6 research outputs found

    Comparison of Gesture, Gamepad, and Gaze-based Locomotion for VR Worlds

    Get PDF
    In this paper we present a VR locomotion technique based on the Leap Motion device and compare it to other often-used locomotion techniques – gaze-directed locomotion and gamepad-based locomotion. We performed a user experiment to evaluate the three techniques based on their performance (time to complete the task), comfort (through the ISO 9241-9 assessment of comfort questionnaire), and simulation sickness (through the Simulation Sickness Questionnaire). Results indicate that the gamepad technique is both faster and more comfortable than either the Leap Motion-based or the gaze-directed techniques.info:eu-repo/semantics/publishedVersio

    Comparing Hand Gestures and a Gamepad Interface for Locomotion in Virtual Environments

    Full text link
    Hand gesture is a new and promising interface for locomotion in virtual environments. While several previous studies have proposed different hand gestures for virtual locomotion, little is known about their differences in terms of performance and user preference in virtual locomotion tasks. In the present paper, we presented three different hand gesture interfaces and their algorithms for locomotion, which are called the Finger Distance gesture, the Finger Number gesture and the Finger Tapping gesture. These gestures were inspired by previous studies of gesture-based locomotion interfaces and are typical gestures that people are familiar with in their daily lives. Implementing these hand gesture interfaces in the present study enabled us to systematically compare the differences between these gestures. In addition, to compare the usability of these gestures to locomotion interfaces using gamepads, we also designed and implemented a gamepad interface based on the Xbox One controller. We conducted empirical studies to compare these four interfaces through two virtual locomotion tasks. A desktop setup was used instead of sharing a head-mounted display among participants due to the concern of the Covid-19 situation. Through these tasks, we assessed the performance and user preference of these interfaces on speed control and waypoints navigation. Results showed that user preference and performance of the Finger Distance gesture were close to that of the gamepad interface. The Finger Number gesture also had close performance and user preference to that of the Finger Distance gesture. Our study demonstrates that the Finger Distance gesture and the Finger Number gesture are very promising interfaces for virtual locomotion. We also discuss that the Finger Tapping gesture needs further improvements before it can be used for virtual walking

    Virtual Reality-Based Interface for Advanced Assisted Mobile Robot Teleoperation

    Full text link
    [EN] This work proposes a new interface for the teleoperation of mobile robots based on virtual reality that allows a natural and intuitive interaction and cooperation between the human and the robot, which is useful for many situations, such as inspection tasks, the mapping of complex environments, etc. Contrary to previous works, the proposed interface does not seek the realism of the virtual environment but provides all the minimum necessary elements that allow the user to carry out the teleoperation task in a more natural and intuitive way. The teleoperation is carried out in such a way that the human user and the mobile robot cooperate in a synergistic way to properly accomplish the task: the user guides the robot through the environment in order to benefit from the intelligence and adaptability of the human, whereas the robot is able to automatically avoid collisions with the objects in the environment in order to benefit from its fast response. The latter is carried out using the well-known potential field-based navigation method. The efficacy of the proposed method is demonstrated through experimentation with the Turtlebot3 Burger mobile robot in both simulation and real-world scenarios. In addition, usability and presence questionnaires were also conducted with users of different ages and backgrounds to demonstrate the benefits of the proposed approach. In particular, the results of these questionnaires show that the proposed virtual reality based interface is intuitive, ergonomic and easy to use.This research was funded by the Spanish Government (Grant PID2020-117421RB-C21 funded byMCIN/AEI/10.13039/501100011033) and by the Generalitat Valenciana (Grant GV/2021/181).Solanes, JE.; Muñoz García, A.; Gracia Calandin, LI.; Tornero Montserrat, J. (2022). Virtual Reality-Based Interface for Advanced Assisted Mobile Robot Teleoperation. Applied Sciences. 12(12):1-22. https://doi.org/10.3390/app12126071122121

    Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation

    Get PDF
    Virtual reality has achieved significant popularity in recent years, and allowing users to move freely within an immersive virtual world has become an important factor critical to realize. The user’s interactions are generally designed to increase the perceived realism, but the locomotion techniques and how these affect the user’s task performance still represent an open issue, much discussed in the literature. In this article, we evaluate the efficiency and effectiveness of, and user preferences relating to, freehand locomotion techniques designed for an immersive virtual environment performed through hand gestures tracked by a sensor placed in the egocentric position and experienced through a head-mounted display. Three freehand locomotion techniques have been implemented and compared with each other, and with a baseline technique based on a controller, through qualitative and quantitative measures. An extensive user study conducted with 60 subjects shows that the proposed methods have a performance comparable to the use of the controller, further revealing the users’ preference for decoupling the locomotion in sub-tasks, even if this means renouncing precision and adapting the interaction to the possibilities of the tracker sensor

    Convex Interaction : VR o mochiita kōdō asshuku ni yoru kūkanteki intarakushon no kakuchō

    Get PDF
    corecore