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ABSTRACT 

In this thesis, I/O system designs using high performance disk array architectures 
are discussed. The thesis consists of five main parts. Firstly, a novel technique called the 
Selective Broadcast technique is proposed for high speed data distributions. Selective 
Broadcast technique relies on disk arrays to provide the high data throughput required. 
The technique significantly reduces the response time of data retrievals when compared to 
the non-selective broadcast techniques. A complete analysis on the Selective Broadcast 
technique is given in this thesis. Secondly, a new disk array architecture called Dynamic 
Multiple Parity (DMP) Disk Arrays is proposed for serial transaction processing 
database systems. By adding extra redundancy, DMP Disk Arrays effectively reduce the 
blocking delays for "write" operations which is caused by busy disks. Analysis on DMP 
Disk Arrays using Markov model is performed. Thirdly, another novel disk array 
architecture called Dynamic Parity Logging (DPL) Disk Arrays is proposed for 
engineering database systems. Unlike normal disk array architectures, DPL Disk Arrays 
use dynamic parity sets to protect data from disk failures. We show through analysis and 
simulation that DPL Disk Arrays have better performance than conventional disk array 
architectures. DPL Disk Arrays also have the journalling capability which is desirable for 
engineering database systems. Fourthly, a performance analysis on mirrored disk array is 
presented. Previous analyses on mirrored disk arrays are mainly approximate analyses 
which ignore the fork/join synchronization of the mirrored disks. In this thesis, a mirrored 
disk array is modeled as a fork/join queueing system and an exact Markov Chain analysis 
on the system is performed to obtain the average I/O job delay. Lastly, a state reduction 
technique for the exact analysis on fork/join queues is proposed. The technique 
significantly reduces the complexity of such exact analysis by many orders of magnitude. 
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Chapter One 

Introduction 

1 



1.1 The Information Age 
Thirty years ago, computers were considered by most people to be mysterious 

machines. They were room-size mainframes operated by specially trained professionals. 
They were very expensive and used only by governments and very large corporations. In 
1975, the first recognizable personal computer called the Altair 8800 kit appeared [1；. 
Costed at US$400, Altair 8800 kit was a do-it-yourself 8-bit system with 256 bytes of 
RAM. It was the first time in computer history that computers started to become 
"personal." Since then, we have seen computer power grows by many orders of magnitude 
2]. Today, computers are simply another tool for doing work. A small personal computer 

has the processing power of a mainframe which was used thirty years ago. Techonological 
innovation is still driving the growth of computer power. We will see new CPU chips, new 
computer architectures and new software to appear from time to time. 

Like the computer industry, the communication industry is growing and changing 
at a fantastic pace. The growth is mainly driven by the advances in optical technologies. 
The field of fiber optic transmission can be considered to begin at about 30 years ago. In 
1966, Charles Kao realized that data can be transmitted over a narrow filament of glass 
fiber [3]. He did an extensive series of experiements to prove that this was so. Since then, 
we have seen communication speed to increase many times. Gigabit communication 
systems are commercially available today and we foresee terabit networks to appear not 
very long in the future. 

The advances in computer and communication technologies is driving the world 
into an information age. With the development of high speed global data-exchange 
networks, also known as the Information Superhighway, users all over the world will be 
given an opportunity to access a vast wealth of information. There are many possible 
applications on information superhighway [4]. To name a few, these include 
videoconferencing, document sharing, multimedia E-mail, and video on demand (VOD). 
The information superhighway mainly uses fiber cables for communications. It provides 
the necessary bandwidth for all demanding applications such as those mentioned above. 
Users' workstations are connected to the information superhighway through many 
relatively slow speed networks. These slow speed networks mainly used copper wires for 
data communications. This is due to the vast investment on the local loops which is in use 
today, and on the coaxial cables which already wire up homes for cable TV. Conceptually 
dividing the information superhighway as one layer of networks and the slow speed 
networks as another layer gives us an architecture similar to that discussed in chapter 2 of 
this thesis. In the rest of this chapter, we discuss how technological advancements in 
computer and communications demand fast I/O system designs. 
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1.2 The Importance of Input/Output 
Figure 1-1 shows a general model for conventional computers, or the Von 

Neumann-type computers. Programs and data are stored in the secondary storage and 
moved to the main memory via the controller before they are used by the processor. The 
conventional computers is known to be particularly suitable for numerical processing. This 
is because I/O operations are rare once the programs and data are loaded in the main 
memory. The I/O subsystem, which is usually much slower than the main memory, 
therefore does not slow down the whole system. However, the I/O subsystem becomes the 
performance bottleneck when I/O intensive applications such as database management 
systems (DBMS) are run. This calls for many researches on I/O architectures for DBMS 
[5]. With DBMS being implemented on high speed networks, the volume of user 
transactions will increase manyfold [6]. To eliminate the I/O bottleneck, some researchers 
even expected that a distributed database system on a high speed network has to be 
"memory-resident" [7]. 

1 i ^ ^ ^ ^ i 
I ^ ^ I 

I Secondary i 
I Storage i 广 

I ^ ^ ^ ^ i Mam _ Processor 
I i Memory 

I Controller | 

S u b s y s t e m i 
Figure 1-1 A general model of a conventional computer system. 

Fast I/O systems are also demanded for systems having a huge information base. 
This includes all information systems with large amount of video or multimedia data. With 
the introduction of the information superhighway, remote access of large amount of data 
within a short time will become economically feasible. To provide enough data throughput 
for high speed data communications, information systems must have very fast I/O 
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subsystems. Take interactive TV (ITV) as an example, it takes 95 TB to store the world's 
entire movie library in MPEG-2 format [pp.62, 8]. If this storage requirements of the ITV 
server seem daunting, the I/O is nightmarish. During peak hours in major cities, thousands 
of people may access a single ITV server requesting for videos. To satisfy the required 
data rate, the server should has an I/O throughput of several hundreds of megabytes per 
second. To further complicate the matters, the data rate of each user may change from 
time to time if VCR functions such as pause, rewind, fast-forward, slow motion, and 
frame advance are supported. For this reason Greg Hoberg, marketing manager of the 
video communications division at Hewlett-Packard, says concerning the ITV servers; "it's 
really an I/O machine" [pp.63, 8]. Because of this, researchers become aware of the fact 
that I/O performance becomes more or more crucial to the overall performance of a 
computer [9]. 
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1.3 Redundant Arrays of Inexpensive Disks 
In response to the increasing demands on fast I/O operations, researches on 

Redundant Array of Inexpensive Disks (RAID) were started by the end of 80's in the 
University of California at Berkeley [10,11]. The philosophy behind RAID is that instead 
of using a few expensive disks to achieve the performance and reliability required, many 
low cost disks working in parallel are used With so many low cost disks, media 
availability becomes a serious problem. Parity encoding of data is used by RAID to 
provide high availability under disk failures. Six levels of RAID are defined [11,12] and 
they are briefly described below. 
RAID Level 0: Disk array with no redundancy. Only data striping is supported in this level. 
RAID Level J: Mirrored disk array. Every data disk has a duplicate backup disk for 
reliability. 
RAID Level 2 - Hamming coded disk array. A group of data disks has multiple parity disks 
and the number of parity disk is determined by Hamming code principles. Data is bit-
interleaved across the data disks with additional parity bits stored in the parity disks. 
RAID Level 3: Parity-protected disk array with bit-interleaved data. This level eliminates 
most of the overhead associated with error detection in RAID level 2. Level 2 uses parity 
checking to detect the erroneous disk and correct the wrong data. The error detection is 
not necessary because the disk controller is able to detect disk failures. Therefore, a single 
parity disk is enough for recovering the lost data in a failed disk. In level 3，data is also bit-
interleaved across all data disks. 
RAID Level 4\ Parity-protected disk array with block-interleaved data and parity is stored 
in a dedicated parity disk. In levels 2 and 3，data is bit-interleaved across all data disks and 
therefore only one I/O operation can be performed at a time. In level 4，data is stored in a 
block-interleaved fashion. This enables multiple "read" operations to be performed 
simultaneously. A parity disk is used to store all the parity blocks. This parity disk 
becomes the performance bottleneck if "write" operations are frequent. 
RAID Level 5: Parity-protected disk array with block-interleaved data and parity blocks 
are distributed across all disks. Since parity is distributed across all disks, parallel "write" 
operations can be performed. 

Although commercial products on RAID are now available, new designs on RAID 
are still being investigated. Problems still exists in designing RAID for used in different 
applications. One major problem of RAID is that "write" operations are much slower than 
"read" operations when RAID is used in a DBMS. In solving this problem, we propose 
two novel disk array designs for two specific types of database systems. Another problem 
found in designing RAID systems is that it is very difficult to perform analysis on disk 
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arrays [13]. For this reason, we discuss in chapters 5 and 6 the analysis on fork/join 
queues which is very useful for disk array performance study. Other issues found in RAID 
system designs include the design of RAID for continuous operations [14]，the design of 
video systems using RAID [15], and many others. The discussions on these design issues, 
however, are beyond the scope of this thesis. 
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1.4 Outline of the Thesis 
We have briefly discussed the developments of computer and communications 

technologies and their impact on the I/O system designs. We have also introduced RAID, 
an innovative ideas for speeding up I/O rates. In this thesis, research on I/O system 
designs is reported. There are five principle contributions reported in this thesis: 

a) In solving the problem of efficiently distributing a huge amount of information to 
multiple users, a novel technique called Selective Broadcast technique for high 
speed data distribution is proposed [16-18]. Selective Broadcast systems rely on 
RAID to provide the necessary data throughput for data broadcasting. A complete 
analysis on the technique is performed and the technique is discussed in chapter 2 of 
this thesis. 

b) In solving the problem of slow writing speed found in RAID, a novel architecture 
called Dynamic Multiple Parity (DMP) Disk Arrays is proposed for serial 
transaction processing systems [19]. Discussions on DMP Disk Arrays and the 
complete performance analysis on this architecture is given in chapter 3 of this 
thesis. 

c) In solving the same problem stated in b), another new architecture called Dynamic 
Parity Logging (DPL) Disk Array is proposed for fast engineering datatabase 
systems [20]. Together with a complete performance analysis on the architecture, 
DPL Disk Array is discussed in chapter 4 of this thesis. 

d) In chapter 5, performance analysis on mirrored disk array is discussed [21]. Average 
job delay for mirrored disk array is derived by modelling the system as an open 
fork/join queueing system. 

e) In chapter 6 , we try to solve the problem of intractability found in the exact analysis 
on fork/join queues. A state reduction technique is proposed which significantly 
reduces the complexity of the analysis by many orders of magnitude [22]. The 
analysis on fork/join queues can be applied to the performance study of RAID 
systems. 

The last chapter of this thesis discusses the possible extended research arising from the 
above studies. 
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Chapter Two 
Selective Broadcast Data Distribution Systems 

This chapter describes a two tier architecture for high speed data distribution. The 
architecture consists of a database interface network which distributes information from 
a central database to a number of servers, and a user interface network which distributes 
information from the servers to the user terminals. The database interface network uses 
the Selective Broadcast technique to distribute data on a high speed channel. Data 
requested by users are filtered out by the servers and sent to the user terminals through 
the user interface network. The user interface network can be any conventional Local 
Area Network for connecting the servers and the user terminals. A very tight upper 
bound on the mean response time of the system for uniform request distribution is first 
derived. This is followed by an approximate analysis for general request distributions. 
Simulation results and design examples showed that Selective Broadcast technique can 
provide an order of magnitude smaller response time under normal traffic conditions 
when compared to the non-selective broadcast technique such as the Datacycle™ system 
[11-12]. 
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2.1 Introduction 
Recent advances in computer and communication technologies have led to the 

development of information delivery systems that provide users with real time access to 
a broad spectrum of information. Examples of such information delivery systems are 
Videotex systems [1,2], multimedia information systems [3,4], digital news systems [5] 
and systems for medical imaging applications [6]. Conventional centralized information 
delivery systems are based on the central server model in which a central service 
computer replies to each user request in an individual response manner. The main 
drawback of this approach is the rapid increase of response time as the system load 
approaches the server's capacity. This situation can be improved with the introduction of 
the broadcast delivery and mixed delivery techniques [7-10]. In [10], it was shown that 
the response time using these techniques is significantly smaller than those based on the 
individual response model. However, the fact that a central server still remains in 
broadcast delivery models means that the limited power of the server is still the potential 
bottleneck of the overall information flow. 

The basic configuration of such systems based on the central server model is shown 
in Figure 2-1. Information is organized into units called pages, and stored in a database. 
Users make requests and receive the requested pages through their terminals. The 
service computer retrieves the requested pages and transmits them to the user terminals 
via a communication network. Instead of considering database systems where there are 
many record updates, we consider only the read-oriented information delivery systems in 
this chapter. 

Database 一 广 —icommunication Computer " l Network . 
u u q 

User 
Terminals 

Figure 2-1 A typical information delivery system. 
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2.2 The Distributed Architecture 
The system shown in Figure 2-1 has two potential bottlenecks: throughput of the 

communication network, and, I/O speed and processing power of the service computer. 
The relative significance of these two potential bottlenecks is application specific and 
depends on many factors. For future information systems with extremely large 
databases, the main bottlenecks will very likely be the service computer. 

Database V Server 2 J User L ^ Q 
Database~ Interface Interface 

\ Network / . Network . 

\ S e r v e r N / User 
Terminals 

Figure 2-2 A modified configuration of information delivery system. 

A multiple server architecture shown in Figure 2-2 is studied in this chapter. Here, 
the multiple servers working in parallel has the advantages of faster response due to 
distributed processing and modular growth in the number of servers. The database 
interface network and the user interface network parts are detailed as follows. 

A) Database Interface Network 
The function of the database interface network is to distribute information from the 

central database machine to the servers. One way to do this is to use the Datacycle™ 
technique [11-12] whereby the entire database is pumped out from the database machine 
and distributed to the servers through a high speed link and the servers filter out the 
information required by the users. This technique has two advantages. First, it is 
relatively easy to optimize the I/O performance for sequential accesses. Second, the load 
on the database machine is independent of the volume of the traffic generated by the 
users. A performance analysis of Datacycle'^ and a new concurrency control scheme 
for such use is given in [13]. 

/ 
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A new technique called the Selective Broadcast technique is proposed in this 
chapter for use in the database interface network to minimize the delay due to long cycle 
time of data. The data being broadcast is organized into units called blocks. Let there be 
a total of B blocks. The technique is based on the observation that in most cases only a 
small percentage of the data being pumped out is actually required; and so if a block is 
broadcast only when a confirmation for that block is received by the database machine, 
the data cycle time can be shortened to a small fraction of the original. The confirmation 
is done via the Confirmation Ring (Figure 2-3) which connects the database machine and 
all the servers. Periodically the database machine sends out a B bits frame to the ring. 
These B bits serves as a bit map of the B blocks of data. This frame circulates through 
all the N servers with a one bit delay on each. When the frame returns to the database 
machine, a new frame is sent for the next round of confirmation. A new frame 
generated by the database machine has a content of all zeros. If a server wants to 
confirm the ith block (due to a request from a user it is serving, say), it simply write a 
"1" to the ith bit of the frame. Otherwise the server simply passes the frame to the next 
server without modification. The content of the frame, therefore, reflects the specific 
blocks being confirmed. 

r •； 

I O j 3 MB/s j 
| | ~~n iDisk 1 I 

•-••«�� I I I 
I 丨 IGb/s High Speed Optical Link 
I H [Disk 2 " I MUX ^ E/0 ^ I j — ^ 
I I Server Server Server I • • • I J — — . J I 1 2 N I n iDisk 42 I ^ - p ^ r ^ — p 

I Controller ^臓 
| l . — ^ — — ， z z 
I Control Signals | / \ 
[ I ( Confirmation 、） 

Database Machine V Ring / 
\ � 7 

Figure 2-3 The database interface network and the central database machine. 

At the database machine, the returned frame is copied into a B-bit Block-confirm 
(BC) register. The block in transmission is marked by a pointer on the BC register. Each 
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time when the database machine is ready to send a block, it advances the pointer to the 
next non-zero bit and transmits the corresponding confirmed block. When the pointer 
reaches the end of the register, it cycles back to the beginning. Noting that the BC 
register contains the confirmation status of the entire database, so advance functions 
such as prefetching of data blocks from the database can also be incorporated. The 
analysis of such mechanisms, however, is beyond the scope of this chapter. 

A large number of RAID architectures can be used to implement the database 
machine. A very simple example is shown in Figure 2-3 where 42 inexpensive disks of 
data rate 3 Mbyte/s are multiplexed onto a 1 Gb/s high speed optical link. 

B) User Interface Network 
The function of the user interface network is to exchange data between the servers 

and the user terminals. A large variety of LANs and MANs can serve this purpose. 
Discussion of their relative merit, however, is beyond the scope of this chapter. 

C) Operation of the System 
Figure 2-4 shows a block diagram of the distributed data distribution system. When 

a page request is issued by a user, it is sent to the request numbering box (RNB) through 
the request path. The RNB has the simple function of distributing the requests according 
to the processing rates of the servers. A server performs two types of operations as 
follows. At the user interface side, when a server receives a page request it uses its 
internal page directory to identify the particular block needed and makes a confirmation 
on that block. On the database interface side, a server filters out all its required blocks 
from the database interface network, extracts the requested pages from these blocks and 
sends them to the user terminals through the data path. The page directory is stored as a 
directory block in the database. When a server is powered up the directory block is first 
retrieved from the database and loaded into the server. 
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Figure 2-4 The distributed data distribution system. 
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2.3 Mean Block Acquisition Delay for Uniform Request Distribution^ 

A) Upper Bound Derivation 
In the following analysis time is measured in slots, one slot being the time required to 

broadcast one block of data on the database interface network. The arrivals of requests is 
assumed to be a Poisson process of rate X per slot. In this section we study the case where 
the request distribution is uniform, or the probability that a certain block is requested is 
identical for all blocks. The analysis for general request distributions will be given in the 
next section. 

Let y{n) be the number of confirmed blocks waiting in the transmission queue at the 
database machine at slot n. y{n) therefore does not include the one in transmission. We 
shall, for convenience, call it the backlog size. Since the backlog size at slot n+\ depends 
only on y{n) and the number of requests in slot n, the evolution of yQi) is a discrete time 
Markov chain. 

