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Abstract- FastSLAM 2.0 is considered one of the popular 

approaches that utilizes a Rao-Blackwellized particle filter for 
solving simultaneous localization and mapping (SLAM) 
problems. It is computationally efficient, robust and can be 
used to handle large and complex environments. However, the 
conventional FastSLAM 2.0 algorithm is known to degenerate 
over time in terms of accuracy because of the particle depletion 
problem that arises in the resampling phase. In this work, we 
introduce an enhanced variant of the FastSLAM 2.0 algorithm 
based on an enhanced differential evolution (DE) algorithm 
with multi-mutation strategies to improve its performance and 
reduce the effect of the particle depletion problem. The 
Enhanced DE algorithm is used to optimize the particle weights 
and conserve diversity among particles. A comparison has been 
made with other two common algorithms to evaluate the 
performance of the proposed algorithm in estimating the robot 
and landmarks positions for a SLAM problem. Results are 
accomplished in terms of accuracy represented by the 
positioning errors of robot and landmark positions as well as 
their root mean square errors. All results show that the 
proposed algorithm achieves high accuracy than the other 
compared algorithms in estimating the robot and landmark 
positions for all the considered cases. It can reduce the effect of 
the particle depletion problem and improve the performance of 
the FastSLAM 2.0 algorithm in solving SLAM problem. 

Keywords- FastSLAM 2.0, particle filter, Differential 
Evolution, SLAM Problem. 

I.INTRODUCTION 

The challenge of a mobile robot navigating an unknown 
environment is identified as the simultaneous localization 
and mapping (SLAM) problem. In which, a robot moves 
from an unknown position in an unknown environment, 
determining location and building an environmental map at 
the same time by state estimation and sensor observation [1]. 
Most robotic applications such as path planning and 
autonomous manipulation heavily rely on SLAM algorithms. 
For example, autonomous robots use FastSLAM algorithm 
to create maps of their surroundings and navigate 
autonomously through complex environments. There exists 
also a feature of Google Maps called Google Street View. It 
uses FastSLAM algorithm to build maps of streets and other 
public spaces. The constructed maps provide 360-degree 
panoramic views of any supported location. In addition, 
most of the location-based services in smartphones mainly 
rely on FastSLAM algorithm to build maps of indoor 
environments. 

In SLAM classical methods, Kalman filter (KF) and its 
variants are used as the based methods. They have several 

issues as follows. The required time to update the extended 
Kalman filter (EKF) covariance matrices is quadratic in N, 
where N refers to the number of landmarks. The quadratic 
complexity of SLAM algorithms has long been recognized 
as an essential obstacle for scaling them to maps with more 
than a few hundred features. It also restricts the use of 
SLAM algorithms to problems with vague landmarks, 
resulting in a data association problem [2, 3]. In contrast, 
FastSLAM has a parallelized structure that enables it to 
achieve the needed performance for big map calculations in 
real-time applications [4, 5]. 

There exist several variants of FastSLAM algorithm. The 
most common ones are FastSLAM 1.0 [4], FastSLAM 2.0 
[5], and Unscented FastSLAM (U-FastSLAM) [6]. The 
FastSLAM 1.0 algorithm estimates the vehicle pose using 
the generic particle filter (PF) [4], where each particle is 
coupled with a set of independent extended Kalman filters 
that are used to determine the position of each feature on the 
map. In FastSLAM 2.0, some modifications have been made 
for FastSLAM 1.0 in the selection of proposal distributions 
and the computation of importance weights. The rest 
sequence of the algorithm remains identical for both 
FastSLAM 1.0 and 2.0, including the landmark updates, data 
association, and resampling operations.  FastSLAM 2.0 is 
considered an enhanced variant of FastSLAM 1.0, as it 
improves the proposal distribution accuracy, and it uses low-
dimensional EKFs in predicting the feature states [5]. 

In U-FastSLAM, the unscented Kalman filter is applied to 
update the mean and covariance of the feature state and 
avoid linearization errors and Jacobean computations in 
feature estimations. The proposal distribution is determined 
using the measurement updates of the unscented filter in the 
particle filter's sampling step. U-FastSLAM can be more 
accurate in noisy environments. However, unscented 
Kalman filters are also more complex to implement than 
regular Kalman filters [6]. 

FastSLAM algorithms can be applied with a high 
performance to real-time applications in non-Gaussian 
environments [4–6]. One of the most crucial advantages of 
FastSLAM is its accurate estimation of the uncertainty as 
well as the obtained information about the vehicle's whole 
route history and its associated map. FastSLAM has an 
advantage over any other algorithm in solving the SLAM 
problem of multi-hypothesis data association, which is 
carried out by using the advantage of the sampling 
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distribution of each particle [7]. Each particle can contain a 
different number of feature (or landmark) observations. 
However, it has sometimes been observed that the accuracy 
of FastSLAM degrades over time [8]. This degradation 
occurs when a set of particles, that is used to estimate the 
robot's pose, loses the diversity among particles. There are 
two basic reasons for losing particle diversity of FastSLAM 
[8]. First, when there is a difference between the target 
distribution and the proposed distribution, it creates 
improbable particles that incorrectly determine the robot's 
position. Second, FastSLAM removes improbable particles 
during the resampling step, leaving only particles with high 
weights. However, some of the removed particles may 
contain correct information about the robot position 
estimation and this information cannot be restored again. 
This causes a problem known as particle depletion. 

