
High Performance Disk Array Architectures

YEUNG Kai-Hau, Alan
i ‘

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN THE DIVISION OF INFORMATION ENGINEERING

GRADUATE SCHOOL
THE CHINESE UNIVERSITY OF HONG KONG

HONGKONG
1995

仆
k 12 KB m V i 务,

s y s t e m / ^ 饭

To

my mother C. M. Lai
and

my wife WaUYing

i

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv
ABSTRACT v
CHAPTER 1 Introduction 1

1.1 The Information Age 2
1.2 The Importance of Input/Output 3
1.3 Redundant Arrays of Inexpensive Disks 5
1.4 Outline of the Thesis 7

References 8
/

CHAPTER 2 Selective Broadcast Data Distribution Systems 10
2.1 Introduction 11
2.2 The Distributed Architecture 12
2.3 Mean Block Acquisition Delay for Uniform Request Distribution 16
2.4 Mean Block Acquisition Delay for General Request Distributions 21
2.5 Optimal Choice of Block Sizes 24
2.6 Chapter Summary 25

References 26
CHAPTER 3 Dynamic Multiple Parity Disk Arrays 28

3.1 Introduction 29
3.2 DMP Disk Array 31
3.3 Average Delay 3 7
3.4 Maximum Throughput 47
3.5 Simulation with Precise Disk Model 53
3.6 Chapter Summary 58

References 59
Appendix 61

CHAPTER 4 Dynamic Parity Logging Disk Arrays 69
4.1 Introduction 70
4.2 DPL Disk Array Architecture 73
4.3 DPL Disk Array Operation 79
4.4 Performance of DPL Disk Array 83
4.5 Chapter Summary 91

References 92
Appendix 94

ii

TABLE OF CONTENTS (cont.)

CHAPTER 5 Performance Analysis of Mirrored Disk Array 101
5.1 Introduction 102
5.2 Queueing Model 103
5.3 Delay Analysis 104
5.4 Numerical Examples and Simulation Results 108

References 109
CHAPTER 6 State Reduction in the Exact Analysis of Fork/Join

Queues 110
6.1 Introduction 111
6.2 State Reduction For Closed Fork/Join Queueing Systems 113
6.3 Extension To Open Fork/Join Queueing Systems 118
6.4 Chapter Summary 122

References 123
CHAPTER 7 Conclusion and Future Research 124

7.1 Summary 125
7.2 Future Researches 126

• • • 111

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to Prof. T. S. Yum. He was my
final year project supervisor when I was in my undergraduate study. With his guidance I
started to appreciate the joy of doing research. Several years later, I became his PhD
student and have again the valuable opportunity to learn from him. I appreciate very much
his guidance, enthusiasm, rigorous mind, wisdom, encouragement, and the countless hours
of time given to me. He teaches me not only research skills, but most importantly the
correct attitudes of doing research.

I would also like to deeply thank my eldest brother Prof. K. S. Yeung. He taught
me electronics when I was in my primary study. Under his influence I have chosen
electronics as the field of my life career since my teenage. I thank him for giving me many
timely advice, especially in the early stage of my PhD study.

It is my pleasure to thank the Department of Electronic Engineering, City
University of Hong Kong. I thank Prof. Y. W. Lam and Prof. P. S. Chung for granting me
a long study leave in 1994. Special thanks are given to Prof. P. S. Chung and Dr. K. T. Ko
for their support and encouragement throughout my study.

My family has contributed tremendously to my life during my years of study. My
mother, Mrs. C. M. Lai, faithfully prays for my graduation. When my research was not
going well, her unconditional love always gave me lots of self-confidence. I thank my
sons, Ho Ching and Ho Yi, for giving me much joy and hope everytime when I returned
home from work. My wife Wai Ying is the only person in my life whom I cannot express
all my thanks and appreciation in words.

«

iv

i

ABSTRACT

In this thesis, I/O system designs using high performance disk array architectures
are discussed. The thesis consists of five main parts. Firstly, a novel technique called the
Selective Broadcast technique is proposed for high speed data distributions. Selective
Broadcast technique relies on disk arrays to provide the high data throughput required.
The technique significantly reduces the response time of data retrievals when compared to
the non-selective broadcast techniques. A complete analysis on the Selective Broadcast
technique is given in this thesis. Secondly, a new disk array architecture called Dynamic
Multiple Parity (DMP) Disk Arrays is proposed for serial transaction processing
database systems. By adding extra redundancy, DMP Disk Arrays effectively reduce the
blocking delays for "write" operations which is caused by busy disks. Analysis on DMP
Disk Arrays using Markov model is performed. Thirdly, another novel disk array
architecture called Dynamic Parity Logging (DPL) Disk Arrays is proposed for
engineering database systems. Unlike normal disk array architectures, DPL Disk Arrays
use dynamic parity sets to protect data from disk failures. We show through analysis and
simulation that DPL Disk Arrays have better performance than conventional disk array
architectures. DPL Disk Arrays also have the journalling capability which is desirable for
engineering database systems. Fourthly, a performance analysis on mirrored disk array is
presented. Previous analyses on mirrored disk arrays are mainly approximate analyses
which ignore the fork/join synchronization of the mirrored disks. In this thesis, a mirrored
disk array is modeled as a fork/join queueing system and an exact Markov Chain analysis
on the system is performed to obtain the average I/O job delay. Lastly, a state reduction
technique for the exact analysis on fork/join queues is proposed. The technique
significantly reduces the complexity of such exact analysis by many orders of magnitude.

V

Chapter One

Introduction

1

1.1 The Information Age
Thirty years ago, computers were considered by most people to be mysterious

machines. They were room-size mainframes operated by specially trained professionals.
They were very expensive and used only by governments and very large corporations. In
1975, the first recognizable personal computer called the Altair 8800 kit appeared [1；.
Costed at US$400, Altair 8800 kit was a do-it-yourself 8-bit system with 256 bytes of
RAM. It was the first time in computer history that computers started to become
"personal." Since then, we have seen computer power grows by many orders of magnitude
2]. Today, computers are simply another tool for doing work. A small personal computer

has the processing power of a mainframe which was used thirty years ago. Techonological
innovation is still driving the growth of computer power. We will see new CPU chips, new
computer architectures and new software to appear from time to time.

Like the computer industry, the communication industry is growing and changing
at a fantastic pace. The growth is mainly driven by the advances in optical technologies.
The field of fiber optic transmission can be considered to begin at about 30 years ago. In
1966, Charles Kao realized that data can be transmitted over a narrow filament of glass
fiber [3]. He did an extensive series of experiements to prove that this was so. Since then,
we have seen communication speed to increase many times. Gigabit communication
systems are commercially available today and we foresee terabit networks to appear not
very long in the future.

The advances in computer and communication technologies is driving the world
into an information age. With the development of high speed global data-exchange
networks, also known as the Information Superhighway, users all over the world will be
given an opportunity to access a vast wealth of information. There are many possible
applications on information superhighway [4]. To name a few, these include
videoconferencing, document sharing, multimedia E-mail, and video on demand (VOD).
The information superhighway mainly uses fiber cables for communications. It provides
the necessary bandwidth for all demanding applications such as those mentioned above.
Users' workstations are connected to the information superhighway through many
relatively slow speed networks. These slow speed networks mainly used copper wires for
data communications. This is due to the vast investment on the local loops which is in use
today, and on the coaxial cables which already wire up homes for cable TV. Conceptually
dividing the information superhighway as one layer of networks and the slow speed
networks as another layer gives us an architecture similar to that discussed in chapter 2 of
this thesis. In the rest of this chapter, we discuss how technological advancements in
computer and communications demand fast I/O system designs.

2

1.2 The Importance of Input/Output
Figure 1-1 shows a general model for conventional computers, or the Von

Neumann-type computers. Programs and data are stored in the secondary storage and
moved to the main memory via the controller before they are used by the processor. The
conventional computers is known to be particularly suitable for numerical processing. This
is because I/O operations are rare once the programs and data are loaded in the main
memory. The I/O subsystem, which is usually much slower than the main memory,
therefore does not slow down the whole system. However, the I/O subsystem becomes the
performance bottleneck when I/O intensive applications such as database management
systems (DBMS) are run. This calls for many researches on I/O architectures for DBMS
[5]. With DBMS being implemented on high speed networks, the volume of user
transactions will increase manyfold [6]. To eliminate the I/O bottleneck, some researchers
even expected that a distributed database system on a high speed network has to be
"memory-resident" [7].

1 i ^ ^ ^ ^ i
I ^ ^ I

I Secondary i
I Storage i 广

I ^ ^ ^ ^ i Mam _ Processor
I i Memory

I Controller |

S u b s y s t e m i
Figure 1-1 A general model of a conventional computer system.

Fast I/O systems are also demanded for systems having a huge information base.
This includes all information systems with large amount of video or multimedia data. With
the introduction of the information superhighway, remote access of large amount of data
within a short time will become economically feasible. To provide enough data throughput
for high speed data communications, information systems must have very fast I/O

3

subsystems. Take interactive TV (ITV) as an example, it takes 95 TB to store the world's
entire movie library in MPEG-2 format [pp.62, 8]. If this storage requirements of the ITV
server seem daunting, the I/O is nightmarish. During peak hours in major cities, thousands
of people may access a single ITV server requesting for videos. To satisfy the required
data rate, the server should has an I/O throughput of several hundreds of megabytes per
second. To further complicate the matters, the data rate of each user may change from
time to time if VCR functions such as pause, rewind, fast-forward, slow motion, and
frame advance are supported. For this reason Greg Hoberg, marketing manager of the
video communications division at Hewlett-Packard, says concerning the ITV servers; "it's
really an I/O machine" [pp.63, 8]. Because of this, researchers become aware of the fact
that I/O performance becomes more or more crucial to the overall performance of a
computer [9].

4

) .

1.3 Redundant Arrays of Inexpensive Disks
In response to the increasing demands on fast I/O operations, researches on

Redundant Array of Inexpensive Disks (RAID) were started by the end of 80's in the
University of California at Berkeley [10,11]. The philosophy behind RAID is that instead
of using a few expensive disks to achieve the performance and reliability required, many
low cost disks working in parallel are used With so many low cost disks, media
availability becomes a serious problem. Parity encoding of data is used by RAID to
provide high availability under disk failures. Six levels of RAID are defined [11,12] and
they are briefly described below.
RAID Level 0: Disk array with no redundancy. Only data striping is supported in this level.
RAID Level J: Mirrored disk array. Every data disk has a duplicate backup disk for
reliability.
RAID Level 2 - Hamming coded disk array. A group of data disks has multiple parity disks
and the number of parity disk is determined by Hamming code principles. Data is bit-
interleaved across the data disks with additional parity bits stored in the parity disks.
RAID Level 3: Parity-protected disk array with bit-interleaved data. This level eliminates
most of the overhead associated with error detection in RAID level 2. Level 2 uses parity
checking to detect the erroneous disk and correct the wrong data. The error detection is
not necessary because the disk controller is able to detect disk failures. Therefore, a single
parity disk is enough for recovering the lost data in a failed disk. In level 3，data is also bit-
interleaved across all data disks.
RAID Level 4\ Parity-protected disk array with block-interleaved data and parity is stored
in a dedicated parity disk. In levels 2 and 3，data is bit-interleaved across all data disks and
therefore only one I/O operation can be performed at a time. In level 4，data is stored in a
block-interleaved fashion. This enables multiple "read" operations to be performed
simultaneously. A parity disk is used to store all the parity blocks. This parity disk
becomes the performance bottleneck if "write" operations are frequent.
RAID Level 5: Parity-protected disk array with block-interleaved data and parity blocks
are distributed across all disks. Since parity is distributed across all disks, parallel "write"
operations can be performed.

Although commercial products on RAID are now available, new designs on RAID
are still being investigated. Problems still exists in designing RAID for used in different
applications. One major problem of RAID is that "write" operations are much slower than
"read" operations when RAID is used in a DBMS. In solving this problem, we propose
two novel disk array designs for two specific types of database systems. Another problem
found in designing RAID systems is that it is very difficult to perform analysis on disk

5

arrays [13]. For this reason, we discuss in chapters 5 and 6 the analysis on fork/join
queues which is very useful for disk array performance study. Other issues found in RAID
system designs include the design of RAID for continuous operations [14]，the design of
video systems using RAID [15], and many others. The discussions on these design issues,
however, are beyond the scope of this thesis.

6

1.4 Outline of the Thesis
We have briefly discussed the developments of computer and communications

technologies and their impact on the I/O system designs. We have also introduced RAID,
an innovative ideas for speeding up I/O rates. In this thesis, research on I/O system
designs is reported. There are five principle contributions reported in this thesis:

a) In solving the problem of efficiently distributing a huge amount of information to
multiple users, a novel technique called Selective Broadcast technique for high
speed data distribution is proposed [16-18]. Selective Broadcast systems rely on
RAID to provide the necessary data throughput for data broadcasting. A complete
analysis on the technique is performed and the technique is discussed in chapter 2 of
this thesis.

b) In solving the problem of slow writing speed found in RAID, a novel architecture
called Dynamic Multiple Parity (DMP) Disk Arrays is proposed for serial
transaction processing systems [19]. Discussions on DMP Disk Arrays and the
complete performance analysis on this architecture is given in chapter 3 of this
thesis.

c) In solving the same problem stated in b), another new architecture called Dynamic
Parity Logging (DPL) Disk Array is proposed for fast engineering datatabase
systems [20]. Together with a complete performance analysis on the architecture,
DPL Disk Array is discussed in chapter 4 of this thesis.

d) In chapter 5, performance analysis on mirrored disk array is discussed [21]. Average
job delay for mirrored disk array is derived by modelling the system as an open
fork/join queueing system.

e) In chapter 6 , we try to solve the problem of intractability found in the exact analysis
on fork/join queues. A state reduction technique is proposed which significantly
reduces the complexity of the analysis by many orders of magnitude [22]. The
analysis on fork/join queues can be applied to the performance study of RAID
systems.

The last chapter of this thesis discusses the possible extended research arising from the
above studies.

7

References
[1] Popular Electronics, January, 1975.
[2] "20 years of Microcomputing, ” PC Magazine, December 20, 1994.
[3] C. K. Kao and G. A. Hockham, "Dielectric-fiber surface waveguides for optical

frequencies," Proc. lEE, vol.113, no.7’ pp.1151-1158, 1966.
[4] "Your Electronic Future," Newsweek, June 6，1994.
[5] Stanley Su, Database Computers, McGraw-Hill, 1988.
[6] J. Gray, B. Good, D. Gawlick, P. Homan, and H. Sammer, "One Thousand

Transactions Per Second," in Proc. IEEE Spring Comput. Con}” COMPCON，85,
San Francisco, CA, February 1985, pp.96-101.

[7] S. Banerjee, Victor O. K. Li, and C. Wang, "Distributed Database Systems in High-
Speed Wide-Area Networks," in IEEE Journal on Selected Areas in
Communications, vol.11, no.4, pp.617-630，May 1993.

[8] Andy Reinhardt, "Building the Highway," Byte, pp.46-74, March, 1994.
[9] P. M. Chen and D. A. Patterson, "Storage Performance - Matrices and

Benchmarks," Proceedings of the IEEE, Vol.81, No. 8, pp.1151-1165, August 1993.
[10] G. A. Gibson, Redundant Disk Arrays: Reliable, Parrallel Secondary Storage, MIT

Press, 1992.
[11] D. A. Patterson, G. Gibson, and R. H. Katz，"A Case for Redundant Arrays of

Inexpensive Disks (RAID)," Proc. of the ACM SIGMOD Conference on the
Management of Data, pp. 109-116，1988.

[12] P. M. Chen, G. A. Katz, and D. A. Patterson, "An Evaluation of Redundant Arrays
of Disks Using an Amdahl 5890," mProc. SIGMETRICS, pp.74-85, May 1990.

[13] E. K. Lee and R. H. Katz, "An Analytic Performance Model of Disk Arrays," Proc.
ACM SIGMETRICS, pp.98-109, May 1993.

[14] M. Holland, and G. A. Gibson, "Parity Declustering for Continuous Operation in
Redundant Disk Arrays," ACMASPLOS-V, pp.23-35, 1992.

[15] F. A. Tobagi, J. Pang, R. Baird, and M. Gang, "Streaming RAID™ - A Disk Array
Management System For Video Files," ACM Multimedia 93, pp.393-400,1993.

8

[16] T S Yum and K H Yeung, "The Confirm Before Delivery Technique for High Speed
Data Distribution," Proc. of IEEE GLOBECOM’93, pp. 1105-1109, November,
1993

[17] K H Yeung and T S Yum, "Selective Broadcast Data Distribution Systems," Proc.
of The 15th International Conference on Distributed Computing Systems, pp.317-
324, Vancouver, Canada, 1995.

[18] K H Yeung and T S Yum, "Selective Broadcast Data Distribution Systems,"
submitted to IEEE Trans, on Computers for possible publication.

[19] K H Yeung and T S Yum, "Dynamic Multiple Parity (BMP) Disk Array for
Database Computers," submitted to IEEE Trans, on Computers for possible
publication.

[20] K H Yeung and T S Yum, "Dynamic Parity Logging Disk Arrays for Engineering
Database Systems," submitted to IEEE Trans, on Computers for possible
publication.

:21] K H Yeung and T S Yum, "Performance Evaluation of Mirrored Disk Array,"
submitted to IEEE Trans, on Computers for possible publication.

；22] K H Yeung and T S Yum, "State Reduction in the Exact Analysis of Fork/Join
Queueing Systems," submitted to IEEE Trans, on Computers for possible
publication.

9

Chapter Two
Selective Broadcast Data Distribution Systems

This chapter describes a two tier architecture for high speed data distribution. The
architecture consists of a database interface network which distributes information from
a central database to a number of servers, and a user interface network which distributes
information from the servers to the user terminals. The database interface network uses
the Selective Broadcast technique to distribute data on a high speed channel. Data
requested by users are filtered out by the servers and sent to the user terminals through
the user interface network. The user interface network can be any conventional Local
Area Network for connecting the servers and the user terminals. A very tight upper
bound on the mean response time of the system for uniform request distribution is first
derived. This is followed by an approximate analysis for general request distributions.
Simulation results and design examples showed that Selective Broadcast technique can
provide an order of magnitude smaller response time under normal traffic conditions
when compared to the non-selective broadcast technique such as the Datacycle™ system
[11-12].

10

2.1 Introduction
Recent advances in computer and communication technologies have led to the

development of information delivery systems that provide users with real time access to
a broad spectrum of information. Examples of such information delivery systems are
Videotex systems [1,2], multimedia information systems [3,4], digital news systems [5]
and systems for medical imaging applications [6]. Conventional centralized information
delivery systems are based on the central server model in which a central service
computer replies to each user request in an individual response manner. The main
drawback of this approach is the rapid increase of response time as the system load
approaches the server's capacity. This situation can be improved with the introduction of
the broadcast delivery and mixed delivery techniques [7-10]. In [10], it was shown that
the response time using these techniques is significantly smaller than those based on the
individual response model. However, the fact that a central server still remains in
broadcast delivery models means that the limited power of the server is still the potential
bottleneck of the overall information flow.

The basic configuration of such systems based on the central server model is shown
in Figure 2-1. Information is organized into units called pages, and stored in a database.
Users make requests and receive the requested pages through their terminals. The
service computer retrieves the requested pages and transmits them to the user terminals
via a communication network. Instead of considering database systems where there are
many record updates, we consider only the read-oriented information delivery systems in
this chapter.

Database 一 广 —icommunication Computer " l Network .
u u q

User
Terminals

Figure 2-1 A typical information delivery system.

11

2.2 The Distributed Architecture
The system shown in Figure 2-1 has two potential bottlenecks: throughput of the

communication network, and, I/O speed and processing power of the service computer.
The relative significance of these two potential bottlenecks is application specific and
depends on many factors. For future information systems with extremely large
databases, the main bottlenecks will very likely be the service computer.

Database V Server 2 J User L ^ Q
Database~ Interface Interface

\ Network / . Network .

\ S e r v e r N / User
Terminals

Figure 2-2 A modified configuration of information delivery system.