Let random variable A denote the number of requests per slot and random variable K 
denote the total number of blocks for which the A requests are located. As the requests are 
assumed to be randomly located in the database, the probability that a requests fall in k 
blocks is given in [15] as 

k ^(k\ 
= = = [k-yf (2-1) 

\yJ 
Removing the conditioning on A, we obtain 00 jia -A 

P[K = k]=Y,P[K = k\A = a]^^^^ A: = 0，1,2，.••，B (2-2) 
a=0 以！ 

Next, let random variable M! be the number of arrivals whose requested blocks need to 
be confirmed when the backlog is i. We shall, for convenience, call these arrivals the new 
customers and those arrivals that do not generate confirmations the subsequent customers. 
IfMj=m, the backlog at the next slot will be i-l-^m. Given that the backlog is i and k blocks 
are requested at the current slot, the probability that m out of these k blocks are to be 
confirmed is 

iThis section was reported in [14]. 
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(number of ways to choose the m request blocks from the (B -/) unconfirmed blocks) 
_ X (number of ways to choose the remaining k-m request blocks from the i confirmed blocks) 

(number of ways to choose k request blocks from B blocks) 

(2-3) 
Removing the conditioning on K, we obtain the distribution of new customers in a slot as 

B 
P [ M i 户[M. = H 火=众 M火=众] (2 -4) 

k=0 
At steady state, the transition probabilities are given by 

hij^[r(n-\-\) = j\r(n) = i 
‘ 0 forj<i-\ (2-5) 
P[Mi = y - / + l] forj>i-\ 

Having obtained the transition probabilities, the equilibrium distribution of the backlog 
size, denoted as {tuq^kj, ...^n^} can be computed in the usual way. The average waiting 
time of the new customers, denoted by E[炉”己州],is given by the Little's formula as 

B 
Ef 1 TJ 冗i 

= ̂  = (2-6) 

= m 
m=0 1=1 

Note that W卿 is the waiting time experienced by the new customers. The subsequent 
customers will experience a smaller waiting time as the block request was already placed by 
the new customers. The expected waiting time of all customers E[W] can be computed as 
follow. Figure 2-5 shows the arrival of a new customer and its subsequent departure from 
queue after a waiting time W讚 slots. During its stay in the queue, subsequent customers 
Si, S2, ...，Sj for the same block will arrive. The arrival rate is A/B per slot. Let us condition 
on the event f F 讓 S i n c e the arrival of the subsequent customers is a Poisson process, 
their arrival times are uniformly distributed in interval [0,̂ ] and their average delay is just 
til. Let there be j such arrivals. Then the average waiting time of these j+\ customers is 

t ^ j l 
= (2-7) y + 1 

17 



Removing the conditioning on j, we have 
( t \ 

E\w\tUY — ^ - ^ ^ ^ 
' I r ^ (2-8) 
t B(l-e-細） =—+ 
2 22 

Wjiew 
New Customer 
Leaves Queue 

；； T .Time 

New Si S2 Si Sj 
Customer Arrivals of Subsequent Customers 
Arrives 

Figure 2-5 The arrivals of a new customer and the subsequent customers. 

The evaluation of requires the distribution of W腳 which is not available. But 
the use of Jensen's inequality [16] allows us to obtain an upper bound on E[W]. It is easy to 
show that (2-8) is a convex n function of t and therefore the inequality gives 

m ] ^ 竭『讀]+ B(i - ,狀[妒J/B)} (2.9) 
A plot of (2-9) shows that the 

curve is fairly flat for typical values of B and A. We would 
therefore expect the bound to be very tight. This is confirmed by the numerical results 
presented below. Finally the mean block acquisition delay E[7] is simply E[7]=E[网+1. 

After acquiring the blocks of data, the servers need to process them and deliver 
them to the users. The processing delay is usually a small fixed quantity independent of 
the system traffic. The delivery delay depends on the actual delivery network (usually a 
LAN) and its load. The mean response time for systems using Selective Broadcast 
technique is the sum of the three delays. The focus of the present study will only be on 
the mean block acquisition delay E[7]. 
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B) Numerical Examples and Simulation Results 
Numerical examples are given here to compare the average block acquisition delay 

for the Selective Broadcast technique and that for the Datacycle™. For Datacycle™, 
blocks are broadcast from the database machine sequentially with each block appearing 
exactly once in each cycle. The mean block acquisition delay for Datacycle™ is simply 
(B/2)+l slots and is independent of the request traffic. 

Figure 2-6 shows the expected number of new arrivals per slot (i.e. E[M]) against 
the arrival rate for the five cases: B=40, 60，80, 100 and 200. We observe that E[M] is 
practically independent of B. It grows linearly between 0<A<1 and saturates at 1 when A 
> 1. This is expected because as shown in Figure 2-7 the mean backlog size is a very 
small fraction of B in the range 0<A<1 and so almost all arrivals are "new" customers. 

o r 
^ / \B = 40,60,80,100 200 EEM ] 06 -- / 

04 •_ / 

叫 
0 J t - H ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ 

0 1 2 3 
ArrivalRate 义 

Figure 2-6 The expected number of new arrivals against arrival rate. 

Figure 2-8 compares the upper bound of the mean block acquisition delay E[7] with 
the simulation results for Selective Broadcast technique when B=100. The 95% 
confidence intervals are all smaller than the size of the symbol "•“ shown in the figure. 
The figure shows that the upper bound on E[7] is in fact very tight. Another observation 
is that the Selective Broadcast technique provides at least an order of magnitude smaller 
delay than that of the Datacycle™ (which has a constant delay of 51) at the traffic level 
of A<0.8. Selective Broadcast technique also provides uniformly lower delay than the 
Datacycle™ under all traffic conditions. The results for B=200 is similar and therefore 
not shown. 
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Figure 2-7 The mean backlog size against arrival rate for B= 100. 

60 1 

Datacycle 

50 -- -v；；^^' V V V • - • - • ” 
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Err]30 _- j 
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, , _ _ , 
0 1 2 3 4 5 

ArrivalRatB X 
Figure 2-8 The upper bound on the mean block acquisition delay E[7] for Selective Broadcast technique 

when B = 100. 
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2.4 Mean Block Acquisition Delay for General Request Distributions 
In this section we first present an approximate derivation of E[7] for general request 

distributions. We then show that the approximation is very accurate by comparing it with 
simulation results. 

A) Approximate Analysis 

Let Xi be the Poisson arrival rate of the requests for block /，and ^ =义.We 
define a cycle to be the period from the instance that a certain block has a chance to 
transmit until the instance it has the next chance to transmit. Obviously, blocks are not 
transmitted if they are not confirmed. Let random variable N be the cycle length in blocks 
and random variables ly be the number of times block i appears in a cycle. Obviously, 
for a cycle to exist and «,e{0，l}. We thus have under the condition that 
not all n-s are zero. A bound oniVwithout the attached condition is therefore 

N < l + +•••+% (2-10) 
As the «/s are all non-negative random variables, we can take expectation to obtain 

B 
对列�1 + Z !户=1] (2-11) 1=1 

where P[«/=l] is the probability that block i is confirmed (i.e. will appear in a cycle) and is 
given by 

P[ni = l] = P[at least one block i arrival in a cycle ] = 1- e一又�N ( 2 - 1 2 ) 

Since the distribution of N is not available, the best we can do is to use Jensen's inequality 
[16] to obtain an upper bound on It is easy to show that (2-12) is a convex o 
function of N and therefore P[”产 1] is bounded by 

(2-13) 
Substitute into (2-11), we get 

B 
E [ N ] <{B + l ) - ^ 厂义河… (2-14) 

/=1 Let g(E[N]) denote the R.H.S. of (2-14). 
Lemma 1: There is a unique solution denoted as x for E[N]=g(E[N]) in the interval 

(0,B+1). 
Proof: Figure 2-9 shows E[A/] and g(E[iV]), and we observe that 

1.E[iV]<g(E[AG)atE[7V]=0. 
2. g(E[7V]) is a strictly increasing function ofE[N]. 
3. E[7V]>g(E[iV]) at E[iV]=B+L 

Therefore there exists one and only one solution in (0，B+1). 
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B + 1 ^ 
E[Nt:ElN] 

0 E[N] B+I 

Figure 2-9 Relationship between E[N] and g(E[N]). 

Theorem 1: The expected number of confirmed blocks per cycle is bounded hy x. 
Proof: Referring to Figure 2-9，we observe that E[A^<g(E[7V]) for and 

E[iV]>g(E[iV]) for E[7V]>x. Therefore, the inequality given by (2-14) is satisfied only 
when Substitute x into (2-14), we obtain 

B 

< ( B + 1 ) - 2 ] 厂 义 ( 2 - 1 5 ) 
/=l 

Having obtained an upper bound on E[N], the mean block acquisition delay E[7] 
can be approximated by: 

E[T] = average waiting time + block transmission time 
= 三 + 1 (2-16) 

2 

B) Numerical Examples and Simulation Results 
To verify the analytical results obtained above, we perform simulations on three 

typical request distributions: uniform distribution, Zipf s distribution and geometrical 
distribution. The Zipf s distribution [17], stipulates that block i is requested with 
probability cli where c is the normalization constant. For geometrical distribution, the 
request probability for block i is equal to cp\ where c is the normalization constant and 
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p is the skewing factor. We observe from the results shown in Figure 2-10 that for all 
three request distributions, the approximation on E[T] is very accurate compared to the 
simulation results. The results for the Zipf's and geometrical distributions show that 
Selective Broadcast technique performs better for more skewed distributions. This is 
expected because more requests are identifying on a smaller set of popular blocks with 
skewed distributions. 

Approxh atbn 
60 J • S in u b t b n Fon t s 

Datacycfe 
50 -- " ^ J ^ ^ V ^ H r • • • * • • 

SB-geom etrcal 
SB-unrfonn 广 

/ SB-Zipfs 

A SB-geoin etrfcal 

0 1 1 1 1 
0 1 2 3 4 5 

ArrivalRatB X 

Figure 2-10 Approximation on the mean block acquisition delay E[7] for Selective Broadcast technique 
when B = 100. 
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2.5 Optimal Choice of Block Sizes 
To determine the optimal block size, we redefine a slot to be the time required to 

broadcast one page (instead of one block) of data on the database interface network. Let 
b pages be grouped into a block and let the database has a total size of L pages. The 
number of blocks B is then equal to�L/zTI. The time for the database machine to locate a 
certain block on the disk is assumed to be a constant of d slots. With that the 
transmission time for a block is b+d slots. One recent study on the HP-UX (Unix) 
computer systems shows that half of the I/O operations have nearly constant mean I/O 
time if cached disks are used [18]. Since the disk in a Selective Broadcast system 
operates sequentially with skips, I/O requests will therefore frequently hit the cache 
memory of the disk. The disk delay can thus be assumed to be closed to a constant for 
most I/O requests. With that, the approximate analysis given in the previous section 
applies directly by equating one "block" time unit to b+d "page" time units. 

Figure 2-1 la shows how the block size b affects E[7] for uniform request 
distribution when d=l. At A=1 and A=10, b is optimal for a wide range between 5 and 
100. When b is smaller than say 5, the disk delay will dominate the transmission 
overheads. On the other hand when b is larger than say 100，the time spent in 
broadcasting the non-requested pages becomes the major transmission overheads. At 
lower traffic level such as 1=0.1, the system always favors smaller b because the 
number of requested pages per confirmed block is closed to one. The time wasted in 
broadcasting other non-requested pages in a confirmed block will be minimized if a 
smaller b is chosen. In Figure 2-1 lb, similar conclusions can be drawn for the Zipf s 
distribution. 

2500 2500 

2000 - y 2000 •• 
1500.. / 1500.• / Em / Em / 
1000-^10 J 1000-s^io J 
500 • 500 • 

0 1 0 ^ 1 
I 10 丨00 丨000 丨 10 100 丨000 

B fock size b Block size b 
a) Uniform page request distribution. b) Zipf s request distribution. 

Figure 2-11 The effect on changing the block size b. The curves show the approximation on the mean 
block acquisition delay at different arrival rates. 
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2.6 Chapter Summary 
In this chapter a new architecture for very high speed data distribution is proposed. 

The architecture consists of two separate networks: the database interface network and 
the user interface network. A new technique called the Selective Broadcast technique is 
used in the database interface network for high speed data distribution. An upper bound 
on the mean response time for uniform request distribution is derived and an 
approximate analysis for general request distributions is given. Simulation results show 
that the upper bound is very tight and the approximation is very good. Numerical 
examples show that the Selective Broadcast technique can give much smaller block 
acquisition delay than the Datacycle'^^ technique under non-overload conditions. 
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Chapter Three 
Dynamic Multiple Parity (DMP) Disk Arrays 

The performance of today's database systems is usually limited by the speed of 
their I/O devices. Fast I/O systems can be built from an array of low cost disks 
working in parallel. This kind of disk architectures is called RAID (Redundant Arrays 
of Inexpensive Disks). RAID promises improvement over SLED (Single Large 
Expensive Disks) in performance, reliability, power consumption, and scalability. 
However, a general fact about RAID is that the "write" operation is difficult to 
speedup. In this chapter, we propose a new RAID architecture called Dynamic 
Multiple Parity (DMP) Disk Array for serial transaction processing database systems. 
Serial transaction processing database systems include engineering database systems, 
fully-replicated database systems using a completely centralized algorithm, and 
distributed systems using the conservative timestamp ordering algorithm. DMP Disk 
Array can significantly increase the I/O throughput by incorporating multiple parity 
disks. Due to the inherent distributed sparing property, DMP Disk Array can provide 
normal service to the users under single disk failure condition. Delay and maximum 
throughput analysis on DMP Disk Array is performed. Results show that DMP Disk 
Array can provide 30 to 40% improvement on "write" throughput over that of RAID 
level 5 when one extra parity disk is used. 
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3.1 Introduction 
In the past decade, considerable attention has been drawn to the research and 

development of database computers. As Su [1] has stated in his book, there are three 
reasons why database computers are needed: 1) The need for efficient and effective 
data management; 2) The need for more powerful database management systems; and 
3) High performance database computers become economically feasible due to the 
advancement in hardware technology and the reduction in hardware cost. The 
performance of a database system is usually limited by the speed of its storage devices. 
One good example is the Datacycle'^^ project at BellCore starting from the late 80s 
[2,3]. BellCore proposed an innovative database architecture called the Datacycle™. In 
this architecture the entire database is periodically pumped out from the central 
database to a number of servers, in which the user required data are filtered out. Since 
the whole database is pumped out, Datacycle™ has an unlimited throughput for 
read-only transactions. Datacycle'^^ technique assumes that the database is "memory 
resident,“ i.e. the entire database has to reside in a very fast storage^. This assumption, 
however, limits its scope of applications. 

Redundant Arrays of Inexpensive Disks (RAID) is an innovative concept in 
designing fast and reliable data storage systems. The philosophy behind RAID is that 
instead of using one single expensive disk to achieve the performance and reliability 
required, an array of low cost disks working in parallel are used. Five levels of RAID 
have been defined when RAID was first introduced^ and the RAID level 5 was found to 
be one of the best [4]. For all levels of RAID the "write" operations are much slower 
than the "read" ones. This limitation is particularly severe for applications with 
frequent data updates. 

There are two reasons why a "write" operation takes more time for RAID. 
Firstly, a "write" operation involves the additional step of reading back the old data 
from one disk and parity from another disk. Secondly, a "write" operation involves the 
waiting time for two specific disks to be free simultaneously before actual writing. This 
waiting time can be reduced by using the technique presented in this chapter. 

In this chapter we propose a new RAID architecture called Dynamic Multiple 
Parity (DMP) Disk Array for serial transaction processing database systems. Many 
database systems process transactions in this way. Examples are engineering database 
systems [5-6], fully-replicated database systems using the completely centralized 
algorithm, and distributed systems using the conservative timestamp ordering algorithm 
[7-9]. When we discuss the operation of DMP Disk Arrays, we will see how this kind 
of database systems handle I/O requests in a way different from other database systems. 
We will also show that DMP Disk Array can significantly reduce the waiting time of 
disk operations, and provide a higher I/O throughput than the RAID level 5. In the next 

1 In the prototype built by BellCore, the whole database resides in RAM. 
2 Some disk manufactors introduce their own levels ofRAIDs later. 
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3.2 DMP Disk Array 

A. Sector Coordinate System 
The sector coordinate system can be used to describe RAID operations, 

including that of DMP Disk Array. Consider a disk array system with M disks where 
each disk consists of Z sectors and each sector can store K bits of information (Figure 
3-1). Let 5(z j ) = . . . be the bit pattern of sector j in disk i. It can be 
data or parity. As an example, a RAID level 1 is described in this sector coordinate 
system as: 
S{iJ) = S(i^lJ) 7 = 1,2,3,...,Z, / = l,3,5,. . . ,M.l (3-1) 

Diskl Disk 2 DiskM 
一" “、）c 广 、 

Sector 1 j m J ^ J J 
Sector 2 ^ S ^ ^ S ^ 

• . S ^ 
• 

• . 
z z ^ 

Sector Z s(l，Z) _ _ _ S(M,Z) 
— '̂c：：̂ ^̂ ^̂  u p '-， 

S(E(Z)，Z) 
^ p：： < 

Data Sector Parity Sector 

Figure 3-1 The sector coordinate system showing level 5 RAID. 

Similarly, RAID level 4 and level 5 can be described as: 
令 f (1,1,1,...,!) for all; {odd parity} 
合（'，刀-1(0，0,0,…，0) for all j {even parity} “ 
where Z is defined here as the mod-2 sum of the sectors' contents: 
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M 
Z SQJ�= ^(1, j) © S(2,m.. j) 
1=1 

= ( V，W ) . ’... 卿产w，"..，〜2,巧 ̂ ^ ̂  

(3-3) 
Let E(j) be the location of the parity sector at row j. For RAID level 4 E(f) 二M and for 
RAID level 5 E(j)=(j mod M). The placement of these parity sectors are shown in 
Figure 3-1. A study on the various parity placement methods for RAID level 5 can be 
found in [10]. 

B. Sector Organization 
The DMP Disk Array proposed in this chapter is a new RAID architecture for 

which the RAID level 5 is a special case. RAID level 5 has only one parity sector in 
each sector row and therefore it is not possible to simultaneously update two or more 
sectors on the same row. DMP Disk Array allows such updates by placing R parity 
sectors in each row. Their locations Ej(j),E2(j),...,Ej^(J) for rowy are 
E,(j) = r + j mod M r = (3-4) 
Lee [10] showed that for relatively large request size of hundreds of kilobytes, the 
choice of parity placement can significantly affects the performance of disk arrays 
whereas for small request size, the choice of parity placement is insignificant to system 
performance. We therefore arbitrarily choose the parity locations as stated in (3-4). 
Although there are R parity sectors in each row, parity integrity described in (3-2) is 
always maintained for DMP Disk Array. (An example on the sector organization of 
DMP Disk Array for R=2 is shown in Figure 3-2.) 

There are two advantages of placing R parity sectors in each row. First, for 
each data sector modification, we can choose any one of the R parity sectors in the 
same row for simultaneous parity modification. Hence blocking due to busy disks can 
be significantly reduced. Second, up to R data sectors on the same row can now be 
modified simultaneously. We now prove that DMP Disk Array has these useful 
properties. 
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Figure 3-2 The placement of parity sectors for DMP Disk Array when R=2. 