In this work, a new approach is proposed to enhance the 
performance of the FastSLAM 2.0 algorithm and overcome 
the particle depletion problem. The other sections of the 
paper are organized as follows. The literature reviews of 
improving the performance for the FastSLAM algorithm are 
summarized in Section 2. Its basics are illustrated in Section 
3. Then, Section 4 presents the performance enhancing of the 
FastSLAM 2.0 algorithm using a differential evolution (DE) 
algorithm with multi-mutation strategies. Section 5 provides 
the comparisons and simulation results. Finally, Section 6 
concludes the work and suggests a future work. 

II.REVIEW OF EARLIER WORK 

In the field of robotics, and particularly in mobile robot 
system, SLAM is crucial. Several works have been made to 
enhance the performance of SLAM algorithms. We will 
review some of these works considering the FastSLAM 
algorithm.   

In [9], L. Heon-Cheol, P. Shin-Kyu, C. Jeong-Sik, and L. 
Beom-Hee try to solve the degeneracy by particle 
cooperation in FastSLAM through using the particle swarm 
optimization (PSO) to update the robot position after the 
resampling phase. The results demonstrated that its 
performance minimized the root mean square error (RMSE) 
in robot position and map features. In [10], Yi-min Xia and 
Yi-min Yang used a genetic algorithm (GA) with FastSLAM 
to solve the sample degradation problems. The improved 
algorithm achieved higher estimation precision and lower 
RMSEthan the basic FastSLAM algorithm. In [11], a square 
root central difference Kalman filter-based FastSLAM 
(SRCD-FastSLAM) is suggested and improved using a 
differential evolution (DE) algorithm to handle the particle 
depletion problem. The results of the study showed that DE-
SRCD-FastSLAM is better, in terms of accuracy and 
robustness, than FastSLAM 2.0, U-FastSLAM, and SRCD-
FastSLAM. In [12], GA and PSO are used together to 
improve the FastSLAM accuracy and overcome the particle 
depletion problem in. The experiment results show that GA-
PSO-FastSLAM efficiently reduced the RMSE occurring 
during the estimation of the robot and the landmark position. 
The experiment results show that GA-PSO-FastSLAM 

efficiently reduced the RMSE occurring during the 
estimation of the robot and the landmark position. In [13], an 
ant colony optimization-based resampling approach is 
proposed to decrease the particle depletion problem. The 
results show that the enhanced FastSLAM 2.0 based on ant 
colony optimization can effectively decrease particle scarcity 
and increase particle distribution. Compared to the previous 
methods, this enhancement improves the accuracy of SLAM 
as well as decreases the consumption time. In [14], a novel 
framework called IFastSLAM is introduced to enhance the 
performance of FastSLAM based on the PSO algorithm. The 
authors also use a GA algorithm to increase the diversity of 
particles in the resampling strategy. Moreover, they improve 
the conventional PSO algorithm by combining it with the 
principles of fractional differential and chaotic optimization. 
The chaotic optimization avoids premature convergence 
while the fractional differential accelerates algorithm 
iteration. A global optimization target is proposed for the 
improved PSO scheme. The experiment results show that the 
global optimization accuracy is improved, and the robot and 
landmark estimation errors are reduced. In [15], the robust 
square-root cubature Kalman filter (RSRCKF) with partial 
genetic resampling is suggested to improve the performance 
of FastSLAM. RSRCKF is utilized in the proposed 
technique to create the FastSLAM proposal distribution and 
to estimate the environment landmarks. In this method, no 
prior knowledge of noise statistics is required. Furthermore, 
it employs a genetic operators-based technique to increase 
particle diversity. The results indicate that the suggested 
method gives better accuracy and robust estimation values 
than the other methods, even with a smaller number of 
particles and unknown beforehand. The authors in 
[16] improve the accuracy of FastSLAM in positioning and 
mapping for an application of a mine robot for fast rescue. 
The lion swarm optimization approach is used to increase the 
FastSLAM performance. It uses a division of labor between 
different individuals to generate the optimized particle set 
distribution. The particles are distributed in a high 
probability area, and this helps in solving the particle weight 
degradation problem. The authors indicate that the diversity 
of particles is improved as individuals use different foraging 
techniques in the lion swarm algorithm.  

This paper imports evolution mechanisms into the 
FastSLAM 2.0 algorithm, where an improved differential 
evolution (DE) algorithm with multi-mutation strategies is 
used to solve its depletion problem. 

III.BASICS OF FASTSLAM 2.0 

The SLAM problem is identified as the simultaneous 
estimation of the vehicle's position and the creation of its 
observable environment map. The map has 𝑁𝑁 features 
(landmarks) represented by 𝛩𝛩 = ( 𝜃𝜃1,,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁). The 
vehicle's path is defined as  𝑥𝑥𝑡𝑡 =  {𝑥𝑥1, … , 𝑥𝑥𝑡𝑡} where 𝑡𝑡 refers 
to time index and 𝑥𝑥𝑡𝑡 represents the vehicle's pose at time 𝑡𝑡 . 