A multiple server architecture shown in Figure 2-2 is studied in this chapter. Here,
the multiple servers working in parallel has the advantages of faster response due to
distributed processing and modular growth in the number of servers. The database
interface network and the user interface network parts are detailed as follows.

A) Database Interface Network
The function of the database interface network is to distribute information from the

central database machine to the servers. One way to do this is to use the Datacycle™
technique [11-12] whereby the entire database is pumped out from the database machine
and distributed to the servers through a high speed link and the servers filter out the
information required by the users. This technique has two advantages. First, it is
relatively easy to optimize the I/O performance for sequential accesses. Second, the load
on the database machine is independent of the volume of the traffic generated by the
users. A performance analysis of Datacycle'^ and a new concurrency control scheme
for such use is given in [13].

/

12

A new technique called the Selective Broadcast technique is proposed in this
chapter for use in the database interface network to minimize the delay due to long cycle
time of data. The data being broadcast is organized into units called blocks. Let there be
a total of B blocks. The technique is based on the observation that in most cases only a
small percentage of the data being pumped out is actually required; and so if a block is
broadcast only when a confirmation for that block is received by the database machine,
the data cycle time can be shortened to a small fraction of the original. The confirmation
is done via the Confirmation Ring (Figure 2-3) which connects the database machine and
all the servers. Periodically the database machine sends out a B bits frame to the ring.
These B bits serves as a bit map of the B blocks of data. This frame circulates through
all the N servers with a one bit delay on each. When the frame returns to the database
machine, a new frame is sent for the next round of confirmation. A new frame
generated by the database machine has a content of all zeros. If a server wants to
confirm the ith block (due to a request from a user it is serving, say), it simply write a
"1" to the ith bit of the frame. Otherwise the server simply passes the frame to the next
server without modification. The content of the frame, therefore, reflects the specific
blocks being confirmed.

r •；

I O j 3 MB/s j
| | ~~n iDisk 1 I

•-••«�� I I I
I 丨 IGb/s High Speed Optical Link
I H [Disk 2 " I MUX ^ E/0 ^ I j — ^
I I Server Server Server I • • • I J — — . J I 1 2 N I n iDisk 42 I ^ - p ^ r ^ — p

I Controller ^臓
| l . — ^ — — ， z z
I Control Signals | / \
[I (Confirmation 、）

Database Machine V Ring /
\ � 7

Figure 2-3 The database interface network and the central database machine.

At the database machine, the returned frame is copied into a B-bit Block-confirm
(BC) register. The block in transmission is marked by a pointer on the BC register. Each

13

time when the database machine is ready to send a block, it advances the pointer to the
next non-zero bit and transmits the corresponding confirmed block. When the pointer
reaches the end of the register, it cycles back to the beginning. Noting that the BC
register contains the confirmation status of the entire database, so advance functions
such as prefetching of data blocks from the database can also be incorporated. The
analysis of such mechanisms, however, is beyond the scope of this chapter.

A large number of RAID architectures can be used to implement the database
machine. A very simple example is shown in Figure 2-3 where 42 inexpensive disks of
data rate 3 Mbyte/s are multiplexed onto a 1 Gb/s high speed optical link.

B) User Interface Network
The function of the user interface network is to exchange data between the servers

and the user terminals. A large variety of LANs and MANs can serve this purpose.
Discussion of their relative merit, however, is beyond the scope of this chapter.

C) Operation of the System
Figure 2-4 shows a block diagram of the distributed data distribution system. When

a page request is issued by a user, it is sent to the request numbering box (RNB) through
the request path. The RNB has the simple function of distributing the requests according
to the processing rates of the servers. A server performs two types of operations as
follows. At the user interface side, when a server receives a page request it uses its
internal page directory to identify the particular block needed and makes a confirmation
on that block. On the database interface side, a server filters out all its required blocks
from the database interface network, extracts the requested pages from these blocks and
sends them to the user terminals through the data path. The page directory is stored as a
directory block in the database. When a server is powered up the directory block is first
retrieved from the database and loaded into the server.

14

f -N.
^ ^

Database r\
Machine^^ygf Rjng i i 7 1 i

Server Server Server
1 ‘""" 2 一 . . . — N

T I T I T I
Request Numbering

Box Data Path
今

w w ，f
Terminal Terminal Terminal

1 2 T
W W ，r Request Path

Figure 2-4 The distributed data distribution system.

15

2.3 Mean Block Acquisition Delay for Uniform Request Distribution^

A) Upper Bound Derivation
In the following analysis time is measured in slots, one slot being the time required to

broadcast one block of data on the database interface network. The arrivals of requests is
assumed to be a Poisson process of rate X per slot. In this section we study the case where
the request distribution is uniform, or the probability that a certain block is requested is
identical for all blocks. The analysis for general request distributions will be given in the
next section.

Let y{n) be the number of confirmed blocks waiting in the transmission queue at the
database machine at slot n. y{n) therefore does not include the one in transmission. We
shall, for convenience, call it the backlog size. Since the backlog size at slot n+\ depends
only on y{n) and the number of requests in slot n, the evolution of yQi) is a discrete time
Markov chain.

Let random variable A denote the number of requests per slot and random variable K
denote the total number of blocks for which the A requests are located. As the requests are
assumed to be randomly located in the database, the probability that a requests fall in k
blocks is given in [15] as

k ^(k\
= = = [k-yf (2-1)

\yJ
Removing the conditioning on A, we obtain 00 jia -A

P[K = k]=Y,P[K = k\A = a]^^^^ A: = 0，1,2，.••，B (2-2)
a=0 以！

Next, let random variable M! be the number of arrivals whose requested blocks need to
be confirmed when the backlog is i. We shall, for convenience, call these arrivals the new
customers and those arrivals that do not generate confirmations the subsequent customers.
IfMj=m, the backlog at the next slot will be i-l-^m. Given that the backlog is i and k blocks
are requested at the current slot, the probability that m out of these k blocks are to be
confirmed is

iThis section was reported in [14].

16

(number of ways to choose the m request blocks from the (B -/) unconfirmed blocks)
_ X (number of ways to choose the remaining k-m request blocks from the i confirmed blocks)

(number of ways to choose k request blocks from B blocks)

(2-3)
Removing the conditioning on K, we obtain the distribution of new customers in a slot as

B
P [M i 户[M. = H 火=众 M火=众] (2 -4)

k=0
At steady state, the transition probabilities are given by

hij^[r(n-\-\) = j\r(n) = i
‘ 0 forj<i-\ (2-5)
P[Mi = y - / + l] forj>i-\

Having obtained the transition probabilities, the equilibrium distribution of the backlog
size, denoted as {tuq^kj, ...^n^} can be computed in the usual way. The average waiting
time of the new customers, denoted by E[炉”己州],is given by the Little's formula as

B
Ef 1 TJ 冗i

= ̂ = (2-6)

= m
m=0 1=1

Note that W卿 is the waiting time experienced by the new customers. The subsequent
customers will experience a smaller waiting time as the block request was already placed by
the new customers. The expected waiting time of all customers E[W] can be computed as
follow. Figure 2-5 shows the arrival of a new customer and its subsequent departure from
queue after a waiting time W讚 slots. During its stay in the queue, subsequent customers
Si, S2, ...，Sj for the same block will arrive. The arrival rate is A/B per slot. Let us condition
on the event f F 讓 S i n c e the arrival of the subsequent customers is a Poisson process,
their arrival times are uniformly distributed in interval [0,̂] and their average delay is just
til. Let there be j such arrivals. Then the average waiting time of these j+\ customers is

t ^ j l
= (2-7) y + 1

17

Removing the conditioning on j, we have
(t \

E\w\tUY — ^ - ^ ^ ^
' I r ^ (2-8)
t B(l-e-細） =—+
2 22

Wjiew
New Customer
Leaves Queue

；； T .Time

New Si S2 Si Sj
Customer Arrivals of Subsequent Customers
Arrives

Figure 2-5 The arrivals of a new customer and the subsequent customers.

The evaluation of requires the distribution of W腳 which is not available. But
the use of Jensen's inequality [16] allows us to obtain an upper bound on E[W]. It is easy to
show that (2-8) is a convex n function of t and therefore the inequality gives

m] ^ 竭『讀]+ B(i - ,狀[妒J/B)} (2.9)
A plot of (2-9) shows that the

curve is fairly flat for typical values of B and A. We would
therefore expect the bound to be very tight. This is confirmed by the numerical results
presented below. Finally the mean block acquisition delay E[7] is simply E[7]=E[网+1.

After acquiring the blocks of data, the servers need to process them and deliver
them to the users. The processing delay is usually a small fixed quantity independent of
the system traffic. The delivery delay depends on the actual delivery network (usually a
LAN) and its load. The mean response time for systems using Selective Broadcast
technique is the sum of the three delays. The focus of the present study will only be on
the mean block acquisition delay E[7].

18

B) Numerical Examples and Simulation Results
Numerical examples are given here to compare the average block acquisition delay

for the Selective Broadcast technique and that for the Datacycle™. For Datacycle™,
blocks are broadcast from the database machine sequentially with each block appearing
exactly once in each cycle. The mean block acquisition delay for Datacycle™ is simply
(B/2)+l slots and is independent of the request traffic.

Figure 2-6 shows the expected number of new arrivals per slot (i.e. E[M]) against
the arrival rate for the five cases: B=40, 60，80, 100 and 200. We observe that E[M] is
practically independent of B. It grows linearly between 0<A<1 and saturates at 1 when A
> 1. This is expected because as shown in Figure 2-7 the mean backlog size is a very
small fraction of B in the range 0<A<1 and so almost all arrivals are "new" customers.

o r
^ / \B = 40,60,80,100 200 EEM] 06 -- /

04 •_ /

叫
0 J t - H ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~

0 1 2 3
ArrivalRate 义

Figure 2-6 The expected number of new arrivals against arrival rate.

Figure 2-8 compares the upper bound of the mean block acquisition delay E[7] with
the simulation results for Selective Broadcast technique when B=100. The 95%
confidence intervals are all smaller than the size of the symbol "•“ shown in the figure.
The figure shows that the upper bound on E[7] is in fact very tight. Another observation
is that the Selective Broadcast technique provides at least an order of magnitude smaller
delay than that of the Datacycle™ (which has a constant delay of 51) at the traffic level
of A<0.8. Selective Broadcast technique also provides uniformly lower delay than the
Datacycle™ under all traffic conditions. The results for B=200 is similar and therefore
not shown.

19

EBacktag]
100 1

90 --
80 ..

60 -- ^ ^
50 -- Z
40 -- /
30 -- J
2 0 -- /

10 -- J
0 i • • 1 1 1

0 1 2 3 4 5
Arrival rate X

Figure 2-7 The mean backlog size against arrival rate for B= 100.

60 1

Datacycle

50 -- -v；；^^' V V V • - • - • ”

4 � - ^

Err]30 _- j
卯 / - - U pper Bound

J 參 S in ubtbn Fonts
10 -- /

, , _ _ ,
0 1 2 3 4 5

ArrivalRatB X
Figure 2-8 The upper bound on the mean block acquisition delay E[7] for Selective Broadcast technique

when B = 100.

20

2.4 Mean Block Acquisition Delay for General Request Distributions
In this section we first present an approximate derivation of E[7] for general request

distributions. We then show that the approximation is very accurate by comparing it with
simulation results.

A) Approximate Analysis

Let Xi be the Poisson arrival rate of the requests for block /，and ^ =义.We
define a cycle to be the period from the instance that a certain block has a chance to
transmit until the instance it has the next chance to transmit. Obviously, blocks are not
transmitted if they are not confirmed. Let random variable N be the cycle length in blocks
and random variables ly be the number of times block i appears in a cycle. Obviously,
for a cycle to exist and «,e{0，l}. We thus have under the condition that
not all n-s are zero. A bound oniVwithout the attached condition is therefore

N < l + +•••+% (2-10)
As the «/s are all non-negative random variables, we can take expectation to obtain

B
对列�1 + Z !户=1] (2-11) 1=1

where P[«/=l] is the probability that block i is confirmed (i.e. will appear in a cycle) and is
given by

P[ni = l] = P[at least one block i arrival in a cycle] = 1- e一又�N (2 - 1 2)

Since the distribution of N is not available, the best we can do is to use Jensen's inequality
[16] to obtain an upper bound on It is easy to show that (2-12) is a convex o
function of N and therefore P[”产 1] is bounded by

(2-13)
Substitute into (2-11), we get

B
E [N] <{B + l) - ^ 厂义河… (2-14)

/=1 Let g(E[N]) denote the R.H.S. of (2-14).
Lemma 1: There is a unique solution denoted as x for E[N]=g(E[N]) in the interval

(0,B+1).
Proof: Figure 2-9 shows E[A/] and g(E[iV]), and we observe that

1.E[iV]<g(E[AG)atE[7V]=0.
2. g(E[7V]) is a strictly increasing function ofE[N].
3. E[7V]>g(E[iV]) at E[iV]=B+L

Therefore there exists one and only one solution in (0，B+1).

21

B + 1 ^
E[Nt:ElN]

0 E[N] B+I

Figure 2-9 Relationship between E[N] and g(E[N]).

Theorem 1: The expected number of confirmed blocks per cycle is bounded hy x.
Proof: Referring to Figure 2-9，we observe that E[A^<g(E[7V]) for and

E[iV]>g(E[iV]) for E[7V]>x. Therefore, the inequality given by (2-14) is satisfied only
when Substitute x into (2-14), we obtain

B

< (B + 1) - 2] 厂 义 (2 - 1 5)
/=l

Having obtained an upper bound on E[N], the mean block acquisition delay E[7]
can be approximated by:

E[T] = average waiting time + block transmission time
= 三 + 1 (2-16)

2

B) Numerical Examples and Simulation Results
To verify the analytical results obtained above, we perform simulations on three

typical request distributions: uniform distribution, Zipf s distribution and geometrical
distribution. The Zipf s distribution [17], stipulates that block i is requested with
probability cli where c is the normalization constant. For geometrical distribution, the
request probability for block i is equal to cp\ where c is the normalization constant and

22

p is the skewing factor. We observe from the results shown in Figure 2-10 that for all
three request distributions, the approximation on E[T] is very accurate compared to the
simulation results. The results for the Zipf's and geometrical distributions show that
Selective Broadcast technique performs better for more skewed distributions. This is
expected because more requests are identifying on a smaller set of popular blocks with
skewed distributions.

Approxh atbn
60 J • S in u b t b n Fon t s

Datacycfe
50 -- " ^ J ^ ^ V ^ H r • • • * • •

SB-geom etrcal
SB-unrfonn 广

/ SB-Zipfs

A SB-geoin etrfcal

0 1 1 1 1
0 1 2 3 4 5

ArrivalRatB X

Figure 2-10 Approximation on the mean block acquisition delay E[7] for Selective Broadcast technique
when B = 100.

23

2.5 Optimal Choice of Block Sizes
To determine the optimal block size, we redefine a slot to be the time required to

broadcast one page (instead of one block) of data on the database interface network. Let
b pages be grouped into a block and let the database has a total size of L pages. The
number of blocks B is then equal to�L/zTI. The time for the database machine to locate a
certain block on the disk is assumed to be a constant of d slots. With that the
transmission time for a block is b+d slots. One recent study on the HP-UX (Unix)
computer systems shows that half of the I/O operations have nearly constant mean I/O
time if cached disks are used [18]. Since the disk in a Selective Broadcast system
operates sequentially with skips, I/O requests will therefore frequently hit the cache
memory of the disk. The disk delay can thus be assumed to be closed to a constant for
most I/O requests. With that, the approximate analysis given in the previous section
applies directly by equating one "block" time unit to b+d "page" time units.

Figure 2-1 la shows how the block size b affects E[7] for uniform request
distribution when d=l. At A=1 and A=10, b is optimal for a wide range between 5 and
100. When b is smaller than say 5, the disk delay will dominate the transmission
overheads. On the other hand when b is larger than say 100，the time spent in
broadcasting the non-requested pages becomes the major transmission overheads. At
lower traffic level such as 1=0.1, the system always favors smaller b because the
number of requested pages per confirmed block is closed to one. The time wasted in
broadcasting other non-requested pages in a confirmed block will be minimized if a
smaller b is chosen. In Figure 2-1 lb, similar conclusions can be drawn for the Zipf s
distribution.

2500 2500

2000 - y 2000 ••
1500.. / 1500.• / Em / Em /
1000-^10 J 1000-s^io J
500 • 500 •

0 1 0 ^ 1
I 10 丨00 丨000 丨 10 100 丨000

B fock size b Block size b
a) Uniform page request distribution. b) Zipf s request distribution.

Figure 2-11 The effect on changing the block size b. The curves show the approximation on the mean
block acquisition delay at different arrival rates.

24

2.6 Chapter Summary
In this chapter a new architecture for very high speed data distribution is proposed.

The architecture consists of two separate networks: the database interface network and
the user interface network. A new technique called the Selective Broadcast technique is
used in the database interface network for high speed data distribution. An upper bound
on the mean response time for uniform request distribution is derived and an
approximate analysis for general request distributions is given. Simulation results show
that the upper bound is very tight and the approximation is very good. Numerical
examples show that the Selective Broadcast technique can give much smaller block
acquisition delay than the Datacycle'^^ technique under non-overload conditions.

25

References
[1] J Gecsei, The Architecture of Videotex System, Englewood Cliffs, NJ: Prentice-

Hall, 1983.
[2] M Sugimoto, M Taniguchi, S Yokoi, and H Hata, "Videotex: Advancing to Higher

Bandwidth," IEEE Communications Magazine, pp. 22-30, February 1988.
[3] J H Irven, M E Nilson, T H Judd, J F Patterson, and Y Shibata, "Multimedia

Information Services: A Laboratory Study," IEEE Communications Magazine, pp.
27-44, June 1988.

[4] J Rosenberg, R E Kraut, L Gomez, and C A Buzzard, "Multimedia
Communications for Users," IEEE Communications Magazine, pp. 20-36, May
1992.

[5] E M Hoffert and G Gretsch, "The Digital News System at EDUCOM: A
Convergence of Interactive Computing, Newspapers, Television and High-Speed
Networks," Communications of the ACM, pp. 113-116，April 1991.

[6] J Kohli, "Medical Imaging Applications of Emerging Broadband Networks," IEEE
Communications Magazine, pp. 8-16, December 1989.

[7] J W Wong & Mostafa H. Ammar, "Response Time Performance of Videotex
Systems," IEEE Journal on Selected Areas in Communications, Vol. SAC-4, No.
7，October 1986.

[8] Mostafa H. Ammar, "Response Time in a Teletext System: An Individual User's
Perspective, “ IEEE Transactions on Communications, Vol. COM-35, No. 11，
November 1987.

[9] D K Gifford, J M Lucassen & S T Berlin, "The Application of Digital Broadcast
Communication to Large Scale Information Systems," IEEE Journal on Selected
Areas in Communications, Vol. SAC-3, No. 3，May 1985.

[10] John W Wong, "Broadcast Delivery," Proceedings of the IEEE, Vol. 76，No. 12,
December 1988.

[11] Gary Herman, Gita Gopal, K C Lee & Abel Weinrib, "The Datacycle Architecture
for Very High Throughput Database Systems," Proc. ACM SIGMOD, May 1987.

[12] Tom Bo wen, Gita Gopal, Gary Herman and William Mansfield, "A Scale Database
Architecture for Network Services," IEEE Communications Magazine, VoL29,

26

No.l , January 1991.
[13] S Baneijee, V O K Li and C Wang, "Distributed Database Systems in High-speed

Wide-Area Networks," IEEE Journal on Selected Areas in Communications, vol.
11，pp.617-630, May 1993.

[14] T S Yum and K H Yeung, "The Confirm Before Delivery Technique for High
Speed Data Distribution," Proc, of IEEE GLOBECOM'93, pp. 1105-1109,
November 1993.

[15] William Feller, An Introduction to Probability Theory and Its Applications, 3/Ed’
Vol I, pp.60, John Wiley and Sons, 1968.

[16] R J Mc Eliece, The Theory of Information and Coding, Addison-Wesley, 1977.
[17] G K Zipf, Human Behaviour and the Principle of Least Effort, Addison-Wesley，

1949.
[18] C Ruemmler and J Wilkes, "An Introduction to Disk Drive Modeling," IEEE

Computer, Vol.27, No.3, pp. 17-28, March 1994.