C. Properties of DMP Disk Array 
Property 1 concerns about the simultaneous negation of two bits on the same 

row. 
PROPERTY 1. For any row j, simultaneous negation of any two bits in the same bit 
positions of two different sectors will not affect the parity sum of the row. 
PROOF. Consider the set of rth bits of each sector in sector row j, i.e., br^j, bj^j,... 
and br^J. In order to maintain parity integrity, the sum of these bits should always be 1 
for odd parity, or 0 for even parity. The parity sum after the negation of any two bits 
by^j and br^j, where a^b is: 
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(3-5) 
and is identical to the parity sum before the simultaneous negation. We can extend the 
argument on the modification of two bits to that of the modification of two sectors on 
the same row. This is stated as Property 2. 
PROPERTY 2 Parity integrity of a row can be maintained by modifying any one of 
the parity sectors in the same row. 
Property 2 implies that there can be R different ways to update a data sector. Due to 
this flexibility, the probability that a "write" request is blocked due to the busy disk can 
be reduced. 
PROPERTY 3 Consider the simultaneous modification of data in sector j of disk a 
and parity in sector j of disk b. We denote the old data sector, the new data sector, the 
old parity sector and the new parity sector as S(a’j) lold, S(aj) I new, S(bJ) I old and 
S(bJ) I new respectively. For maintaining data integrity, the new parity sector should 
be: 
S(hJ) L v = S{aJ) L ®S{aJ) ®S{hJ) L (3-6) 
PROOF In order to maintain parity integrity, the partial sum of the two sectors S(jx’j) 
and S{]b’j) must not be changed after sector modification, i.e. 
S{aJ) ®S{hJ) = S{aj) L ®S{bJ) L (3-7) 
Solving for S{b,j)卿，（3-6) is obtained. 
PROPERTY 4 For BMP Disk Array with R parity sectors in each row, R data sectors 
locating at the same row can simultaneously be updated. 
PROOF Equation (3-7) shows that for any sector update on row j, the partial sum of 
the data sector and the parity sector will always be the same. Thus, the particular sector 
update will not affect the updating of the other sectors in row j. From property 3，we 
find that each sector update requires the old contents of two sectors only. Therefore, 
each update is actually carried out by two disks working in cooperation, and is 
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independent of the operations of the rest of the disks. Therefore with R parity sectors, 
R simultaneous updates can be performed. 
PROPERTY 5 Consider a DMP Disk Array with M disks and R parity sectors in each 
row (R>1). When a disk fails, it is possible to reconfigure the remaining M-1 disks to 
a new array with R-l parity sectors in each row without data loss. 
PROOF Let (p,p,...,p) be the parity sum of all the sectors in a row, say row j, and let 
S Q ) i J ) , S Q ) 2 J ) , … b e the parity sectors. Obviously, b j = E i ( j ) ,匕之二㈣仇…， 

Suppose disk i fails. We consider two cases for the recovery of S(j，j). 
(i) If S�i,j) is a data sector, it can be recovered from M 

•̂ (z，/) = ( A / V .，/^)® Y,S{nJ) (3-8) 
One of the parity sector, say can be used to store the recovered data S{i,j). 
To maintain parity integrity another parity sector, say SibjJ), is modified as: 
S(b,J) = S{b,J)®S(bj,J) (3-9) 
before storing the recovered data in disk bĵ . The recovered DMP Disk Array has 
now R' l parity sectors. 

(ii) If S{i,j) is a parity sector, then no data is lost. The parity integrity can be recovered 
by modifying another parity sector, say b, as follows: M 
S(bJ) = (3-10) 

n实b 

Property 5 tell us that DMP Disk Array has the distributed sparing property 
discussed in [11]. It is shown in [11] that distributed sparing is the best sparing 
technique for small disk arrays. 

D. Principle of Operation 
Figure 3-3 shows the organization of DMP Disk Array. Requests from host are 

directly sent to the disk controller for I/O operation. The disk controller consists of 
four parts: a FCFS queue, a local memory, a scheduling processor, and a DMA 
controller. The queue is used for storing I/O requests. Since we are considering 
systems which execute transactions in a strict order, a single global queue with FCFS 
service discipline is used. Note that this is different from other systems reported in the 
literature which use separate disk queues [12-15]. The data associated with each request 
(i.e. the new data for a sector) is stored in the local memory when the request is placed 
on the queue. The local memory is also used for buffering the data sent to/read from 
each of the disks with the help of the DMA controller. The DMA controller functions 
basically as a multiplexer/demultiplexer and handles simultaneous data transfers to 
various disks. The scheduling processor is responsible for distributing I/O requests to 
the disks, and performs all necessary processing. Specifically, its functions are outlined 
as follows: 
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1. It read a request from the FCFS queue when ready and determine whether the 
request is a "read" or a "write" type. 

2. For a "read" request, the processor will 
i) check the status of the disk involved with this request; 

ii) instruct the disk involved to read the target sector; 
iii) load the sector to the local memory; and 
iv) signal the host for data ready. 

3. For a "write" request, the processor will 
i) check the status of the disks and select at random the parity sector of a non-

busy disk; 
ii) read the old data sector and the selected parity sector; 

iii) compute the new parity sector according to equation (3-7); 
iv) write the new data sector and the new parity sector to their corresponding 

disks; 
v)reacl back the parity and data sectors for verification; and 

vi)signal the host for "write" completion. 

Control r "•"""! 
二a Disk Controller r • ^ i T 
Path ^ I I 1 1 

； I / O Queue ； | � ； 
Requests ！ nT| i | 
from Host Scheduling < [ 
Signal to— _; Processor I | \— 

Host 丁 _ ^ I • Disk 1 _ _ L J i p i I H " ” " “ 
i Local I i I 

> ： ! • 

j Memory | ! I 
J i i i * 

！ ^ ^ _ _ i ^ i I . • ~ 1 I Write Data i DMA ! 
Read D a t a J Controller � • Disk 1 ——— M 

Figure 3-3 Organization of DMP Disk Array 
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3.3 Average Delay 
A) Analysis 

Figure 3-4 shows a queueing model for DMP Disk Array. Requests sent from 
host become jobs to be served in the servers. Job arrivals are assumed to be a Poisson 
process with rate 义.A job is of the "write" type with probability a and of the "read" 
type with the remaining probability. Jobs not yet served by the disk array are queued in 
a FCFS queue. We cdll the job which is at the top of the queue the Head Of Line 
(HOL) job. The probability that the HOL job needs to access a particular disk is 
assumed to be the same for all disks. This assumption is usually not true. But it can be 
made true by distributing the frequently accessed data uniformly across all the disks. 
For mathematical convenience we assume that the service time for a job is 
exponentially distributed with the service rates for a "write" job and a "read" job 
denoting as ju^ and jUj. respectively. 

^ Sever _ 
1 

^ Sever ^ 
\W 2 Jobs in • ^ 

參 

• 

^ Sever ^ 
M 

Figure 3-4 Queueing model of DMP Disk Array. 

Let random variables N^ and N, denote the number of "write" jobs and "read" 
jobs in the disk array, and N^ be the number of queueing jobs (including the HOL job) 
at any time. It is easy to see that the triplet completely specify the state of 
the system. Let S^ ^ ^ denotes the state of the system when iV州=>v，N^=r and 
State transition will take place when a new job arrives or when a job in the system 
departs. Since the time spent in a state is exponentially distributed, the evolution of 
{pi^,N”N� is a continuous time Markov process. We define the transition probabilities 
to be 
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r " ^ w r q ^ - ^ ĝ)=(拟'，广•，�•) after State transition 
， ’ ’ ， ( � / � (3-11) 

= before state transition 
Consider a particular state transition at time t. Define events E!，£2，and E3 as: 
El: A new job arrives at time t. 
E2： A "read" job departs at time t, 
E3： A "write" job departs at time t. 

These events are listed in the first column of Table 3-1. The disk array is at 
immediately before t, i.e. at time t-dt (St^O). The probability that a new job will 
arrive in the interval (t-St,t) is ASi if St—Q. Similarly, the probabilities that the disk 
array will finish serving a "write" job and a "read" job in this small time interval are ju 
^St and respectively. Therefore, 
P[E,] = -^—— 

P[E2] = - ^ — — (3-12) 

When a new job arrives (i.e. Ej occurs), the probabilities that this HOL job is of the 
"read" type and of the "write" type are l-a and a respectively. However different 
probability for each of the job type for the HOL job is found when a job departs (i.e. 
either E � o r E^ occurs). We denote the probabilities that the HOL job is of the "read" 
type and of the "write" type by h^ and l-h^ respectively for system transitions due to 
job departures. Probability h^ can be derived as follows. At the previous state change, 
the HOL job was blocked because it requires the access of one or more busy disks. By 
that time there were 2w+r busy disks. If the HOL job is of the "read" type, the 
probability of blocking k̂  is: 

_ number of busy disks _2w-\-r Ky, — = (3-13) total number of disks M 
On the other hand, if the HOL job is of the "write" type, the probability of blocking k从 
can be derived as follows. We shall call the disk which the HOL job targets for data 
modification the data disk, and the R disks storing the required parity information the 
parity disks. Let e v e n t s � a n d be: 

。：The data disk to be accessed was free at the previous state change. 
At least one of the R parity disks was free at the previous state change. 

Then, 
= p[no blocking] 

= (3-14) 

1 A] is given by: 
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^number of ways to ^ fl Iw^r <R 
choose R parity disks 

嚇 1] = 1 - — 二 ' b u s y d i s k s j : [ 2 二 (3-15) 
川 j^numberofwaysto ^ L V ^ ； 2w+r>R 

choose R parity disks -1 
^from M - \ disks j v ^ > 

Substituting into (3-14) and solving for 州 we obtain 
lw^r<R M f 2W-\-A 

� = ， — I R I j (3-16) 
M M (M-X" 

‘ I R J 
Having obtained k̂  and k^, h^ is given by: 
K-去 (3-17) 

Ay I r V y ^ 

Conditioning on event Ê  and giving the type of the HOL job, the probabilities 
of having different numbers of jobs located in the queue and in the disk array are listed 
in the sixth column of Table 3-1. For example, the first row of Table 3-1 corresponds 
to the case that a "read" job enters an empty queue is blocked, or the number of "read" 
jobs and "write" jobs in the disk array remain the same and q' becomes 1. The 
probability of having the new triplet (w',r\q')=(w,r,l) after t under the two given 
conditions is denoted as a；. Similarly the fifth row of Table 3-1 corresponds to the case 
that a "write" job enters an empty queue and gets served immediately. The probability 
of having (w>'，。= (w+7，r，0) after r under the two given conditions is denoted by a^ 
as shown. The derivation of all a / s are given in the appendix. 

The seventh column of Table 3-1 shows the type of the new HOL job and its 
corresponding probability. A new HOL job is blocked at time t with probabilities k', 
and k’w when it is of the "read" type and of the "write" type respectively. Similar to the 
derivations on k, and k^, and k'^ can be obtained from (3-13) and (3-16) by 
changing the number of busy disks from 2w+r to 2w'-\-r'. 

The last column of Table 3-1 shows 15•州,,,《，五J. By removing the 
condition on E^，the transition probabilities are thus obtained: 
巧 V r w l � ,，一 Z 拟 々 I 本 ,， , ,五準 / ] (3-18) 

/=1 
Having obtained the transition probabilities, the equilibrium distribution of 

different states can be computed in the usual way. The expected numbers of jobs in the 
queue are given by: 

|_从/2�M 00 
E[N^]= Z E Z ^ ^ t V , . ] (3-19) 

w=0 r=0q=0 
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Ei New states (W,r',q') Type of the P[w«/，q’ Type of the P[Sŵ ,q, 
H.O 丄 job lEj] newHOLjob Sw-ŷ q-lEj] 

W=w, r-r read (1-a) ^ - (l-a)ai 

q-1 write (a) ^ - oca! 
El all other new states - ^ 0 - 0 

{a new q=0 w'=w, r'=rH read (1-a) ^ - (l-a)a3 
job q -0 ŵ =w+l，r'=r write (a) ^ - aa4 

arrives} all other new states - 0 - 0 
q*>l all new states - 0 - 0 
q-q+1 w'=w, r-r - 1 - 1 

q>l all other new states - 0 - 0 
qVq+1 all new states - 0 - 0 
q-0 w*=w，r-r-1 - 1 - 1 

q=0 all other new states - 0 - 0 
qVO all new states - 0 - 0 

w'=w, r'=r-l read(l-hw) as ： (l-hw)a5 
E2 q-1 write (hw) ： hy^ 

{a read all other new states - 0 - 0 
job q=l q*>l all new states - 0 - 0 

departs} w*=w，r'=r read(l-hw) a? ： (l-hw)a7 
q-0 w'=w+l, r'=r-l write (hw) ag - hwag 

all other new states - 0 - 0 
w'=w, r'=r-l read (l-h^) as ： (l-hw)a5 

q>l q-q v̂rite (hw) 06 - hwa6 
all other new states - 0 - 0 

q*>q all new states - Q . 0 
Table 3-1 Transition probabilities of each event Ei for average delay analysis. 
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Ei New states (W，r•’q,) Type of the P[w',r',q' Type of the P[Sw.r.q, 

H.O丄 job lEil new HOL job Sw-.r-.g-1 Ej] 

w'=w, r'=r read (1-hw) av read ((l-a)k'r) (l-hw)(l-a) 

aykV 
write (ak'w) (l-hw)aa7k'w 

q'=q-l W=w+l，r'=r-l write (hw) ag read ((1 -a)k'r) hw( 1 -cQask'r 

write (ak'w) hwaagk'w 

all other new states ： 0 ： Q 
W=w, r-r-l+(q-q') read (1-hw) ag ： (l-hw)a9 

q'<q-1, w'=w+(q-q'), r'=r-l write (hw) ^ ： hwaio 

q'=0 read (1-hw) an (l-hw)aii 

El q>l (w'-w)+(r'-r+l)=q-q' write (hw) a^ ： hwaii 

(cont.) all other new states : 0 : 0 
w'=w, r'=r-l+(q-q') read (1-hw) ag read ((l-a)k'r) (l-hw)(l-a) 

agk'r 

write (ak'w) (l-hw)aa9k'w 

w'=w+(q-q'), r'=r-l write (hw) aio read ((1 -a)k'r) hw( 1 -a)aiok'r 

q'cq-l, write (ak'w) hwaaipk'w 

q'>0 read (1-hw) a" read ((l-a)k'r) (l-hw)(l-a) 

aiik'r 

w'>w+1，r'>r, write (ak'w) (l-hw)aaiik'w 

(w'-w)+(r'-i+l)=q-q' write ( h w ) an read ((1 -a)k'r) h w ( 1 -a)ai2k'r 

write (ak'w) hwcxa^kw 

all other new states - | 0 - 0 
Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd). 
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E i New states (W,r',q') Type of the P[w*，r•， Type of the P [Sw’r ’q , 

H-O-Ljob q'|Ei1 newHOLjob Sw-j-.q-1 Ei1 
q-0 W=w-1, r'=r - 1 ： ！ 

q=0 all other new states - 0 ： 5 
qVO all new states - 0 ： 2 

W = w - l ， r ' = r r e a d ( 1 - h w ) a n ： ( l - h w ) a i 3 

q,=l write (hw) au ： hwau 

all other new states ； 0 ： 2 
q=l q*>l all new states ： 0 ： 2 

w'=w-l,r'=r+l read ( 1-hw) ais ： (l-hw)ai5 

q'=0 W=w’ r-r write (hw) ai6 ： hwaie 
all other new states - 0 ： 2 

E3 W=w-1，r'=r read (1-hw) a^ ： (l-hw)ai3 

{a write q'=q write (hw) an ： hwa" 
job all other new states ； 0 ： 9 

departs} q*>q all new states ： 2 ： -
W=w-\, r'=r+l read ( 1 - h w ) a" read ((l-a)kV) (l-hw)(l-a) aiskV 

w r i t e ( g k ' w ) ( 1 - h w ) a a 丨 sk 'w 

q>l q , = q-l W=w, r-r write ( h w ) aie read ((1 -a)k'r) h w ( 1 -a) aiek'r 

write (gk'w) hwocaiek'w 
all other new states ； 0 ： 2 
w'=w-l, r'=r+(q-q') read ( 1 - h w ) an ： (l-hw)ai7 

q'cq-l ’ w'=w-l+(q-q'), r'=r write (hw) ais ： hwaig 
q ' = 0 W > v / , r ’ 祈 1 ’ r e a d ( 1 - h w ) a i g ： ( l - h w ) a i 9 

(w'-w+l)+(r'-r)=q-q' write (hw) a2o ： hwa2o 
all other new states - 0 ： 0 

Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd). 
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Ei New states (w•，r’,q’） Type of the P[w',r',q' Type of the new P[Sŵ ,q, 
H.O.L job lEil HOL job I Eil 

w*=w-l，r'=r+(q-q,) read (1-hw) an read ((l-a)k'r) (l-hw)(l-a) 
ank'r 

write (ak'w) (l-hw)aai7k'w 

w'=w-l+(q-q'), r'=r write ( h w ) aig read ((1 -oQkV) h w ( 1 -oQaigk'r 

E3 q>l q'<q-l write (ak'w) hwocaigk'w 

(cont.) q ' > 0 read ( 1 - h w ) read ((l-a)k'r) ( l - h w ) ( l - a ) 

aipk'r 
W>w, 1， write (ak'w) (l-hw)aai9k'w 

(w'-w+l)+(r'-r)=q-q' write (hw) aio read ((1 -a)k'r) hw( 1 -a)a2ok'r 
write (ak'w) hwaa2ok'w 

all other new states - 0 ： 0 
Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd). 

B) Numerical Example 
As an example consider a small DMP Disk Array with data storage capacity of 

4 disks. We assume in this example that //^=30 jobs/sec and /i,=50 jobs/sec. Figures 
5 to 7 shows both the analytic and simulation results for this disk array, and we observe 
that they match very well with each other. Note that for all simulation results shown in 
this chapter we have extended the simulation time sufficiently long to make the 95% 
confidence intervals smaller than the size of the simulation points shown. 