The basic purpose of SLAM is to recover the best estimate 
of the robot position 𝑥𝑥𝑡𝑡  over its path and the map 
landmarks 𝛩𝛩, considering the given collection of noisy 
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observations 𝑧𝑧𝑡𝑡 , controls 𝑢𝑢𝑡𝑡and set of data associations 𝑛𝑛𝑡𝑡. 
This can be explained using the following probabilistic term, 
which is often known as the SLAM posterior [5]: 

 𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝛩𝛩 𝘭𝘭 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)            (1) 

where 𝑛𝑛𝑡𝑡 = {𝑛𝑛1, … ,𝑛𝑛𝑡𝑡} is the data association between 
features and measurement information, 𝑧𝑧𝑡𝑡 =  {𝑧𝑧1, … , 𝑧𝑧𝑡𝑡} is 
the observation sequence, and 𝑢𝑢𝑡𝑡 = {𝑢𝑢1, … , 𝑢𝑢𝑡𝑡}  is the 
control input.  

To compute the posterior (1), the vehicle provides a 
probabilistic motion model in the form of the conditional 
probability distribution. This distribution explains the effects 
of a control 𝑢𝑢𝑡𝑡  asserted in the time interval [𝑡𝑡 − 1; 𝑡𝑡] on the 
resulting pose. The motion model is expressed as follows 
[5]: 

 𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡)   (2) 

where 𝑥𝑥𝑡𝑡 is the present position and  𝑥𝑥𝑡𝑡−1 is the vehicle’s 
previous position. The vehicle is also given a probabilistic 
measurement model that describes how measurements 
evolve from state. The measurement model is expressed as 
follows [5]: 

 𝑝𝑝(𝑧𝑧𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝛩𝛩, 𝑛𝑛𝑡𝑡)  (3) 

In the FastSLAM 2.0 model, the map features and the 
vehicle's path can be estimated as if they were separated. A 
Rao-Blackwellized particle filter is used to realize this 
estimation [17]. Since the estimation of each landmark is 
generally independent, FastSLAM 2.0 can be described by 
the following product of two independent posterior 
probabilities [5]: 

𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝛩𝛩𝘭𝘭 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡) = 

  𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)∏ 𝑝𝑝(𝜃𝜃𝑛𝑛𝘭𝘭𝑥𝑥𝑡𝑡 , 𝑧𝑧𝑡𝑡  ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)𝑁𝑁
𝑛𝑛=1        (4) 

where 𝜃𝜃𝑛𝑛 is the 𝑛𝑛-th feature at time 𝑡𝑡. A particle filter is 
used by FastSLAM 2.0 to sample the vehicle's path. Each 
particle has its own map, which consists of 𝑁𝑁 extended 
Kalman filters. The 𝑖𝑖-th particle 𝑋𝑋𝑡𝑡𝑖𝑖  includes a 
path  𝑥𝑥𝑡𝑡,𝑖𝑖  together with gaussian 𝑁𝑁 landmark estimations, 
which can be defined by the mean 𝜇𝜇𝑁𝑁,𝑡𝑡

𝑖𝑖  and covariance 𝛴𝛴𝑁𝑁,𝑡𝑡
𝑖𝑖 . 

Each particle can be written in the following form [5]: 

    𝑋𝑋𝑡𝑡𝑖𝑖 =  𝑥𝑥𝑡𝑡,𝑖𝑖 ,𝜇𝜇1,𝑡𝑡
𝑖𝑖 ,𝛴𝛴1,𝑡𝑡

𝑖𝑖  , … ,𝜇𝜇𝑁𝑁,𝑡𝑡
𝑖𝑖 ,𝛴𝛴𝑁𝑁,𝑡𝑡

𝑖𝑖          (5)  

where 𝜇𝜇1,𝑡𝑡
𝑖𝑖  and 𝛴𝛴1,𝑡𝑡

𝑖𝑖  are the mean and covariance of the 
gaussian distribution, respectively, that characterize the 
position of the Landmark 𝜃𝜃1. 𝜇𝜇𝑁𝑁,𝑡𝑡

𝑖𝑖  and 𝛴𝛴𝑁𝑁,𝑡𝑡
𝑖𝑖  are the mean and 

covariance of the gaussian distribution, respectively, that 
indicate the position of the Landmark  𝜃𝜃𝑁𝑁. 

The sequence of operations for the FastSLAM 2.0 
algorithm can be explained using the following steps: 

1. Sampling new pose: 
Poses are sampled with both motion control 𝑢𝑢𝑡𝑡 and 

measurement 𝑧𝑧𝑡𝑡 . This is defined by the following sampling 
distribution, which includes the measurement 𝑧𝑧𝑡𝑡  [5]: 

 𝑋𝑋𝑡𝑡𝑖𝑖 ~ 𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝑖𝑖 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 ,𝑛𝑛𝑡𝑡)      (6) 

2. Updating the observation landmark: 
The conditional landmark estimates 𝑝𝑝( 𝜃𝜃𝑛𝑛𝘭𝘭 𝑥𝑥𝑡𝑡 ,𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡) 

are represented by applying low-dimensional EKFs. The 
posterior probability of a landmark remains unchanged when 
it is not observed, unlike when the estimate is updated. 

3. Calculating importance weight: 
Particles taken from the motion model do not match the 

desired posterior. The importance sampling technique is 
used to correct this difference. Each sample has a weight that 
equals the ratio between the target distribution and the 
proposal distribution. The weighted set of samples is used to 
generate a new unweighted set of samples [5]. 

