4 research outputs found

    Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network

    Get PDF
    Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus

    Comparison of Support-Vector Machine and Sparse Representation Using a Modified Rule-Based Method for Automated Myocardial Ischemia Detection

    No full text
    An automatic method is presented for detecting myocardial ischemia, which can be considered as the early symptom of acute coronary events. Myocardial ischemia commonly manifests as ST-and T-wave changes on ECG signals. The methods in this study are proposed to detect abnormal ECG beats using knowledge-based features and classification methods. A novel classification method, sparse representation-based classification (SRC), is involved to improve the performance of the existing algorithms. A comparison was made between two classification methods, SRC and support-vector machine (SVM), using rule-based vectors as input feature space. The two methods are proposed with quantitative evaluation to validate their performances. The results of SRC method encompassed with rule-based features demonstrate higher sensitivity than that of SVM. However, the specificity and precision are a trade-off. Moreover, SRC method is less dependent on the selection of rule-based features and can achieve high performance using fewer features. The overall performances of the two methods proposed in this study are better than the previous methods

    Comparison of Support-Vector Machine and Sparse Representation Using a Modified Rule-Based Method for Automated Myocardial Ischemia Detection

    No full text
    An automatic method is presented for detecting myocardial ischemia, which can be considered as the early symptom of acute coronary events. Myocardial ischemia commonly manifests as ST- and T-wave changes on ECG signals. The methods in this study are proposed to detect abnormal ECG beats using knowledge-based features and classification methods. A novel classification method, sparse representation-based classification (SRC), is involved to improve the performance of the existing algorithms. A comparison was made between two classification methods, SRC and support-vector machine (SVM), using rule-based vectors as input feature space. The two methods are proposed with quantitative evaluation to validate their performances. The results of SRC method encompassed with rule-based features demonstrate higher sensitivity than that of SVM. However, the specificity and precision are a trade-off. Moreover, SRC method is less dependent on the selection of rule-based features and can achieve high performance using fewer features. The overall performances of the two methods proposed in this study are better than the previous methods

    P Wave Detection in Pathological ECG Signals

    Get PDF
    Důležitou součástí hodnocení elektrokardiogramu (EKG) a následné detekce srdečních patologií, zejména v dlouhodobém monitorování, je detekce vln P. Výsledky detekce vln P umožňují získat ze záznamu EKG více informací o srdeční činnosti. Podle správně detekovaných pozic vln P je možné detekovat a odlišit patologie, které současné programy používané v medicínské praxi identifikovat neumožňují (např. atrioventrikulární blok 1., 2. a 3. stupně, cestující pacemaker, Wolffův-Parkinsonův-Whiteův syndrom). Tato dizertační práce představuje novou metodu detekce vln P v záznamech EKG během fyziologické a zejména patologické srdeční činnosti. Metoda je založena na fázorové transformaci, inovativních pravidlech detekce a identifikaci možných patologií zpřesňující detekci vln P. Dalším důležitým výsledkem práce je vytvoření dvou veřejně dostupných databází záznamů EKG s obsahem patologií a anotovanými vlnami P. Dizertační práce je rozdělena na teoretickou část a soubor publikací představující příspěvek autora v oblasti detekce vlny P.Accurate software for the P wave detection, mainly in long-term monitoring, is an important part of electrocardiogram (ECG) evaluation and subsequent cardiac pathological events detection. The results of P wave detection allow us to obtain more information from the ECG records. According to the correct P wave detection, it is possible to detect and distinguish cardiac pathologies which are nowadays automatically undetectable by commonly used software in medical practice (events e.g. atrioventricular block 1st, 2nd and 3rd degree, WPW syndrome, wandering pacemaker, etc.). This thesis introduces a new method for P wave detection in ECG signals during both physiological and pathological heart function. This novel method is based on a phasor transform, innovative rules, and identification of possible pathologies that improve P wave detection. An equally important part of the work is the creation of two publicly available databases of physiological and pathological ECG records with annotated P waves. The dissertation is divided into theoretical analysis and a set of publications representing the contribution of the author in the area of P wave detection.
    corecore