Figure 3-5 shows the job delay against the arrival rate when all jobs are of 
"write" type. As indicated by the curve, the maximum throughput for RAID level 5 is 
about 32.5 jobs/sec. When one parity disk is added to the disk array (i.e. when M=6 & 
R=2), we find that the average job delay is reduced under all traffic conditions and the 
maximum throughput is increased by about 24% when compared to RAID level 5. If 
one more parity disk is used (R=3), we find that the job delay is further reduced under 
all traffic conditions and 40% increase in maximum throughput is observed. 
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Arrival rate (Jobs/^ec) Figure 3-5 Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity M-R is 4 disks). All jobs are of "write" type (a= 1). 
Figure 3-6 shows the job delay against the arrival rate when half the jobs are of 

the "write" type (a=0.5). We observe from the figure that DMP Disk Array with R=2 
and 7?二3 again performs better than RAID level 5 under all traffic levels. Compared 
with RAID level 5, DMP Disk Array provides 13% and 23% increase in maximum 
throughput when and R=3 respectively. When all the jobs are of the "read" type 
(Figure 3-7), DMP Disk Array provides relatively small increase in throughput. 
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Figure 3-7 Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity 

M-R is 4 disks). All jobs are of "read" type (a=0). 
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3.4 Maximum Throughput 

A) Analysis 
Although the analysis given in section III provides an exact solution on average 

job delay, the computation is very demanding when the disk array is large. In the 
following, we present a simplified analysis which gives the maximum throughput for 
DMP Disk Array. A modified model shown in Figure 3-8 is used in our analysis. 
Compared with the previous model (Figure 3-4)，the FCFS queue is removed and we 
assume that there is always a new job available at the input of the disk array. All other 
previously used assumptions are used in this maximum throughput analysis. Since the 
queue is removed, system's state can solely be specified by N^ and A/̂ ,and is denoted 
by S对,State transition will take place when a job in the disk array departs, i.e. either 
E2 or E3 occurs. Since the time spent in a state is exponentially distributed, the 
evolution of N^ and N^ remains to be a continuous time Markov process. As before, we 
define the transition probabilities to be 

=w\Nf.=r' after system transition = = r before system transition] 
(3-21) 

^ Sever ^ 
1 

^ Sever ^ 
^ I 2 

Jobs in • 
• 

^ Sever ^ 
M 

Figure 3-8 The modified queueing model for DMP Disk Array. 
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Consider a particular state transition occurs at time t. The probability of 
occurrence for E � a n d E^ are given by 
P[E2] = ^ ^ 

狄 ( 3 - 2 2 ) 
P[E3]=狄"" 

wju^+rjur 
Given that a specific event Ei occurs, the transition probabilities 冰 广 人 a r e 
listed in the last column of Table 3-2. The derivations on probabilities â  are given in 
the appendix. Having obtained the transition probabilities, the equilibrium distribution 
of different states can be computed as before. The expected time between successive 
job departures X is given by \MI2\ M 1 
X : Z Z 巾 " ] " " “ ^ (3-23) 
Finally, the maximum throughput for DMP Disk Arrays T is 
r =丄 （3-24) 

X 

48 



Ei New States (w',r') Type of the P[w*，r’|Ei] Type of the new P[Sw/, 
H.aL job HOLjob Sw/1 Ei] 

W=w, r-r-1 read (1-hw) ^ ： (l-hw)as 

write (hw) ^ ： hwae 
w'=w, r'=r read (1-hw) read ((l-a)kV) (l-hw)(l-a)a7kV 

write (gk'w) (l-hw)aa7k'w 

w*=w+l，r*=r-l write (hw) as read ((l-a)k'r) hwO-oQagkV 

write (gk'w) hwaagk'w 

E 2 w'=w, r'>r read ( 1 - h w ) ap read ((1 - a ) k ' r ) (1 - h w ) ( 1 -oQagk'r 

{a read vvrite (ak'w) (l-hw)(xa9k'w 

job w^w+1, r-r-1 write (hw) aio read ((l-a)k'r) hw(l-a)aiok'r 
departs} write (ak'w) hwaaiok'w 

read (1 -hw) ai 1 read ((l-a)k'r) (l-hw)(l-a)aiik'r 
w^w+1, r*̂  write (ak'w) (l-hw)aaiik'w 

write (hw) a^ read ((l-a)k'r) hw(l-a)ai2k'r 

write (ak'w) hwaai2kw 

all other new states - 0 - 0 
Table 3-2 Transition probabilities of each event Ej for maximum throughput analysis. 
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Ei New States (w',r') Type of the P[w*,r’|Ei] Type of the new P[Sw/, 
H.0丄 job HOL job Sw"/|Eil 

w*=w-1，r-r read(l-hw) ^ - (l-hw)ai3 
write (hw) ^ ： hwa" 

W=w-l，r,=rH read(l-hw) a" read ((l-a)kV) Cl-hw)(l-a)ai5kV 
write (ak'w) (l-hw)(xai5k'w 

w'=w, r*=r write (hw) aie read ((l-a)k'r) hw(l-a)ai6k'r 

write (ak'w) h^aaiekw 

E3 w*=w-l’r*>r+l read(l-hw) a! 7 read ((1 -oQk'r) (1 -hw)( 1 -a)ai7k'r 

{a write write (ak'w) (l-hw)aai7k'w 

job W>w, r'=r write ( h w ) aig read ((l-a)k'r) hwO-cQaisk'r 

departs} Avrite (ak'w) hwaaigk'w 

read (1-hw) ai9 read ((l-a)k'r) (l-hw)(l-a)ai9k'r 

w•之w，r'>r+l write (ak'w) (l-hw)aai9k'w 

write ( h w ) a2o read ((l-a)k'r) hw(l-a)a2ok'r 

write (ak'w) hwocaiok'w 

all other new states ^ 0 - 0 
Table 3-2 Transition probabilities of each event Ej for maximum throughput analysis (cont'd). 
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B) Numerical Examples 
Figure 3-9 shows the throughput gain over that of RAID level 5 against R for a 

small DMP Disk Array with data storage capacity of 4 disks. We observe from the 
figure that increasing the number of parity disks R will always increase the maximum 
throughput for DMP Disk Array. When the proportion of "write" jobs is higher, the 
increase in maximum throughput is more apparent because DMP Disk Array will 
reduce the queueing time of "write" jobs. Considering the case of all "write" jobs (a 
=1)，DMP Disk Array with R=2 provides 24% increase in maximum throughput when 
compared to RAID level 5. Further increase Rio 3 provides an additional 17% increase 
in maximum throughput. These performance figures match well with the numerical 
examples given in the previous section. When R is greater than 3, linear increase in 
maximum throughput is observed for each parity disk added. 

60% -• 

0% 1 1 1 
1 2 3 4 5 

Num berofRedundantD isks R 
Figure 3-9 Throughput gain over that of RAID level 5 as a function of R for small DMP Disk Arrays 

(data storage capacity M-R is 4 disks). 

Figure 3-10 plots the throughput gain over that of RAID level 5 against R for a 
large DMP Disk Array with data storage capacity of 24 disks. When compared with 
Figure 3-9, we observe that DMP Disk Array with R=2 provides even more notable 
increase in maximum throughput than the previous case. We can thus conclude that 
DMP Disk Array with R=2 provides the best cost/performance ratio. 
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Figure 3-10 Throughput gain over that of RAID level 5 as a function of R for large DMP Disk Arrays 
(data storage capacity M-R is 24 disks). 
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3.5 Simulation with Precise Disk Model 
In our previous analysis disk service time is assumed to be exponentially 

distributed. This is usually not true for practical disk drives. To better understand the 
performance of DMP Disk Array in practice, we perform simulation on DMP Disk 
Array with precise disk model. In our simulation, disks are not assumed to be 
rotationally synchronized and their simulation parameters are summarized in Table 3-3. 
Each disk access involves a seek time, a latency and a data transfer time. We use the 
seek profile in [16], which states that the seek time T讲k (in mSec) is related to seek 
distance x (in number of cylinders) by: 

Jo forjc = 0 
r鄉众—j^.4623V^ + 0.0092(x-l) + 2 forx>0 
Latency is assumed to be uniformly distributed. Data transfer time for one sector is 
equal to the disk revolution time divided by the number of sectors per track as given in 
Table 3-3 With that, the mean service time for "write" jobs is computed to be 33.3 ms, 
and that for "read" jobs it is 20 ms. The corresponding service rates are therefore the 
same as those in the previous examples. As stated in [17], this kind of disk modeling 
provides more than 94% accuracy when ignoring the disk caching effect. Since disk 
caching has little impact on "write" performance (which we are most interested in), we 
can thus assume that the system has no disk caching mechanism. 

Cylinders per disk 1024 
Tracks per cylinder 14 
Sectors per track 48 
Bytes per sector 512 
Revolution time 13.3 ms 
Single cylinder seek time 2 ms 
Average seek time 13 ms 
Max. data transfer rate 1.7 MB/s 

Table 3-3 Disk parameters used in simulation. 

Figures 3-11 to 3-16 show the simulation results with precise disk model. We 
first consider a small disk array with data storage capacity of 4 disks and all jobs are of 
the "write" type. Figure 3-11 shows that the maximum throughput for RAID level 5 is 
about 37 jobs/sec. If DMP Disk Array with M=6 and R=2 is used, the average job 
delay is reduced under all traffic conditions and the maximum throughput is increased 
by 40% as compared to RAID level 5. This example shows that DMP Disk Array gives 
40% increase of maximum throughput with only 20% increase of system cost (the 
increase of disk number from 5 to 6). If the cost of the disk controller is included, the 
increase of system cost will be even smaller. When the number of parity disk R is 
further increased to 3，the maximum throughput is 57% higher than that of RAID level 
5. 

Figure 3-12 shows the results for a=0.5 or half "read" and half "write" type of 
job mixture. We observe that DMP Disk Array with R=2 and R=3 provides 23% and 
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39% increase of I/O throughput respectively. When all the jobs are of "read" type, 
Figure 3-13 shows that DMP Disk Array provides relatively smaller throughput 
increase. 

1 1 
0 5 -- • 

(Mjn 二 (5,1) (73) 
n Q • 

” (RAD-5) 

0.7 --
(6 2 ) 

06 " 

0.5 --

0 4 -- P 

。‘；； 
0 4 1 1 1 1 

10 20 30 40 50 60 

Arrival rate (Jobs/^ec) 

Figure 3-11 Simulation results on average job delay against arrival rate for small disk arrays (data 
storage capacity M-R is 4 disks). All jobs are of "write" type (a= 1). 

54 



0 6 1 
t 

0 3) 

0.5 -- (6 2) 

(M K)=(5 , l ) T 

” (RAD-5) i j j j 
0 4 1 1 1 1 
30 40 50 60 70 80 

Arrival rate (Jobs/feec) 

Figure 3-12 Simulation results on average job delay against arrival rate for small disk arrays (data storage 
capacity M-R is 4 disks). Half the jobs are "write" (a=0.5). 

0.5 1 
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90 100 110 120 130 140 

Arrival rate (Jobsy^ec) 

Figure 3-13 Simulation results on average job delay against arrival rate for small disk arrays (data storage 
capacity M-R is 4 disks). All jobs are of "read" type (a=0). 

Figures 3-14 to 3-16 show the delay throughput characteristics of a typical large 
disk arrays with data storage capacity of 24 disks. DMP Disk Array again provides 
significant I/O throughput increase. For the case of all "write" jobs (Figure 3-14)，the 
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increase on maximum throughput for DMP Disk Array with 7?=2 is about 32% whereas 
the corresponding increase in system cost is at most 4%. Under the condition of equal 
number of "read" and "write" jobs (Figure 3-15), we find that the 4% increase in system 
cost can still give 20% higher throughput. Figure 3-16 shows that DMP Disk Array only 
provides minimal throughput increase when all the jobs are of the "read" type. 

0.4 -- t 
. ( 2 6 ^ ) / 

/ (27.3) 
(M R )=(25.1 ) 

0.3 -- (R A D-5) / :JJ 
0 -I 1 1 1 
50 70 90 1 10 130 

Arrival rate (Jobs/^ec) 
Figure 3-14 Simulation results on average job delay against arrival rate for large disk arrays (data storage 

capacity M-R is 24 disks). All jobs are of "write" type (a= 1). 

0-4 -- (M R )- (25 .1 ) 

t 
(RAD … （27,3) 

0.3- (26,2) ••:JJ 
0 -I 1 1 1 1 
80 丨 00 120 140 160 

Arrival rate (Jobs/feec) 
Figure 3-15 Simulation results on average job delay against arrival rate for large disk arrays (data storage 

capacity M-R is 24 disks). Half the jobs are of "write" type (a=0.5). 
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Figure 3-16 Simulation results on average job delay against arrival rate for large disk arrays (data storage 

capacity M-R is 24 disks). All jobs are of "read" type (a=0). 
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3.6 Chapter Summary 
In this chapter we propose a new RAID architecture called Dynamic Multiple 

Parity (DMP) Disk Array for fast database system applications. The DMP Disk Array 
provide significant improvement on I/O throughput over the RAID level 5. The DMP 
Disk Array also inherit the sparing property so that it has a higher survivability under 
disk failure conditions. Delay and maximum throughput analysis on DMP Disk Array 
is performed. Simulation with precise disk model shows that DMP Disk Array can 
provide 30 to 40% improvement on "write" performance over that of RAID level 5 
when one extra parity disk is used. 

. � 

% 
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Appendix 
In this appendix, we derive a； to 

A. Under condition Ej (job arrivals) 
There are four cases to consider. 

Case 1: q=0，q'=l, w'=w, r'=r, a "read" job arrives 
In this case a "read" job arrives to an empty queue and is blocked. This occurs when 
the data disk is busy or with probability aj given by 
a _ number of busy disks _ 2w-\-r Ai) 

1 total number of disks M 
Case 2: q=0, q'=l，>v'=>v, r'=r，a "write"job arrives 
In this case a "write" job arrives to an empty queue and is blocked. Similar to the 
derivations on 州，the probability of this type of state change a � is 

'2w+r ^ n 2w+r<R M (Iw-^A 
巧 = g ^ + M 一 ( 2 — R J + r 2 ( 3 , 

M M (M-\\ 
I R 

Case 3: w'=w, r'=r-hl, q'=0, q=0 
In this case a "read" job arrives and is served immediately. The probability of this type 
of state change is a j = l - a j . 
Case 4: w'=iv+i, r'=r, q'=0, q=0 
In this case a "write" job arrives and is served immediately. The probability of this type 
of state change is a^=l-a2. 

B. Under condition E�("read" job departure) 
There are eight cases to consider. 

Case 1: q>l, q，=q，w'=w, r'=r-l^ HOL job is of the "read" type 
In this case the HOL job is blocked when a "read" job departs. This occurs when the 
data disk is busy or with probability 

2w+r-l ,, A,� « 5 = — (3-A3) 
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Case 2: q>l, q,=q’ w'=w, HOL job is of the "write" type 
This is the same as case 1 except the HOL job is of the "write" type. Let ^^(y) be the 
event that at least one of the parity disks is free given that y busy disks are busy. 
Similar to the derivations leading to (15), we have 

'1 fory<R 
fy] 

[ 奶 ) ] = — " (3-A4) 
I Ad — 1 ] A ^ J 

Define and be the events: 
In the previous state change, the HOL job was blocked because the data disk is 
busy. 

5̂： In the previous state change, although the data disk is free the HOL job was 
blocked because all parity disks are busy. 

When the HOL job was blocked in the previous state change, there were 2w+r busy 
disks. Therefore, similar to the derivations on kj. and k … a n d are given by: 

, � ， )-——^ (3-A6) 
[ W @ + [ 秘 糾 ) ) 

\ M ) \ M ) 
Consider three sub-cases for this case: 
Sub-case 2.1: 2w+r<i? 
In this sub-case, the number of busy disks before state change is less than R. This 
implies that P[<J4] = 1 and PL-fj] =0. By using the same argument in deriving a^, the 
probability of this type of state change is the same as a^. 
Sub-case 2.2: 2w+r=R 
In this sub-case, both & and & are possible. Define & and as the events: 

A: The HOL job blocked in the previous state change is blocked because the data 
disk is still busy. 

7̂： Although the data disk becomes free at the state change, the HOL job is still 
blocked because all parity disks are busy. 

Given t h a t � 4 occurred, by using the same argument in deriving a^ I ‘] is given 
by: 
嘛 ] = ( 3 , 

On the other hand, PC^jl &]二0 because the number of busy disks is less than R after 
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the "read" job departs. If occurred in the previous state change, it means that all R 
busy disks were parity disks at that time. Therefore, both “ and are not possible to 
occur at the state change. The probability of this type of state change is thus: 

= 恥 （ 3 - A 8 ) 

Sub-case 2.3 2w-hr>R 
This sub-case is the same as sub-case 2.2 with the exception that both and 
7 ^5] are not zeros. Given that & occurred in the previous state change, happens if 
i) the data disk is freed at the state change; and ii) all parity disks are busy. P[<̂ 7 is 
then given by: 

f2w+r-r 
恥 丨 … ( 3 , 

� R J 
If occurred in the previous state change, it means that all parity disks were busy at that time. For to occur it is necessary that no parity disk is freed at the state change. 
Therefore, ^5] in this sub-case is given by: 2w +r — R 
喊 5 ] = : (3-AlO) 
The probability of this type of state change is: + + (3-All) 
Case 3: q过,q,=q-l，>v'=tv, r'-r 
In this case, the HOL job blocked in the pervious state change (which is of the "read" 
type) is served after the state change. This implies that the data disk is freed at the state 
change. The probability of this type of state change is therefore: 

= (3-A12) 2w+r 
Case 4: q过，q’=q-l’ r'-r-l 
This is the same as case 3 with the exception that the HOL job is of the "write" type. 
Therefore, the probability of this type of state change is ag= l-a^. 
Case 5: q>l, q’<q-l，w'==w, r'=r-l + (q-q') 
In this case, the HOL job is of the "read" type and q-q'-l or r'-r read jobs (excluding 
the HOL job) are served . The probability that q-q'-l successive jobs are all of the 
"read" type is Similar to the derivations on k” the probability of this type of 
state change is 
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The HOLl 「分-分'-l successive] �The first 1 �The second 1 The 
ag-P job is not P jobs are all of the P “ read" job is P ” read" job is ...P •丨 read" job is 

blocked "read" type not blocked not blocked not blocked 
— J L- a J L mJL J 

= h - p-gi-lfM-{Iw + r)\fM-{2w + r)-\\ (M-{2w+ r)-{{q-q'-\)-\y 
\ M j\ M J \ M y 

(3-A13) 
Case 6: q>l, q'<q-l, w'=w + (q-q'), r'=r-l 
In this case, the HOL job is of the "write" type and q-q'-l or w'-w-l "write" jobs are 
served. By using the same argument as in the previous case and in the derivations on 
k^, the probability of this type of state change is: 

The H O L ]「[广 1 successive"]�The first 1� T h e second 1 The 
“10 = P job is not P jobs are all of the P ” write" job is P “ write" job is ...P "write" job is 

blocked "write" type not blocked not blocked not blocked 

V M A M V 

V M ” 
(3-A14) 

Case 7: q>l’ q'<q-l，w'^+1, r’&’ (w'-w) + (r'-(r-l))=q'q' 
In this case, the HOL job is of the "read" type and q-q'-l new jobs (excluding the HOL 
jobs) which not all of them are of the same type are served. Let n州(/) be the number of 
"write" job being brought to the disk array by the /出 new job (excluding the HOL job), 
where i=\,2,q-q'-l. Obviously, = l if the /出 new job is of the "write" type 
and otherwise. Since in this case w'-w "write" jobs are served, 
Z

g-q-i�（/) =w'-w. Let n办(/) be the number of busy disks in the disk array just before 
the /th new job enters the disk array. Thus, /7^(l)=2w+r and 

+ 1) = " “ / • ) + ( � ( / ) + l) (3-A15) 
The probability that the new job is not blocked, denoted as p(i), is given by: 

M if the new job is of the ” read" type, or � ( , . ) = 0 
if the 产 new job is of the "write" type, or � ( / ) = 1 

. M ^ 
(3-A16) 

Let n^ be the vector [72̂ (1 n^ thus indicates the sequence of 
input job types for those q-q'-l new jobs. Since w'-w jobs out of those q-q'-l new jobs are of the "write" type, there are possible sequences of input job types. 
Obviously ‘ � ( i ) = w'-w in the case. Therefore, the probability of this 
type of state change is: 
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Z ' f f k o (3-A17) 
V n^ satisfying /=1 

Case 8: q>l，q’<q-l，w'^+1, r ' ^ , (w'-w) + (r'-(r'l))=q'q' 
This case is the same as the previous case with the exception that the HOL job is of the 
"write" type. Excluding the HOL job, q-q'-l new jobs, or w'-w-l "write" jobs plus r'-
(r-1) "read" jobs are served. The probability of this type of state change is: 

= 口广-1(1 - ‘ ‘ S U p ( 0 (3-A18) 
V rt^ satisfying 

C. Under condition E j ("write" job departure) 
There are eight cases to consider. 

Case 1: q>l, q'=q, w'=w-l, r ' = r , HOL job is of the "read" type 
In this case the HOL job is blocked when a "write" job departs. This occurs when none 
of the freed disks is the data disk or with probability 

_ number of ways to choose 2 disks out of 2w+r- \ busy disks 
13 number of ways to choose 2 disks out of 2w +rbusy disks 

(2w + r-\\ 
2 (3-A19) 

一 � 2 w + r ) 

Case 2: ^>1, q'=q，w'-w-l^ r ' = r , HOL job is of the "write" type 
Consider three subcases for this case: 
Sub-case 2.1: 2w\-r<R 
In this sub-case, the number of busy disks before state change is less than R. This 
implies that = 1 and =0. By using the same argument in deriving a t h e 
probability of this type of state change is the same as Uj^. 
Sub-case 2.2: 2w+r=R or 2w+r=/?+ l 
In this sub-case, both <̂4 and are possible. is given by: 

'0 for 2w + r - l < 2 
flw+r-l'' 

么]=I 2 J for 2从 +卜 1 u (3-A20) 

