential Evolution Based on Parallel Operation Technique 
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% Multi-objective Differential Evolution Based on Parallel 

Operation 

% Technique% 

  

tic 

    clear  

    close all 

    clc 

    %Common Parameter Setting 

    N=2;        % Number of variables 

    M=50;       % Populations size 

    F=0.1;      % Mutation factor 

    C=0.9;      % Crossover rate 

    I_max=200;  % Max iteration time 

    Run=1;      % The number of test time 

    X_max=[50,50]; 

    X_min=[-50,-50]; 

  

  Func1=@sags; 

  Func=@swell;   

  

    % 2.The whole test loop 

    for r=1:Run 

        iter=0; 

        % 1.Generate MxN matrix 

        for m=1:M 

            for n=1:N 

                X(m,n)=X_min(n)+rand()*(X_max(n)-X_min(n)); 

            end 

        end 

         

     

        for i=1:I_max  % Stop when the iteration large than 

the max iteration time 

  

            iter=iter+1; 

            for m=1:M % For each individual 

                % Mutation 

                [V]=rand1(X,M,F,m); 

                % Check if the element in the V matrix beyond 

the boundary. 

                for n=1:N 

                    if V(1,n)>X_max(1,n) 

                        V(1,n)=X_max(1,n); 

                    end 

                    if V(1,n)<X_min(1,n) 

                        V(1,n)=X_min(1,n); 

                    end 

                end 

  

                % Crossover put the result in the U matrix 
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                jrand=floor(rand()*N+1); 

                for n=1:N 

                    R1=rand(); 

                    if (R1<C || n==jrand) 

                        U(1,n)=V(1,n); 

                    else 

                        U(1,n)=X(m,n); 

                    end 

                end 

  

                % Selection1 

                if Func(U(1,:)) < Func(X(m,:)) 

                    Tr=U(1,:); 

                    else 

                    Tr=X(m,:); 

                end 

                 

                %selection2 

                 if Func1(U(1,:)) < Func1(X(m,:)) 

                    Tr1=U(1,:); 

                    else 

                    Tr1=X(m,:); 

                end 

                % Use the selection result to replace the m 

row 

                X(m,:)=Tr; 

                 

                % Evaluate each individual's fitness value, 

and put the result in the Y matrix. 

                Y(m,1)=Func(X(m,:)); 

                 

                Y1(m,1)=Func1(X(m,:)); 

                 

            end % Now the 1th individual generated 

  

            % Select the lowest fitness value 

            [y,ind1]=sort(Y,1); 

            Y_min=y(1,1); 

            [Ymin,ind] = min(Y); 

             

             % Select the lowest fitness value2 

            [y,ind11]=sort(Y1,1); 

            Y_min=y(1,1); 

            [Ymin1,ind12] = min(Y1); 

             

            % plot the picture of iteration 

            figure(1); 

            subplot(2,1,1); 

            plot(iter,Ymin,'r.'); 

            xlabel(''); 

            ylabel('Fitness'); 



97 
 

            title(sprintf('SWELLS: Iteration=%d, 

Fitness=%9.9f',i,Ymin)); 

            grid on; 

            hold on; 

             

           % plot the picture of iteration2 

           subplot(2,1,2); 

            plot(iter,Ymin1,'r.'); 

            xlabel('Iteration'); 

            ylabel('Fitness'); 

            title(sprintf('SAGS: Iteration=%d, 

Fitness=%9.9f',i,Ymin1)); 

            grid on; 

            hold on; 

        end % Finish I_max times iteration 

         

        %hold off; 

        %PlotR(); 

        %hold on; 

        %scatter3(X(ind,1),X(ind,1),Ymin,'fill','ro'); 

         

        %scatter for number 2 

        %hold off; 

        %PlotS(); 

        %hold on; 

        %scatter3(X(ind,1),X(ind,1),Ymin1,'fill','ro'); 

  

    end % Run 30 times 

     

    toc 

 

J1 Sags-Objective Function 

%multi_objective fucntion 

  

function y = sags(x) 

  

    

    %% 

    V_nom= 400;    % Normal voltage before fault 

    freq = 50; %frequency in Hz; 

    freq_RPS=2*pi*freq; 

    V_f=50; 

    %% 

     

    n = 2; 

    V_L = 0; 

    V_sag = 0; 

    V_comp = 0; 
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    for i = 1:n 

        for t = 0:0.005:1 

            V_L = V_L + V_nom*sin(freq_RPS*t); 

            V_sag = V_sag + ((V_nom-V_f.*((heaviside(t-0.20)-

heaviside(t-0.60))))).*sin(freq_RPS*t); 

            V_comp = V_comp +((-x(i)*((heaviside(t-0.20)-

heaviside(t-0.60))))).*sin(freq_RPS*t); 

        end 

       

         

  end 

y(1) = V_L-V_sag+V_comp ; 

 

J2 Swells objective Function 

%swell fucntion 

  

function y = swell(x) 

  

    

    %% 

    V_nom= 400;    % Normal voltage before fault 

    freq = 50; %frequency in Hz; 

    freq_RPS=2*pi*freq; 

    V_f=50; 

    %% 

     

    n = 2; 

    V_L = 0; 

    V_L_swell = 0; 

    V_L_co = 0; 

    

    for i = 1:n 

        for t = 0:0.05:1 

            V_L = V_L + V_nom*sin(freq_RPS*t); 

            V_L_swell= V_L_swell + ((V_nom+V_f*((heaviside(t-

0.70)-heaviside(t-0.80))))).*sin(freq_RPS*t); 

            V_L_co = V_L_co + x(i)*((heaviside(t-0.70)-

heaviside(t-0.80))).*sin(freq_RPS*t); 

        end 

       

         

  end 

y(1) = V_L - V_L_swell + V_L_co ;   

 

 

 