 𝑤𝑤𝑡𝑡𝑖𝑖 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑑𝑑𝑢𝑢𝑡𝑡𝑖𝑖𝑑𝑑𝑛𝑛
𝑝𝑝𝑡𝑡𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑑𝑑𝑢𝑢𝑡𝑡𝑖𝑖𝑑𝑑𝑛𝑛 = 

𝘗𝘗 (𝑥𝑥𝑡𝑡,𝑖𝑖𝘭𝘭 𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡,𝑛𝑛𝑡𝑡) 
𝘗𝘗 (𝑥𝑥𝑡𝑡−1𝘭𝘭 𝑧𝑧𝑡𝑡−1,𝑢𝑢𝑡𝑡−1,𝑛𝑛𝑡𝑡−1)  𝘗𝘗 ( 𝑥𝑥𝑡𝑡

𝑖𝑖𝘭𝘭𝑥𝑥𝑡𝑡−1,𝑖𝑖,𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡,𝑛𝑛𝑡𝑡) 
    (7) 

4. Resampling: 
Resampling is the final step that selects particles from the 

temporary particles set. In the resampling process, the 
temporary particles with large importance weight remain and 
achieve replication, whereas the particles with small 
importance weight are rejected or deleted. As a result, all 
details of the rejected particles, about the robot's path and 
feature estimations, are lost [9]. 

IV.ENHANCING FASTSLAM USING A DIFFERENTIAL EVOLUTION 
(DE) ALGORITHM 

Recently, several optimization algorithms have been 
utilized in particle filters to move particles from the low 
likelihood region to the high likelihood region. In this paper, 
an enhanced differential evolution (DE) algorithm is utilized 
to enhance the performance of the FastSLAM 2.0 algorithm. 
Multi-mutation strategies are tested during the evolution 
process of the DE algorithm to accomplish a suitable balance 
between the exploration and exploitation rates. 

 The Basic DE Algorithm 

DE is constructed up of four phases: initialization, 
mutation, crossover, and selection [18-20]. 
1. Initialization 

This phase involves randomly selecting a population of 
𝑁𝑁𝑁𝑁 D-dimension real-valued vectors (𝑁𝑁𝑁𝑁 is the population 
size and it represents the number of population members) 
within the optimization problem's search space. 
Let 𝑋𝑋𝑖𝑖,𝐺𝐺  represents the 𝑖𝑖th  (𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁) vector of the 
population at the current generation 𝐺𝐺 (𝐺𝐺 = 0,1, … ,𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥), 
and it can be written as [20]: 
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      𝑋𝑋𝑖𝑖,𝐺𝐺 = [𝑥𝑥1,𝑖𝑖,𝐺𝐺  , 𝑥𝑥2,𝑖𝑖,𝐺𝐺 , … ,𝑥𝑥𝐷𝐷,𝑖𝑖 ,𝐺𝐺]                (8) 

where 𝑥𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺is the 𝑗𝑗th (𝑗𝑗 = 1,2, … ,𝐷𝐷) component of 𝑖𝑖th 
population vector at the current generation 𝐺𝐺. At 𝐺𝐺 = 0, the 
initial values of the population members are chosen 
randomly as [20]: 

                    𝑥𝑥𝑗𝑗,𝑖𝑖,0 = 𝑥𝑥𝑗𝑗𝐿𝐿 + 𝑡𝑡𝑡𝑡𝑛𝑛𝑑𝑑𝑗𝑗,𝑖𝑖 . ( 𝑥𝑥𝑗𝑗𝑈𝑈 − 𝑥𝑥𝑗𝑗𝐿𝐿)            (9) 

where 𝑡𝑡𝑡𝑡𝑛𝑛𝑑𝑑𝑗𝑗,𝑖𝑖  is a random number that uniformly 
distributed between [0, 1]. The upper and lower bounds for 
each parameter are denoted by 𝑥𝑥𝑗𝑗𝑈𝑈 and 𝑥𝑥𝑗𝑗𝐿𝐿, respectively. 
2. Mutation 

In mutation, the mutant vector 𝑣𝑣𝑖𝑖,𝐺𝐺+1 is produced for each 
target vector 𝑥𝑥𝑖𝑖,𝐺𝐺 . It can be produced by one of the common 
mutation forms listed below [21, 22]: 
The first form is characterized by the notation "DE/rand/1", 

   𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑟𝑟1,𝐺𝐺 + 𝐹𝐹. ( 𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺)          (10) 

The second one is characterized by the notation "DE/best/1", 

 𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝐺𝐺 + 𝐹𝐹. ( 𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺)  (11) 

The third one is characterized by the notation "DE/ rand /2", 

𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥1,𝐺𝐺 + 𝐹𝐹. � 𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺� 

 +𝐹𝐹. ( 𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺)            (12) 

The fourth form is characterized by the notation "DE/best/2", 

     𝑣𝑣𝐼𝐼,𝐺𝐺+1 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝐺𝐺 + 𝐹𝐹. � 𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺� 

                           +𝐹𝐹. ( 𝑥𝑥𝑟𝑟3,𝐺𝐺 − 𝑥𝑥𝑟𝑟4,𝐺𝐺)           (13) 

The last form is characterized by the notation "DE/ current-
to-best /1", 

  𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑖𝑖,𝐺𝐺 + 𝐹𝐹. �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝐺𝐺  – 𝑥𝑥𝑖𝑖,𝐺𝐺� 
 +𝐹𝐹. (𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺)           (14) 
where F ∈ [0,2]  is the mutant factor, which is determined 

by the user, and 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝐺𝐺 is the best individual of the 
population in the present generation 𝐺𝐺 that has a minimal 
objective function value. 