A 2 J 
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On the other hand, \ because the number of busy disks is less than R after 
the "write" job departs. If occurred in the previous state change, it means that all R 
busy disks were parity disks at that time. Therefore, both & and are not possible to 
occur at the state change. The probability of this type of state change is thus: 
口 14=尸[躺]户[‘] (3-A21) 

Sub-case 2.3 2w+r狄+2 
This sub-case is the same as sub-case 2.2 with the exception that both and 
7 � 5 ] are not zeros. Given t h a t � 4 occurred in the previous state change, happens if 
i) the data disk is freed at the state change; and ii) all parity disks are busy. ‘ ] is 
then given by: 

[如 = ( 1 - / ^ 幽 ) I : J (3-A22) 

.R > 
I f � 5 occurred in the previous state change, it means that all parity disks were busy at 
that time. For to occur it is necessary that no parity disk is freed at the state change. Therefore, ^5] in this sub-case is given by: 

卜 

嚇 5 ] “ � 2 二 ？ (3-A23) 
\ 2 > 

The probability of this type of state change is: 
“14=尸[d 么]P[么]+ P [ 纠 么 ] 户 [ A ] (3-A24) 

Case 3: q过，q'=q-l，w'=w'l, r'=r+l 
In this case, the HOL job blocked in the pervious state change (which is of the "read" 
type) is served after the state change. This implies that the data disk is freed at the state 
change. The probability of this type of state change is 
Case 4: q>l, q,=q-l，w'=w, r'=r 
This is the same as case 3 with the exception that the HOL job is of the "write" type. 
Therefore, the probability of this type of state change is aj^=l-aj4. 
Case 5: q>l’ q'<q-l，w'=w'ly r'=r+(q-q') 
In this case, the HOL job is of the "read" type and q-q'-l or r'-r read jobs (excluding 
the HOL job) are served . The probability that q-q'-l successive jobs are all of the 
"read" type is {l-aY'^'-K Similar to the derivations on k” the probability of this type of 
state change is 
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The HOL] \q-q'-\ successive! [The first 1 ["The second "I The 
job is not P jobs are all of the P •• read" job is P "read" job is ...P "read" job is 
blocked "read" type not blocked not blocked not blocked 

_ ml Ib •‘ * J ^ J ^ J L • /, M-i2w + r) + \YM-i2w + r) + l-l\ (M-{2w + r) + l-{(q-q'-l)-l}\ =— cx) ... 
I M 人 M >1 L M ) 

(3-A25) 
Case 6: q>l，q‘<q-1, w'=w-l + (q'q'), r ' = r 
In this case, the HOL job is of the "write" type and q-q'-l or w'-w-l "write" jobs are 
served. By using the same argument as in the previous case and in the derivations on 
k^, the probability of this type of state change is: 

"The HOL]�g-广1 successive"]�The first ] � T h e second 1 The 
= P job is not P jobs are all of the P "write" job is P "write" job is ...P "write" job is 

blocked ” write" type not blocked J [not blocked J not blocked 
=“1,-’-{从-(2：；” 一 2 p [沾 w + ”)]y … 2 7 ) - 4 + 如 2)]] V M VV ^ J 

+ 〜 啦 ( ( 2 州 ) + 她 - 《 • — l ) _ l } ) f | I M V 
(3-A26) 

Case 7: q>l, q'<q-l，iv'^, r'^+1, (w*'w+l) + (r'-r)=q'q' 
In this case, the HOL job is of the "read" type and q-q'-l new jobs (excluding the HOL 
jobs) which not all of them are of the same type are served. Let be the number of 
"write" job being brought to the disk array by the /出 new job (excluding the HOL job), 
where Obviously, n j j ) = l if the 沖 new job is of the "write" type 
and njij)=0 otherwise. Since in this case w'-w+l "write" jobs are served, 

=w ' -w+l . Let n办(/) be the number of busy disks in the disk array just 
before the fl^ new job enters the disk array. Thus, «^ ( l )=2w+r+l and 
" “ / + 1) = « “ / ) + ( � ( 0 + 1) (3-A27) 
The probability that the /出 new job is not blocked, denoted as p(f)，is given by: 

if the new job is of the "read" type, or � ( z ) = 0 
piO = i ^ ^ 广、 

…户[g3(”…))]if the /th new job is of the "write" type, or � ( / ) = 1 M ^ (3-A28) 
Let w州 be the vector ，n州(q-q'-l)]. n^ thus indicates the sequence of 
input job types for those q-q'-l new jobs. Since w'-w jobs out of those q-q'-l new jobs are of the "write" type, there are , possible sequences of input job types. 

—W + ly 
Obviously ” = w'-w+l in the case. Therefore, the probability of this 
type of state change is: 
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口 19 = 口丨广 1(1-�广-1 E UP(0 (3-A29) 
V n ^ satisfying 

rt州= w+1 
Case 8: q>l，q,<q-JL，w'^, r'^+1, (w'-w+l) + (r''r)=q-q' 
This case is the same as the previous case with the exception that the HOL job is of the 
"write" type. Excluding the HOL job, q-q'-l new jobs, or w'-w "write" jobs plus r'-r 
"read" jobs are served. The probability of this type of state change is: 
« 2。=“广 ( 1-《广 Z n W o (3-A30) 

V n ^ satisfying i : l 
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Chapter Four 
Dynamic Parity Logging Disk Arrays 

RAID (Redundant Arrays of Inexpensive Disks) has gained much attention in the 
recent development of fast I/O systems. Of the five levels of RAID, the traditional 
mirrored disk array still provides the highest I/O rate for small "write" transfers. This is 
because mirrored disk array has no small "write" problem which is found in other levels of 
r a i d . In this paper, we propose a novel RAID architecture for fast engineering database 
systems, called Dynamic Parity Logging (DPL) Disk Array DPL Disk Array has no 
small "write" problem and can provide much higher "write" throughput than other RAID 
architectures when used in engineering database systems. DPL Disk Array also has 
journalling capability which is very desirable for engineering database systems. In these 
systems, old versions of designs are usually not removed even though new versions of 
designs have been completed. 
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4.1 Introduction 
As processor speed continues to increase, the I/O performance of a computer 

system was recognized to be more and more crucial to the overall system performance [1]. 
Take for an example, IBM mainframe CPU performance has increase more than 30-fold in 
the past two decades, whereas IBM disk performance has only doubled in the same 
period. The I/O performance is even more important to database applications as they are 
very I/O intensive. Many previous research works on improving the I/O performance for 
database systems can be found in [2]. Owing to the decreasing memory costs, "memory-
resident databases" have been proposed and discussed recently [3-5]. By storing the whole 
database in fast main memories, the I/O bottleneck is eliminated completely. Datacycle™ 
architecture [6-7] is a novel technique for fast database machines which has this "memory 
resident" property. It is expected that distributed database systems on gigabit networks 
such as the Datacycle™ system will be "memory resident" [8]. However, problems such 
as failure recovery make "memory resident databases" not practical in many database 
applications. 

Another approach to improve the I/O performance for database systems is to use 
disk arrays. Redundant Arrays of Inexpensive Disk (RAID) systems were proposed in the 
late 80's as an alternative to the widely used Single Large Expensive Disk (SLED) systems 
[9]. Five levels of RAID have been defined when RAID was first introduced. RAID level 
5, one of the best performing levels, employs rotated parity with data striped on a unit 
called a block which consists of one or more disk sectors. It can yield very high 
throughput for large data transfers. For database systems where data transfers are usually 
small, RAID level 5 also allows data distributed in different disks to be accessed in 
parallel. However, the throughput reduces significantly if the proportion of "write" 
transfers increases for such systems. This is because "write" transfers require the extra 
steps of reading back the old data and the old parity, and the writing in of the new parity. 
This is commonly called the small "write"problem [10]. Moreover, each "write" transfer 
requires the simultaneous access of two or more disks and thus has a much higher 
probability of blocking by busy disks than a "read" transfer. The average waiting time for 
all the required disks to be free in a data transfer, called the blocking time, is therefore 
longer for "write" transfers. Due to these two problems, the traditional mirrored disk array 
still provides the faster response than RAID level 5 for database applications. 

Parity striping [11] is a technique for improving the "write" performance of RAID 
level 5. It stripes the parity across the disks without striping the data. If the data length of 
a "write" transfer is greater than the size of a block, parity striping reduces the number of 
disks involved to only two disks, thereby reducing the blocking time and the expected seek 
time. However, parity striping provides no performance gain for "write" transfers having 
data lengths all confined to one block. Since small "write" transfers are usually found in 
database systems, parity striping is not effective for such use. 
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Parity logging [12] is another technique which can reduce the "write" transfer 
overhead by applying journalling techniques. Instead of immediately update the new parity 
at the end of each "write" transfer, parity logging buffers the parity update image in a fault 
tolerant buffer. When enough parity update images are buffered to allow for an efficient 
disk transfer, they are written to a log disk. When the log disk is full, parity reconstruction 
of the whole disk array is performed. 

LRAID-X4 [13] is a scheme similar to parity logging. It uses separate parity and 
parity update log disks, and periodically applies the logged updates to the parity disk. 
Another technique worth noting is the floating data and parity modification to RAID 
level 5 [14]. It restricts individual cylinders of a disk to contain either data or parity, but 
not both. Part of the storage of the cylinder is reserved as free space. When there is a 
"write" transfer, the new data or the new parity can be written to the free space of the 
targeted cylinder immediately after the old contents have been read. This technique 
effectively reduces the extra rotational delay for "read-modify-write" accesses. However, 
it does not reduce the blocking time for data transfers. 

The above survey shows extensive research efforts on improving the "write" 
performance of RAID in conventional database systems. However, similar research on 
specific types of database systems are relatively few. In this chapter, we focus on EDS and 
discuss the design of a fast disk array architecture for these systems. As discussed in [15-
20], EDS differs from conventional database systems in many aspects. It is beyond the 
scope of this chapter to discuss all of their differences. Instead, we discuss in the following 
the unique ways of processing data and the unique data storage requirements for EDS. 
First, I/O requests in EDS are usually processed in serial and there is no need for special 
concurrency control mechanism in the storage subsystems [pp.69, 16]. Due to the serial 
processing of I/O requests, blocking due to busy disks becomes a decisive factor on 
system performance in EDS. This is because a request blocking will not only delay the I/O 
operations of the blocked request, it will also delay the I/O operations of all subsequent 
requests where some may target on other disks which are free. Second, the requirement on 
data availability for EDS need not be as high as conventional database systems. Once a 
design is loaded to the workstation from the file server, the file server can tolerate 
temporarily suspensions of I/O services in case of a disk failure. Third, older versions of an 
engineering design are rarely discarded [pp.261-262, 17], Therefore, the support of 
journalling in data storage subsystem is very desirable. The support of journalling also 
facilitates the implementation of some common design functions such as undo and redo. 
Finally, the I/O rate required by EDS is substantially lower than on-line transaction 
processing systems where some may require an I/O rate of over 1000 transactions per 
second. 

On the other hand EDS is similar to conventional database systems in the following 
aspects. First, high data reliability is required by EDS. EDS should provide archiving 
facilities for archiving data to tertiary storage [pp.107, 18]. Regular system backup should 
also be performed to protect the lost of valuable data. Second, fast response time for 
"write" requests is required for EDS. Since transactions in engineering databases are 
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usually very long, data updates at different savepoints of a transaction are performed 
continuously to protect the loss of data during the transaction [pp. 71-72, 16 & pp. 105-
106’ 18]. Third, the data volume of EDS is usually very large [pp.262, 17] and so disk 
arrays is well suited for its use. 

In this chapter a new RAID architecture called Dynamic Parity Logging (DPL) 
Disk Arrays is proposed for fast EDS. DPL Disk Array aims at solving the small "write" 
problem and reducing the blocking time for "write" transfers. It can provide much faster 
"write" response than mirrored disk array, while maintaining the same high storage 
utilization of RAID level 5. Although both DPL Disk Array and parity logging apply 
joumalling techniques, the expected length for the former is much shorter. In the next 
section, we describe DPL Disk Array in detail. This is followed by a section on the 
performance study of DPL Disk Array. The superior performance of DPL Disk Array is 
then concluded from the results. 

！ i 
1 
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4.2 DPL Disk Array Architecture 

A. Block Coordinate System 
The block coordinate system can be used to describe RAID operations, including 

the DPL Disk Array. Consider a disk array system with a total ofA^+1 disks. Let each disk 
has K blocks and each block may consist one or more sectors. We denote block7 in disk i 
as B(iJ\ and its contents as h{i,j). A block can store either data or parity. We define a 
parity set to be a collection of blocks for which the parity sum of these blocks is always 
maintained to be "1" for odd parity and "0" for even parity. Let there be a total of X parity 
sets in the disk array denoted as 乂2”. v̂x，. Take mirrored disk array or RAID level 1 as 
an example, a pair of mirrored disks has K parity sets and each parity set has exactly two 
blocks. Let disks i and /+1 be a pair of mirrored disks where i is odd. Then the parity sets 
in this disk array can be described as: 
Aj = [B{iJ)M'r\J)] z = l’3，...，Â -l，j = l,2,…,K (4-1) 
For each parity set Aj, we have 
b(iJ) = b(i-^\J) 卜 1,3,...,N-1, j = l,2,…,K (4-2) 

Data Data Data Parity Disk 
Diskl Disk 2 DiskN (DiskN+1) 

广 �� —^^ 广 �� ^ � 

、 一 Z �� — ^ 
Block 1 B ^ ^ ^ ^ B C ^ B ^ ^ 
Block 2 B(1,2) B(2，2) B(N,2) B(M,2) 

• z � z 
• • • • 
• 

^ � ^ � z � z Parity 
Block J B(l,j) B(2j) B(Nj) B(Mj) SetAj 

� Z � ^ � Z \ z 
• 
• 
• 

乂 、 z -‘ 乂 ^ z 
Block K B(1，K) B(2，K) B(N，K) B(M，K) 

Figure 4-1. The block coordinate system showing RAID level 4. 

Similarly, RAID level 4 or level 5 has K parity sets which can be described as: 
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and (4-3) 
仏 J(1，U，...，1) {odd parity} 
h —1(0，0，0，".，0) {evenparity} 
where I is defined here as the mod-2 sum of the block contents. Figure 4-1 shows RAID 
level 4 by using the block coordinate system. As shown, parity set Aj is formed by the data 
blocks having the same block number j plus a parity block holding the parity sum of the 
data blocks. The parity blocks are always saved in disk N+Y for RAID level 4. 

B. Overview of DPL Disk Array 
Observe that mirrored disk array systems do not have the small "write" problem. 

"Write" transfers are performed by directly replacing the old contents with the new ones. 
The average service time for a "write" transfer is just the average total time of two 
independent "write" operations performing on two disks, and is slightly longer than the 
average time of a "read" transfer. Another observation is that regular system backup is 
performed on most EDS. Data which has not been modified since the last system backup 
can be treated as reliable as it can be restored from the tertiary storage when disk failures 
occur. Therefore if the updated data are protected from disk failures by redundancy 
adding, data reliability for all data in the disk array is ensured. Although the need of data 
restoration from the tertiary storage makes the system not highly available, this is not a 
serious problem for EDS as mentioned above. We shall later see that the time required to 
restore a disk is small if fast optical disks are used for tertiary storage. These two 
observations lead us to the design of DPL Disk Array. 

The configuration of DPL Disk Array is shown in Figure 4-2. As shown a DPL 
Disk Array has a total of AM-2 disks. Similar to RAID level 4，disks 1 to N are for data 
storage and are called the data disks. Disks Â +1 and N+1 are mirrored disks and are called 
the parity disks. This pair of disks is used to store the parity blocks of parity sets. Unlike 
the static assignment of parity sets found in the other RAID architectures, parity sets in a 
DPL Disk Array are dynamically assigned when block updates are performed. 
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Figure 4-2 An example showing the working principle of DPL Disk Array for "write" transfers. 

The working principle of DPL Disk Array for "write" transfers is illustrated in 
Figure 4-2 which shows five successive updates on four different blocks 5(3,79), 5(6,93)， 
^(8,28) and 5(6,25). Suppose the contents of these blocks have not been modified since 
the last system backup. The new contents for the five updates are identified as Z>'(3,79), 
Z>'(6,93), Z>'(8，28)，b\6,25) and Z?"(3，79) respectively as shown in the figure. Noting that 
5(6,93) and B{6,15) are located in the same disk, and 5(3,79) is modified twice. Since 
second copies of the original block contents b(3’79)，b(6,93), b(8,28) and d(6,25) have 
been stored in the tertiary storage, they can be restored if necessary. These blocks can 
therefore be overridden by new contents. The new contents however should be protected 
by additional parity. Therefore, the mod-2 sum of the new contents of the first three 
updates, i.e. b'(3,79)©Z>'(6,93'(8,28), is computed and saved to the parity disks as a 
parity block. Figure 4-3 shows the structure of a parity block. It consists of a block header 
which holds the block identifiers of its member blocks, and a parity sum of its member 
blocks. The parity block for the first 3 updates of our example is shown in Figure 4-3b. A 
parity set consisting of three data blocks and 1 parity block is thus formed. This parity set 
is identified as parity set 73 in Figure 4-2. These blocks can be assigned to the same parity 
set because they are all located on different data disks. If one of these data disks fails, the 
lost blocks in the failed disk can be recovered from the remaining blocks of the parity set. 
This parity set cannot include the next updated block 5(6,25) because the parity set 
already has a member block 5(6,93) in disk 6. We can, however, form the next parity set 
74 starting from this block update. In our example, parity set 74 consisting of 万(6,93), and 
5(3,1003), and their parity sum Z/(6，25)©Z?�(3,79) is saved to the parity disks (Figure 4-

75 



3c). Note that block 5(3,79) was updated before. Its current contents Z/(3，79) therefore 
cannot be overridden. Instead, we store b\2>,19) to a reserved area of the disk called the 
Popular Block Area (PBA)^ at location 5(3,1003). As shown in Figure 4-2 each data disk 
has a PBA for storing new updates of popular blocks in that disk. When a popular block is 
written to the PBA, a block header pointing to its original location on the disk is also 
written (see Figure 4-4). This pointer is used for restoring the content of the block when 
system backup is performed. 

If there is only one parity disk, all parity information is lost when the parity disk 
fails and a very time consuming backup of all data disks is required. This can be avoided 
by using a pair of mirrored disks to store the parity information. 

Entry 1 Entry 2 . . . Entry N Entry N+1 

Block identifier Block identifier Block identifier pahty Sum 
of the first of the second . . . of the Nth S 

member block member block member block 

a) Parity block format 

B(3,79) B(6，93) B(8,28) empty . . • S=b(N+l,73)=b'(3,79) ©b'(6，93) ®b’(8，28) 

b) Parity block of parity set 73 

B(6，25) |B(3，1003) 1 empty | . . . i S=b(N+l’74)=b’(6,25) ®b"(3，79) i i i 
c) Parity block of parity set 74 

Figure 4-3 Structure of parity blocks showing the example given in Figure 4-2. 

1 Blocks which are updated more than once after backup are called the popular blocks. 
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B (3 , 7 9 ) b " ( 3 , 7 9 ) 

B l o c k H e a d e r B l o c k C o n t e n t s 

Figure 4-4 The structure of a popular block in the APB showing block 5(3，1003). 

Some interesting properties of DPL Disk Array are observed from the discussions 
given above. We shall discuss them first before presenting the detail operation of DPL 
Disk Array. 