27

Chapter Three
Dynamic Multiple Parity (DMP) Disk Arrays

The performance of today's database systems is usually limited by the speed of
their I/O devices. Fast I/O systems can be built from an array of low cost disks
working in parallel. This kind of disk architectures is called RAID (Redundant Arrays
of Inexpensive Disks). RAID promises improvement over SLED (Single Large
Expensive Disks) in performance, reliability, power consumption, and scalability.
However, a general fact about RAID is that the "write" operation is difficult to
speedup. In this chapter, we propose a new RAID architecture called Dynamic
Multiple Parity (DMP) Disk Array for serial transaction processing database systems.
Serial transaction processing database systems include engineering database systems,
fully-replicated database systems using a completely centralized algorithm, and
distributed systems using the conservative timestamp ordering algorithm. DMP Disk
Array can significantly increase the I/O throughput by incorporating multiple parity
disks. Due to the inherent distributed sparing property, DMP Disk Array can provide
normal service to the users under single disk failure condition. Delay and maximum
throughput analysis on DMP Disk Array is performed. Results show that DMP Disk
Array can provide 30 to 40% improvement on "write" throughput over that of RAID
level 5 when one extra parity disk is used.

28

3.1 Introduction
In the past decade, considerable attention has been drawn to the research and

development of database computers. As Su [1] has stated in his book, there are three
reasons why database computers are needed: 1) The need for efficient and effective
data management; 2) The need for more powerful database management systems; and
3) High performance database computers become economically feasible due to the
advancement in hardware technology and the reduction in hardware cost. The
performance of a database system is usually limited by the speed of its storage devices.
One good example is the Datacycle'^^ project at BellCore starting from the late 80s
[2,3]. BellCore proposed an innovative database architecture called the Datacycle™. In
this architecture the entire database is periodically pumped out from the central
database to a number of servers, in which the user required data are filtered out. Since
the whole database is pumped out, Datacycle™ has an unlimited throughput for
read-only transactions. Datacycle'^^ technique assumes that the database is "memory
resident,“ i.e. the entire database has to reside in a very fast storage^. This assumption,
however, limits its scope of applications.

Redundant Arrays of Inexpensive Disks (RAID) is an innovative concept in
designing fast and reliable data storage systems. The philosophy behind RAID is that
instead of using one single expensive disk to achieve the performance and reliability
required, an array of low cost disks working in parallel are used. Five levels of RAID
have been defined when RAID was first introduced^ and the RAID level 5 was found to
be one of the best [4]. For all levels of RAID the "write" operations are much slower
than the "read" ones. This limitation is particularly severe for applications with
frequent data updates.

There are two reasons why a "write" operation takes more time for RAID.
Firstly, a "write" operation involves the additional step of reading back the old data
from one disk and parity from another disk. Secondly, a "write" operation involves the
waiting time for two specific disks to be free simultaneously before actual writing. This
waiting time can be reduced by using the technique presented in this chapter.

In this chapter we propose a new RAID architecture called Dynamic Multiple
Parity (DMP) Disk Array for serial transaction processing database systems. Many
database systems process transactions in this way. Examples are engineering database
systems [5-6], fully-replicated database systems using the completely centralized
algorithm, and distributed systems using the conservative timestamp ordering algorithm
[7-9]. When we discuss the operation of DMP Disk Arrays, we will see how this kind
of database systems handle I/O requests in a way different from other database systems.
We will also show that DMP Disk Array can significantly reduce the waiting time of
disk operations, and provide a higher I/O throughput than the RAID level 5. In the next

1 In the prototype built by BellCore, the whole database resides in RAM.
2 Some disk manufactors introduce their own levels ofRAIDs later.

29

隣鄉禱， , : : : ‘会 � V .
I ；: section, we describe DMP Disk Array in detail. We then present average delay analysis
: : : i n section 3.3 and maximum throughput analysis in section 3.4. In section 3.5, results

on simulation with precise disk model is given. We then conclude the chapter in section
L�‘ 3.6. J ‘
i^fi.i.i.w

「；. A. Om^VTiKC

imJidnt f t b u 'M ” \ i � ^ �� ’ ‘ . r 1 . � � : � ” ‘ � •
rsch dl^k KfJ^'tiu 4 / > r; � ' t < ^ > V, u J . , ‘ .'广 u “ “ >
？ - D ,…-；；、’乂 • � ‘ ‘ 广广‘-

？.y:，： V -
•T , * . � . J " ? V • > f .. ‘ —��.. .• ••• . , . ‘ ‘

• ‘ •

. ‘• <••

-.. ... ；. • • • • - . • . + ‘ ‘ ‘
...... '•？ ‘ ‘ . ,-

-...：....\ , ； , . - ？: �� V _ , ：； - •.
- ‘ / - ：• •• , • •‘‘ . -.

‘ ‘ � • ’ ii- .
- ‘ ‘ ^ > ‘ , •

. � � / 7 > . •
. • 卞 /‘，、...

• “ - . ‘ • ‘ . ： ...+-.
_ I •

, • .. ‘ -• 广 . . ：.

.. -• •• ； . • •

•. “丄 cr; • \ ... • - ：
• ‘ “ • - • . • • • “

• • ^ , -

..• . - ‘ ： -
- ,；•• ‘ ••• 沫: ‘.

• 、.：： . i � ,
�

. ‘ «..�,‘.••., ..1 ‘ ： --

’ • ： ... • 、- ‘ - ,

- ' *
-'“ I ？ ‘ ‘ ^

I . . � . . . ‘ . ， ， . - .

,..) 0 » : . ’ ' 丨 . • • • I • “ --•
i , - ...I , , 广 : , / . - � . . ‘ • � . . • • 'i

i- ..：.：,-^ ：,/_：,J•； •,...... ...
^ � - , ‘ • -

S ! ： 於 々 磁 法 今 - ‘ ：
？‘。 、’ ， 30 .

fl .d'-'Jv ̂ i 〜一rff‘ V� I ‘
卜 W 綱，iV̂ ,�、〜 ； ‘ , ‘ . t ‘. # A A ； ' , ^ , I, ' •

i ^ l f 雜 麵 導 二 ” 丨 ： 々 … ， , ；
.....‘. ,：1；. ^ 丨 _ 」 … . ： . ： … ： , . . ；

3.2 DMP Disk Array

A. Sector Coordinate System
The sector coordinate system can be used to describe RAID operations,

including that of DMP Disk Array. Consider a disk array system with M disks where
each disk consists of Z sectors and each sector can store K bits of information (Figure
3-1). Let 5(z j) = . . . be the bit pattern of sector j in disk i. It can be
data or parity. As an example, a RAID level 1 is described in this sector coordinate
system as:
S{iJ) = S(i^lJ) 7 = 1,2,3,...,Z, / = l,3,5,. . . ,M.l (3-1)

Diskl Disk 2 DiskM
一" “、）c 广 、

Sector 1 j m J ^ J J
Sector 2 ^ S ^ ^ S ^

• . S ^
•

• .
z z ^

Sector Z s(l，Z) _ _ _ S(M,Z)
— '̂c：：̂ ^̂ ^̂ u p '-，

S(E(Z)，Z)
^ p：： <

Data Sector Parity Sector

Figure 3-1 The sector coordinate system showing level 5 RAID.

Similarly, RAID level 4 and level 5 can be described as:
令 f (1,1,1,...,!) for all; {odd parity}
合（'，刀-1(0，0,0,…，0) for all j {even parity} “
where Z is defined here as the mod-2 sum of the sectors' contents:

31

M
Z SQJ�= ^(1, j) © S(2,m.. j)
1=1

= (V，W) . ’... 卿产w，"..，〜2,巧 ̂ ^ ̂

(3-3)
Let E(j) be the location of the parity sector at row j. For RAID level 4 E(f) 二M and for
RAID level 5 E(j)=(j mod M). The placement of these parity sectors are shown in
Figure 3-1. A study on the various parity placement methods for RAID level 5 can be
found in [10].

B. Sector Organization
The DMP Disk Array proposed in this chapter is a new RAID architecture for

which the RAID level 5 is a special case. RAID level 5 has only one parity sector in
each sector row and therefore it is not possible to simultaneously update two or more
sectors on the same row. DMP Disk Array allows such updates by placing R parity
sectors in each row. Their locations Ej(j),E2(j),...,Ej^(J) for rowy are
E,(j) = r + j mod M r = (3-4)
Lee [10] showed that for relatively large request size of hundreds of kilobytes, the
choice of parity placement can significantly affects the performance of disk arrays
whereas for small request size, the choice of parity placement is insignificant to system
performance. We therefore arbitrarily choose the parity locations as stated in (3-4).
Although there are R parity sectors in each row, parity integrity described in (3-2) is
always maintained for DMP Disk Array. (An example on the sector organization of
DMP Disk Array for R=2 is shown in Figure 3-2.)

There are two advantages of placing R parity sectors in each row. First, for
each data sector modification, we can choose any one of the R parity sectors in the
same row for simultaneous parity modification. Hence blocking due to busy disks can
be significantly reduced. Second, up to R data sectors on the same row can now be
modified simultaneously. We now prove that DMP Disk Array has these useful
properties.

32

Diskl Disk 2 Disk 3 Disk 4
—.td � ^ •一1 �� ““

卿 msm ^ ^
• ； ‘ ^ ^

. . . . “ . . . “ ‘

*

^ ‘—_ _ -<：：：：
• • •

. . > •

• . . •

. . • •

• — ^ ^ — ^

Data Sector Parity Sector .,,•»

Figure 3-2 The placement of parity sectors for DMP Disk Array when R=2.

C. Properties of DMP Disk Array
Property 1 concerns about the simultaneous negation of two bits on the same

row.
PROPERTY 1. For any row j, simultaneous negation of any two bits in the same bit
positions of two different sectors will not affect the parity sum of the row.
PROOF. Consider the set of rth bits of each sector in sector row j, i.e., br^j, bj^j,...
and br^J. In order to maintain parity integrity, the sum of these bits should always be 1
for odd parity, or 0 for even parity. The parity sum after the negation of any two bits
by^j and br^j, where a^b is:

33

=b，,J' e b，’j e • . 秘严 ,』 ' (cummutative law}
=V，y � 办 � … { a s s o c i a t i v e law}

\ /

= { d e f i n i t i o n of exclusive -or}
v /

='b:jbj"， j ® .) {law of double negation} V /
=[b/ ' J © bJ^'J) 0 (b,，J' © . . .姚,“) {definition of exclusive - or}
= e b，，j e b.^'J®... {associative law}
= b � ’ j e . . • � ® …® V̂，y � . . .姚 , , � • {cummutative law}

(3-5)
and is identical to the parity sum before the simultaneous negation. We can extend the
argument on the modification of two bits to that of the modification of two sectors on
the same row. This is stated as Property 2.
PROPERTY 2 Parity integrity of a row can be maintained by modifying any one of
the parity sectors in the same row.
Property 2 implies that there can be R different ways to update a data sector. Due to
this flexibility, the probability that a "write" request is blocked due to the busy disk can
be reduced.
PROPERTY 3 Consider the simultaneous modification of data in sector j of disk a
and parity in sector j of disk b. We denote the old data sector, the new data sector, the
old parity sector and the new parity sector as S(a’j) lold, S(aj) I new, S(bJ) I old and
S(bJ) I new respectively. For maintaining data integrity, the new parity sector should
be:
S(hJ) L v = S{aJ) L ®S{aJ) ®S{hJ) L (3-6)
PROOF In order to maintain parity integrity, the partial sum of the two sectors S(jx’j)
and S{]b’j) must not be changed after sector modification, i.e.
S{aJ) ®S{hJ) = S{aj) L ®S{bJ) L (3-7)
Solving for S{b,j)卿，（3-6) is obtained.
PROPERTY 4 For BMP Disk Array with R parity sectors in each row, R data sectors
locating at the same row can simultaneously be updated.
PROOF Equation (3-7) shows that for any sector update on row j, the partial sum of
the data sector and the parity sector will always be the same. Thus, the particular sector
update will not affect the updating of the other sectors in row j. From property 3，we
find that each sector update requires the old contents of two sectors only. Therefore,
each update is actually carried out by two disks working in cooperation, and is

34

independent of the operations of the rest of the disks. Therefore with R parity sectors,
R simultaneous updates can be performed.
PROPERTY 5 Consider a DMP Disk Array with M disks and R parity sectors in each
row (R>1). When a disk fails, it is possible to reconfigure the remaining M-1 disks to
a new array with R-l parity sectors in each row without data loss.
PROOF Let (p,p,...,p) be the parity sum of all the sectors in a row, say row j, and let
S Q) i J) , S Q) 2 J) , … b e the parity sectors. Obviously, b j = E i (j) ,匕之二㈣仇…，

Suppose disk i fails. We consider two cases for the recovery of S(j，j).
(i) If S�i,j) is a data sector, it can be recovered from M

•̂ (z，/) = (A / V .，/^)® Y,S{nJ) (3-8)
One of the parity sector, say can be used to store the recovered data S{i,j).
To maintain parity integrity another parity sector, say SibjJ), is modified as:
S(b,J) = S{b,J)®S(bj,J) (3-9)
before storing the recovered data in disk bĵ . The recovered DMP Disk Array has
now R' l parity sectors.

(ii) If S{i,j) is a parity sector, then no data is lost. The parity integrity can be recovered
by modifying another parity sector, say b, as follows: M
S(bJ) = (3-10)

n实b

Property 5 tell us that DMP Disk Array has the distributed sparing property
discussed in [11]. It is shown in [11] that distributed sparing is the best sparing
technique for small disk arrays.

D. Principle of Operation
Figure 3-3 shows the organization of DMP Disk Array. Requests from host are

directly sent to the disk controller for I/O operation. The disk controller consists of
four parts: a FCFS queue, a local memory, a scheduling processor, and a DMA
controller. The queue is used for storing I/O requests. Since we are considering
systems which execute transactions in a strict order, a single global queue with FCFS
service discipline is used. Note that this is different from other systems reported in the
literature which use separate disk queues [12-15]. The data associated with each request
(i.e. the new data for a sector) is stored in the local memory when the request is placed
on the queue. The local memory is also used for buffering the data sent to/read from
each of the disks with the help of the DMA controller. The DMA controller functions
basically as a multiplexer/demultiplexer and handles simultaneous data transfers to
various disks. The scheduling processor is responsible for distributing I/O requests to
the disks, and performs all necessary processing. Specifically, its functions are outlined
as follows:

35

1. It read a request from the FCFS queue when ready and determine whether the
request is a "read" or a "write" type.

2. For a "read" request, the processor will
i) check the status of the disk involved with this request;

ii) instruct the disk involved to read the target sector;
iii) load the sector to the local memory; and
iv) signal the host for data ready.

3. For a "write" request, the processor will
i) check the status of the disks and select at random the parity sector of a non-

busy disk;
ii) read the old data sector and the selected parity sector;

iii) compute the new parity sector according to equation (3-7);
iv) write the new data sector and the new parity sector to their corresponding

disks;
v)reacl back the parity and data sectors for verification; and

vi)signal the host for "write" completion.

Control r "•"""!
二a Disk Controller r • ^ i T
Path ^ I I 1 1

； I / O Queue ； | � ；
Requests ！ nT| i |
from Host Scheduling < [
Signal to— _; Processor I | \—

Host 丁 _ ^ I • Disk 1 _ _ L J i p i I H " ” " “
i Local I i I

> ： ! •

j Memory | ! I
J i i i *

！ ^ ^ _ _ i ^ i I . • ~ 1 I Write Data i DMA !
Read D a t a J Controller � • Disk 1 ——— M

Figure 3-3 Organization of DMP Disk Array

36

3.3 Average Delay
A) Analysis

Figure 3-4 shows a queueing model for DMP Disk Array. Requests sent from
host become jobs to be served in the servers. Job arrivals are assumed to be a Poisson
process with rate 义.A job is of the "write" type with probability a and of the "read"
type with the remaining probability. Jobs not yet served by the disk array are queued in
a FCFS queue. We cdll the job which is at the top of the queue the Head Of Line
(HOL) job. The probability that the HOL job needs to access a particular disk is
assumed to be the same for all disks. This assumption is usually not true. But it can be
made true by distributing the frequently accessed data uniformly across all the disks.
For mathematical convenience we assume that the service time for a job is
exponentially distributed with the service rates for a "write" job and a "read" job
denoting as ju^ and jUj. respectively.

^ Sever _
1

^ Sever ^
\W 2 Jobs in • ^

參

•

^ Sever ^
M

Figure 3-4 Queueing model of DMP Disk Array.

Let random variables N^ and N, denote the number of "write" jobs and "read"
jobs in the disk array, and N^ be the number of queueing jobs (including the HOL job)
at any time. It is easy to see that the triplet completely specify the state of
the system. Let S^ ^ ^ denotes the state of the system when iV州=>v，N^=r and
State transition will take place when a new job arrives or when a job in the system
departs. Since the time spent in a state is exponentially distributed, the evolution of
{pi^,N”N� is a continuous time Markov process. We define the transition probabilities
to be

37

r " ^ w r q ^ - ^ ĝ)=(拟'，广•，�•) after State transition
， ’ ’ ， (� / � (3-11)

= before state transition
Consider a particular state transition at time t. Define events E!，£2，and E3 as:
El: A new job arrives at time t.
E2： A "read" job departs at time t,
E3： A "write" job departs at time t.

These events are listed in the first column of Table 3-1. The disk array is at
immediately before t, i.e. at time t-dt (St^O). The probability that a new job will
arrive in the interval (t-St,t) is ASi if St—Q. Similarly, the probabilities that the disk
array will finish serving a "write" job and a "read" job in this small time interval are ju
^St and respectively. Therefore,
P[E,] = -^——

P[E2] = - ^ — — (3-12)

When a new job arrives (i.e. Ej occurs), the probabilities that this HOL job is of the
"read" type and of the "write" type are l-a and a respectively. However different
probability for each of the job type for the HOL job is found when a job departs (i.e.
either E � o r E^ occurs). We denote the probabilities that the HOL job is of the "read"
type and of the "write" type by h^ and l-h^ respectively for system transitions due to
job departures. Probability h^ can be derived as follows. At the previous state change,
the HOL job was blocked because it requires the access of one or more busy disks. By
that time there were 2w+r busy disks. If the HOL job is of the "read" type, the
probability of blocking k̂ is:

_ number of busy disks _2w-\-r Ky, — = (3-13) total number of disks M
On the other hand, if the HOL job is of the "write" type, the probability of blocking k从
can be derived as follows. We shall call the disk which the HOL job targets for data
modification the data disk, and the R disks storing the required parity information the
parity disks. Let e v e n t s � a n d be:

。：The data disk to be accessed was free at the previous state change.
At least one of the R parity disks was free at the previous state change.

Then,
= p[no blocking]

= (3-14)

1 A] is given by:

38

^number of ways to ^ fl Iw^r <R
choose R parity disks

嚇 1] = 1 - — 二 ' b u s y d i s k s j : [2 二 (3-15)
川 j^numberofwaysto ^ L V ^ ； 2w+r>R

choose R parity disks -1
^from M - \ disks j v ^ >

Substituting into (3-14) and solving for 州 we obtain
lw^r<R M f 2W-\-A

� = ， — I R I j (3-16)
M M (M-X"

‘ I R J
Having obtained k̂ and k^, h^ is given by:
K-去 (3-17)

Ay I r V y ^

Conditioning on event Ê and giving the type of the HOL job, the probabilities
of having different numbers of jobs located in the queue and in the disk array are listed
in the sixth column of Table 3-1. For example, the first row of Table 3-1 corresponds
to the case that a "read" job enters an empty queue is blocked, or the number of "read"
jobs and "write" jobs in the disk array remain the same and q' becomes 1. The
probability of having the new triplet (w',r\q')=(w,r,l) after t under the two given
conditions is denoted as a；. Similarly the fifth row of Table 3-1 corresponds to the case
that a "write" job enters an empty queue and gets served immediately. The probability
of having (w>'，。= (w+7，r，0) after r under the two given conditions is denoted by a^
as shown. The derivation of all a / s are given in the appendix.