The indexes i, r1, r2, r3, r4 and r5 are different integers ∈
{1, 2, . . . ,𝑁𝑁𝑁𝑁}, where i ≠ r1 ≠ r2 ≠ r3 ≠  r4 ≠ r5. They are 
randomly generated once for each target vector.  
3. Crossover 

During this stage, the elements of the trail vector 𝑢𝑢𝑖𝑖,𝐺𝐺+1 is 
formed by selecting some elements from the target 
vector  𝑥𝑥𝑖𝑖,𝐺𝐺  and the remaining elements from the mutant 
vector 𝑣𝑣𝑖𝑖,𝐺𝐺+1, according to the following equation [19-22]: 

𝑢𝑢𝑗𝑗,𝑖𝑖,𝐺𝐺+1=     �
  𝑣𝑣𝑗𝑗,𝑖𝑖,𝐺𝐺+1, 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑛𝑛𝑑𝑑𝑗𝑗[0,1] ≤ 𝐶𝐶𝐶𝐶 𝑑𝑑𝑡𝑡 𝑗𝑗 = 𝑗𝑗𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟)
𝑥𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺  , 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑛𝑛𝑑𝑑𝑗𝑗[0,1] > 𝐶𝐶𝐶𝐶 𝑑𝑑𝑡𝑡 𝑗𝑗 ≠ 𝑗𝑗𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟)       

(15) 

where CR ∈ [0,1]   is a control parameter called the 
crossover rate, 𝑗𝑗𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟 is an integer random number ∈
 [1,2, … ,𝐷𝐷] ,  𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗 = 1,2, … ,𝐷𝐷 and randj ∈
 [0,1] is the 𝑗𝑗th evaluation of a uniform random number. 

To make sure that the resulted trial vector lies inside the 
search domain, the following suggestion is used [23]. 

𝑢𝑢𝑗𝑗,𝑖𝑖,𝐺𝐺+1 

=�
 xjU + randj,i . �xj,i,G − xjU �, if�uj,i,G+1 > xjU �
xjL + randj,i . �xj,i,G − xjL �, if�uj,i,G+1 < xjL �

     (16) 

4. Selection 
In this phase, the trial vector 𝑢𝑢𝑖𝑖,𝐺𝐺+1 and the target 

vector 𝑥𝑥𝑖𝑖,𝐺𝐺  are compared, and the vector with the lowest 
objective function value is selected for the next generation. 
The selection equation is [20]: 

𝑥𝑥𝑖𝑖,𝐺𝐺+1 

  = � 𝑢𝑢𝑖𝑖,𝐺𝐺+1, 𝑖𝑖𝑖𝑖 �𝑖𝑖�𝑢𝑢𝑖𝑖,𝐺𝐺+1� ≤ 𝑖𝑖�𝑥𝑥𝑖𝑖,𝐺𝐺��
𝑥𝑥𝑖𝑖,𝐺𝐺    𝑑𝑑𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡

     (17) 

where f  is the objective function that is desired to be 
optimized. 

 DE Algorithm with Multi-mutation Strategies for SLAM 
Problem 

Several variants of the DE algorithm have been developed 
with multi-mutation strategies to achieve a good balance 
between exploration and exploitation rates. We made several 
trials over the mutation strategies that are commonly used by 
the different variants of the DE algorithm. We find that the 
following three mutation strategies are well suited to be used 
by the FastSLAM 2.0 algorithm for the SLAM Problem.  

𝑣𝑣𝑖𝑖,𝐺𝐺+1 

= �
𝑥𝑥𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡,𝐺𝐺 + 𝐹𝐹𝑖𝑖,1,𝐺𝐺. (𝑥𝑥𝑡𝑡1,𝐺𝐺 − 𝑥𝑥𝑡𝑡2,𝐺𝐺)
𝑥𝑥𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡,𝐺𝐺 + 𝐹𝐹𝑖𝑖,1,𝐺𝐺 × 𝐿𝐿𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺

𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛(𝑥𝑥𝑡𝑡1,𝐺𝐺, 𝑥𝑥𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡,𝐺𝐺) + 𝐹𝐹𝑖𝑖,2,𝐺𝐺 × 𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛(𝐻𝐻𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺, 𝐿𝐿𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺)
(18) 

The FastSLAM 2.0 algorithm uses these proposed 
mutations with the DE algorithm to enhance its performance. 
It tries to optimize particle weights to reduce particle 
depletion and keep diversity among particles. We refer to the 
enhanced algorithm as MDE- FastSLAM 2.0. Where  𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝐺𝐺 
is the best individual in the population. 𝐹𝐹𝑖𝑖,1,𝐺𝐺  and 𝐹𝐹𝑖𝑖,2,𝐺𝐺 
represent the mutant scaling factors for the suggested 
mutation strategies. For each mutant vector, the scaling 
factors are randomly chosen from a predefined range of 
values. We use 𝐹𝐹𝑖𝑖 ,1,𝐺𝐺 ∈ 𝐹𝐹1 = [0.1 0.2 0.3 0.4 0.5] and 𝐹𝐹𝑖𝑖,2,𝐺𝐺 ∈ 
𝐹𝐹2 = [0.3 0.4 0.5 0.6 0.7], as recommended in [24]. 