C. Properties of DPL Disk Array 
1. These is no small "write"problem. 
This is because blocks are written to the disks without first reading back the old data or 
parity. 
2. The blocking time for "write" transfers is much smaller than that of other RAID 

architectures. 
This is because a "write" transfer in DPL Disk Array is performed on one data disk only 
whereas other RAID architectures requires two disks. DPL Disk Array can therefore 
provide much better "write" performance than other RAID architectures. This will be 
verified in section 4.4. 
3. The parity disks contain a journal of block updates. 
As discussed above, the update blocks are assigned to parity sets according to their arrival 
sequence. Since the sequence of updates within the same parity set is also known from the 
sequence of block identifiers in the block header of the parity block, the parity disks 
contain full journal of block updates. 
4. Data will not be lost in single disk failures. 
This property will be apparent when we introduce the procedures of recovering a failed 
data disk in section 4.3. When one of the parity disks fails, no data except the parity 
information is lost. 
5. The log volume will be significantly smaller than the updated volume. 
Since a parity set contains multiple updated blocks, the number of parity blocks will be 
much smaller than the number of updated blocks. That is to say, the log volume will be 
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significantly smaller than the update volume. The actual ratio between their sizes depends 
on the average size of the parity sets and will be derived in section 4.4. 
6. The parity disks work sequentially under all conditions. 
We mentioned before that new parity blocks are written to the parity disks sequentially. 
When a parity disk is read for data recovery, it is also read out sequentially to provide the 
necessary parity information. Therefore, sequential access devices such as optical disks or 
tape drives can also be used to store the parity blocks. 
7. No data is lost when the I/O controller fails. 
When the I/O controller fails, no data saved on disks is lost. The contents of the tables and 
counters used by the I/O controller can be stored in non-volatile memory for fast resume 
of I/O operations when the I/O controller is up again. 
8. DPL Disk Array requires a briefperiod of data restoration in case of disk failures. 
When disk failures occur, the contents of the failed disk must be recovered by first loading 
the original data from the tertiary storage and data in the failed disk is not available during 
data restoration. However, the data restoration time may be very short with the use of 
today's optical storage technology. Take for example, a 12cm CD-ROM drive can deliver 
data at continuous rate of 1.5MB/s [21]. At this rate, restoring a 1GB disk takes only 11 
minutes. The restoration time can further be shorten if larger diameter optical disks are 
used. Nevertheless this property limits the application of DPL Disk Arrays to EDS-like 
systems only. 
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4.3 DPL Disk Array Operation 
Figure 4-5 shows the organization of DPL Disk Array. Requests for data transfers 

are sent from host to the I/O controller for I/O operations. The I/O controller consists of 
seven parts: an I/O queue, a local memory, an I/O processor, a DMA controller, a block 
location table, N data disk counters, and a parity disk counter. The I/O queue is used for 
storing I/O requests and the requests are served in a FCFS manner. The data associated 
with a request (i.e. the new data for a block) is stored in the local memory when the 
request is placed on the queue. The local memory is also used for buffering the data sent 
to or read from each of the disks and for storing all temporary data for processing. The 
DMA controller functions as a multiplexer/demultiplexer and handles simultaneous data 
transfers to various disks. The I/O processor is the heart of the I/O controller. It is 
responsible for distributing works to the disks for data transfers. It also performs 
necessary data processing works such as parity computation. The block location table is 
used for locating data blocks in the disk array. As shown in Figure 4-6 it is a Kj^xN table, 
where Kj^ is the number of data blocks per disk. Since there are K blocks in a disk, the size 
of the PBA is therefore equal to Kp=K-Kj) blocks. Each data block has its own entry in the 
table which consists of a status bit and a block address. For block B(iJ) the contents of the 
status bit and the block address are denoted as s(B(iJ)) and a(B(iJ)) respectively. The 
status bit s(B(iJ))=l indicates that the block has been updated since last system backup 
and s(B{ij))=0 indicates otherwise. The block address points to the current location of the 
block in the disk array. In particular, a{B{iJ))=0 indicates that b{ij) is the most recently 
updated contents of 万OV) and a{B{iJ)) points to a location in the PBA indicates that B(i j) 
has been updated more than once. One thing worth noting is the size of the block location 
table. For a typical disk having 2i9 blocks (which corresponds to a 1 GB drive with a 
block size of 2KB), each entry in the table require 19+1 bits. The size of the block location 
table for a N:TS disk array system is 20x25x216 bytes, or 32MB. By using today's flash 
r a m technology, it is practical to implement it on non-volatile memory units [22]. To 
facilitate the management of PBA, the I/O controller maintains a pointer for each data disk 
pointing to the next available block in the PBA We denote the pointer value for data disk 
i by c^, where Kjf^c^^. Each time the I/O processor attempts to write a popular block to 
PBA, the corresponding data disk pointer is read to give the appropriate location for the 
block. That pointer value is then incremented by 1 to point to the next available block in 
the PBA. A similar pointer Cp is maintained for the parity disks which points to the 
location for the next parity block writing. 
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Figure 4-6 Block location table for the example given in Figure 4-2. 
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DPL Disk Array operates in three modes: system backup mode, normal mode and 
data recovery mode. These modes of operations are briefly discussed below. 
A. System Backup Mode 

This mode can be invoked regularly or when either the parity disks or the PBA are 
full. Under this mode, only the "read" transfers can be performed. It operates as follows: 
1. Disk images of all the 7V+1 disks are copied to the tertiary storage one by one. The 

tertiary storage is shown as an optical disk in Figure 4-5. 
2. The contents of the popular blocks in the PBA are copied back to their original 

locations in the disk array. 
3. All pointers and the block location table in the I/O controller are cleared. 
The pseudo codes which show the detail operations in this mode is given in appendix A. 
B. Normal Mode 

DPL Disk Array works in this mode under normal condition. 
1. When a ”read" request arrives: 

i) The I/O processor places the request to the request queue. 
2. When a "write" request arrives: 

i) The I/O processor checks whether the new block associated with the request can 
be assigned to the parity set currently under construction or not. 

ii) If yes, a new parity sum for the parity set is computed and saved to the non-
volatile memory. 

iii) If no, the "write" data is saved to the local memory and a new parity set is created 
and stored to the non-volatile memory. 

iv) The I/O processor then places the request to the request queue. 
3. When a busy disk finishes its operation: 

i) If the request queue is not empty, the I/O processor checks whether the request 
which is at the top of the queue targets on the disk just freed or not. 

ii) If not, no further processing is performed. 
iii) If the request targets on the disk just freed, the I/O processor removes the request 

from the queue and performs the following operations according to the type. 
iv) If the request is of the "read" type, the I/O processor 

a) instructs the DMA controller and the data disk involved to load the requested 
block to the local memory (the address for the requested block is given by the 
block location table); and 

b) signal to host for "read" completion. 
iv) If the requests is of the "write" type, the I/O processor 
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a) instructs the DMA controller and the data disk involved to store the new data 
of the request to the disk (the location of storage is given by the block location 
table); 

b) updates the target block's entry in the block location table; 
c) if the request creates a new parity set, saves the parity sum of the preceding 

parity set (which is stored in the non-volatile memory) to the parity disks; and 
d) signals the host for "write" completion. 

The pseudo codes which show the detail operations in this mode is given in appendix B. 
As shown from the above operations, assigning new blocks to parity sets and computing 
parity sum can be performed when a "write" request arrives. 
C. Data Recovery Mode 

The system is switched from the normal mode to this mode when disk failures 
occur. The operations in this mode are outlined below. 
1. The failed disk is either fixed or replaced by a spare disk. 
2. The original contents of the failed disk at last system backup are restored from the 

tertiary storage. 
3. The updated data after last system backup can be recovered by: 

a) sequentially search one of the parity disks for parity blocks having member blocks 
in the failed disk. 

b) If found, recover the contents of the updated blocks in the failed disk. This can be 
done as follows. Suppose parity 861力广{万0̂7，07),万0̂2�2)”.，万(為 /々)”. ’万(4々 ^：)} 

has one member block in the failed disk i. Assuming that even parity is 
used, the contents of B(di,o) can be recovered by: 
m,Oi、： 《 ， ( 4 - 4 ) 

c) After finish searching the parity disk, check the parity set which was in 
construction when the disk failed to see whether it contains member block in the 
failed disk or not. If found, recover the contents of the updated block in the failed 
disk. 

The pseudo codes which show the detail operations in this mode is given in appendix C. 
As shown from the above operations, data can be recovered if single disk failure occurs. 
This proves property 4 ofDPL Disk Array stated earlier. 
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4.4 Performance of DPL Disk Array 
Figure 4-7 shows the queueing model for a DPL Disk Array. Requests for data 

transfers are sent from host and become jobs for the servers. Job arrivals are assumed to 
be a Poisson process with rate X, and are assumed to target uniformly on all disks. The 
probability that a job targets on a particular block of a disk is also assumed to be the same 
for all blocks. A job is of the "write" type with probability a and of the "read" type with 
the remaining probability. As we have mentioned before, one parity block is written to the 
parity disks only when the system finishes the construction of a parity set. Whe a parity set 
is still in construction, the parity sum of the parity set is kept in the non-volatile memory. 
Therefore, we only need to consider the data disk operation for each "write" job because 
the access time of the non-volatile memory is much faster than that of the data disks. For 
mathematical convenience we assume that the service time for a job is exponentially 
distributed with service rates ^ and � f o r "write" jobs and "read" jobs respectively. We 
also assume that the I/O controller is fast enough so that it does not affect the system 
performance. 

^ Server _ ^ 
I 1 

Server _ ^ 
n 2 

Jobs • • 

Server • 

Figure 4-7 Queueing models for DPL Disk Array. 

A) Mean System Backup Time 
Suppose the system finishes backing up the data and switches to normal mode at 

time 0. All blocks are marked as unchanged at that time. Since all blocks are requested 
with the same probability, the rate of "write" arrivals targeting on a particular block y is 
given by : 
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一 Rate of •丨 write" arrivals to the disk array _ aX (4 ” 
Total number of blocks in the disk array N K � 

Let Pk be the probability that there are k "write" requests in (0,0 targeting on a particular 
block. With the Poisson arrival assumption, we have 

(ytf (4-6) 
Consider block i in disk j. Let Xi{t) be the number of block i images written to PBA of 
disk j in (0，,). For k+\ arrivals k images are written to PBA, we have 

1 fPo+A for 0 < < 1 ,4，、 
= = 厂丨 , , ^ (4-7) ‘ W for^ > 2 

The expected value of Xi{t) is given by: 
E [XXt ) ]= r t - { ' ^ -p , ) (4-8) 
The variance of Xj(f) is given by: 

= =[rt-{\-p,)^ (4-9) k=0 
Next, let random variable X(t) denotes the total number of blocks written to PBA of disk j 
in (0,0, or 
X{t) = f^XXt) (4-10) j=i 
As the X^s are independent and identically distributed random variables, by central limit 
theorem the distribution of X{t) can be well approximated by a Gaussian distribution with 
mean m^Kj^[yt-(\'PQ)] and variance if ^ d is not too small. Therefore, 
the probability r{t) that the PBA of disk j does not overflow in (0，/) is given by: 
r ( 0 = P\X{t) < ^ J = f ‘ 7 = d x (4-11) 

L J-co 
Finally, the probability that the PBA's of all N disks do not overflow in (0，/) is simply 
given by r^(t). Note that system backup should be performed if PBA of any one of the 
disks overflows. If we let random variable 7 be the time which the system has to perform 
system backup, the mean system backup time T万 is given by: 
7； 二 f (1 - P[T< t p t = {t)))dt = £ V { t ) d t (4-12) 

As an example, consider a DPL Disk Array with N=1Q and 足乃=50,000. Figure 4-8 
plots the mean system backup time T^ (in days) against the "write" arrival rate aX for 
three different values of Kp. Simulation was also performed to verify the analysis given 
above. We observe from the figure that both the analytic and simulation results match very 
well with each other. Note that for all simulation results shown in this chapter we have 
extended the simulation time sufficiently long to make the 95% confidence intervals 
smaller than the size of the markers shown. Another observation is that is inversely 
proportional to aX for all values of Kp shown. We also observe that is increased by 
about 45% when the size of the PBA is doubled for all "write" arrival rates shown. 
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Figure 4-8 Mean system backup time against the rate of "write" arrivals. 

If T^ and the maximum number of blocks being written between successive system 
backups are given, Kp can be determined from Figure 4-8. Take for an example, if 1^=1 
(i.e. weekly backup is performed) and the maximum number of block updates per day is 
25,000 blocks, the minimum value of Kp should be O.OSKj^ or 2,500 blocks. If the 
maximum number of block updates per day grows to 40,000 blocks, Kp should be at least 
0.1火2) or 5,000 blocks. 

B) Utilization of the parity disks 
Consider a particular parity set A^ and let be the number of elements in A .̂ 

Then 
"Thefirst 1 � T h e second"] �Them山 1 � T h e O + l ) ^ 

p\ A = wl = P block is P block is ...P block is P block is not 
s new to A new to A. new to A^ new to A (4-13) 

- J ^ J L � L � 
N-\ N-2 N-(m-l) m — 1)! = 1 X X X . . . X X — = 

N N N N N"\N - my. 
The expected size L^ of parity set A^ is therefore L = YmP A =m = Y — (4-14) 
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Since only one parity block is generated for each parity set, the average number of parity 
blocks generated in T ,̂ denoted as Bp, is therefore 
B (4-15) 

Figure 4-9 shows L^ against N. For a small disk array of 4 data disks, we find that 
the log volume is about 45% of the update volume (1/1^«0.45). For a large disk array of 
24 data disks, the log volume reduces to about 17% of the update volume (1/L 产 O.VT). 

1 “ 
« I I I I I f I I I I I I I I _ _ I _ _ 1 _ I _ I _ I _ I _ I _ I _ I _ I _ I ~ L . 

5 10 15 20 25 
Number of Data Disks N 

Figure 4-9 The average number of blocks in a parity set (excluding the parity block) grows with the number of data disks. 

C) Average Delay 
As discussed before, DPL Disk Array has no small "write" problem. This is 

because blocks can be directly written to the disks without reading back the old parity and 
old data. Therefore, it is reasonable to assume that the same average delay is experienced 
by the "write" jobs and "read" jobs. To obtain the average job delay for DPL Disk Array, 
we first consider the operations of RAID level 5 when all jobs are of the "read" type (i.e. 
a=0). Since all jobs are of the "read" type, each of them requires the access of only one 
data disk. Note that for DPL Disk Array each job also requires the access of only one data 
disk. If the operations of each disk is modelled by an exponential server, the queueing 
model for RAID level 5 when a=0 is almost identical to that of DPL Disk Array (see 
Figure 4-7) The two models differ only in the number of servers (7V+1 for RAID level 5 
and N for DPL Disk Array) and the service rates. A detail analysis of RAID level 5 using 
exponential servers is reported in chapter 3 of this thesis. By using the same analysis we 
obtain the average delay for DPL Disk Array. 
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Figure 4-10 shows the average job delays for DPL Disk Array and RAID level 5 
when each architecture has four data disks. We assume in this example that 
jobs/sec for DPL Disk Array. For RAID level 5, the service rates for "write" jobs and 
"read" jobs are assumed to be 30 jobs/sec and 50 jobs/sec respectively. Since "write" 
operations in RAID level 5 need to read back old parity and data, the corresponding 
service rate is lower due to extra disk rotation. We find from Figure 4-10 that DPL Disk 
Array outperforms RAID level 5 for most values of a. This is because there is no small 
"write" problem in DPL Disk Array and the "write" jobs for DPL Disk Array only require 
the access of one disk. When a=l, DPL Disk Array provides maximum throughput which 
is 2.5 times higher than that of RAID level 5. When all the jobs are of the "read" type, we 
observe that RAID level 5 performs slightly better than DPL Disk Array because data is 
distributed into 5 disks for RAID level 5 and is only distributed into 4 disks for DPL Disk 
Array. The difference in performance for a=0 will be smaller for larger JVs for obvious 
reason. 

0.6 “ RAID-5 
c^O 

0 5 一 RAID-5 RAID-5 a^l ct^O.5 DPL 
(all a) 0.4 -

Delay D 
(sec) 0 3 _ 'ULJ^ 

q I ‘ ‘ 二 ‘ ‘ ‘ ‘ 
20 40 60 80 100 

Arrival Rate Z (jobs/sec) 

Figure 4-10 Delay througput characteristics of DPL Disk Array and RAID level 5. 
D) Throughput Performance Using a Precise Disk Model 

In our previous analysis disk service time is assumed to be exponentially 
distributed. This is usually not true for practical disk drives. To better understand the 
performance of DPL Disk Array and other RAID architectures in practice, we perform 
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throughput simulation on different RAID architectures by using a precise disk model. In 
our simulation, disks are not assumed to be rotationally synchronized and their simulation 
parameters are summarized in Table 4-1. Each disk access involves a seek time, a latency 
and a data transfer time. We use the seek profile in [23]，which states that the seek time 
T郷k (in mSec) is related to seek distance x (in number of cylinders) by : 

fO forx = 0 T - (4 - loJ 
郷 k |o. 4 6 2 3 V ^ + 0.0092(JC -1) + 2 f o r x > 0 

Latency is assumed to be uniformly distributed. Data transfer time for one sector is equal 
to the disk revolution time divided by the number of sectors per track as given in Table 4-
1. With that, the mean service time for all jobs is computed to be 20 ms. As stated in [24], 
this kind of disk modeling provides more than 94% accuracy when ignoring the disk 
caching effect. Since disk caching has little impact on "write" performance (which we are 
most interested in), we can thus assume that the system has no disk caching mechanism. 

Cylinders per disk 1024 
Tracks per cylinder 14 
Sectors per track ^ 
Bytes per sector 512 
Block Size 2KB 
Revolution time 13.3 ms 
Single cylinder seek time 2 ms 
Average seek time 13 ms 
Max. data transfer rate 1.7MB/s 

Table 4-1 Disk parameters used in simulation. 

Figure 4-11 shows the maximum throughput for DPL Disk Array and three other 
r a i d architectures against a. The number of data disks for each architecture in this 
particular example is equal to 4. The total number of disks being used therefore equals 6， 
8，5, and 5 for DPL Disk Array, RAID level 1，RAID level 4，and RAID level 5 
respectively. We denote the proportion of updated blocks in DPL Disk Array as P as 
shown in the figure. We observe that the performance of DPL Disk Array is quite 
insensitive to fi. At most 10% drop in throughput is observed for all values of a and P< 
0.4. We also observe from the figure that a has little impact on the performance of DPL 
Disk Array, but it significantly affects the performance of other three RAID Architectures. 
When 0=0，RAID level 1 performs the best and provides twice the maximum throughput 
than that of the other three architectures. However, RAID level 1 requires the largest 
number of disks. When the proportion of "write" jobs a increases, DPL Disk Array 
provides nearly constant throughput value while the throughput values for RAID levels 1， 
4，and 5 drop significantly. When all the jobs are of the "write" type, DPL Disk Array 
p'eforms the best and provides slightly higher maximum throughput than RAID level 1. 
From these results, we can conclude that DPL Disk Array provides the best "write" 
performance. 
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Figure 4-11 Maximum throughput comparison for various RAID architectures. 