The seventh column of Table 3-1 shows the type of the new HOL job and its
corresponding probability. A new HOL job is blocked at time t with probabilities k',
and k’w when it is of the "read" type and of the "write" type respectively. Similar to the
derivations on k, and k^, and k'^ can be obtained from (3-13) and (3-16) by
changing the number of busy disks from 2w+r to 2w'-\-r'.

The last column of Table 3-1 shows 15•州,,,《，五J. By removing the
condition on E^，the transition probabilities are thus obtained:
巧 V r w l � ,，一 Z 拟 々 I 本 ,， , ,五準 /] (3-18)

/=1
Having obtained the transition probabilities, the equilibrium distribution of

different states can be computed in the usual way. The expected numbers of jobs in the
queue are given by:

|_从/2�M 00
E[N^]= Z E Z ^ ^ t V , .] (3-19)

w=0 r=0q=0
39

^ ^ ； ; 〜 興 ： ... ：： ： •

r:: Finally, by Little's formula, the job's sojourn time D is given by „ , — — …

rt- ^ Uw Mr ； . . . I ： , . I
\ 厂 ， I I ： J ： ^ — t 广 、 譯 ‘ = - ； ；

1 ； . , * p - '' I • ' , j-
热 ： … … … ~ . • . . . I ^ . f
, 、 - 、 … ： . i I t ！.

f̂ ： I 4叫 . • ‘ - . . . , .t �TfU•…i ；:î, '' I „• f. S3 ^ ' ' V- ‘ i. . ' . ‘ I - ? • 考 “̂ 1

、 • _ ! . _ . 》 • ； ’ . . i
V n • ^ I： ‘ 《梦“• - [- ‘ ？ ；: •

1 ' 1 •；•• ‘• . . HM"-* .,�-_<. . . . , rt、，l - • r. . ‘,• . rfiv i-j. • . . • • ^ � , � • � ‘ . . . V . py j—j*"" . - . ’ . • , ‘ , ., . .“ . • » - . � . •... • • M ^ . •«w‘w‘‘..�i |‘r •,. j；.,

：….jn \ ‘ - i ; ‘ j.r . , ‘ • ；''
. I I • i + ! f ‘ . • ：

� ‘ fs I f'̂ l̂ • \ -] At'̂"?}. i-r'' I i ' R : I -fV t •‘ Sv., . ； ’ s,-, -；
I f i- ： , .

jy 释、 I h � , - (. : >〜 .’、：� ！ AT,!:<r ‘ ：”. 1 ： 丨. -.a, ..I . f. i ‘ i ； ： ‘ ： . •
' I I ； . , ‘： • .. ‘ . i

» I at -'»'I I ^ • . -o：>• 'V-� -.‘.•,, . 7 ‘,. :•: f
I I ^ .‘ ：‘ -
？ > I 广.�� I, 二 . “ ‘ .‘ J
！. .. i 1 — . f . ‘ i
1 * ., ,. . . .

： 4 > S ' • i- ’ •• < • ' - r ; . ' \ ！
J • .1 ：!_ � . • � . . - • . - - � . . v . . . • .. • - .-•"•‘ • , • . , ‘ ‘ . . } I , , • ? " , , » I > ‘ -i' • ‘

I \ K ,
- 項 k -• ：• ‘ U ’ .. ；a.-- ...

, r ij.x ： ^ i • -ir . -�..:,< •
I ‘ •• • ‘ -. •••• •• • 1 •• T"；： •• :.. • ... , . — . ^
？ 、 ： ， �.. ‘‘ i -. . . j .. 凑 • ： . .I : q : ’ - .… i � ； . •
1 -i I : •] : . . : .f I • . . , .; • .

^ I . 1 . . ！.:.、.. ， . . .�- . , , . .� . .„ I. . ’ : 一 .丄…... ... • I J I : . I i . ‘ .. 1 j. • . t , -f ? • • , -t. . f .. . ； • , f . . I I . • s \ '' j . ‘ i ^ . •. ,/；• i . ‘
V 5 - . ‘ , - , » • -r • ‘ ‘ I, , - ‘ . v •‘ w.M • • , . . . - - � . . - ‘._! •-. . . “ . 一 • _ ,， , . - , ^ • ‘ > i •‘ "• • ^ r - i r \ t • i . • . . • ,
I 1 ; < - 」 . ， 。 . ••• . •、. ，， … •：

.；• • ！ . -、 ：. .. ： . 一 '1 . , . … … . . .
) X ： -"'<••.‘• . .• . * ， - - � - . . . - . - , . ‘ - . •• - . i . .- • - • • « . f , � . . ， . •.‘ ，. • i . . � . ‘ ‘

i •, • ，. . >

.] I I . ^ . i'' 、/贫;::、’.二. '�..:- - ：…。 - ,
•； •、 « 、 ’ -I I ； \ 1

. . I . , I .：： ： .丨 j . . , .

* ^n ^ i ^ • ‘ ‘ 、， 5， 一 ； r. ； : : . � . ‘ ..：. . r I t . ‘，. . . 厂
• « v.- i ： V > � f; •‘ I . I.. .
； . ！ ' ' ' 广 ‘ . ” '"•； - 广， . . . ‘ I f • • , “ ！ 1 i
I； ：； i •• '{“ • •• •‘ sf {1' ̂ ‘ ij 义. ’， - .-I 1 ？ ... ：： ： . -.••‘ if \ • _ -

： .. V I I . ！ “ ^ I I)..’.,：. ； ：； . • ： . , � . .
^ - I r . ” ‘ , . . - - J - - … * � . - . . . -A-*'' - •' “ ‘ , • f . - jw -. ； _ . „ ‘ - . . . ,1-

:::'》,:.,.:.、 ！ r ！ . . ； . ？ , . •

1 ĵ jJ ‘ , ^ i • .
*‘� .. "•'•1 I . . I -， . .1 j. “ .： ^ I . 1 J ul̂ f � ” ，」，. ， J ' ' ‘ ， } ' ' 【 j I i ： [, , �‘•丨....^ 1 1 ^ ‘ 1 I - S , …

Ei New states (W,r',q') Type of the P[w«/，q’ Type of the P[Sŵ ,q,
H.O 丄 job lEj] newHOLjob Sw-ŷ q-lEj]

W=w, r-r read (1-a) ^ - (l-a)ai

q-1 write (a) ^ - oca!
El all other new states - ^ 0 - 0

{a new q=0 w'=w, r'=rH read (1-a) ^ - (l-a)a3
job q -0 ŵ =w+l，r'=r write (a) ^ - aa4

arrives} all other new states - 0 - 0
q*>l all new states - 0 - 0
q-q+1 w'=w, r-r - 1 - 1

q>l all other new states - 0 - 0
qVq+1 all new states - 0 - 0
q-0 w*=w，r-r-1 - 1 - 1

q=0 all other new states - 0 - 0
qVO all new states - 0 - 0

w'=w, r'=r-l read(l-hw) as ： (l-hw)a5
E2 q-1 write (hw) ： hy^

{a read all other new states - 0 - 0
job q=l q*>l all new states - 0 - 0

departs} w*=w，r'=r read(l-hw) a? ： (l-hw)a7
q-0 w'=w+l, r'=r-l write (hw) ag - hwag

all other new states - 0 - 0
w'=w, r'=r-l read (l-h^) as ： (l-hw)a5

q>l q-q v̂rite (hw) 06 - hwa6
all other new states - 0 - 0

q*>q all new states - Q . 0
Table 3-1 Transition probabilities of each event Ei for average delay analysis.

41

Ei New states (W，r•’q,) Type of the P[w',r',q' Type of the P[Sw.r.q,

H.O丄 job lEil new HOL job Sw-.r-.g-1 Ej]

w'=w, r'=r read (1-hw) av read ((l-a)k'r) (l-hw)(l-a)

aykV
write (ak'w) (l-hw)aa7k'w

q'=q-l W=w+l，r'=r-l write (hw) ag read ((1 -a)k'r) hw(1 -cQask'r

write (ak'w) hwaagk'w

all other new states ： 0 ： Q
W=w, r-r-l+(q-q') read (1-hw) ag ： (l-hw)a9

q'<q-1, w'=w+(q-q'), r'=r-l write (hw) ^ ： hwaio

q'=0 read (1-hw) an (l-hw)aii

El q>l (w'-w)+(r'-r+l)=q-q' write (hw) a^ ： hwaii

(cont.) all other new states : 0 : 0
w'=w, r'=r-l+(q-q') read (1-hw) ag read ((l-a)k'r) (l-hw)(l-a)

agk'r

write (ak'w) (l-hw)aa9k'w

w'=w+(q-q'), r'=r-l write (hw) aio read ((1 -a)k'r) hw(1 -a)aiok'r

q'cq-l, write (ak'w) hwaaipk'w

q'>0 read (1-hw) a" read ((l-a)k'r) (l-hw)(l-a)

aiik'r

w'>w+1，r'>r, write (ak'w) (l-hw)aaiik'w

(w'-w)+(r'-i+l)=q-q' write (h w) an read ((1 -a)k'r) h w (1 -a)ai2k'r

write (ak'w) hwcxa^kw

all other new states - | 0 - 0
Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd).

42

E i New states (W,r',q') Type of the P[w*，r•， Type of the P [Sw’r ’q ,

H-O-Ljob q'|Ei1 newHOLjob Sw-j-.q-1 Ei1
q-0 W=w-1, r'=r - 1 ： ！

q=0 all other new states - 0 ： 5
qVO all new states - 0 ： 2

W = w - l ， r ' = r r e a d (1 - h w) a n ： (l - h w) a i 3

q,=l write (hw) au ： hwau

all other new states ； 0 ： 2
q=l q*>l all new states ： 0 ： 2

w'=w-l,r'=r+l read (1-hw) ais ： (l-hw)ai5

q'=0 W=w’ r-r write (hw) ai6 ： hwaie
all other new states - 0 ： 2

E3 W=w-1，r'=r read (1-hw) a^ ： (l-hw)ai3

{a write q'=q write (hw) an ： hwa"
job all other new states ； 0 ： 9

departs} q*>q all new states ： 2 ： -
W=w-\, r'=r+l read (1 - h w) a" read ((l-a)kV) (l-hw)(l-a) aiskV

w r i t e (g k ' w) (1 - h w) a a 丨 sk 'w

q>l q , = q-l W=w, r-r write (h w) aie read ((1 -a)k'r) h w (1 -a) aiek'r

write (gk'w) hwocaiek'w
all other new states ； 0 ： 2
w'=w-l, r'=r+(q-q') read (1 - h w) an ： (l-hw)ai7

q'cq-l ’ w'=w-l+(q-q'), r'=r write (hw) ais ： hwaig
q ' = 0 W > v / , r ’ 祈 1 ’ r e a d (1 - h w) a i g ： (l - h w) a i 9

(w'-w+l)+(r'-r)=q-q' write (hw) a2o ： hwa2o
all other new states - 0 ： 0

Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd).

43

Ei New states (w•，r’,q’） Type of the P[w',r',q' Type of the new P[Sŵ ,q,
H.O.L job lEil HOL job I Eil

w*=w-l，r'=r+(q-q,) read (1-hw) an read ((l-a)k'r) (l-hw)(l-a)
ank'r

write (ak'w) (l-hw)aai7k'w

w'=w-l+(q-q'), r'=r write (h w) aig read ((1 -oQkV) h w (1 -oQaigk'r

E3 q>l q'<q-l write (ak'w) hwocaigk'w

(cont.) q ' > 0 read (1 - h w) read ((l-a)k'r) (l - h w) (l - a)

aipk'r
W>w, 1， write (ak'w) (l-hw)aai9k'w

(w'-w+l)+(r'-r)=q-q' write (hw) aio read ((1 -a)k'r) hw(1 -a)a2ok'r
write (ak'w) hwaa2ok'w

all other new states - 0 ： 0
Table 3-1 Transition probabilities of each event Ei for average delay analysis (cont'd).

B) Numerical Example
As an example consider a small DMP Disk Array with data storage capacity of

4 disks. We assume in this example that //^=30 jobs/sec and /i,=50 jobs/sec. Figures
5 to 7 shows both the analytic and simulation results for this disk array, and we observe
that they match very well with each other. Note that for all simulation results shown in
this chapter we have extended the simulation time sufficiently long to make the 95%
confidence intervals smaller than the size of the simulation points shown.

Figure 3-5 shows the job delay against the arrival rate when all jobs are of
"write" type. As indicated by the curve, the maximum throughput for RAID level 5 is
about 32.5 jobs/sec. When one parity disk is added to the disk array (i.e. when M=6 &
R=2), we find that the average job delay is reduced under all traffic conditions and the
maximum throughput is increased by about 24% when compared to RAID level 5. If
one more parity disk is used (R=3), we find that the job delay is further reduced under
all traffic conditions and 40% increase in maximum throughput is observed.

44

1 -l
(M j n= (5 , l) (6.2) (7.3)

0 3 - (RADa •
• S m u b t b n • ”

Ofi -- Fonts

�”
0 4 1 1 1 1

10 20 30 40 50 60

Arrival rate (Jobs/^ec) Figure 3-5 Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity M-R is 4 disks). All jobs are of "write" type (a= 1).
Figure 3-6 shows the job delay against the arrival rate when half the jobs are of

the "write" type (a=0.5). We observe from the figure that DMP Disk Array with R=2
and 7?二3 again performs better than RAID level 5 under all traffic levels. Compared
with RAID level 5, DMP Disk Array provides 13% and 23% increase in maximum
throughput when and R=3 respectively. When all the jobs are of the "read" type
(Figure 3-7), DMP Disk Array provides relatively small increase in throughput.

45

— —

� � - I
•S in ubtbn / /
Pohte /

03" 卜 ⑴ / (Mî)=(5.1) f I /
(RA D-5) / / /

0 -I 1 1 1 1
20 30 40 50 60 70

Arrival rate (Jobs/feec)
Figure 3-6 Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity

M-R is 4 disks). Half the jobs are of "write" type (a=0.5).

0.6 -1

(M 幻:(5," (e �
0’5 •• (RAD "5) J

0.4 -- / J
J (7.3) • S in ubtion Pohts / / / IZW

0 4 1 1 1 1 1
60 70 80 90 100 丨 10 120

ArrivalRate (Jobs/feec)
Figure 3-7 Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity

M-R is 4 disks). All jobs are of "read" type (a=0).

46

3.4 Maximum Throughput

A) Analysis
Although the analysis given in section III provides an exact solution on average

job delay, the computation is very demanding when the disk array is large. In the
following, we present a simplified analysis which gives the maximum throughput for
DMP Disk Array. A modified model shown in Figure 3-8 is used in our analysis.
Compared with the previous model (Figure 3-4)，the FCFS queue is removed and we
assume that there is always a new job available at the input of the disk array. All other
previously used assumptions are used in this maximum throughput analysis. Since the
queue is removed, system's state can solely be specified by N^ and A/̂ ,and is denoted
by S对,State transition will take place when a job in the disk array departs, i.e. either
E2 or E3 occurs. Since the time spent in a state is exponentially distributed, the
evolution of N^ and N^ remains to be a continuous time Markov process. As before, we
define the transition probabilities to be

=w\Nf.=r' after system transition = = r before system transition]
(3-21)

^ Sever ^
1

^ Sever ^
^ I 2

Jobs in •
•

^ Sever ^
M

Figure 3-8 The modified queueing model for DMP Disk Array.

47

Consider a particular state transition occurs at time t. The probability of
occurrence for E � a n d E^ are given by
P[E2] = ^ ^

狄 (3 - 2 2)
P[E3]=狄""

wju^+rjur
Given that a specific event Ei occurs, the transition probabilities 冰 广 人 a r e
listed in the last column of Table 3-2. The derivations on probabilities â are given in
the appendix. Having obtained the transition probabilities, the equilibrium distribution
of different states can be computed as before. The expected time between successive
job departures X is given by \MI2\ M 1
X : Z Z 巾 "] " " “ ^ (3-23)
Finally, the maximum throughput for DMP Disk Arrays T is
r =丄 （3-24)

X

48

Ei New States (w',r') Type of the P[w*，r’|Ei] Type of the new P[Sw/,
H.aL job HOLjob Sw/1 Ei]

W=w, r-r-1 read (1-hw) ^ ： (l-hw)as

write (hw) ^ ： hwae
w'=w, r'=r read (1-hw) read ((l-a)kV) (l-hw)(l-a)a7kV

write (gk'w) (l-hw)aa7k'w

w*=w+l，r*=r-l write (hw) as read ((l-a)k'r) hwO-oQagkV

write (gk'w) hwaagk'w

E 2 w'=w, r'>r read (1 - h w) ap read ((1 - a) k ' r) (1 - h w) (1 -oQagk'r

{a read vvrite (ak'w) (l-hw)(xa9k'w

job w^w+1, r-r-1 write (hw) aio read ((l-a)k'r) hw(l-a)aiok'r
departs} write (ak'w) hwaaiok'w

read (1 -hw) ai 1 read ((l-a)k'r) (l-hw)(l-a)aiik'r
w^w+1, r*̂ write (ak'w) (l-hw)aaiik'w

write (hw) a^ read ((l-a)k'r) hw(l-a)ai2k'r

write (ak'w) hwaai2kw

all other new states - 0 - 0
Table 3-2 Transition probabilities of each event Ej for maximum throughput analysis.

49

Ei New States (w',r') Type of the P[w*,r’|Ei] Type of the new P[Sw/,
H.0丄 job HOL job Sw"/|Eil

w*=w-1，r-r read(l-hw) ^ - (l-hw)ai3
write (hw) ^ ： hwa"

W=w-l，r,=rH read(l-hw) a" read ((l-a)kV) Cl-hw)(l-a)ai5kV
write (ak'w) (l-hw)(xai5k'w

w'=w, r*=r write (hw) aie read ((l-a)k'r) hw(l-a)ai6k'r

write (ak'w) h^aaiekw

E3 w*=w-l’r*>r+l read(l-hw) a! 7 read ((1 -oQk'r) (1 -hw)(1 -a)ai7k'r

{a write write (ak'w) (l-hw)aai7k'w

job W>w, r'=r write (h w) aig read ((l-a)k'r) hwO-cQaisk'r

departs} Avrite (ak'w) hwaaigk'w

read (1-hw) ai9 read ((l-a)k'r) (l-hw)(l-a)ai9k'r

w•之w，r'>r+l write (ak'w) (l-hw)aai9k'w

write (h w) a2o read ((l-a)k'r) hw(l-a)a2ok'r

write (ak'w) hwocaiok'w

all other new states ^ 0 - 0
Table 3-2 Transition probabilities of each event Ej for maximum throughput analysis (cont'd).

50

B) Numerical Examples
Figure 3-9 shows the throughput gain over that of RAID level 5 against R for a

small DMP Disk Array with data storage capacity of 4 disks. We observe from the
figure that increasing the number of parity disks R will always increase the maximum
throughput for DMP Disk Array. When the proportion of "write" jobs is higher, the
increase in maximum throughput is more apparent because DMP Disk Array will
reduce the queueing time of "write" jobs. Considering the case of all "write" jobs (a
=1)，DMP Disk Array with R=2 provides 24% increase in maximum throughput when
compared to RAID level 5. Further increase Rio 3 provides an additional 17% increase
in maximum throughput. These performance figures match well with the numerical
examples given in the previous section. When R is greater than 3, linear increase in
maximum throughput is observed for each parity disk added.

60% -•

0% 1 1 1
1 2 3 4 5

Num berofRedundantD isks R
Figure 3-9 Throughput gain over that of RAID level 5 as a function of R for small DMP Disk Arrays

(data storage capacity M-R is 4 disks).

Figure 3-10 plots the throughput gain over that of RAID level 5 against R for a
large DMP Disk Array with data storage capacity of 24 disks. When compared with
Figure 3-9, we observe that DMP Disk Array with R=2 provides even more notable
increase in maximum throughput than the previous case. We can thus conclude that
DMP Disk Array with R=2 provides the best cost/performance ratio.