These ranges suit the required search ability for the 
proposed mutation strategies. 𝐿𝐿𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺 and 𝐻𝐻𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺  represent 
the two difference vectors with lower and higher objective 
function values, respectively. These two difference vectors 
are obtained as follows [24]. 
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𝐻𝐻𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺 = 

�
𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺 , 𝑖𝑖𝑖𝑖 𝑖𝑖(𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺) > 𝑖𝑖(𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺)
𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺 ,                                                𝑑𝑑𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡  

(19) 
𝐿𝐿𝐷𝐷𝐿𝐿𝐹𝐹𝑖𝑖,𝐺𝐺 = 

�
𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺 , if 𝑖𝑖(𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺) > 𝑖𝑖(𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺)
𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺 ,                                                𝑑𝑑𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡  

(20) 

where 𝑥𝑥𝑟𝑟1,𝐺𝐺, 𝑥𝑥𝑟𝑟2,𝐺𝐺, 𝑥𝑥𝑟𝑟3,𝐺𝐺, 𝑥𝑥𝑟𝑟4,𝐺𝐺 and 𝑥𝑥𝑟𝑟5,𝐺𝐺 represent five 
individuals that are randomly chosen from the present 
population. 

The first mutation strategy is "DE/best/1". The other two 
mutation strategies were selected from the proposed 
mutations of the enhanced variant of the DE algorithm that is 
developed in [24]. These three mutation strategies enhance 
the search ability of the DE algorithm to suit the SLAM 
Problem. It is self-evident that the search evolution of the 
SLAM problem doesn't need for searching with a high 
exploration rate. Therefore, this has been taken into 
consideration for the three proposed mutations. The first and 
second mutation strategies improve the ability of the 
exploitation search. The third mutation strategy balances the 
search abilities of exploration and exploitation.  

The value of the crossover rate control parameter 𝐶𝐶𝐶𝐶 is 
also affect the performance of the algorithm search ability  . 
It is randomly selected from a predefined range of values to 
achieve the desired search ability. So, for the case of search 
with high exploitation search, we use 𝐶𝐶𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶1 = [0.8 0.85 
0.9 0.95 1.0], as recommended in [24]. For the case of search 
with a balanced search of exploration and exploitation, we 
use 𝐶𝐶𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶2 = [0.4 0.5 0.6 0.7 0.8], as recommended in 
[24]. 

All the proposed mutation strategies are evaluated during 
the first 50 iterations of the computational algorithm. After 
that, the one that achieves the best results will be exclusively 
used for the remaining number of iterations. 

The fitness function that is used during the optimization 
process of the enhanced MDE- FastSLAM 2.0 is the same as 
in [11]: 

𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡𝑑𝑑𝑑𝑑 𝐹𝐹𝑢𝑢𝑛𝑛𝐹𝐹𝑡𝑡𝑖𝑖𝑑𝑑𝑛𝑛 = 
                    𝑡𝑡𝑥𝑥𝑝𝑝{− 1

2𝑅𝑅𝑡𝑡
�𝑍𝑍𝑡𝑡,𝑚𝑚𝑎𝑎𝑡𝑡 − �̂�𝑧𝑡𝑡,𝑝𝑝𝑟𝑟𝑏𝑏𝑟𝑟

𝑖𝑖 �2}           (21) 

Where  𝐶𝐶𝑡𝑡   is the observation noise covariance, and 
𝑍𝑍𝑡𝑡,𝑚𝑚𝑎𝑎𝑡𝑡 − �̂�𝑧𝑡𝑡,𝑝𝑝𝑟𝑟𝑏𝑏𝑟𝑟

𝑖𝑖  is the variance between the actual and the 
predicted observations, respectively. More information is 
available at [5]. 

A pseudocode of the enhanced MDE- FastSLAM 2.0 
algorithm is shown by Algorithm 1.  

Algorithm 1. Pseudo-code of the proposed MDE- 
FastSLAM 2.0 algorithm. 

 

 
V.EXPERIMENTAL STUDY AND RESULTS 

To show the performance of the enhanced MDE- 
FastSLAM 2.0 algorithm, a comparison has been made with 
other two algorithms that are commonly used to solve the 
SLAM Problem. It is compared to the standard FastSLAM 
2.0 algorithm [5] and the FastSLAM 2.0 algorithm that is 
enhanced by a differential evolution algorithm (DE-
FastSLAM) [11]. 

This experiment is simulated using MATLAB R2018a 
Runtime Environment. The FastSLAM 2.0 algorithm is 
implemented using the MATLAB code developed by Bailey 
[25]. 

Fig. 1 shows the tested environment map that is 
considered a two-dimensional map with 35 landmarks and 
17 robot waypoints [10, 11, 14, 16]. The blue trajectory 
indicates real motion path of the robot, the red 'o' represents 
the waypoint, the green '*' represents a real landmark, the red 
'·' represents an estimated landmark, the green triangle 
represents a real robot, and the red triangle represents an 
estimated robot. 