Figure 4-12 shows the maximum throughput per disk when all four architectures 
use the same total number of 24 disks. When a=0, we observe that RAID level 1 provides 
twice the throughput when compared to other three architectures. The trade-off for this 
good performance of RAID level 1 is the reduction of storage capacity by half. When the 
proportion of "write" jobs increases, we find that the throughput of DPL Disk Array 
remains constant while that for the other three architectures drop significantly. When a> 
0.4，DPL Disk Array provides the highest maximum throughput per disk. Since "write" 
performance is critical to EDS, DPL Disk Array is well suiting for such kind of 
applications. 
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Figure 4-12 Maximum throughput comparison for various RAID architectures. 
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4.4 Chapter Summary 
We propose in this chapter a new RAID architecture called Dynamic Parity 

Logging Disk Array for fast EDS. DPL Disk Array solves the small "write" problem found 
in most RAID levels and significantly reduces the blocking time for "write" transfers. It 
also has the journalling capability which is very desirable for EDS. Analytical results on 
DPL Disk Array shows that it provides much faster "write" response than RAID level 5. 
Throughput simulation using a precise disk model also shows that DPL Disk Array 
provides the highest "write" througput when compared to RAID levels 1，4，and 5. 
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Appendix 
A) Pseudo Codes for System Backup Mode 

process system backup; 
begin 
/* backup data disks V 
for i=l to N 

begin 
write I and Cfl to tertiary storage; 
forj=l to Cfl 

begin 
write block B(ij) to tertiary storage; 
end; 

end; 
/* backup parity disk */ 
write Cp to tertiary storage; 
forj=l to Cp do 

begin 
write block B(N+lj) to tertiary storage; 
mark block B(N+lj) as empty; 

end; 
forj=Cp+J toK 

begin 
mark block B(N+lj) as empty; 
end; 

/* restore the most update contents of the popular blocks */ 
for i=I to N 

begin 
forj=Kjy+ltoCfl 

begin 
write block B(ij) to the location pointed by the block header of B(iJ); 
mark block B(ij) as empty; 
end; 

forj=CitoK 
begin 
mark block B(ij) as empty; 
end; 

end; 
/* clear the contents of the block location table V 
for i=l toN 
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begin 
forj=l toKjy 

begin 
s(B(ij))=0; 
a(B(iJ))=0： 
end; 

end; 
/* clear the contents of all counters */ 
for i=l to N 

begin 
Ci=Kjy+l； 
end; 

{switch the system to normal mode}; 
end; “ 

B) Pseudo Codes for Normal Mode 
process firstji^rite arrives; 
/**** when Ihe first "write" request arrives after each system backup ************* 
a request is a structure consists of: i) request type - reqjype; ii) target block -
B(req_i,reqJ); and for "write" requests: iii) new data - wridata; iv) will be saved in 
block - B(wri_i,wriJ)： v) block parity set belonged to • par_set; and vi) sequence 
number in its parity set - block no 
i), ii) and iii) are supplied by the host, whereas the other parts are filled in by the I/O 
processor before putting in the req_queue, req_queue is a FIFO queue of request's, 
pb一 image is a structure of parity block as shown in Figure 3, which consists of a 
block header - header, and a parity sum • par sum. image queue is a FIFO queue 
ofphjmage's in the nonvolatile memory. 

本II******************** 氺 * * * * * * 氺 * * * * * * * * * * * * * * * 氺 * * * * * * * * * * * * * * * * * * • / begin /* create the first parity set under construction */ parityjsetno=I; 
no_in_set=l; 
create a new pb一image in local memory; 
requestB(wriJ^wriJ) =requestB(reqJ,reqj); /^write block to its original 
location*/ 
write requestB(wri_i,wriJ) to pbjmage, header; 
write requestwri data topbjmage,par_sum： 
put pb一image to image一queue; 
产 place the request to the request queue */ 
request par_set=parity_setno; 
request block no=no in set; 
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no in set=no in set+I; _l _ •• I • 
put request to req_queue; 
end; 
process request arrives; 
/**** when the requests other than the first "write" request arrives ***V 
begin 
/* a "read" request arrives */ 
if request reqjtype= "read" 

begin 
put request to req_queue; 
end; 

/* a "write" request arrives */ 
if request req_type= "write “ 

begin 
/* test whether requestB(reqji,reqJ) has been updated before */ 
block一 modified=no ; 
ifs(requestB(req_i,reqJ))=J /* modified hit=l=>the block has been updated*/ 

begin 
block_modified=yes; 
end; 

if block一modified=no /* ifbit=0, check queue for updates on the same block V 
begin 
for each of the q_request in req_queue with q_requestreq_type= "write “ 

begin 
ifrequestB(reqJ,reqJ)=q_requestB(reqJ,reqJ) 

begin 
block_modified=yes; 
end; 

end; 
end; 

/* if request B(req_i, reqj) has been updated, choose a new location in PBA for the 
block V 
if block modified=yes 

begin 
requestB(wri_h wriJ)=B(wn_i,c^; 
Ci=Ci+I； 
ifCi=K^l 

begin 
switch the system to system backup mode; 
end; 

end; else /* if the block has not been updated, save to the original location */ 
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begin 
requ est B(wri_ i, wriJ) =requestB(req_i, req^)； 
end; 

/* test whether the request can be assigned to the parity set in contruction */ 
appendjto_parityset=yes; 
duplicate last image in image一queue to pb_image; 
for each identifier B(wri_ii,wri J j ) in pb_image, header 

begin 
if wH一ii=wri—i 

begin 
appendjto_parity一 set=no; 
end; 

end; 
产 yes�the request can be assigned to the parity set in construction */ 
if appendjto_parity_set=yes and noJin_set ^ 

begin 
pb_image,par sum=pb image.par sumOrequest.wri data; 
append identifier requestB(wri_i, wri J) to pb一imageJteader as the last enrty of 

the header; 
putpb一image to image queue; 
no in set=no in set+1; • * "• I 
end; 

else /* no, the block cannot be assigned to the parity set in construction V 
begin /* create a new parity set */ 
paritysetno =parity_set_no+1; 
no_in_set=l; 
create a new pb image; 
write requestBjwri iwriJ) to pbjmage. header; 
pbjimage,par_sum=requestwri_data; 
put pb image to image queue; 
request parset=parity_set_no; 
request block no=no in set; 
no in set二no in set+I; 

put request to req_queue; 
end; 

end; 
process next disk operation; 
/•*** When a busy disk diskj finishes its operation ****/ 
begin 
ifreq_queue is empty /* if the queue has no waiting requests */ 

begin exit the process; /* no operation is performed V 
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end; 
For the first request in req_queue which waits for disk一i, if any 

begin 
get request from req_queue; 
if request req_type= "read" /* if the first request is of "read" type, */ 

begin 
if a{requestB(req_i,req_j))=0 {0 address in block location table */ 

begin 
read block requestB(req_i, req_j) from disk array; 
end; 

else /* otherwise, the address is given by the entry in block location table */ 
begin 
read block afrequestB(req_i, reqj)) from disk array; 
end; 

end; 
if operation一success =yes 

begin 
signal the host for "read" completion; 
exit from process; 
end; 

else 
begin 
switch the system to data recovery mode with fail_disk=disk_i; 
end; 

if request req_type= "write “ /* the request is of "write “ type, V 
begin /* write data block V 
write requestwri一data to requestB(wri_i,wrij) in disk array; 
end; 

if operation一success=no 
begin 
switch the system to data recovery mode with fail disk=disk i; 
end; 

if request block no=1 /* write parity block，first data block of parity set? */ 
begin 
c =c +7; 产 yes’ write parity block of previous parity set to parity disks */ 
ifCp=K+1 /* If parity disk is full V 

begin 
switch system to system backup mode; 
end; 

write pb image to the parity disks at location pointed by cy 
end; 

get first pb一 image from image一 queue; /* get parity image and write to parity diskV 
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if operation一success=no 
begin 
switch the system to data recovery mode with fail disk =failed_par_disk 
end; 

/* "write" operation is successful，update the block location table */ 
ifs(requestB{req_i,reqJ))=1 /* if the block has been updated before，V 

begin 
a((requestB(reqJ,reqJ)) =requestB(wriJ,wriJ); /* write new location V 
end; 

s(requestB(reqJ,reqJ))=l; /* set modified hit of the block to "1 “ */ 
signal the host for "write" completion; 
end; /* request queue is not empty */ 

end; 
C) Pseudo Codes for Data Recovery Mode 

process recover data disk; 
/**** when a data disk faildisk fails, recover its data to spare diskN+3 ****/ 
/* restore old contents of last backup */ 
begin 
i=fail一 disk; 
read c^ of failed一disk from tertiary storage; 
forj=l to Ci 

begin 
read block B(ij) from tertiary storage and save it to B(N+3J); 
end; 

/* mark unused blocks in PBA as empty */ 
for j=Ci+J to K 

begin 
mark B(N+3j) as empty; 
end; 

/* restore most update contents of popular blocks at the last backup */ 
forj=Kjy+l to Ci 

begin 
write block B(N+3J) to the location pointed by the header ofB(N+3j); 
mark block B(N+3j) as empty; 
end; 

/* recover the updated blocks in the last parity set in construction */ 
read pb一 image from nonvolatile memory; 

ifphjmage,header has a block identifier B(wriJ,wriJ) which wri_i=i 
begin 
B(N+ 3，wri_j) = parity sum of all blocks in this pb image except 
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B(wri_i, wri_j)； 
end; 

end; 
/* recover the updated blocks after last backup */ 
forj=l to Cp 

begin 
read pb image from B(N + Ij)； 
ifpb_image, header has a block identifier B(wri_i,wri J) which wri一i=i 

begin 
B(N+ SjWriJ)=parity sum of all blocks in this pb一image except B(wriJ,wriJ); 
end; 

end; 
/* resume to normal operations */ 
set disk N+3 to work as disk i; 
switch system to normal mode and re-execute the interrupted disk operation; 
end; 
process recover_parity_disk; 
/**** when a parity disk fail-disk fails ****/ 
begin 
i=fail_disk; 
/* set par一disk to the functioning parity disk */ 
ifi=N+r 

begin 
par_disk=N+2; 
end; 

else 
begin 
par_disk=N+J ; 
end; 

/* restore contents of parity disk to the spare diskN+3 */ 
for i=l to K 

begin 
copy B(par_disk,i) to B(N+3，i); 
end; 

/• resume to normal operations */ 
set disk N+ 3 to he the new parity disk; 
switch system to normal mode and re-execute the interrupted disk operation; 
end; 
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Chapter Five 
Performance Analysis of Mirrored Disk Array 

Previous performance studies on mirrored disk array are mainly by computer 
simulation or by approximate analyses which ignore the fork/join synchronization of the 
disks. In this chapter, an exact Markov Chain analysis of mirrored disk array is presented. 
The two disks are modeled as two independent exponential servers. Each "read" job is 
served by either one of the servers and each "write" job is forked into two independent 
sub-jobs for separate services in the servers. A "write" job is completed only when both 
sub-jobs are completed. The analysis is then verified by computer simulation. 
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5.1 Introduction 
Mirrored disk array is one of the most common architecture for building reliable 

and fast I/O systems. It is defined as level 1 architecture of Redundant Arrays of 
Inexpensive Disks (RAID) [1]. In a mirrored disk array, data is duplicately stored into two 
identical disks for data reliability. No data is lost if any one of the disks fails. Mirroring the 
data on two disks also speeds up the I/O operations since simultaneous "read" operations 
can be performed. Mirrored disk array also has higher availability because the system can 
provide full service even when one mirrored disk fails. Because of this, mirrored disk array 
is considered the best I/O architecture for many applications. 

As stated in [2], performance analysis of disk arrays is usually difficult due to the 
presence of queueing and fork/join synchronization. The difficulty is the same in analyzing 
the performance of mirrored disk array. A "write" request sent to a mirrored disk array is 
carbon copied or forked into two identical requests operated on the disks. The "write" 
request is completed only when both carbon copied requests are completed, or they must 
be synchronized. Due to this difficulty, performance studies on mirrored disk array are 
either done by simulation [3-4]，or analyses which ignore the fork/join synchronization [5:. 
In [6], an analysis on the disk arm seeking for mirrored disk array is reported. 

In this chapter, we present a Markov chain analysis on mirrored disk array. 
Analytical results are then compared to the simulation results to verify the analysis. 
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5.2 Queueing Model 
Figure 5-1 shows the queueing model of the mirrored disk array. Job arrivals are 

assumed to be a Poisson process with rate 又 An arrived job is placed to the job queue 
waiting for service. The servers are independent and identical with FCFS service 
discipline. Let a job be of the "write" type with probability a and of the "read" type with 
the remaining probability. If a "read" job reaches the head of the queue, it can be served by 
either server. A completed "read" job then leaves the system immediately. For a "write" 
job, it is served only when both servers are idle. When both servers are idle, a "write" job 
is forked into two sub-jobs and be served by the two servers. All completed "write" sub-
jobs enter the synchronization queue. They either merge with their associated sub-jobs and 
leave the queue immediately or wait there for the completion of the sub-jobs still in 
service. The service times of each "read" job and each "write" sub-job are assumed to be 
exponentially distributed with mean l/ju^ and respectively. 

Synchronizat ion 
Job Queue ^ ^ ^ Queue 

j ^：： ^ "Wnte" 
Jobs In / \ Sub-jobs ^ ^ ^ 

\ "Write’， 

Y T Y \ Jobs \ " R e a d " Out 
^ ^ Jobs 

Out 

Figure 5-1 Queueing model of mirrored disk array. 
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5.3 Delay Analysis 
Let Ss,q denote the state of the system where q is the number of jobs in the queue 

and s is the status of the servers. The status depends on the job types currently being 
served and is tabulated as follow: 

Status s Description of status s 
0 Both servers idle. 
1 Only 1 server busy with a "read" job. 
2 Both servers busy with "read" jobs. 
3 Only 1 server busy with a "write" job. 
4 Both servers busy with a "write" job. 

We define the transition probability as 
servers at status and servers at status s and 

IS^ G ] = P jobs in the queue g jobs in the queue (5-1) 
after state transition before state transition 

Consider a particular state transition. Define events EJ, E〗and E^ as: 
Ef. A new job arrives. 
E� ' .A server finished serving a "read" job. 
Ej: a server finished serving a "write" sub-job. 

Let V denotes the rate of state departure at Ŝ q̂. It is given by 
X fony = 0 
X+ju^ for5= 1 

+ ^ors = 2 (5-2) 
1 + for 厂 3 
A + for 厂 4 

Therefore, 
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A ^ 
DrzTi — fOTS = 0 

0 fonsT^O 
fOTS=l 

耶 2 ] = 2 = 2 

0 for5 7J:l,2 
^ for5 = 3 

耶 3 ] = ^ for. = 4 

0 for5 7t3,4 (5-3) 
Table 5-1 shows the possible state transitions under each event Ej and the corresponding 
probabilities …《，£,]. Description on each kind of state transition is given in the last 
column of the table. By removing the conditioning on E ,̂ the transition probabilities are 
obtained as: 

；=1 

Having obtained the transition probabilities, the set of state probabilities 
can be computed in the usual way. Then the long-term proportion of time spent in 
denoted as p ^ � i s given in [7] as: 
D - 巾 明 J Z � G _ (5-5) Ps,q - 4 0 0 \ 乂 

I： I ： 尸 M 〜 ， 
y=0g,=0 Therefore, the expected numbers of jobs in the queue are given by: 

(5-6) 
q=0 V ̂ =0 y 

Finally by Little's formula, the expected sojourn time D of a job is given by 
Z ) : 舰 I V 丄 + 丄 ) + . (5-7) A M.J Mr 
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Ei Ss,q Ss\q' 分…， Explanation on transition 

^0,0 Si,o 1-a A "read" job arrives and is 
served immediately. 

^4,0 a A "write•，job arrives and is 
served immediately. 

Si,o S]j a A "write" job arrives and is 
blocked. 

Ei S2,o (l-«) A "read" job arrives and is 
served immediately. 

{New job S2,o 82,1 Blocking of new job due to no 
arrives} idle server. 

^3,0 Ss j 1 Blocking of new job due to 
the unfinished service to a 

"write" job. 
84,0 S4J 1 Blocking of new job due to 

the unfinished service to a 
"write" job. 

Ss,q, -ŷ O, q>0 Ss^q+i 1 The new job enters an non-
empty queue. 

Sim 1 One "read" job departs. 
E2 S2M Sij^ 1 One "read" job departs. 

{"Read" job Si,q, q>\ S4’q-i 1 Job at the top of queue is a 
departs} "write" job and is served. 

S2,q, q>\ Si,q a Job at the top of queue is 
found to be a "write" job and 

is served. 
S2,q.i (l-«) Job at the top of queue is 

found to be a "read" job and is 
served. 

Table 5-1 Possible state transitions given event Ê . 

106 



SsM ^ 1 A "write" job departs. 
S s j Si,o 1-a The only job queued is found 

to be a "read" job and is 
served. 

Ej S4,o a The only job queued is found 
to be a "write" job and is 

served. 
{"Write" job Si,q-i {\-a)a The job at the top of the 

departs} queue is a "read" job and is 
served. The next following 

job in the queue is a "write" 
job is blocked. 

Ss^q, q>\ S2,q.2 (1-^2 Two jobs at the top of the 
queue are "read" jobs and are 

served. The next following 
job is blocked. 

S4,0,q-1 a The job at the top of the 
queue is a "write" job and is 

served. 
q, \fq S3,q 1 The "write" job being served 

finishes using one of the 
servers. I All other state transitions 0 All transitions which are not 

listed above are invalid. 
‘ ‘ Table 5-1 Possible state transitions given event Ei (cont'd). 
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5.4 Numerical Examples and Simulation Results 
Figure 5-2 shows the average job delay for a mirrored disk array under various 

traffic levels. We assume in this example that jobs/sec. Simulation on mirrored 
disk array was also performed to verify the analysis given above. We have extended the 
simulation time long enough so that the 95% confidence intervals is smaller than the size 
of the markers shown. From the figure we find that both the analytic and simulation results 
match very well with each other. We also find that when all the jobs are of the "read" type 
(0=0)，the maximum throughput for the mirrored disk array approaches 100 jobs/sec. This 
is expected because the system basically operates as an MIMI2 queue in this case. The 
maximum service rate of the system is just the total service rate of the two servers. When 
0=0.5, we observe that the maximum throughput drops to about 43 jobs/sec. When all the 
jobs are of the "write" type (a=l), the maximum throughput is about 33 jobs/sec. 

0.5 Simulation - O . Points 
0.4 - I 

Q^i ( I a^O.5 cz^O 
Delay i ) 0.3 -

(sec) I 

• I ' I ' ~ ‘ — ‘ — ‘ — ‘ — ‘ — — - — 
0 20 40 60 80 100 

Arrival Rate X (jobs/sec) 

Figure 5-2 Delay throughput characteristics of mirrored disk array. 
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Chapter Six 
State Reduction in the Exact Analysis of 

Fork/Join Queueing Systems 

A state reduction technique for the exact analysis of fork/join queueing systems is 
presented in this chapter. The technique is based on the standard Markov model and can 
be applied to systems having K homogeneous exponential servers. For a closed system 
with M jobs, the technique reduces the size of the state space from {M+Vf-M^ states to 
f + K 一 1、 states This amounts to more than five orders of magnitude of state reduction I for a typical value of^=M=10. The state reduction technique can also be applied to the 
analysis of an open fork/join queueing system. It reduces the size of the state space from 

states to states where B is the maximum number of jobs allowed in the 
V ^ y . 

open queueing system. The state reduction amounts to more than six orders of magnitude 
for a typical value of 火 =10 and 5=500. 
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6.1 Introduction 
The fork/join queueing model is very useful in the performance study of parallel 

computing systems such as disk arrays and multiprocessor systems. For example, a 
computer running multiple I/O intensive processes has a disk array for fast I/O operations. 
The processes running on the computer queue on the I/O queue most of the time since 
they are I/O intensive. When a process get its turn for I/O operation, it accesses data 
which is striped across all the disks of the disk array. Having completed an I/O operation, 
the process reenters the I/O queue within a very short time and waits for the next I/O 
operation. To study the performance of the system, we can model the disk array as a 
closed fork/join queueing system. 