51

40% --
^ ^ a=l

30% -- I

20% - / ^ ^ ^ ^ ^ ^ oc=0.5

m lif • I 1 1
1 2 3 4 5

Num ber o fRedundan tD isks R

Figure 3-10 Throughput gain over that of RAID level 5 as a function of R for large DMP Disk Arrays
(data storage capacity M-R is 24 disks).

52

3.5 Simulation with Precise Disk Model
In our previous analysis disk service time is assumed to be exponentially

distributed. This is usually not true for practical disk drives. To better understand the
performance of DMP Disk Array in practice, we perform simulation on DMP Disk
Array with precise disk model. In our simulation, disks are not assumed to be
rotationally synchronized and their simulation parameters are summarized in Table 3-3.
Each disk access involves a seek time, a latency and a data transfer time. We use the
seek profile in [16], which states that the seek time T讲k (in mSec) is related to seek
distance x (in number of cylinders) by:

Jo forjc = 0
r鄉众—j^.4623V^ + 0.0092(x-l) + 2 forx>0
Latency is assumed to be uniformly distributed. Data transfer time for one sector is
equal to the disk revolution time divided by the number of sectors per track as given in
Table 3-3 With that, the mean service time for "write" jobs is computed to be 33.3 ms,
and that for "read" jobs it is 20 ms. The corresponding service rates are therefore the
same as those in the previous examples. As stated in [17], this kind of disk modeling
provides more than 94% accuracy when ignoring the disk caching effect. Since disk
caching has little impact on "write" performance (which we are most interested in), we
can thus assume that the system has no disk caching mechanism.

Cylinders per disk 1024
Tracks per cylinder 14
Sectors per track 48
Bytes per sector 512
Revolution time 13.3 ms
Single cylinder seek time 2 ms
Average seek time 13 ms
Max. data transfer rate 1.7 MB/s

Table 3-3 Disk parameters used in simulation.

Figures 3-11 to 3-16 show the simulation results with precise disk model. We
first consider a small disk array with data storage capacity of 4 disks and all jobs are of
the "write" type. Figure 3-11 shows that the maximum throughput for RAID level 5 is
about 37 jobs/sec. If DMP Disk Array with M=6 and R=2 is used, the average job
delay is reduced under all traffic conditions and the maximum throughput is increased
by 40% as compared to RAID level 5. This example shows that DMP Disk Array gives
40% increase of maximum throughput with only 20% increase of system cost (the
increase of disk number from 5 to 6). If the cost of the disk controller is included, the
increase of system cost will be even smaller. When the number of parity disk R is
further increased to 3，the maximum throughput is 57% higher than that of RAID level
5.

Figure 3-12 shows the results for a=0.5 or half "read" and half "write" type of
job mixture. We observe that DMP Disk Array with R=2 and R=3 provides 23% and

53

39% increase of I/O throughput respectively. When all the jobs are of "read" type,
Figure 3-13 shows that DMP Disk Array provides relatively smaller throughput
increase.

1 1
0 5 -- •

(Mjn 二 (5,1) (73)
n Q •

” (RAD-5)

0.7 --
(6 2)

06 "

0.5 --

0 4 -- P

。‘；；
0 4 1 1 1 1

10 20 30 40 50 60

Arrival rate (Jobs/^ec)

Figure 3-11 Simulation results on average job delay against arrival rate for small disk arrays (data
storage capacity M-R is 4 disks). All jobs are of "write" type (a= 1).

54

0 6 1
t

0 3)

0.5 -- (6 2)

(M K)=(5 , l) T

” (RAD-5) i j j j
0 4 1 1 1 1
30 40 50 60 70 80

Arrival rate (Jobs/feec)

Figure 3-12 Simulation results on average job delay against arrival rate for small disk arrays (data storage
capacity M-R is 4 disks). Half the jobs are "write" (a=0.5).

0.5 1

045 -- /

0 4 - 鬧：丨‘’丨） (7.3) /

LhJ
0 -I 1 1 1 1
90 100 110 120 130 140

Arrival rate (Jobsy^ec)

Figure 3-13 Simulation results on average job delay against arrival rate for small disk arrays (data storage
capacity M-R is 4 disks). All jobs are of "read" type (a=0).

Figures 3-14 to 3-16 show the delay throughput characteristics of a typical large
disk arrays with data storage capacity of 24 disks. DMP Disk Array again provides
significant I/O throughput increase. For the case of all "write" jobs (Figure 3-14)，the

55

increase on maximum throughput for DMP Disk Array with 7?=2 is about 32% whereas
the corresponding increase in system cost is at most 4%. Under the condition of equal
number of "read" and "write" jobs (Figure 3-15), we find that the 4% increase in system
cost can still give 20% higher throughput. Figure 3-16 shows that DMP Disk Array only
provides minimal throughput increase when all the jobs are of the "read" type.

0.4 -- t
. (2 6 ^) /

/ (27.3)
(M R)=(25.1)

0.3 -- (R A D-5) / :JJ
0 -I 1 1 1
50 70 90 1 10 130

Arrival rate (Jobs/^ec)
Figure 3-14 Simulation results on average job delay against arrival rate for large disk arrays (data storage

capacity M-R is 24 disks). All jobs are of "write" type (a= 1).

0-4 -- (M R)- (25 .1)

t
(RAD … （27,3)

0.3- (26,2) ••:JJ
0 -I 1 1 1 1
80 丨 00 120 140 160

Arrival rate (Jobs/feec)
Figure 3-15 Simulation results on average job delay against arrival rate for large disk arrays (data storage

capacity M-R is 24 disks). Half the jobs are of "write" type (a=0.5).

56

0.2

(M 只）二 (25,1)

Lm (26 2)

(RAD-5) / /

/ /
/ t >(273) J/ 0 \ 1 1 1 1

200 220 240 260 280 300

Arrival rate (Jobs/feec)
Figure 3-16 Simulation results on average job delay against arrival rate for large disk arrays (data storage

capacity M-R is 24 disks). All jobs are of "read" type (a=0).

57

3.6 Chapter Summary
In this chapter we propose a new RAID architecture called Dynamic Multiple

Parity (DMP) Disk Array for fast database system applications. The DMP Disk Array
provide significant improvement on I/O throughput over the RAID level 5. The DMP
Disk Array also inherit the sparing property so that it has a higher survivability under
disk failure conditions. Delay and maximum throughput analysis on DMP Disk Array
is performed. Simulation with precise disk model shows that DMP Disk Array can
provide 30 to 40% improvement on "write" performance over that of RAID level 5
when one extra parity disk is used.

. �

%

58

References
[1] Stanley Y W Su, Database Computers, McGraw-Hill Book Company, 1988.
[2] Gary Herman, Gita Gopal, K C Lee & Abel Weinrib, "The Datacycle

Architecture for Very High Throughput Database Systems," Proc, ACM
SIGMOD, May 1987.

[3] Tom Bowen, Gita Gopal, Gary Herman and William Mansfield, "A Scale
Database Architecture for Network Services," IEEE Communications Magazine,
Vol.29, No.l , January 1991.

[4] D A Patterson, G A Gibson, and R H Katz, "A Case for Redundant Arrays of
Inexpensive Disks (RAID)," ACM SIGMOD, Chicago, 1988).

[5] R H Katz, Information Management for Engineering Design, Springer-Verlag,
1985.

[6] J L Encarnacao and P C Lockemann, Engineering Databases, Springer-Verlag,
1990.

[7] M. Singhal and N. G. Shi\3i2iin, Advanced Concepts in Operating Systems,
chapter 20, McGraw-Hill, 1994.

[8] S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems,
chapter 8，McGraw-Hill, 1984.

[9] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, "Concurrency Control in a
System for Distributed Databases (SDD-1)，" ACM Transactions on Database
Systems, vol.5, no.l, 1980.

[10] E K Lee and R H Katz, "The Performance of Parity Placements in Disk
Arrays," IEEE Transactions on Computers, vol.42, no.6, June 1993.

[11] J Menon and D Mattson, "Comparison of Sparing Alternatives for Disk Array,"
Computer Architecture News, VoL20, Iss.2, May 1992.

[12] Michelley Y. Kim, "Synchronized Disk Interleaving," IEEE Transactions on
Computers, vol.35, no. 11，pp.978-988, November, 1986.

[13] Neil C. Wilhelm, "A General Model for the Performance of Disk Systems,"
Journal of the ACM, vol.24, no.l, pp. 14-31, January, 1977.

[14] Spencer W. Ng, "Improving Disk Performance Via Latency Reduction," IEEE

59

Transactions on Computers, voL40, no.l, pp.22-30, January, 1991.
[15] A. L. Narasimha Reddy and Prithviraj Baneijee, "An Evaluation of Multiple-

Disk I/O Systems," IEEE Transactions on Computers, vol.38, no. 12,
December, 1989.

[16] E K Lee and R H Katz, "The Performance of Parity Placements in Disk
Arrays," IEEE Trans, on Computers’ Vol.42, No.6, pp.651-664, June 1993.

[17] C Ruemmler and J Wilkes, "An Introduction to Disk Drive Modeling," IEEE
Computer Magazine, Vol.27, No.3, pp. 17-28, March 1994.

60

Appendix
In this appendix, we derive a； to

A. Under condition Ej (job arrivals)
There are four cases to consider.

Case 1: q=0，q'=l, w'=w, r'=r, a "read" job arrives
In this case a "read" job arrives to an empty queue and is blocked. This occurs when
the data disk is busy or with probability aj given by
a _ number of busy disks _ 2w-\-r Ai)

1 total number of disks M
Case 2: q=0, q'=l，>v'=>v, r'=r，a "write"job arrives
In this case a "write" job arrives to an empty queue and is blocked. Similar to the
derivations on 州，the probability of this type of state change a � is

'2w+r ^ n 2w+r<R M (Iw-^A
巧 = g ^ + M 一 (2 — R J + r 2 (3 ,

M M (M-\\
I R

Case 3: w'=w, r'=r-hl, q'=0, q=0
In this case a "read" job arrives and is served immediately. The probability of this type
of state change is a j = l - a j .
Case 4: w'=iv+i, r'=r, q'=0, q=0
In this case a "write" job arrives and is served immediately. The probability of this type
of state change is a^=l-a2.

B. Under condition E�("read" job departure)
There are eight cases to consider.

Case 1: q>l, q，=q，w'=w, r'=r-l^ HOL job is of the "read" type
In this case the HOL job is blocked when a "read" job departs. This occurs when the
data disk is busy or with probability

2w+r-l ,, A,� « 5 = — (3-A3)

61

Case 2: q>l, q,=q’ w'=w, HOL job is of the "write" type
This is the same as case 1 except the HOL job is of the "write" type. Let ^^(y) be the
event that at least one of the parity disks is free given that y busy disks are busy.
Similar to the derivations leading to (15), we have

'1 fory<R
fy]

[奶)] = — " (3-A4)
I Ad — 1] A ^ J

Define and be the events:
In the previous state change, the HOL job was blocked because the data disk is
busy.

5̂： In the previous state change, although the data disk is free the HOL job was
blocked because all parity disks are busy.

When the HOL job was blocked in the previous state change, there were 2w+r busy
disks. Therefore, similar to the derivations on kj. and k … a n d are given by:

, � ，)-——^ (3-A6)
[W @ + [秘 糾))

\ M) \ M)
Consider three sub-cases for this case:
Sub-case 2.1: 2w+r<i?
In this sub-case, the number of busy disks before state change is less than R. This
implies that P[<J4] = 1 and PL-fj] =0. By using the same argument in deriving a^, the
probability of this type of state change is the same as a^.
Sub-case 2.2: 2w+r=R
In this sub-case, both & and & are possible. Define & and as the events:

A: The HOL job blocked in the previous state change is blocked because the data
disk is still busy.

7̂： Although the data disk becomes free at the state change, the HOL job is still
blocked because all parity disks are busy.

Given t h a t � 4 occurred, by using the same argument in deriving a^ I ‘] is given
by:
嘛] = (3 ,

On the other hand, PC^jl &]二0 because the number of busy disks is less than R after

62

the "read" job departs. If occurred in the previous state change, it means that all R
busy disks were parity disks at that time. Therefore, both “ and are not possible to
occur at the state change. The probability of this type of state change is thus:

= 恥 （ 3 - A 8)

Sub-case 2.3 2w-hr>R
This sub-case is the same as sub-case 2.2 with the exception that both and
7 ^5] are not zeros. Given that & occurred in the previous state change, happens if
i) the data disk is freed at the state change; and ii) all parity disks are busy. P[<̂ 7 is
then given by:

f2w+r-r
恥 丨 … (3 ,

� R J
If occurred in the previous state change, it means that all parity disks were busy at that time. For to occur it is necessary that no parity disk is freed at the state change.
Therefore, ^5] in this sub-case is given by: 2w +r — R
喊 5] = : (3-AlO)
The probability of this type of state change is: + + (3-All)
Case 3: q过,q,=q-l，>v'=tv, r'-r
In this case, the HOL job blocked in the pervious state change (which is of the "read"
type) is served after the state change. This implies that the data disk is freed at the state
change. The probability of this type of state change is therefore:

= (3-A12) 2w+r
Case 4: q过，q’=q-l’ r'-r-l
This is the same as case 3 with the exception that the HOL job is of the "write" type.
Therefore, the probability of this type of state change is ag= l-a^.
Case 5: q>l, q’<q-l，w'==w, r'=r-l + (q-q')
In this case, the HOL job is of the "read" type and q-q'-l or r'-r read jobs (excluding
the HOL job) are served . The probability that q-q'-l successive jobs are all of the
"read" type is Similar to the derivations on k” the probability of this type of
state change is

63

The HOLl 「分-分'-l successive] �The first 1 �The second 1 The
ag-P job is not P jobs are all of the P “ read" job is P ” read" job is ...P •丨 read" job is

blocked "read" type not blocked not blocked not blocked
— J L- a J L mJL J

= h - p-gi-lfM-{Iw + r)\fM-{2w + r)-\\ (M-{2w+ r)-{{q-q'-\)-\y
\ M j\ M J \ M y

(3-A13)
Case 6: q>l, q'<q-l, w'=w + (q-q'), r'=r-l
In this case, the HOL job is of the "write" type and q-q'-l or w'-w-l "write" jobs are
served. By using the same argument as in the previous case and in the derivations on
k^, the probability of this type of state change is:

The H O L]「[广 1 successive"]�The first 1� T h e second 1 The
“10 = P job is not P jobs are all of the P ” write" job is P “ write" job is ...P "write" job is

blocked "write" type not blocked not blocked not blocked

V M A M V

V M ”
(3-A14)

Case 7: q>l’ q'<q-l，w'^+1, r’&’ (w'-w) + (r'-(r-l))=q'q'
In this case, the HOL job is of the "read" type and q-q'-l new jobs (excluding the HOL
jobs) which not all of them are of the same type are served. Let n州(/) be the number of
"write" job being brought to the disk array by the /出 new job (excluding the HOL job),
where i=\,2,q-q'-l. Obviously, = l if the /出 new job is of the "write" type
and otherwise. Since in this case w'-w "write" jobs are served,
Z

g-q-i�（/) =w'-w. Let n办(/) be the number of busy disks in the disk array just before
the /th new job enters the disk array. Thus, /7^(l)=2w+r and

+ 1) = " “ / •) + (� (/) + l) (3-A15)
The probability that the new job is not blocked, denoted as p(i), is given by:

M if the new job is of the ” read" type, or � (, .) = 0
if the 产 new job is of the "write" type, or � (/) = 1

. M ^
(3-A16)

Let n^ be the vector [72̂ (1 n^ thus indicates the sequence of
input job types for those q-q'-l new jobs. Since w'-w jobs out of those q-q'-l new jobs are of the "write" type, there are possible sequences of input job types.
Obviously ‘ � (i) = w'-w in the case. Therefore, the probability of this
type of state change is:

64

Z ' f f k o (3-A17)
V n^ satisfying /=1

Case 8: q>l，q’<q-l，w'^+1, r ' ^ , (w'-w) + (r'-(r'l))=q'q'
This case is the same as the previous case with the exception that the HOL job is of the
"write" type. Excluding the HOL job, q-q'-l new jobs, or w'-w-l "write" jobs plus r'-
(r-1) "read" jobs are served. The probability of this type of state change is:

= 口广-1(1 - ‘ ‘ S U p (0 (3-A18)
V rt^ satisfying

C. Under condition E j ("write" job departure)
There are eight cases to consider.

Case 1: q>l, q'=q, w'=w-l, r ' = r , HOL job is of the "read" type
In this case the HOL job is blocked when a "write" job departs. This occurs when none
of the freed disks is the data disk or with probability

_ number of ways to choose 2 disks out of 2w+r- \ busy disks
13 number of ways to choose 2 disks out of 2w +rbusy disks

(2w + r-\\
2 (3-A19)

一 � 2 w + r)

Case 2: ^>1, q'=q，w'-w-l^ r ' = r , HOL job is of the "write" type
Consider three subcases for this case:
Sub-case 2.1: 2w\-r<R
In this sub-case, the number of busy disks before state change is less than R. This
implies that = 1 and =0. By using the same argument in deriving a t h e
probability of this type of state change is the same as Uj^.
Sub-case 2.2: 2w+r=R or 2w+r=/?+ l
In this sub-case, both <̂4 and are possible. is given by:

'0 for 2w + r - l < 2
flw+r-l''

么]=I 2 J for 2从 +卜 1 u (3-A20)

A 2 J

65

On the other hand, \ because the number of busy disks is less than R after
the "write" job departs. If occurred in the previous state change, it means that all R
busy disks were parity disks at that time. Therefore, both & and are not possible to
occur at the state change. The probability of this type of state change is thus:
口 14=尸[躺]户[‘] (3-A21)

Sub-case 2.3 2w+r狄+2
This sub-case is the same as sub-case 2.2 with the exception that both and
7 � 5] are not zeros. Given t h a t � 4 occurred in the previous state change, happens if
i) the data disk is freed at the state change; and ii) all parity disks are busy. ‘] is
then given by:

[如 = (1 - / ^ 幽) I : J (3-A22)

.R >
I f � 5 occurred in the previous state change, it means that all parity disks were busy at
that time. For to occur it is necessary that no parity disk is freed at the state change. Therefore, ^5] in this sub-case is given by:

卜

嚇 5] “ � 2 二 ？ (3-A23)
\ 2 >

The probability of this type of state change is:
“14=尸[d 么]P[么]+ P [纠 么] 户 [A] (3-A24)

Case 3: q过，q'=q-l，w'=w'l, r'=r+l
In this case, the HOL job blocked in the pervious state change (which is of the "read"
type) is served after the state change. This implies that the data disk is freed at the state
change. The probability of this type of state change is
Case 4: q>l, q,=q-l，w'=w, r'=r
This is the same as case 3 with the exception that the HOL job is of the "write" type.
Therefore, the probability of this type of state change is aj^=l-aj4.
Case 5: q>l’ q'<q-l，w'=w'ly r'=r+(q-q')
In this case, the HOL job is of the "read" type and q-q'-l or r'-r read jobs (excluding
the HOL job) are served . The probability that q-q'-l successive jobs are all of the
"read" type is {l-aY'^'-K Similar to the derivations on k” the probability of this type of
state change is

66

The HOL] \q-q'-\ successive! [The first 1 ["The second "I The
job is not P jobs are all of the P •• read" job is P "read" job is ...P "read" job is
blocked "read" type not blocked not blocked not blocked

_ ml Ib •‘ * J ^ J ^ J L • /, M-i2w + r) + \YM-i2w + r) + l-l\ (M-{2w + r) + l-{(q-q'-l)-l}\ =— cx) ...
I M 人 M >1 L M)

(3-A25)
Case 6: q>l，q‘<q-1, w'=w-l + (q'q'), r ' = r
In this case, the HOL job is of the "write" type and q-q'-l or w'-w-l "write" jobs are
served. By using the same argument as in the previous case and in the derivations on
k^, the probability of this type of state change is:

"The HOL]�g-广1 successive"]�The first] � T h e second 1 The
= P job is not P jobs are all of the P "write" job is P "write" job is ...P "write" job is

blocked ” write" type not blocked J [not blocked J not blocked
=“1,-’-{从-(2：；” 一 2 p [沾 w + ”)]y … 2 7) - 4 + 如 2)]] V M VV ^ J

+ 〜 啦 ((2 州) + 她 - 《 • — l) _ l }) f | I M V
(3-A26)

Case 7: q>l, q'<q-l，iv'^, r'^+1, (w*'w+l) + (r'-r)=q'q'
In this case, the HOL job is of the "read" type and q-q'-l new jobs (excluding the HOL
jobs) which not all of them are of the same type are served. Let be the number of
"write" job being brought to the disk array by the /出 new job (excluding the HOL job),
where Obviously, n j j) = l if the 沖 new job is of the "write" type
and njij)=0 otherwise. Since in this case w'-w+l "write" jobs are served,

=w ' -w+l . Let n办(/) be the number of busy disks in the disk array just
before the fl^ new job enters the disk array. Thus, «^ (l)=2w+r+l and
" “ / + 1) = « “ /) + (� (0 + 1) (3-A27)
The probability that the /出 new job is not blocked, denoted as p(f)，is given by:

if the new job is of the "read" type, or � (z) = 0
piO = i ^ ^ 广、

…户[g3(”…))]if the /th new job is of the "write" type, or � (/) = 1 M ^ (3-A28)
Let w州 be the vector ，n州(q-q'-l)]. n^ thus indicates the sequence of
input job types for those q-q'-l new jobs. Since w'-w jobs out of those q-q'-l new jobs are of the "write" type, there are , possible sequences of input job types.