Start Algorithm 
1) Sample new pose of robot for each particle Eq. (6) 
2) Update the landmark of the observed features for  

each particle 
3) Compute the new weights of particles using Eq. (7) 
4) Optimize the weight of particles using  MDE 
5) Generate the initial population 𝑁𝑁0 = [𝑥𝑥1,0, … , 𝑥𝑥𝑁𝑁𝑁𝑁,0] 
6) Set the generation number G=0 
7) Set the ranges of vectors 𝐹𝐹1 , 𝐹𝐹2 , C𝐶𝐶1 and 𝐶𝐶𝐶𝐶2  
8) Select randomly the initial values of 𝐹𝐹𝑖𝑖,1,𝐺𝐺, 𝐹𝐹𝑖𝑖,2,𝐺𝐺, 

and 𝐶𝐶𝐶𝐶 
9)  Evaluate fitness function of all population Eq. (21)  
10)  While G<  𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥  do 
11)  For all population do 
12)    Choose randomly five individuals 𝑥𝑥𝑟𝑟1,𝐺𝐺, 𝑥𝑥𝑟𝑟2,𝐺𝐺, 

𝑥𝑥𝑟𝑟3,𝐺𝐺, 𝑥𝑥𝑟𝑟4,𝐺𝐺, and 𝑥𝑥𝑟𝑟5,𝐺𝐺 
13)    Calculate 𝐻𝐻𝐷𝐷𝑖𝑖𝐹𝐹𝑖𝑖,𝐺𝐺  and 𝐿𝐿𝐷𝐷𝑖𝑖𝐹𝐹𝑖𝑖,𝐺𝐺 using Eqs. (19-20) 
14)    Calculate 𝑣𝑣𝑖𝑖,𝐺𝐺+1 using Eq. (18) 
15)    End for 
16) Calculate 𝑈𝑈𝑖𝑖,𝐺𝐺+1using Eq. (15) for all population 
17) Calculate 𝑋𝑋𝑖𝑖,𝐺𝐺+1using Eq. (17) for all population 
18) Next generation (G=G+1) 
19) End while  
20) Update weight of particles based on optimizer 
21) Resampling  

End algorithm 
 
 
 
 
 
 
 
 
 
 

5

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/


Journal of Engineering Research (ERJ) 
Vol.7 – No. 3, 2023 

©Tanta University, Faculty of Engineering 
ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                e ISSN: 2735-4873 

 

Doi: 10.21608/ERJENG.2023.235646.1242 
158 

 

 
Figure 1. The tested environment map. 

The parameter settings during the simulation for the 
FastSLAM 2.0 algorithm are used as in [10]. These settings 
are given in Table 1. 

Table 1. Parameter settings for FastSLAM 2.0 algorithm 

Parameter Value Unit 

The vehicle speed 1 m/s 

The wheelbase 4 M 

The control frequency 20 Hz 

The maximum steering angle 30 ∗ pi/180 Rad 

The maximum rate of   change 
in steer angle 

20 ∗ pi/180 rad/s 

The speed noise of a vehicle 0.1 m/s 

The time interval between 
observations 

0.2 S 

The distance of observation 30 M 

The distance observation noise 0.1 M 

The angle noise of observation 1.0 ∗ pi/180 Rad 

Number of independent runs 30 Run 

 
where 𝑚𝑚, 𝑑𝑑 and 𝑡𝑡𝑡𝑡𝑑𝑑 stand for meter, second and radian, 
respectively.  

The values of the control noise covariance 𝑄𝑄 and the 
observation noise covariance 𝐶𝐶 are used as: 

𝑄𝑄 = �
0.12 0

0 � 𝜋𝜋
180
�
2�, 𝐶𝐶 = �

0.12 0
0 � 𝜋𝜋

180
�
2� 

The same fitness function represented by Eq. (21) is used 
for the compared algorithms DE- FastSLAM and MDE- 
FastSLAM 2.0 during the optimization process. Also, we use 
the same population size (NP) = 10 and the same number of 
iterations =1000 for these two algorithms. The settings of the 
remaining parameters of the DE- FastSLAM algorithm are 
used as in [11], where the mutant factor  𝐹𝐹 = 0.4, cross over 
rate 𝐶𝐶𝐶𝐶 = 0.8 and the mutation form is "DE/rand/1". 

 

VI.RESULT S 

The results in terms of accuracy for the estimation process 
of paths and landmarks are displayed in this section to 
evaluate the performance for each one of the compared 
algorithms.  

Fig. 2 shows the estimated robot paths and landmark 
positions when using 10 particles for the three compared 
algorithms. The green trajectory indicates the actual path and 
the blue one indicates the estimated path. 

Considering the three compared algorithms, we can infer 
from Fig. 2 that the estimated values by MDE-FastSLAM 
2.0 algorithm for landmark positions and paths are mostly 
consistent with the real values. 

In addition to the previous comparison, we evaluate the 
positioning error (PE) of the robot position for each 
algorithm using 10 particles [26], as shown in Fig. 3. It 
provides the absolute error between the actual position and 
the corresponding average estimations of positions. The PE 
can be determined using the following equation [14]: 

 
(a) FastSLAM 2.0 

 
(b) DE-FastSLAM 
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(c) MDE-FastSLAM 2.0 

Figure 2. Estimated and real representation for paths and landmarks. 

