612 research outputs found

    A RAID reconfiguration scheme for gracefully degraded operations

    Get PDF
    One distinct advantage of Redundant Array of Independent Disks (RAID) is fault tolerance. But the performance of a disk array in degraded mode is so poor that no one uses the RAID after failure. Continuous operation of RAID in degraded mode is very important in many real time applications, which can not be interrupted in providing continuous services. In this paper, we propose an efficient architectural reconfiguration scheme to enhance the performance of RAID-5 in degraded mode, called reconfigurable RAID-5. It reconfigures RAID-5 to RPTD-0 in degraded mode. Using this scheme, the calculation of the failure data and the generation of parity in writing the new data to the failed disk can be reduced. It also alleviates the small write problem for RAID-5 in degraded mode. We use the phase parallel model to analyze the total execution time of the RAID-5 and of the reconfigurable RAID-5. Through theoretical analysis and benchmark test, we find the performance of the reconfigurable RAID-5 can be 200 times better than conventional RAID-5.published_or_final_versio

    Performance analysis of disk mirroring techniques

    Get PDF
    Unequaled improvements in processor and I/O speeds make many applications such as databases and operating systems to be increasingly I/O bound. Many schemes such as disk caching and disk mirroring have been proposed to address the problem. In this thesis we focus only on disk mirroring. In disk mirroring, a logical disk image is maintained on two physical disks allowing a single disk failure to be transparent to application programs. Although disk mirroring improves data availability and reliability, it has two major drawbacks. First, writes are expensive because both disks must be updated. Second, load balancing during failure mode operation is poor because all requests are serviced by the surviving disk. Distorted mirrors was proposed to address the write problem and interleaved declustering to address the load balancing problem. In this thesis we perform a comparative study of these two schemes under various operating modes. In addition we also study traditional mirroring to provide a common basis for comparison

    POSTURING SPARES FOR STRATEGIC POWER COMPETITION

    Get PDF
    As the distribution of power evolves across the world and creates new threats, the Department of Defense (DOD) must continually seek ways to maintain a competitive advantage among dimensions of power that enable us to advance our interests and values. Americaā€™s competitors are becoming more assertive and technologically sound, meaning the Navy must improve readiness and adopt innovative capabilities. In the face of strategic challenges, it is important that there is a shift from legacy platforms to novel weapon system readiness. The purpose of this research was to evaluate the survivability of a primary defense weapon system onboard Arleigh Burke Class guided-missile destroyers (DDGs), the Phalanx Close-in-Weapon-System (CIWS), under continuous operation in a contested environment based on current supply forecasting. Currently, forecast supply models do not consider the increased demand in contested environments or additive manufacturing solution-based delivery. To extend the defense operational availability (Ao) time of primary defense systems, a selection methodology was used to identify the weapon components with the highest failure rates. Through simulation-based modeling, these components were evaluated for additive manufacturing capabilities and potential production onboard. This thesis exposed a critical shortcoming of the supply capacity in a contested environment while offering potential solutions to increase the effectiveness of operational sustainment.NPS Naval Research ProgramThis project was funded in part by the NPS Naval Research Program.Lieutenant Commander, United States NavyLieutenant Commander, United States NavyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    Get PDF
    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications

    Scalability of RAID systems

    Get PDF
    RAID systems (Redundant Arrays of Inexpensive Disks) have dominated backend storage systems for more than two decades and have grown continuously in size and complexity. Currently they face unprecedented challenges from data intensive applications such as image processing, transaction processing and data warehousing. As the size of RAID systems increases, designers are faced with both performance and reliability challenges. These challenges include limited back-end network bandwidth, physical interconnect failures, correlated disk failures and long disk reconstruction time. This thesis studies the scalability of RAID systems in terms of both performance and reliability through simulation, using a discrete event driven simulator for RAID systems (SIMRAID) developed as part of this project. SIMRAID incorporates two benchmark workload generators, based on the SPC-1 and Iometer benchmark specifications. Each component of SIMRAID is highly parameterised, enabling it to explore a large design space. To improve the simulation speed, SIMRAID develops a set of abstraction techniques to extract the behaviour of the interconnection protocol without losing accuracy. Finally, to meet the technology trend toward heterogeneous storage architectures, SIMRAID develops a framework that allows easy modelling of different types of device and interconnection technique. Simulation experiments were first carried out on performance aspects of scalability. They were designed to answer two questions: (1) given a number of disks, which factors affect back-end network bandwidth requirements; (2) given an interconnection network, how many disks can be connected to the system. The results show that the bandwidth requirement per disk is primarily determined by workload features and stripe unit size (a smaller stripe unit size has better scalability than a larger one), with cache size and RAID algorithm having very little effect on this value. The maximum number of disks is limited, as would be expected, by the back-end network bandwidth. Studies of reliability have led to three proposals to improve the reliability and scalability of RAID systems. Firstly, a novel data layout called PCDSDF is proposed. PCDSDF combines the advantages of orthogonal data layouts and parity declustering data layouts, so that it can not only survivemultiple disk failures caused by physical interconnect failures or correlated disk failures, but also has a good degraded and rebuild performance. The generating process of PCDSDF is deterministic and time-efficient. The number of stripes per rotation (namely the number of stripes to achieve rebuild workload balance) is small. Analysis shows that the PCDSDF data layout can significantly improve the system reliability. Simulations performed on SIMRAID confirm the good performance of PCDSDF, which is comparable to other parity declustering data layouts, such as RELPR. Secondly, a system architecture and rebuilding mechanism have been designed, aimed at fast disk reconstruction. This architecture is based on parity declustering data layouts and a disk-oriented reconstruction algorithm. It uses stripe groups instead of stripes as the basic distribution unit so that it can make use of the sequential nature of the rebuilding workload. The design space of system factors such as parity declustering ratio, chunk size, private buffer size of surviving disks and free buffer size are explored to provide guidelines for storage system design. Thirdly, an efficient distributed hot spare allocation and assignment algorithm for general parity declustering data layouts has been developed. This algorithm avoids conflict problems in the process of assigning distributed spare space for the units on the failed disk. Simulation results show that it effectively solves the write bottleneck problem and, at the same time, there is only a small increase in the average response time to user requests