—W + ly
Obviously ” = w'-w+l in the case. Therefore, the probability of this
type of state change is:

67

口 19 = 口丨广 1(1-�广-1 E UP(0 (3-A29)
V n ^ satisfying

rt州= w+1
Case 8: q>l，q,<q-JL，w'^, r'^+1, (w'-w+l) + (r''r)=q-q'
This case is the same as the previous case with the exception that the HOL job is of the
"write" type. Excluding the HOL job, q-q'-l new jobs, or w'-w "write" jobs plus r'-r
"read" jobs are served. The probability of this type of state change is:
« 2。=“广 (1-《广 Z n W o (3-A30)

V n ^ satisfying i : l

68

Chapter Four
Dynamic Parity Logging Disk Arrays

RAID (Redundant Arrays of Inexpensive Disks) has gained much attention in the
recent development of fast I/O systems. Of the five levels of RAID, the traditional
mirrored disk array still provides the highest I/O rate for small "write" transfers. This is
because mirrored disk array has no small "write" problem which is found in other levels of
r a i d . In this paper, we propose a novel RAID architecture for fast engineering database
systems, called Dynamic Parity Logging (DPL) Disk Array DPL Disk Array has no
small "write" problem and can provide much higher "write" throughput than other RAID
architectures when used in engineering database systems. DPL Disk Array also has
journalling capability which is very desirable for engineering database systems. In these
systems, old versions of designs are usually not removed even though new versions of
designs have been completed.

69

4.1 Introduction
As processor speed continues to increase, the I/O performance of a computer

system was recognized to be more and more crucial to the overall system performance [1].
Take for an example, IBM mainframe CPU performance has increase more than 30-fold in
the past two decades, whereas IBM disk performance has only doubled in the same
period. The I/O performance is even more important to database applications as they are
very I/O intensive. Many previous research works on improving the I/O performance for
database systems can be found in [2]. Owing to the decreasing memory costs, "memory-
resident databases" have been proposed and discussed recently [3-5]. By storing the whole
database in fast main memories, the I/O bottleneck is eliminated completely. Datacycle™
architecture [6-7] is a novel technique for fast database machines which has this "memory
resident" property. It is expected that distributed database systems on gigabit networks
such as the Datacycle™ system will be "memory resident" [8]. However, problems such
as failure recovery make "memory resident databases" not practical in many database
applications.

Another approach to improve the I/O performance for database systems is to use
disk arrays. Redundant Arrays of Inexpensive Disk (RAID) systems were proposed in the
late 80's as an alternative to the widely used Single Large Expensive Disk (SLED) systems
[9]. Five levels of RAID have been defined when RAID was first introduced. RAID level
5, one of the best performing levels, employs rotated parity with data striped on a unit
called a block which consists of one or more disk sectors. It can yield very high
throughput for large data transfers. For database systems where data transfers are usually
small, RAID level 5 also allows data distributed in different disks to be accessed in
parallel. However, the throughput reduces significantly if the proportion of "write"
transfers increases for such systems. This is because "write" transfers require the extra
steps of reading back the old data and the old parity, and the writing in of the new parity.
This is commonly called the small "write"problem [10]. Moreover, each "write" transfer
requires the simultaneous access of two or more disks and thus has a much higher
probability of blocking by busy disks than a "read" transfer. The average waiting time for
all the required disks to be free in a data transfer, called the blocking time, is therefore
longer for "write" transfers. Due to these two problems, the traditional mirrored disk array
still provides the faster response than RAID level 5 for database applications.

Parity striping [11] is a technique for improving the "write" performance of RAID
level 5. It stripes the parity across the disks without striping the data. If the data length of
a "write" transfer is greater than the size of a block, parity striping reduces the number of
disks involved to only two disks, thereby reducing the blocking time and the expected seek
time. However, parity striping provides no performance gain for "write" transfers having
data lengths all confined to one block. Since small "write" transfers are usually found in
database systems, parity striping is not effective for such use.

70

Parity logging [12] is another technique which can reduce the "write" transfer
overhead by applying journalling techniques. Instead of immediately update the new parity
at the end of each "write" transfer, parity logging buffers the parity update image in a fault
tolerant buffer. When enough parity update images are buffered to allow for an efficient
disk transfer, they are written to a log disk. When the log disk is full, parity reconstruction
of the whole disk array is performed.

LRAID-X4 [13] is a scheme similar to parity logging. It uses separate parity and
parity update log disks, and periodically applies the logged updates to the parity disk.
Another technique worth noting is the floating data and parity modification to RAID
level 5 [14]. It restricts individual cylinders of a disk to contain either data or parity, but
not both. Part of the storage of the cylinder is reserved as free space. When there is a
"write" transfer, the new data or the new parity can be written to the free space of the
targeted cylinder immediately after the old contents have been read. This technique
effectively reduces the extra rotational delay for "read-modify-write" accesses. However,
it does not reduce the blocking time for data transfers.

The above survey shows extensive research efforts on improving the "write"
performance of RAID in conventional database systems. However, similar research on
specific types of database systems are relatively few. In this chapter, we focus on EDS and
discuss the design of a fast disk array architecture for these systems. As discussed in [15-
20], EDS differs from conventional database systems in many aspects. It is beyond the
scope of this chapter to discuss all of their differences. Instead, we discuss in the following
the unique ways of processing data and the unique data storage requirements for EDS.
First, I/O requests in EDS are usually processed in serial and there is no need for special
concurrency control mechanism in the storage subsystems [pp.69, 16]. Due to the serial
processing of I/O requests, blocking due to busy disks becomes a decisive factor on
system performance in EDS. This is because a request blocking will not only delay the I/O
operations of the blocked request, it will also delay the I/O operations of all subsequent
requests where some may target on other disks which are free. Second, the requirement on
data availability for EDS need not be as high as conventional database systems. Once a
design is loaded to the workstation from the file server, the file server can tolerate
temporarily suspensions of I/O services in case of a disk failure. Third, older versions of an
engineering design are rarely discarded [pp.261-262, 17], Therefore, the support of
journalling in data storage subsystem is very desirable. The support of journalling also
facilitates the implementation of some common design functions such as undo and redo.
Finally, the I/O rate required by EDS is substantially lower than on-line transaction
processing systems where some may require an I/O rate of over 1000 transactions per
second.

On the other hand EDS is similar to conventional database systems in the following
aspects. First, high data reliability is required by EDS. EDS should provide archiving
facilities for archiving data to tertiary storage [pp.107, 18]. Regular system backup should
also be performed to protect the lost of valuable data. Second, fast response time for
"write" requests is required for EDS. Since transactions in engineering databases are

71

usually very long, data updates at different savepoints of a transaction are performed
continuously to protect the loss of data during the transaction [pp. 71-72, 16 & pp. 105-
106’ 18]. Third, the data volume of EDS is usually very large [pp.262, 17] and so disk
arrays is well suited for its use.

In this chapter a new RAID architecture called Dynamic Parity Logging (DPL)
Disk Arrays is proposed for fast EDS. DPL Disk Array aims at solving the small "write"
problem and reducing the blocking time for "write" transfers. It can provide much faster
"write" response than mirrored disk array, while maintaining the same high storage
utilization of RAID level 5. Although both DPL Disk Array and parity logging apply
joumalling techniques, the expected length for the former is much shorter. In the next
section, we describe DPL Disk Array in detail. This is followed by a section on the
performance study of DPL Disk Array. The superior performance of DPL Disk Array is
then concluded from the results.

！ i
1

72

4.2 DPL Disk Array Architecture

A. Block Coordinate System
The block coordinate system can be used to describe RAID operations, including

the DPL Disk Array. Consider a disk array system with a total ofA^+1 disks. Let each disk
has K blocks and each block may consist one or more sectors. We denote block7 in disk i
as B(iJ\ and its contents as h{i,j). A block can store either data or parity. We define a
parity set to be a collection of blocks for which the parity sum of these blocks is always
maintained to be "1" for odd parity and "0" for even parity. Let there be a total of X parity
sets in the disk array denoted as 乂2”. v̂x，. Take mirrored disk array or RAID level 1 as
an example, a pair of mirrored disks has K parity sets and each parity set has exactly two
blocks. Let disks i and /+1 be a pair of mirrored disks where i is odd. Then the parity sets
in this disk array can be described as:
Aj = [B{iJ)M'r\J)] z = l’3，...，Â -l，j = l,2,…,K (4-1)
For each parity set Aj, we have
b(iJ) = b(i-^\J) 卜 1,3,...,N-1, j = l,2,…,K (4-2)

Data Data Data Parity Disk
Diskl Disk 2 DiskN (DiskN+1)

广 �� —^^ 广 �� ^ �

、 一 Z �� — ^
Block 1 B ^ ^ ^ ^ B C ^ B ^ ^
Block 2 B(1,2) B(2，2) B(N,2) B(M,2)

• z � z
• • • •
•

^ � ^ � z � z Parity
Block J B(l,j) B(2j) B(Nj) B(Mj) SetAj

� Z � ^ � Z \ z
•
•
•

乂 、 z -‘ 乂 ^ z
Block K B(1，K) B(2，K) B(N，K) B(M，K)

Figure 4-1. The block coordinate system showing RAID level 4.

Similarly, RAID level 4 or level 5 has K parity sets which can be described as:

73

and (4-3)
仏 J(1，U，...，1) {odd parity}
h —1(0，0，0，".，0) {evenparity}
where I is defined here as the mod-2 sum of the block contents. Figure 4-1 shows RAID
level 4 by using the block coordinate system. As shown, parity set Aj is formed by the data
blocks having the same block number j plus a parity block holding the parity sum of the
data blocks. The parity blocks are always saved in disk N+Y for RAID level 4.

B. Overview of DPL Disk Array
Observe that mirrored disk array systems do not have the small "write" problem.

"Write" transfers are performed by directly replacing the old contents with the new ones.
The average service time for a "write" transfer is just the average total time of two
independent "write" operations performing on two disks, and is slightly longer than the
average time of a "read" transfer. Another observation is that regular system backup is
performed on most EDS. Data which has not been modified since the last system backup
can be treated as reliable as it can be restored from the tertiary storage when disk failures
occur. Therefore if the updated data are protected from disk failures by redundancy
adding, data reliability for all data in the disk array is ensured. Although the need of data
restoration from the tertiary storage makes the system not highly available, this is not a
serious problem for EDS as mentioned above. We shall later see that the time required to
restore a disk is small if fast optical disks are used for tertiary storage. These two
observations lead us to the design of DPL Disk Array.

The configuration of DPL Disk Array is shown in Figure 4-2. As shown a DPL
Disk Array has a total of AM-2 disks. Similar to RAID level 4，disks 1 to N are for data
storage and are called the data disks. Disks Â +1 and N+1 are mirrored disks and are called
the parity disks. This pair of disks is used to store the parity blocks of parity sets. Unlike
the static assignment of parity sets found in the other RAID architectures, parity sets in a
DPL Disk Array are dynamically assigned when block updates are performed.

74

Data,Disks Parity .Disks
cni:^ c z s z r ^ c m r ^ f ^ ' ^ 工3 f ^ -

厂 WM
• • • • • • j • • • ——••麵 L ^ I ^ ^ ^ ^ ^

…、摩 I fe/^
^SE：^ / feii^ îS:::：：：：̂ / / / /
‘•>,'. Ĉ “ f / / \ / i / / . / 1/ / _ _ f I I y ^^ /

f I :.:: ’•• •::• I Z � III XV / ^ ^ ^ ^ ^ X X j — b.(8，28) / parity Set

Figure 4-2 An example showing the working principle of DPL Disk Array for "write" transfers.

The working principle of DPL Disk Array for "write" transfers is illustrated in
Figure 4-2 which shows five successive updates on four different blocks 5(3,79), 5(6,93)，
^(8,28) and 5(6,25). Suppose the contents of these blocks have not been modified since
the last system backup. The new contents for the five updates are identified as Z>'(3,79),
Z>'(6,93), Z>'(8，28)，b\6,25) and Z?"(3，79) respectively as shown in the figure. Noting that
5(6,93) and B{6,15) are located in the same disk, and 5(3,79) is modified twice. Since
second copies of the original block contents b(3’79)，b(6,93), b(8,28) and d(6,25) have
been stored in the tertiary storage, they can be restored if necessary. These blocks can
therefore be overridden by new contents. The new contents however should be protected
by additional parity. Therefore, the mod-2 sum of the new contents of the first three
updates, i.e. b'(3,79)©Z>'(6,93'(8,28), is computed and saved to the parity disks as a
parity block. Figure 4-3 shows the structure of a parity block. It consists of a block header
which holds the block identifiers of its member blocks, and a parity sum of its member
blocks. The parity block for the first 3 updates of our example is shown in Figure 4-3b. A
parity set consisting of three data blocks and 1 parity block is thus formed. This parity set
is identified as parity set 73 in Figure 4-2. These blocks can be assigned to the same parity
set because they are all located on different data disks. If one of these data disks fails, the
lost blocks in the failed disk can be recovered from the remaining blocks of the parity set.
This parity set cannot include the next updated block 5(6,25) because the parity set
already has a member block 5(6,93) in disk 6. We can, however, form the next parity set
74 starting from this block update. In our example, parity set 74 consisting of 万(6,93), and
5(3,1003), and their parity sum Z/(6，25)©Z?�(3,79) is saved to the parity disks (Figure 4-

75

3c). Note that block 5(3,79) was updated before. Its current contents Z/(3，79) therefore
cannot be overridden. Instead, we store b\2>,19) to a reserved area of the disk called the
Popular Block Area (PBA)^ at location 5(3,1003). As shown in Figure 4-2 each data disk
has a PBA for storing new updates of popular blocks in that disk. When a popular block is
written to the PBA, a block header pointing to its original location on the disk is also
written (see Figure 4-4). This pointer is used for restoring the content of the block when
system backup is performed.

If there is only one parity disk, all parity information is lost when the parity disk
fails and a very time consuming backup of all data disks is required. This can be avoided
by using a pair of mirrored disks to store the parity information.

Entry 1 Entry 2 . . . Entry N Entry N+1

Block identifier Block identifier Block identifier pahty Sum
of the first of the second . . . of the Nth S

member block member block member block

a) Parity block format

B(3,79) B(6，93) B(8,28) empty . . • S=b(N+l,73)=b'(3,79) ©b'(6，93) ®b’(8，28)

b) Parity block of parity set 73

B(6，25) |B(3，1003) 1 empty | . . . i S=b(N+l’74)=b’(6,25) ®b"(3，79) i i i
c) Parity block of parity set 74

Figure 4-3 Structure of parity blocks showing the example given in Figure 4-2.

1 Blocks which are updated more than once after backup are called the popular blocks.

76

B (3 , 7 9) b " (3 , 7 9)

B l o c k H e a d e r B l o c k C o n t e n t s

Figure 4-4 The structure of a popular block in the APB showing block 5(3，1003).

Some interesting properties of DPL Disk Array are observed from the discussions
given above. We shall discuss them first before presenting the detail operation of DPL
Disk Array.

C. Properties of DPL Disk Array
1. These is no small "write"problem.
This is because blocks are written to the disks without first reading back the old data or
parity.
2. The blocking time for "write" transfers is much smaller than that of other RAID

architectures.
This is because a "write" transfer in DPL Disk Array is performed on one data disk only
whereas other RAID architectures requires two disks. DPL Disk Array can therefore
provide much better "write" performance than other RAID architectures. This will be
verified in section 4.4.
3. The parity disks contain a journal of block updates.
As discussed above, the update blocks are assigned to parity sets according to their arrival
sequence. Since the sequence of updates within the same parity set is also known from the
sequence of block identifiers in the block header of the parity block, the parity disks
contain full journal of block updates.
4. Data will not be lost in single disk failures.
This property will be apparent when we introduce the procedures of recovering a failed
data disk in section 4.3. When one of the parity disks fails, no data except the parity
information is lost.
5. The log volume will be significantly smaller than the updated volume.
Since a parity set contains multiple updated blocks, the number of parity blocks will be
much smaller than the number of updated blocks. That is to say, the log volume will be

77

significantly smaller than the update volume. The actual ratio between their sizes depends
on the average size of the parity sets and will be derived in section 4.4.
6. The parity disks work sequentially under all conditions.
We mentioned before that new parity blocks are written to the parity disks sequentially.
When a parity disk is read for data recovery, it is also read out sequentially to provide the
necessary parity information. Therefore, sequential access devices such as optical disks or
tape drives can also be used to store the parity blocks.
7. No data is lost when the I/O controller fails.
When the I/O controller fails, no data saved on disks is lost. The contents of the tables and
counters used by the I/O controller can be stored in non-volatile memory for fast resume
of I/O operations when the I/O controller is up again.
8. DPL Disk Array requires a briefperiod of data restoration in case of disk failures.
When disk failures occur, the contents of the failed disk must be recovered by first loading
the original data from the tertiary storage and data in the failed disk is not available during
data restoration. However, the data restoration time may be very short with the use of
today's optical storage technology. Take for example, a 12cm CD-ROM drive can deliver
data at continuous rate of 1.5MB/s [21]. At this rate, restoring a 1GB disk takes only 11
minutes. The restoration time can further be shorten if larger diameter optical disks are
used. Nevertheless this property limits the application of DPL Disk Arrays to EDS-like
systems only.

78

4.3 DPL Disk Array Operation
Figure 4-5 shows the organization of DPL Disk Array. Requests for data transfers

are sent from host to the I/O controller for I/O operations. The I/O controller consists of
seven parts: an I/O queue, a local memory, an I/O processor, a DMA controller, a block
location table, N data disk counters, and a parity disk counter. The I/O queue is used for
storing I/O requests and the requests are served in a FCFS manner. The data associated
with a request (i.e. the new data for a block) is stored in the local memory when the
request is placed on the queue. The local memory is also used for buffering the data sent
to or read from each of the disks and for storing all temporary data for processing. The
DMA controller functions as a multiplexer/demultiplexer and handles simultaneous data
transfers to various disks. The I/O processor is the heart of the I/O controller. It is
responsible for distributing works to the disks for data transfers. It also performs
necessary data processing works such as parity computation. The block location table is
used for locating data blocks in the disk array. As shown in Figure 4-6 it is a Kj^xN table,
where Kj^ is the number of data blocks per disk. Since there are K blocks in a disk, the size
of the PBA is therefore equal to Kp=K-Kj) blocks. Each data block has its own entry in the
table which consists of a status bit and a block address. For block B(iJ) the contents of the
status bit and the block address are denoted as s(B(iJ)) and a(B(iJ)) respectively. The
status bit s(B(iJ))=l indicates that the block has been updated since last system backup
and s(B{ij))=0 indicates otherwise. The block address points to the current location of the
block in the disk array. In particular, a{B{iJ))=0 indicates that b{ij) is the most recently
updated contents of 万OV) and a{B{iJ)) points to a location in the PBA indicates that B(i j)
has been updated more than once. One thing worth noting is the size of the block location
table. For a typical disk having 2i9 blocks (which corresponds to a 1 GB drive with a
block size of 2KB), each entry in the table require 19+1 bits. The size of the block location
table for a N:TS disk array system is 20x25x216 bytes, or 32MB. By using today's flash
r a m technology, it is practical to implement it on non-volatile memory units [22]. To
facilitate the management of PBA, the I/O controller maintains a pointer for each data disk
pointing to the next available block in the PBA We denote the pointer value for data disk
i by c^, where Kjf^c^^. Each time the I/O processor attempts to write a popular block to
PBA, the corresponding data disk pointer is read to give the appropriate location for the
block. That pointer value is then incremented by 1 to point to the next available block in
the PBA. A similar pointer Cp is maintained for the parity disks which points to the
location for the next parity block writing.