𝑁𝑁𝑃𝑃𝑡𝑡 = 

         ��∑ 𝑥𝑥𝑡𝑡𝑖𝑖𝑀𝑀
𝑖𝑖=1 𝑀𝑀⁄ − 𝑥𝑥𝑚𝑚𝑎𝑎𝑡𝑡�

𝑇𝑇�∑ 𝑥𝑥𝑡𝑡𝑖𝑖𝑀𝑀
𝑖𝑖=1 𝑀𝑀⁄ − 𝑥𝑥𝑚𝑚𝑎𝑎𝑡𝑡�        (22) 

where 𝑀𝑀 represents the number of particles, 𝑥𝑥𝑚𝑚𝑎𝑎𝑡𝑡 is the 
actual robot pose, and  𝑥𝑥𝑡𝑡𝑖𝑖  is the predicted robot pose for the 
𝑖𝑖th particle. 

 

(a) Robot position error in X-axis 

 

(b) Robot position error in Y-axis 

Figure 3. The positioning error of robot poses. 

As shown in Fig. 3, MDE-FastSLAM 2.0 algorithm 
achieves the best estimation accuracy with robot positioning 
error values less than 1.8 m in X-axis and less than 0.75 m in 
Y-axis. While the positioning error values for the other 
compared algorithms FastSLAM 2.0 and DE-FastSLAM are 

less than 4.8 m and 2.2 m, in X-axis, and less than 2.9 m and 
2.4 m, in Y-axis, respectively.  

The root mean square error (RMSE) of the robot 
positioning error values along the robot path for the 
compared algorithms is calculated in Table 2, for 10, 30, and 
50 particles. The proposed algorithm has the lowest RMSE 
values of positioning error for all the considered cases of 
different number of particles. 

Table 2. RMSE of robot positioning error in meter 

Algorithm 
Number of Particles 

10 30 50 

FastSLAM 2.0 2.2751 2.1307 1.4711 

DE-FastSLAM 1.4988 1.3432 1.1586 

MDE-FastSLAM 2.0 0.8653 0.6902 0.6115 

Similarly, the positioning error of landmark positions is 
evaluated for each algorithm using 10 particles, as shown in 
Fig. 4. 

 

(a) landmark position error in X-axis 

 

(b) landmark position error in Y-axis 

Figure 4. The positioning error of landmark positions. 

As shown in Fig. 4, MDE-FastSLAM 2.0 algorithm again 
achieves the highest estimation accuracy with landmark 
positioning error values less than 4.3 m in X-axis and less 
than 3.3 m in Y-axis. While the positioning error values for 
the other compared algorithms FastSLAM 2.0 and DE-
FastSLAM are less than 7 m and 5.2 m, in X-axis, and less 
than 5.8 m and 4.4 m, in Y-axis, respectively.  

The RMSE of the landmark positioning error values 
achieved by the compared algorithms for the overall map for 
is calculated in Table 3, for 10, 30, and 50 particles. The 
proposed algorithm has the lowest RMSE values of 
positioning error for all the considered cases of different 
number of particles. 
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Table 3. RMSE of landmark positioning error in meter 

Algorithm 
Number of Particles 

10 30 50 

FastSLAM 2.0 1.4785 1.3914 1.2847 

DE-FastSLAM 1.2757 1.2115 1.1512 

MDE-FastSLAM 2.0 0.5717 0.5412 0.4950 

The RMSE curves of the robot position for the compared 
algorithms are shown in Fig. 5. The particle number changes 
from 0 to 100. It indicates that the proposed algorithm has 
achieved the minimum RMSE values compared to the other 
two algorithms.  

 
Figure 5. RMSE error of robot poses. 

All the previous results demonstrate that the proposed 
algorithm outperformed the other compared algorithms in 
terms of accuracy of robot and landmark positions. It was 
able to reduce the impact of the particle depletion problem 
while maintaining diversity among particles. 

VII.CONCLUSION AND FUTURE WORK 

    In this work, we proposed an enhanced FastSLAM 2.0 
algorithm, denoted by MDE-FastSLAM 2.0, based on an 
enhanced differential evolution (DE) with multi-mutation 
strategies to reduce the effect of the particle depletion 
problem and enhance the performance of FastSLAM 2.0 
algorithm in solving the SLAM problem. The enhanced 
algorithm uses three proposed mutations with the DE 
algorithm to enhance its performance. It tries to optimize 
particle weights and keep diversity among particles.  

During the optimization process, the proposed mutation 
strategies are evaluated through the first 50 iterations of the 
computational algorithm. After that, the one that achieves 
the best results is used for the remaining iterations. To 
evaluate the performance of the MDE-FastSLAM 2.0 
algorithm, a comparison has been made with other two 
common algorithms: the standard FastSLAM 2.0 algorithm 
and the enhanced DE-FastSLAM algorithm. All the 
compared algorithms are used to estimate the robot and 
landmarks positions for a SLAM problem. According to the 
obtained results, the enhanced algorithm outperformed the 
compared algorithms as it could achieve high accuracy in 
estimating the robot positions and landmarks through all the 
considered cases. 

For a future work, we can make a hybridization between 
the enhanced differential evolution using the proposed 
mutation strategies with a particle swarm optimization (PSO) 

algorithm. The resulting algorithm can be used with the 
FastSLAM 2.0 algorithm to further improve the estimation 
accuracy and increase the particles diversity for SLAM 
problem.  
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