A closed fork/join queueing model can also be used to study the performance of 
multiprocessor systems. Consider a computer with K processors running batch jobs. Jobs 
are queued in a job queue with a maximum number of M jobs. When the computer starts 
serving a job, the job is divided into K tasks running on the K different processors. A job 
completes when all its K tasks complete. When the system is fully loaded, a completed job 
will immediately trigger a new job arrival. The job queue is therefore always occupied with 
M jobs. Under full load condition, this system can be modeled as a closed fork/join 
queueing system as shown in Figure 6-1. Analysis on closed fork/join queues can provide 
performance insight on this multiprocessor computer. 

The analysis on fork/join queues is usually difficult due to the presence of queueing 
and fork/join synchronization. Take disk arrays as an example, an I/O request is broken up 
or forked into K (^>1) disk requests on K different disks. The I/O request is completed 
only when all K disk requests are completed, or they must be synchronized. Because of 
this, performance studies on disk arrays are either done by simulation or by analysis which 
ignores either queueing or fork/join synchronization. Many references on disk array 
performance studies can be found in [1]. 

Exact analysis on a closed 厂server fork/join queue using standard Markov chain 
technique was proposed in [2]. But the amount of computations required grows 
exponentially with K. This calls for many approximate analysis of 火-server fork/join 
queues [2-4]i. In this chapter, we present a state reduction technique for the exact analysis 
on fork/join queues having homogeneous servers. In the next section, we first discuss the 
application of the state reduction technique on a closed fork/join queueing system. We 
then extend our discussion to open fork/join queueing systems in section 6.3. At last, we 
conclude the chapter in section 6.4. 

1 For a literature review on the analysis of 厂server fork/join queues, see references in [2]. 
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Synchronization 
Task Queues Queues 

Task 1 r n y ^ : ITT / : 个 \ 

/ Queue 1 \ 

/ / Queue 2 \ \ 

\ T a s k ^ 7 / 
Queue K 

Figure 6-1 The closed fork/join queueing system. 
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6.2 State Reduction For Closed Fork/Join Queueing Systems 

A. Queueing System Under Study 
An M job closed fork/join queueing system is shown in Figure 6-1. When a job in 

the system departs, a new job immediately enters the system and forks into K tasks with 
task k (k=l,2,...,K) goes to the k^^ task queue. The operations of the task queues are 
assumed to be independent. All tasks entering the same task queue are served in a FCFS 
manner. The service times for the tasks are assumed to be independent and exponentially 
distributed with mean Hju. Upon the completion of its service, a task enters the 
synchronization queue where it waits for the other tasks belonging to the same job. A job 
leaves the system only when all its K tasks are completed. The tasks belonging to a 
particular job are therefore joined before the job leaves the system. In the following, we 
present the state reduction technique and derive the average delay experienced by the jobs. 

B. States and State Grouping 
In conventional analysis the state is represented by the random vector 

where N^ denotes the number of task in task queue i including the one in 
service. When � ，…， t %， w e denote the state of the system by 
ir(ri2,n2,...,nj^). Since there areMjobs in the system, we have m a x ( N j , N 2 , . . T h e 
number of possible states U for the system is given by: 

(The number of states with at least one queue having� 
U = occupancy M and the remaining K -1 queues having 

^occupancy < M y 
,The number of states ) (The number of s t a t e s � 

= w i t h all queues having - with all queues having (6-1) 
^occupancy < M. ) (^occupancy < M - \ . � 

Consider the arrival of a tagged job that brings the system to state ?̂=(�,�2，..，万火). 
Let random variable X^ denote the delay experienced by task i of the new job. It is equal to 
the sum of independent identically distributed exponential random variables and so has 
distribution 

Note that the average delays at tasks queues 7 and k are the same if «广《众.The average 
delay X experienced by the tagged job is given by 
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Since the servers are independent, the distribution ofXis given by: 
Prob[A^ < / ] = Prob[而 < r]Prob[X2 <4-.Prob[Zj^ < t] (6-4) 
The task queues and the servers are all identical. Therefore any two jobs which begin at 
two different states, says and will have the same 
average delay if the states have the same ranked list of task queue lengths. We can thus 
merge all states having the same ranked list of queue lengths into a single system state. 
This is the basic idea of the state reduction technique. 

C. Delay Analysis 
Let random variable Q^ denote the number of task queues with length i where i 

includes the task in service. Since the system has K task queues, we have M (6-5) 
1 = 0 

Since there is at least one task queue which has M tasks, State occupancy time is 
the time between two successive task departures which is exponentially distributed. The 
evolution of (QO ,QJ , -;8M) is therefore a continuous time Markov Process. We denote 
system state as 望=(彻，••，�M) when {Qo,Qi,…,QKi)=�qo,qi,…,Q}^. 

Next, define the transition probability to be 
Prob q�望 

=Prob[(eo，a，…，2m) = (g'o，力，…，g.M) after state transition (6-6) 
(0)，a，• •，2m )=(弥，奶，…，) before state transition 

When the system is at 望=(你〜…，？从)，there are g广^+…十彻 non-empty queues. The 
rate of state departure at that state is therefore equal to The possible 
state transitions and the corresponding transition probabilities are calculated as follows: 
Prob[f = (《。，‘.， l _ i + l ， l l ， . . .，《 j a � + J + � 1 仏 (6-7) 

P r o l f e : ( 知 〜 + 1 , � - • ] = � + 二 . + � � 2 (6-8) 

P r o b [ � = ( 。 ， 知 � - 1 + J . . . + � 知二1 (6 -9) 
Equations (6-7) and (6-8) represent all cases when no job arrival is triggered by a task 
departure. If the departed task is from a task queue with length i, the probability for this 
kind of state transitions is given by 仏 / ( % + . . . T h i s is because ^ task queues with 
length i is found before state transition out of a total of … n o n - e m p t y queues. 
After state transition, q ' r q r l and ？；心=g“j+l due to the task departure. Equation (6-9) 
represents the case when a task departure triggers one new job arrival. This kind of state 
transitions occurs when there is only one task queue with length M and a task departs 
from it This departing task is the last task to finish for that particular job and so will 
trigger that job to depart from the synchronization queues immediately. As we are 
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considering a closed queueing system, this means an immediate arrival of a new job to the 
task queues. Therefore the task queue with M tasks before transition will have M-1+1=M 
tasks after state transition. In addition, the q^^j task queues will each receive a task arrival 
to have M-l+l=M tasks. Therefore, q'l^qu-i'^^- For task queues with length i less than 
M-1, their lengths are increased by 1 after state transition. This make q'l+rqt- Since all 
queues have at least 1 task after state transition, q’o=Q. The probability for this kind of 
state transitions is given by qj{q；+.. • 

Having obtained the transition probabilities, the set of equilibrium state 
probabilities {Prob[^]} can be computed in the usual way. The long-term proportion of 
time spend in state q, denoted a sp{q ) , is given in [5] as: 

p{q) 二 ^ L - | (6-10) 

where S is the set of all possible states and can be enumerated by a simple computer 
program. 
The rate of task departures r； is : 
r, = 2 > ( 咖 1 + % + . . . + � ) " （6-11) 

and so the rate of job departures r] is simply rj/K. The job arrival rate is the same as the 
job departure rate for a closed queueing system. Using Little's formula, the expected job 
delay D in the fork/join queueing system is: 
D Expected number of jobs in the system 一M 一 MK (6-12) 

- Job arrival rate r\ / / 仏 + 仏 • +〜） 

D. Computational Complexities 
In the original state space, the total number of states is: 

UJ 
If Gaussion Elimination is used to solve the state equations, the computation complexity 
f,{M,K) = 0{u') (6-14) 

In the reduced state space, there is at least one task queue with length M. The 
remaining K-\ queues can have queue lengths ranging from 0 to M The total number of 
queue length combinations can be found by comparing to the classical problem of finding 
the number of possible ways of distributing K-\ indistinguishable balls into M+\ urns. 
From [7] we find that the size of the new state space Fis given by: 
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From Stirling's formula [8], we find that n\ can be approximated by: 
(6-16) 

Substitute into (6-15), we obtain 
\{M^K-\) (M + X-1)—1 (6_17) 

〜乂 2;zM(尺一 1) M ^ ' i K - l f - y 
Therefore, computation complexity of the reduced state space system/^CMX) is simply: 
f,[M,K) = 0{v') (6-18) 
Note that (6-13) and (6-17) are complicated functions of M and K. To see how well the 
state reduction technique works, let us choose K=M-^\ to obtain: 

(6-19) 
and 
f - o \ — ( 6 - 2 0 ) 
Therefore/； grows much faster than力.We will show some typical numbers in the next 
section. 

E. Numerical Examples and Simulation Results 
Figure 6-2 shows both analytic and simulation results of the average job delay D 

against the number of jobs M We assume in this example that //=1 for all servers. The 
simulation time is made sufficiently long to make the 95% confidence intervals smaller 
than the size of the markers shown. We find that for all values of K shown, D grows 
linearly withM. 

Figure 6-3 compares the size of the original state space to that of the reduced state 
space for different values of M and K. Observe that whenM=2 and K=4, state reduction is 
about one order of magnitude. When K increases to 10, state reduction reaches three 
orders of magnitude for the sameM When Mis larger, we find that the state reduction is 
even more significant for all values of 尤 shown. Comparing the two curves for M=10 at 
points J^=10 we find that state reduction amounts to more than five orders of magnitude. 
The size of the original state space U\n this case is about l.SxlQio states, whereas the 
new state space has size F^0，000 states. We will not show any results on/； and力 as 
they are simply the cube of U and F respectively. 
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Figure 6-2 Average job delay against the number of jobs in the system. — 
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Figure 6-3 Comparison on the size of the original state space U 

and that of the reduced state space V. 
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6.3 Extension to Open Fork/Join Queueing Systems 
Like the closed fork/join queueing model, the open fork/join queueing model is 

very useful in the performance study of many computer systems such as distributed 
replicated database and multiprocessor architecture [4]. In this section, we extend the 
state reduction technique described in section 6.2 to the analysis of open fork/join 
queueing systems. 

A. Queueing System Under Study 
The open queueing system under study is shown in Figure 6-4. Let the job arrivals 

be a Poisson process with rate A. Upon arrival, a job is forked into K tasks with task k 
(̂=1，2”..,幻 being placed to 种 task queue. Tasks are served independently and in a FCFS 
manner. Upon the completion of its service, a task enters the synchronization queue where 
it waits for the other tasks of the same job. A job leaves the system only when all its K 
tasks are completed. Also let B be the maximum number of jobs allowed in the queueing 
system. 

Synchronization 
Task Queues Queues 

/ B Queue 1 \ 

/ B Queue 2 \ \ M V - . 
Jobs \ / \ 

XTask^ Q _ 一 J 
B Queue K 

Figure 6-4 The open fork/join queueing system. 
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B. States and State Grouping 
As before, let random variable Q^ denote the number of task queues with length i 

where i includes the task in service. Like the closed fork/join queueing system, the 
evolution of (QO,QI," ,QB) is a Markov Process. We denote system state as 
望=(彻，…，…，办）when (2o,27，..，25)=(彻，…,. .，fe). 

C. Delay Analysis 
Define the transition probability to be 

Prob q 
=Prob[(eo，a，…，&}=(…0，…1，…，？丨万} after state transition (6-11) 

(2o, a，…，&) 二 (彻’仍,…，办)before state transition 
When the system is at 望=(彻，…,".，办)，there are ？广力+."+办 non-empty queues. 
Therefore, jobs arrives at rate X and tasks departs with rate (…+力+...+办at that state. 
The rate of state transition at 望 is therefore equal to 力+• •+办Consider the 
departure of a task from task queue i. The probability that this event occurs before others 
is 仏 . / / / [义办 )川 . A f t e r the departure, the number of queues with i tasks is 
q ’ i=q� \ and the number of queues with i-l tasks is ？•广仏心+1. Therefore, 
P r o b [ � = (办,仍，...，h + l，tl’..•，办 ％ ] 、 + (奶 + 二 + � • 1 仍万 

(6-22) 

Consider the arrival of a job to the system. The probability that this event occurs before 
others is ；(…+力+…+办)川.After the job arrival, all queues increase their length by 1 
and the number of queues with i tasks i s T h e r e is no more empty queue and 

Since the maximum queue length is B, the number of queues with B tasks is 
q,B二qB+qB-1- Therefore, ^ 
Prob[么= (Mg，札…,抓 + 仍 + . . . + 办 ( 6 - 2 3 ) 

Having obtained the transition probabilities, the set of equilibrium state 
probabilities {Prob[^]} can be computed in the usual way. The long-term proportion of 
time spend in state q is given in [5] as: 

1 r * 

•义 + (仍 + 处 +".+彻 H 
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Next, let L{q) be the length of the longest queue at state ^. It is equal to the number of 
jobs not yet completed at state q. Therefore, the average number of jobs in the system, 
denoted as N, is given by: 
N= Z 華(望） (6-25) 
Using Little's formula, the expected job delay D in the fork/join queueing system is: j j 
D = — (6-26) A, 

D. Sizes of the State Spaces 
In the original state space, the total number of states U is because all K 

queues can have queue lengths ranging from 0 to B. The total number of queue length 
combinations in the reduced state space can be found by comparing to the classical 
problem of finding the number of possible ways of distributing K indistinguishable balls 
into 5+1 urns. From [7], we find that the size of the new state space Vis given by: 

+ (叫)— l ) = p : + ， （6-27) 

I K ) [ K ) 
If Gaussion Elimination is used to solve the state equations, the computation complexities 
for these two state spaces are similar to those of the closed fork/join queues discussed in 
Section 6.2. 

E. Numerical Examples and Simulation Results 
Figure 6-5 plots the average job delay against the arrival rate. The service rate is 

assumed to be 1 for all servers. The exact matching between the analytic and simulation 
results verify the analysis given above. 

Figure 6-6 compares the size of the original state space to that of the reduced state 
space for open fork/join queueing systems. Observe that for both 万=100 and 万=500，the 
state reduction amounts to more than six orders of magnitude when 
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Figure 6-5 Average job delay against the arrival rate. 
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Figure 6-6 Comparison on the size of the original state space U 

and that of the reduced state space V. 
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6.4 Chapter Summary 
A state reduction technique for the exact analysis of fork/join queues has been 

presented in this chapter. The technique is based on the standard Markov model and can 
be applied on a system having K homogeneous exponential servers. For a closed system 
with M jobs, the technique reduces the size of the state space from states to 

+ K — 1 � states. The state reduction amounts to more than five orders of magnitude I J 
for a typical value of^=M=10. For a open system, the technique reduces the size of the 

fB + K � 
state space from (万+1)̂  states to states. The state reduction amounts to more 

{ ^ J 
than six orders of magnitude for a typical value of 尤 =10 and 5=500. 
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Chapter Seven 
Conclusion and Future Research 
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7.1 Summary 
Previous studies on RAID show that using disk arrays can improve the I/O 

performance. The availability of commercial RAID products also indicates that disk arrays 
can practically be used in real systems. However, problems still exist in designing RAID 
systems for different kinds of applications. In this thesis, we propose techniques to solve 
some of the problems. 

In chapter 1，we have briefly discussed why I/O system design is important in view 
of the rapid developments on computer and communication technologies. A brief 
introduction on Redundant Arrays of Inexpensive Disks (RAID) has also given. 

In chapter 2, a novel technique called the Selective Broadcast technique for high 
speed data distributions is proposed. The technique significantly reduces the response time 
for data retrievals when compared to non-selective broadcast techniques. This chapter also 
gives a complete analysis on the Selective Broadcast technique. 

In chapter 3，we address the problem of slow I/O rates for "write" operations 
found in RAID level，5. We propose a novel architecture called Dynamic Multiple Parity 
(DMP) Disk Arrays DMP Disk Arrays reduces the blocking delays of "write" operations 
for database systems executing transaction in a strict order. Analysis on DMP Disk Arrays 
using Markov model is also given in the chapter. 

Another disk array architecture called Dynamic Parity Logging (DPL) Disk 
Arrays is proposed in chapter 4 for fast engineering database systems. DPL Disk Arrays 
aim at both solving the small "write" problem found in RAID levels 4 and 5 and reducing 
the blocking delays for "write" operations. Analysis show that DPL Disk Array provide 
much higher "write" throughput than that of RAID level 5. DPL Disk Arrays also have the 
journalling capability which is very desirable for engineering database systems. 

In chapter 5，a performance analysis on mirrored disk array is presented. The 
analysis is verified by computer simulation given in the chapter. 

Chapter 6 describes a state reduction technique on the exact analysis on closed 
fork/join queues. Analysis on fork/join queues is very useful in the performance study on 
disk arrays For typical values of system parameters, the proposed technique reduces the 
number of states required in describing the queueing systems by several orders of 
magnitude. 

125 



7.2 Future Research 
Before the end of this thesis, we highlight some of the possible future research 

emerging from the work described above. 

A. Selective Broadcast Technique 
1. Based on the analysis given in chapter 2, we may study the average cycle time of disk 

arm movements for a disk using the CSCAN algorithm. The requests to the disk may 
be aperiodic. 

2. We may extend the analysis given in chapter 2 to study the average cycle time of a 
token passing system. Input traffics to the nodes of the system may be asymmetric. 

3. We may also study the cyclic behaviors of different kinds of polling systems by 
extending the analysis given in chapter 2. 

4. We may apply the Selective Broadcast technique to specific systems such as the 
Video On Demand systems. The analysis given in chapter 2 can be modified to study 
the performance of those systems. 

5. In the study of the optimal choice of block sizes, we have assumed that disk delay is a 
constant. Analysis with actual disk delays is desirable although it will be complicated. 

B. DMP Disk Arrays 
1. A global job queue for all disks is assumed in the analysis given in chapter 3. 

Although DMP Disk Arrays are best for database systems executing transactions 
serially, it is worthwhile to study DMP Disk Arrays having separate disk queues. 

2. The analysis on DMP Disk Arrays may be extended to study other RAID 
architectures. 

3. The reliability of DMP Disk Arrays should be studied. 

C. DPL Disk Arrays 
1. It is possible to construct A^-dimensional DPL Disk Arrays. A^-dimensional DPL Disk 

Arrays will survive under failure conditions of N simultaneous disks. 
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2. The reliability of DPL Disk Arrays should be studied. 
3. Algorithms which can retrieve old contents of updated data should be developed. 
4. The size of the block location table may be reduced by using appropriate techniques. 
5. We may design another kind of DPL Disk Arrays which periodically write back 

contents of popular blocks to their original locations. The PBA for this kind of DPL 
Disk Arrays will therefore not overflow. Other than DBMS, such design is suitable 
for used in general applications which does not require to keep a long journal of data 
updates. 

D. Performance Analysis of Mirrored Disk Array 
1. The analysis can be extended to study the performance of other disk array 

architectures. 
2. The analysis can be extended to study the performance of other computer systems 

such as multiple copy systems and distributed database systems. 

E. State Reduction Technique 
1. The state reduction technique and the analysis on fork/join queues may be applied to 

analyze different kinds of disk array architectures. 
2. The analysis given in chapter 6 may be extended to study other types of computer 

systems such as data replication systems and distributed database systems. 
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