79

i i ^̂ ^
I I / O Block I ^

I r^ . 11 Location 丨 | Data
I C o n t r o l l e r 碰 i i ^ D i s k i

Requests I � Q，|i: 厂 _ | I ：
from I ~ • • I/O I f d l ^
Host r ^ Processor r • Data
Write M ^ [^ j T j p j • DiskN
Data I Local j ！ I 1 ^

！ I 1 i ‘ TĴ ^ 1 I Memory | Data Disk I I tVciZII•：个J K e a d ^ ^ _ ^ I Counters j I •、、、二一-“ Data 丨 T I t . 丨 丨 Parity
1 “ I Parity D i s k | | H Disks I
I I Counter | i

Control i I I I I
<— I I ,,

Path 丨 DMA ——] …一）
Data _ ^ I 一 Controller ^ " T --_ ' Optical Path I M ^ Disk 1 i Figure 4-5 Organization of DPL Disk Array.

RowColumn 1 . . . Column 3 • •. Column 6 . . . Column 8 . . . Column N

1 o| 0,s d O's o| O's o| O's oj O's

25 ll O's

28 I 1 丨 O's

• • • • • • • • •

79 I } \ _
• ^a(B(3,79))
• =B(3，1003) Status Block
• _J Bit Address

93 i l| O's \ 1

k d u u U Lj U u
Figure 4-6 Block location table for the example given in Figure 4-2.

80

DPL Disk Array operates in three modes: system backup mode, normal mode and
data recovery mode. These modes of operations are briefly discussed below.
A. System Backup Mode

This mode can be invoked regularly or when either the parity disks or the PBA are
full. Under this mode, only the "read" transfers can be performed. It operates as follows:
1. Disk images of all the 7V+1 disks are copied to the tertiary storage one by one. The

tertiary storage is shown as an optical disk in Figure 4-5.
2. The contents of the popular blocks in the PBA are copied back to their original

locations in the disk array.
3. All pointers and the block location table in the I/O controller are cleared.
The pseudo codes which show the detail operations in this mode is given in appendix A.
B. Normal Mode

DPL Disk Array works in this mode under normal condition.
1. When a ”read" request arrives:

i) The I/O processor places the request to the request queue.
2. When a "write" request arrives:

i) The I/O processor checks whether the new block associated with the request can
be assigned to the parity set currently under construction or not.

ii) If yes, a new parity sum for the parity set is computed and saved to the non-
volatile memory.

iii) If no, the "write" data is saved to the local memory and a new parity set is created
and stored to the non-volatile memory.

iv) The I/O processor then places the request to the request queue.
3. When a busy disk finishes its operation:

i) If the request queue is not empty, the I/O processor checks whether the request
which is at the top of the queue targets on the disk just freed or not.

ii) If not, no further processing is performed.
iii) If the request targets on the disk just freed, the I/O processor removes the request

from the queue and performs the following operations according to the type.
iv) If the request is of the "read" type, the I/O processor

a) instructs the DMA controller and the data disk involved to load the requested
block to the local memory (the address for the requested block is given by the
block location table); and

b) signal to host for "read" completion.
iv) If the requests is of the "write" type, the I/O processor

81

a) instructs the DMA controller and the data disk involved to store the new data
of the request to the disk (the location of storage is given by the block location
table);

b) updates the target block's entry in the block location table;
c) if the request creates a new parity set, saves the parity sum of the preceding

parity set (which is stored in the non-volatile memory) to the parity disks; and
d) signals the host for "write" completion.

The pseudo codes which show the detail operations in this mode is given in appendix B.
As shown from the above operations, assigning new blocks to parity sets and computing
parity sum can be performed when a "write" request arrives.
C. Data Recovery Mode

The system is switched from the normal mode to this mode when disk failures
occur. The operations in this mode are outlined below.
1. The failed disk is either fixed or replaced by a spare disk.
2. The original contents of the failed disk at last system backup are restored from the

tertiary storage.
3. The updated data after last system backup can be recovered by:

a) sequentially search one of the parity disks for parity blocks having member blocks
in the failed disk.

b) If found, recover the contents of the updated blocks in the failed disk. This can be
done as follows. Suppose parity 861力广{万0̂7，07),万0̂2�2)”.，万(為 /々)”. ’万(4々 ^：)}

has one member block in the failed disk i. Assuming that even parity is
used, the contents of B(di,o) can be recovered by:
m,Oi、： 《 ， (4 - 4)

c) After finish searching the parity disk, check the parity set which was in
construction when the disk failed to see whether it contains member block in the
failed disk or not. If found, recover the contents of the updated block in the failed
disk.

The pseudo codes which show the detail operations in this mode is given in appendix C.
As shown from the above operations, data can be recovered if single disk failure occurs.
This proves property 4 ofDPL Disk Array stated earlier.

82

4.4 Performance of DPL Disk Array
Figure 4-7 shows the queueing model for a DPL Disk Array. Requests for data

transfers are sent from host and become jobs for the servers. Job arrivals are assumed to
be a Poisson process with rate X, and are assumed to target uniformly on all disks. The
probability that a job targets on a particular block of a disk is also assumed to be the same
for all blocks. A job is of the "write" type with probability a and of the "read" type with
the remaining probability. As we have mentioned before, one parity block is written to the
parity disks only when the system finishes the construction of a parity set. Whe a parity set
is still in construction, the parity sum of the parity set is kept in the non-volatile memory.
Therefore, we only need to consider the data disk operation for each "write" job because
the access time of the non-volatile memory is much faster than that of the data disks. For
mathematical convenience we assume that the service time for a job is exponentially
distributed with service rates ^ and � f o r "write" jobs and "read" jobs respectively. We
also assume that the I/O controller is fast enough so that it does not affect the system
performance.

^ Server _ ^
I 1

Server _ ^
n 2

Jobs • •

Server •

Figure 4-7 Queueing models for DPL Disk Array.

A) Mean System Backup Time
Suppose the system finishes backing up the data and switches to normal mode at

time 0. All blocks are marked as unchanged at that time. Since all blocks are requested
with the same probability, the rate of "write" arrivals targeting on a particular block y is
given by :

83

一 Rate of •丨 write" arrivals to the disk array _ aX (4 ”
Total number of blocks in the disk array N K �

Let Pk be the probability that there are k "write" requests in (0,0 targeting on a particular
block. With the Poisson arrival assumption, we have

(ytf (4-6)
Consider block i in disk j. Let Xi{t) be the number of block i images written to PBA of
disk j in (0，,). For k+\ arrivals k images are written to PBA, we have

1 fPo+A for 0 < < 1 ,4，、
= = 厂丨 , , ^ (4-7) ‘ W for^ > 2

The expected value of Xi{t) is given by:
E [XXt)]= r t - { ' ^ -p ,) (4-8)
The variance of Xj(f) is given by:

= =[rt-{\-p,)^ (4-9) k=0
Next, let random variable X(t) denotes the total number of blocks written to PBA of disk j
in (0,0, or
X{t) = f^XXt) (4-10) j=i
As the X^s are independent and identically distributed random variables, by central limit
theorem the distribution of X{t) can be well approximated by a Gaussian distribution with
mean m^Kj^[yt-(\'PQ)] and variance if ^ d is not too small. Therefore,
the probability r{t) that the PBA of disk j does not overflow in (0，/) is given by:
r (0 = P\X{t) < ^ J = f ‘ 7 = d x (4-11)

L J-co
Finally, the probability that the PBA's of all N disks do not overflow in (0，/) is simply
given by r^(t). Note that system backup should be performed if PBA of any one of the
disks overflows. If we let random variable 7 be the time which the system has to perform
system backup, the mean system backup time T万 is given by:
7； 二 f (1 - P[T< t p t = {t)))dt = £ V { t) d t (4-12)

As an example, consider a DPL Disk Array with N=1Q and 足乃=50,000. Figure 4-8
plots the mean system backup time T^ (in days) against the "write" arrival rate aX for
three different values of Kp. Simulation was also performed to verify the analysis given
above. We observe from the figure that both the analytic and simulation results match very
well with each other. Note that for all simulation results shown in this chapter we have
extended the simulation time sufficiently long to make the 95% confidence intervals
smaller than the size of the markers shown. Another observation is that is inversely
proportional to aX for all values of Kp shown. We also observe that is increased by
about 45% when the size of the PBA is doubled for all "write" arrival rates shown.

84

80

‘�Simulation
- \ Points

60 - \

-^ \KP/KD=0.2
TB \ \

(days) 40 - \ \

Q L I I I 1 1 1 L_
5 10 15 20 25 30 35 40

Rate of "write" arrivals aX
(in 1000 blocks/day)

Figure 4-8 Mean system backup time against the rate of "write" arrivals.

If T^ and the maximum number of blocks being written between successive system
backups are given, Kp can be determined from Figure 4-8. Take for an example, if 1^=1
(i.e. weekly backup is performed) and the maximum number of block updates per day is
25,000 blocks, the minimum value of Kp should be O.OSKj^ or 2,500 blocks. If the
maximum number of block updates per day grows to 40,000 blocks, Kp should be at least
0.1火2) or 5,000 blocks.

B) Utilization of the parity disks
Consider a particular parity set A^ and let be the number of elements in A .̂

Then
"Thefirst 1 � T h e second"] �Them山 1 � T h e O + l) ^

p\ A = wl = P block is P block is ...P block is P block is not
s new to A new to A. new to A^ new to A (4-13)

- J ^ J L � L �
N-\ N-2 N-(m-l) m — 1)! = 1 X X X . . . X X — =

N N N N N"\N - my.
The expected size L^ of parity set A^ is therefore L = YmP A =m = Y — (4-14)

85

Since only one parity block is generated for each parity set, the average number of parity
blocks generated in T ,̂ denoted as Bp, is therefore
B (4-15)

Figure 4-9 shows L^ against N. For a small disk array of 4 data disks, we find that
the log volume is about 45% of the update volume (1/1^«0.45). For a large disk array of
24 data disks, the log volume reduces to about 17% of the update volume (1/L 产 O.VT).

1 “
« I I I I I f I I I I I I I I _ _ I _ _ 1 _ I _ I _ I _ I _ I _ I _ I _ I _ I ~ L .

5 10 15 20 25
Number of Data Disks N

Figure 4-9 The average number of blocks in a parity set (excluding the parity block) grows with the number of data disks.

C) Average Delay
As discussed before, DPL Disk Array has no small "write" problem. This is

because blocks can be directly written to the disks without reading back the old parity and
old data. Therefore, it is reasonable to assume that the same average delay is experienced
by the "write" jobs and "read" jobs. To obtain the average job delay for DPL Disk Array,
we first consider the operations of RAID level 5 when all jobs are of the "read" type (i.e.
a=0). Since all jobs are of the "read" type, each of them requires the access of only one
data disk. Note that for DPL Disk Array each job also requires the access of only one data
disk. If the operations of each disk is modelled by an exponential server, the queueing
model for RAID level 5 when a=0 is almost identical to that of DPL Disk Array (see
Figure 4-7) The two models differ only in the number of servers (7V+1 for RAID level 5
and N for DPL Disk Array) and the service rates. A detail analysis of RAID level 5 using
exponential servers is reported in chapter 3 of this thesis. By using the same analysis we
obtain the average delay for DPL Disk Array.

86

Figure 4-10 shows the average job delays for DPL Disk Array and RAID level 5
when each architecture has four data disks. We assume in this example that
jobs/sec for DPL Disk Array. For RAID level 5, the service rates for "write" jobs and
"read" jobs are assumed to be 30 jobs/sec and 50 jobs/sec respectively. Since "write"
operations in RAID level 5 need to read back old parity and data, the corresponding
service rate is lower due to extra disk rotation. We find from Figure 4-10 that DPL Disk
Array outperforms RAID level 5 for most values of a. This is because there is no small
"write" problem in DPL Disk Array and the "write" jobs for DPL Disk Array only require
the access of one disk. When a=l, DPL Disk Array provides maximum throughput which
is 2.5 times higher than that of RAID level 5. When all the jobs are of the "read" type, we
observe that RAID level 5 performs slightly better than DPL Disk Array because data is
distributed into 5 disks for RAID level 5 and is only distributed into 4 disks for DPL Disk
Array. The difference in performance for a=0 will be smaller for larger JVs for obvious
reason.

0.6 “ RAID-5
c^O

0 5 一 RAID-5 RAID-5 a^l ct^O.5 DPL
(all a) 0.4 -

Delay D
(sec) 0 3 _ 'ULJ^

q I ‘ ‘ 二 ‘ ‘ ‘ ‘
20 40 60 80 100

Arrival Rate Z (jobs/sec)

Figure 4-10 Delay througput characteristics of DPL Disk Array and RAID level 5.
D) Throughput Performance Using a Precise Disk Model

In our previous analysis disk service time is assumed to be exponentially
distributed. This is usually not true for practical disk drives. To better understand the
performance of DPL Disk Array and other RAID architectures in practice, we perform

87

throughput simulation on different RAID architectures by using a precise disk model. In
our simulation, disks are not assumed to be rotationally synchronized and their simulation
parameters are summarized in Table 4-1. Each disk access involves a seek time, a latency
and a data transfer time. We use the seek profile in [23]，which states that the seek time
T郷k (in mSec) is related to seek distance x (in number of cylinders) by :

fO forx = 0 T - (4 - loJ
郷 k |o. 4 6 2 3 V ^ + 0.0092(JC -1) + 2 f o r x > 0

Latency is assumed to be uniformly distributed. Data transfer time for one sector is equal
to the disk revolution time divided by the number of sectors per track as given in Table 4-
1. With that, the mean service time for all jobs is computed to be 20 ms. As stated in [24],
this kind of disk modeling provides more than 94% accuracy when ignoring the disk
caching effect. Since disk caching has little impact on "write" performance (which we are
most interested in), we can thus assume that the system has no disk caching mechanism.

Cylinders per disk 1024
Tracks per cylinder 14
Sectors per track ^
Bytes per sector 512
Block Size 2KB
Revolution time 13.3 ms
Single cylinder seek time 2 ms
Average seek time 13 ms
Max. data transfer rate 1.7MB/s

Table 4-1 Disk parameters used in simulation.

Figure 4-11 shows the maximum throughput for DPL Disk Array and three other
r a i d architectures against a. The number of data disks for each architecture in this
particular example is equal to 4. The total number of disks being used therefore equals 6，
8，5, and 5 for DPL Disk Array, RAID level 1，RAID level 4，and RAID level 5
respectively. We denote the proportion of updated blocks in DPL Disk Array as P as
shown in the figure. We observe that the performance of DPL Disk Array is quite
insensitive to fi. At most 10% drop in throughput is observed for all values of a and P<
0.4. We also observe from the figure that a has little impact on the performance of DPL
Disk Array, but it significantly affects the performance of other three RAID Architectures.
When 0=0，RAID level 1 performs the best and provides twice the maximum throughput
than that of the other three architectures. However, RAID level 1 requires the largest
number of disks. When the proportion of "write" jobs a increases, DPL Disk Array
provides nearly constant throughput value while the throughput values for RAID levels 1，
4，and 5 drop significantly. When all the jobs are of the "write" type, DPL Disk Array
p'eforms the best and provides slightly higher maximum throughput than RAID level 1.
From these results, we can conclude that DPL Disk Array provides the best "write"
performance.

88

300

2 5 0 [�
NJlAID-1

Max. 200 -
Throughput (jobs/sec) 1 5 0 - ^ ^ ^ ^

100 - • �

5 0 -
RAID-4'

Q , I . 1 . 1 1 1 ‘
0 0.2 0.4 0.6 0.8 1 a

Figure 4-11 Maximum throughput comparison for various RAID architectures.

Figure 4-12 shows the maximum throughput per disk when all four architectures
use the same total number of 24 disks. When a=0, we observe that RAID level 1 provides
twice the throughput when compared to other three architectures. The trade-off for this
good performance of RAID level 1 is the reduction of storage capacity by half. When the
proportion of "write" jobs increases, we find that the throughput of DPL Disk Array
remains constant while that for the other three architectures drop significantly. When a>
0.4，DPL Disk Array provides the highest maximum throughput per disk. Since "write"
performance is critical to EDS, DPL Disk Array is well suiting for such kind of
applications.

89

25

2 。 \

Max.
Throughput 15 - N y

per disk
(jobs/sec) [� ^ ^ DPL(/M))

5 - ^ ^ RAID-5
RAID-4

o ' ‘ ‘ ‘ ‘ ~ ^ ‘ ‘ ‘ — — ,
0 0.2 0.4 0.6 0.8 1 a

Figure 4-12 Maximum throughput comparison for various RAID architectures.

90

4.4 Chapter Summary
We propose in this chapter a new RAID architecture called Dynamic Parity

Logging Disk Array for fast EDS. DPL Disk Array solves the small "write" problem found
in most RAID levels and significantly reduces the blocking time for "write" transfers. It
also has the journalling capability which is very desirable for EDS. Analytical results on
DPL Disk Array shows that it provides much faster "write" response than RAID level 5.
Throughput simulation using a precise disk model also shows that DPL Disk Array
provides the highest "write" througput when compared to RAID levels 1，4，and 5.

91

References
[1] Peter M Chen and David A Patterson, "Storage Performance - Metrics and

Benchmarks," Proceedings of the IEEE, Vol. 81, No. 8，August 1993.
[2] Stanley Y W Su，Database Computers, McGraw-Hill, 1988.
[3] H Garcia-Molina, R J Lipton, and J Valdes, "A Massive Memory Machine," IEEE

Transactions on Computers, Vol. C-33, pp. 391-399，May 1984.
[4] R Hagmann, "A Crash Recovery Scheme for a Memory-Resident Database System,"

IEEE Transactions on Computers, Vol. C-35, pp. 839-843，September 1986.
[5] K Salem and H Garcia-Molina, "System M: A Transaction Processing Testbed for

Memory Resident Data," IEEE Transactions on Knowledge Data Eng., Vol. 2, pp.
161-172，March 1990.

[6] T Bowen, G Gopal, G Herman, and J William Mansfield, "A Scale Database
Architecture for Network Services," IEEE Communications Magazine, Vol. 29, pp.
52-59, January 1991.

[7] G Herman, G Gopal, K Lee, and A Weinrib, "The Datacycle Architecture for Very
High Throughput Database Systems," Proceedings of the ACM SIGMOD
Conference, 1987, pp. 97-103.

[8] S Banerjee, V O K Li, and C Wang, "Distributed Database Systems in High-Speed
Wide-Area Networks," IEEE Journal on Selected Areas in Communications, Vol.
11, No. 4，pp. 617-630, May 1993.

[9] D Patterson, G Gibson, and R Katz, "A Case for Redundent Arrays of Inexpensive
Disks (RAID)," Proceedings of the ACM SIGMOD Conference, pp. 109-116, 1988.

[10] G A Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, MIT
Press, 1992.

[11] J Gray, B Horst, and M Walker, "Parity Striping of Disc Arrays: Low-Cost Reliable
Storage with Acceptable Throughput，" Proceedings of the 參 Very Large
Databases Conference, pp. 148-161，Australia, 1990.

[12] D Stodolsky, M Hollan, W V Courtright II, and G Gibson, "Parity-Logging Disk
Arrays," ACM Transactions on Computer Systems, Vol. 12, No. 3，pp. 206-235,
August 1994.

92

[13] A Bhide and D Bias, Raid Architecture for OLTP, IBM Computer Science Research
Report RC 17879，1992.