    Direct Data Distribution From Low-Earth Orbit

    Get PDF
    NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified

    High performance disk array architectures.

    Get PDF
    Yeung Kai-hau, Alan.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references.ACKNOWLEDGMENTS --- p.ivABSTRACT --- p.vChapter CHAPTER 1 --- Introduction --- p.1Chapter 1.1 --- The Information Age --- p.2Chapter 1.2 --- The Importance of Input/Output --- p.3Chapter 1.3 --- Redundant Arrays of Inexpensive Disks --- p.5Chapter 1.4 --- Outline of the Thesis --- p.7References --- p.8Chapter CHAPTER 2 --- Selective Broadcast Data Distribution Systems --- p.10Chapter 2.1 --- Introduction --- p.11Chapter 2.2 --- The Distributed Architecture --- p.12Chapter 2.3 --- Mean Block Acquisition Delay for Uniform Request Distribution --- p.16Chapter 2.4 --- Mean Block Acquisition Delay for General Request Distributions --- p.21Chapter 2.5 --- Optimal Choice of Block Sizes --- p.24Chapter 2.6 --- Chapter Summary --- p.25References --- p.26Chapter CHAPTER 3 --- Dynamic Multiple Parity Disk Arrays --- p.28Chapter 3.1 --- Introduction --- p.29Chapter 3.2 --- DMP Disk Array --- p.31Chapter 3.3 --- Average Delay --- p.37Chapter 3.4 --- Maximum Throughput --- p.47Chapter 3.5 --- Simulation with Precise Disk Model --- p.53Chapter 3.6 --- Chapter Summary --- p.58References --- p.59Appendix --- p.61Chapter CHAPTER 4 --- Dynamic Parity Logging Disk Arrays --- p.69Chapter 4.1 --- Introduction --- p.70Chapter 4.2 --- DPL Disk Array Architecture --- p.73Chapter 4.3 --- DPL Disk Array Operation --- p.79Chapter 4.4 --- Performance of DPL Disk Array --- p.83Chapter 4.5 --- Chapter Summary --- p.91References --- p.92Appendix --- p.94Chapter CHAPTER 5 --- Performance Analysis of Mirrored Disk Array --- p.101Chapter 5.1 --- Introduction --- p.102Chapter 5.2 --- Queueing Model --- p.103Chapter 5.3 --- Delay Analysis --- p.104Chapter 5.4 --- Numerical Examples and Simulation Results --- p.108References --- p.109Chapter CHAPTER 6 --- State Reduction in the Exact Analysis of Fork/Join Queues --- p.110Chapter 6.1 --- Introduction --- p.111Chapter 6.2 --- State Reduction For Closed Fork/Join Queueing Systems --- p.113Chapter 6.3 --- Extension To Open Fork/Join Queueing Systems --- p.118Chapter 6.4 --- Chapter Summary --- p.122References --- p.123Chapter CHAPTER 7 --- Conclusion and Future Research --- p.124Chapter 7.1 --- Summary --- p.125Chapter 7.2 --- Future Researches --- p.12

    Fifth NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products

    Architectural Techniques to Enable Reliable and Scalable Memory Systems

    Get PDF
    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even building the next Exascale supercomputer. To ensure even a bare-minimum level of reliability, present-day solutions tend to have high performance, power and area overheads. Ideally, we would like memory systems to remain robust, scalable, and implementable while keeping the overheads to a minimum. This dissertation describes how simple cross-layer architectural techniques can provide orders of magnitude higher reliability and enable seamless scalability for memory systems while incurring negligible overheads.Comment: PhD thesis, Georgia Institute of Technology (May 2017
    • ā€¦
    corecore