[14] J Menon and J Kasson，"Methods for Improved Update Performance of Disk
Arrays," Proceedings of the Hawaii International Conference on System Sciences,
pp. 74-83, 1992.

[15] R H Katz, Information Management for Engineering Design, Springer-Verlag,
1985.

[16] G Gardarin and E Gelenbe, New Applications of Data Bases, Academic Press, 1984.
[17] J L Encarnacao and P C Lockemann, Engineering Databases, Springer-Verlag

1990.
[18] P C C Wang, Advances in Engineering Data Handling, Kluwer Academic

Publishers, 1984.
[19] G Ariav and J Clifford, New Directions For Database Systems, Ablex Publishing

Corp., 1986.
[20] D N Chorafas and S J Legg, The Engineering Database, Butterworths, 1988.
•21] T S Perry, Technology 1995: Consumer Electronics, IEEE Spectrum, Vol. 32, No.

1，pp. 40-43，January 1995.
[22] L Geppert，"Technology 1995: Solid State，" IEEE Spectrum, Vol. 32, No. 1，pp. 35-

39，January 1995.
[23] E K Lee and R H Katz, "The Performance of Parity Placements in Disk Arrays，"

IEEE Transactions on Computers, Vol.42, No.6, pp.651-664，June 1993.
[24] C Ruemmler and J Wilkes, "An Introduction to Disk Drive Modeling," IEEE

Computer Magazine, Vol. 27，No. 3, March 1994.

93

Appendix
A) Pseudo Codes for System Backup Mode

process system backup;
begin
/* backup data disks V
for i=l to N

begin
write I and Cfl to tertiary storage;
forj=l to Cfl

begin
write block B(ij) to tertiary storage;
end;

end;
/* backup parity disk */
write Cp to tertiary storage;
forj=l to Cp do

begin
write block B(N+lj) to tertiary storage;
mark block B(N+lj) as empty;

end;
forj=Cp+J toK

begin
mark block B(N+lj) as empty;
end;

/* restore the most update contents of the popular blocks */
for i=I to N

begin
forj=Kjy+ltoCfl

begin
write block B(ij) to the location pointed by the block header of B(iJ);
mark block B(ij) as empty;
end;

forj=CitoK
begin
mark block B(ij) as empty;
end;

end;
/* clear the contents of the block location table V
for i=l toN

94

begin
forj=l toKjy

begin
s(B(ij))=0;
a(B(iJ))=0：
end;

end;
/* clear the contents of all counters */
for i=l to N

begin
Ci=Kjy+l；
end;

{switch the system to normal mode};
end; “

B) Pseudo Codes for Normal Mode
process firstji^rite arrives;
/**** when Ihe first "write" request arrives after each system backup *************
a request is a structure consists of: i) request type - reqjype; ii) target block -
B(req_i,reqJ); and for "write" requests: iii) new data - wridata; iv) will be saved in
block - B(wri_i,wriJ)： v) block parity set belonged to • par_set; and vi) sequence
number in its parity set - block no
i), ii) and iii) are supplied by the host, whereas the other parts are filled in by the I/O
processor before putting in the req_queue, req_queue is a FIFO queue of request's,
pb一 image is a structure of parity block as shown in Figure 3, which consists of a
block header - header, and a parity sum • par sum. image queue is a FIFO queue
ofphjmage's in the nonvolatile memory.

本II******************** 氺 * * * * * * 氺 * * * * * * * * * * * * * * * 氺 * * * * * * * * * * * * * * * * * * • / begin /* create the first parity set under construction */ parityjsetno=I;
no_in_set=l;
create a new pb一image in local memory;
requestB(wriJ^wriJ) =requestB(reqJ,reqj); /^write block to its original
location*/
write requestB(wri_i,wriJ) to pbjmage, header;
write requestwri data topbjmage,par_sum：
put pb一image to image一queue;
产 place the request to the request queue */
request par_set=parity_setno;
request block no=no in set;

95

no in set=no in set+I; _l _ •• I •
put request to req_queue;
end;
process request arrives;
/**** when the requests other than the first "write" request arrives ***V
begin
/* a "read" request arrives */
if request reqjtype= "read"

begin
put request to req_queue;
end;

/* a "write" request arrives */
if request req_type= "write “

begin
/* test whether requestB(reqji,reqJ) has been updated before */
block一 modified=no ;
ifs(requestB(req_i,reqJ))=J /* modified hit=l=>the block has been updated*/

begin
block_modified=yes;
end;

if block一modified=no /* ifbit=0, check queue for updates on the same block V
begin
for each of the q_request in req_queue with q_requestreq_type= "write “

begin
ifrequestB(reqJ,reqJ)=q_requestB(reqJ,reqJ)

begin
block_modified=yes;
end;

end;
end;

/* if request B(req_i, reqj) has been updated, choose a new location in PBA for the
block V
if block modified=yes

begin
requestB(wri_h wriJ)=B(wn_i,c^;
Ci=Ci+I；
ifCi=K^l

begin
switch the system to system backup mode;
end;

end; else /* if the block has not been updated, save to the original location */

96

begin
requ est B(wri_ i, wriJ) =requestB(req_i, req^)；
end;

/* test whether the request can be assigned to the parity set in contruction */
appendjto_parityset=yes;
duplicate last image in image一queue to pb_image;
for each identifier B(wri_ii,wri J j) in pb_image, header

begin
if wH一ii=wri—i

begin
appendjto_parity一 set=no;
end;

end;
产 yes�the request can be assigned to the parity set in construction */
if appendjto_parity_set=yes and noJin_set ^

begin
pb_image,par sum=pb image.par sumOrequest.wri data;
append identifier requestB(wri_i, wri J) to pb一imageJteader as the last enrty of

the header;
putpb一image to image queue;
no in set=no in set+1; • * "• I
end;

else /* no, the block cannot be assigned to the parity set in construction V
begin /* create a new parity set */
paritysetno =parity_set_no+1;
no_in_set=l;
create a new pb image;
write requestBjwri iwriJ) to pbjmage. header;
pbjimage,par_sum=requestwri_data;
put pb image to image queue;
request parset=parity_set_no;
request block no=no in set;
no in set二no in set+I;

put request to req_queue;
end;

end;
process next disk operation;
/•*** When a busy disk diskj finishes its operation ****/
begin
ifreq_queue is empty /* if the queue has no waiting requests */

begin exit the process; /* no operation is performed V

97

end;
For the first request in req_queue which waits for disk一i, if any

begin
get request from req_queue;
if request req_type= "read" /* if the first request is of "read" type, */

begin
if a{requestB(req_i,req_j))=0 {0 address in block location table */

begin
read block requestB(req_i, req_j) from disk array;
end;

else /* otherwise, the address is given by the entry in block location table */
begin
read block afrequestB(req_i, reqj)) from disk array;
end;

end;
if operation一success =yes

begin
signal the host for "read" completion;
exit from process;
end;

else
begin
switch the system to data recovery mode with fail_disk=disk_i;
end;

if request req_type= "write “ /* the request is of "write “ type, V
begin /* write data block V
write requestwri一data to requestB(wri_i,wrij) in disk array;
end;

if operation一success=no
begin
switch the system to data recovery mode with fail disk=disk i;
end;

if request block no=1 /* write parity block，first data block of parity set? */
begin
c =c +7; 产 yes’ write parity block of previous parity set to parity disks */
ifCp=K+1 /* If parity disk is full V

begin
switch system to system backup mode;
end;

write pb image to the parity disks at location pointed by cy
end;

get first pb一 image from image一 queue; /* get parity image and write to parity diskV
98

if operation一success=no
begin
switch the system to data recovery mode with fail disk =failed_par_disk
end;

/* "write" operation is successful，update the block location table */
ifs(requestB{req_i,reqJ))=1 /* if the block has been updated before，V

begin
a((requestB(reqJ,reqJ)) =requestB(wriJ,wriJ); /* write new location V
end;

s(requestB(reqJ,reqJ))=l; /* set modified hit of the block to "1 “ */
signal the host for "write" completion;
end; /* request queue is not empty */

end;
C) Pseudo Codes for Data Recovery Mode

process recover data disk;
/**** when a data disk faildisk fails, recover its data to spare diskN+3 ****/
/* restore old contents of last backup */
begin
i=fail一 disk;
read c^ of failed一disk from tertiary storage;
forj=l to Ci

begin
read block B(ij) from tertiary storage and save it to B(N+3J);
end;

/* mark unused blocks in PBA as empty */
for j=Ci+J to K

begin
mark B(N+3j) as empty;
end;

/* restore most update contents of popular blocks at the last backup */
forj=Kjy+l to Ci

begin
write block B(N+3J) to the location pointed by the header ofB(N+3j);
mark block B(N+3j) as empty;
end;

/* recover the updated blocks in the last parity set in construction */
read pb一 image from nonvolatile memory;

ifphjmage,header has a block identifier B(wriJ,wriJ) which wri_i=i
begin
B(N+ 3，wri_j) = parity sum of all blocks in this pb image except

99

B(wri_i, wri_j)；
end;

end;
/* recover the updated blocks after last backup */
forj=l to Cp

begin
read pb image from B(N + Ij)；
ifpb_image, header has a block identifier B(wri_i,wri J) which wri一i=i

begin
B(N+ SjWriJ)=parity sum of all blocks in this pb一image except B(wriJ,wriJ);
end;

end;
/* resume to normal operations */
set disk N+3 to work as disk i;
switch system to normal mode and re-execute the interrupted disk operation;
end;
process recover_parity_disk;
/**** when a parity disk fail-disk fails ****/
begin
i=fail_disk;
/* set par一disk to the functioning parity disk */
ifi=N+r

begin
par_disk=N+2;
end;

else
begin
par_disk=N+J ;
end;

/* restore contents of parity disk to the spare diskN+3 */
for i=l to K

begin
copy B(par_disk,i) to B(N+3，i);
end;

/• resume to normal operations */
set disk N+ 3 to he the new parity disk;
switch system to normal mode and re-execute the interrupted disk operation;
end;

100

Chapter Five
Performance Analysis of Mirrored Disk Array

Previous performance studies on mirrored disk array are mainly by computer
simulation or by approximate analyses which ignore the fork/join synchronization of the
disks. In this chapter, an exact Markov Chain analysis of mirrored disk array is presented.
The two disks are modeled as two independent exponential servers. Each "read" job is
served by either one of the servers and each "write" job is forked into two independent
sub-jobs for separate services in the servers. A "write" job is completed only when both
sub-jobs are completed. The analysis is then verified by computer simulation.

101

5.1 Introduction
Mirrored disk array is one of the most common architecture for building reliable

and fast I/O systems. It is defined as level 1 architecture of Redundant Arrays of
Inexpensive Disks (RAID) [1]. In a mirrored disk array, data is duplicately stored into two
identical disks for data reliability. No data is lost if any one of the disks fails. Mirroring the
data on two disks also speeds up the I/O operations since simultaneous "read" operations
can be performed. Mirrored disk array also has higher availability because the system can
provide full service even when one mirrored disk fails. Because of this, mirrored disk array
is considered the best I/O architecture for many applications.

As stated in [2], performance analysis of disk arrays is usually difficult due to the
presence of queueing and fork/join synchronization. The difficulty is the same in analyzing
the performance of mirrored disk array. A "write" request sent to a mirrored disk array is
carbon copied or forked into two identical requests operated on the disks. The "write"
request is completed only when both carbon copied requests are completed, or they must
be synchronized. Due to this difficulty, performance studies on mirrored disk array are
either done by simulation [3-4]，or analyses which ignore the fork/join synchronization [5:.
In [6], an analysis on the disk arm seeking for mirrored disk array is reported.

In this chapter, we present a Markov chain analysis on mirrored disk array.
Analytical results are then compared to the simulation results to verify the analysis.

102

5.2 Queueing Model
Figure 5-1 shows the queueing model of the mirrored disk array. Job arrivals are

assumed to be a Poisson process with rate 又 An arrived job is placed to the job queue
waiting for service. The servers are independent and identical with FCFS service
discipline. Let a job be of the "write" type with probability a and of the "read" type with
the remaining probability. If a "read" job reaches the head of the queue, it can be served by
either server. A completed "read" job then leaves the system immediately. For a "write"
job, it is served only when both servers are idle. When both servers are idle, a "write" job
is forked into two sub-jobs and be served by the two servers. All completed "write" sub-
jobs enter the synchronization queue. They either merge with their associated sub-jobs and
leave the queue immediately or wait there for the completion of the sub-jobs still in
service. The service times of each "read" job and each "write" sub-job are assumed to be
exponentially distributed with mean l/ju^ and respectively.

Synchronizat ion
Job Queue ^ ^ ^ Queue

j ^：： ^ "Wnte"
Jobs In / \ Sub-jobs ^ ^ ^

\ "Write’，

Y T Y \ Jobs \ " R e a d " Out
^ ^ Jobs

Out

Figure 5-1 Queueing model of mirrored disk array.

103

5.3 Delay Analysis
Let Ss,q denote the state of the system where q is the number of jobs in the queue

and s is the status of the servers. The status depends on the job types currently being
served and is tabulated as follow:

Status s Description of status s
0 Both servers idle.
1 Only 1 server busy with a "read" job.
2 Both servers busy with "read" jobs.
3 Only 1 server busy with a "write" job.
4 Both servers busy with a "write" job.

We define the transition probability as
servers at status and servers at status s and

IS^ G] = P jobs in the queue g jobs in the queue (5-1)
after state transition before state transition

Consider a particular state transition. Define events EJ, E〗and E^ as:
Ef. A new job arrives.
E� ' .A server finished serving a "read" job.
Ej: a server finished serving a "write" sub-job.

Let V denotes the rate of state departure at Ŝ q̂. It is given by
X fony = 0
X+ju^ for5= 1

+ ^ors = 2 (5-2)
1 + for 厂 3
A + for 厂 4

Therefore,

104

A ^
DrzTi — fOTS = 0

0 fonsT^O
fOTS=l

耶 2] = 2 = 2

0 for5 7J:l,2
^ for5 = 3

耶 3] = ^ for. = 4

0 for5 7t3,4 (5-3)
Table 5-1 shows the possible state transitions under each event Ej and the corresponding
probabilities …《，£,]. Description on each kind of state transition is given in the last
column of the table. By removing the conditioning on E ,̂ the transition probabilities are
obtained as:

；=1

Having obtained the transition probabilities, the set of state probabilities
can be computed in the usual way. Then the long-term proportion of time spent in
denoted as p ^ � i s given in [7] as:
D - 巾 明 J Z � G _ (5-5) Ps,q - 4 0 0 \ 乂

I： I ： 尸 M 〜 ，
y=0g,=0 Therefore, the expected numbers of jobs in the queue are given by:

(5-6)
q=0 V ̂ =0 y

Finally by Little's formula, the expected sojourn time D of a job is given by
Z) : 舰 I V 丄 + 丄) + . (5-7) A M.J Mr

m

Ei Ss,q Ss\q' 分…， Explanation on transition

^0,0 Si,o 1-a A "read" job arrives and is
served immediately.

^4,0 a A "write•，job arrives and is
served immediately.

Si,o S]j a A "write" job arrives and is
blocked.

Ei S2,o (l-«) A "read" job arrives and is
served immediately.

{New job S2,o 82,1 Blocking of new job due to no
arrives} idle server.

^3,0 Ss j 1 Blocking of new job due to
the unfinished service to a

"write" job.
84,0 S4J 1 Blocking of new job due to

the unfinished service to a
"write" job.

Ss,q, -ŷ O, q>0 Ss^q+i 1 The new job enters an non-
empty queue.

Sim 1 One "read" job departs.
E2 S2M Sij^ 1 One "read" job departs.

{"Read" job Si,q, q>\ S4’q-i 1 Job at the top of queue is a
departs} "write" job and is served.

S2,q, q>\ Si,q a Job at the top of queue is
found to be a "write" job and

is served.
S2,q.i (l-«) Job at the top of queue is

found to be a "read" job and is
served.

Table 5-1 Possible state transitions given event Ê .

106

SsM ^ 1 A "write" job departs.
S s j Si,o 1-a The only job queued is found

to be a "read" job and is
served.

Ej S4,o a The only job queued is found
to be a "write" job and is

served.
{"Write" job Si,q-i {\-a)a The job at the top of the

departs} queue is a "read" job and is
served. The next following

job in the queue is a "write"
job is blocked.

Ss^q, q>\ S2,q.2 (1-^2 Two jobs at the top of the
queue are "read" jobs and are

served. The next following
job is blocked.

S4,0,q-1 a The job at the top of the
queue is a "write" job and is

served.
q, \fq S3,q 1 The "write" job being served

finishes using one of the
servers. I All other state transitions 0 All transitions which are not

listed above are invalid.
‘ ‘ Table 5-1 Possible state transitions given event Ei (cont'd).

107

5.4 Numerical Examples and Simulation Results
Figure 5-2 shows the average job delay for a mirrored disk array under various

traffic levels. We assume in this example that jobs/sec. Simulation on mirrored
disk array was also performed to verify the analysis given above. We have extended the
simulation time long enough so that the 95% confidence intervals is smaller than the size
of the markers shown. From the figure we find that both the analytic and simulation results
match very well with each other. We also find that when all the jobs are of the "read" type
(0=0)，the maximum throughput for the mirrored disk array approaches 100 jobs/sec. This
is expected because the system basically operates as an MIMI2 queue in this case. The
maximum service rate of the system is just the total service rate of the two servers. When
0=0.5, we observe that the maximum throughput drops to about 43 jobs/sec. When all the
jobs are of the "write" type (a=l), the maximum throughput is about 33 jobs/sec.

0.5 Simulation - O . Points
0.4 - I

Q^i (I a^O.5 cz^O
Delay i) 0.3 -

(sec) I

• I ' I ' ~ ‘ — ‘ — ‘ — ‘ — ‘ — — - —
0 20 40 60 80 100

Arrival Rate X (jobs/sec)

Figure 5-2 Delay throughput characteristics of mirrored disk array.

108

References
[1] D Patterson, G Gibson, and R Katz, "A Case for Redundent Arrays of Inexpensive

Disks (RAID)," Proceedings of the ACM SIGMOD Conference, pp. 109-116，1988.
[2] E K Lee and R H Katz, "An Analytic Performance Model of Disk Arrays," Proc.

ACM SIGMETRICS, pp. 98-109, May 1993.
[3] C U Orji and J A Solworth, "Doubly Distorted Mirrors," Proceedings of the ACM

SIGMOD Conference, pp. 307-316，Washington, USA, May 1993.
[4] Y Dishon and T S Liu, "Disk Dual Copy Methods and Their Performance," Proc. of

The 18th Int. Conference on Fault-Tolerant Computing, pp. 314-319, 1988.
[5] S W Ng, "Improving Disk Performance Via Latency Reduction," IEEE Trans, on

Computers, Vol. 40，No. 1，January 1991.
[6] D Bitton, "Disk Shadowing," Proceedings of the Mh VLDB Conference, Los

Angeles, California, 1988.
•7] Alberto Leon-Garcia, Probability and Random Processes for Electrical

Engineering, 2/Ed, pp. 485-6, Addison-Wesley, 1993.

109

Chapter Six
State Reduction in the Exact Analysis of

Fork/Join Queueing Systems

A state reduction technique for the exact analysis of fork/join queueing systems is
presented in this chapter. The technique is based on the standard Markov model and can
be applied to systems having K homogeneous exponential servers. For a closed system
with M jobs, the technique reduces the size of the state space from {M+Vf-M^ states to
f + K 一 1、 states This amounts to more than five orders of magnitude of state reduction I for a typical value of^=M=10. The state reduction technique can also be applied to the
analysis of an open fork/join queueing system. It reduces the size of the state space from

states to states where B is the maximum number of jobs allowed in the
V ^ y .

open queueing system. The state reduction amounts to more than six orders of magnitude
for a typical value of 火 =10 and 5=500.

110

6.1 Introduction
The fork/join queueing model is very useful in the performance study of parallel

computing systems such as disk arrays and multiprocessor systems. For example, a
computer running multiple I/O intensive processes has a disk array for fast I/O operations.
The processes running on the computer queue on the I/O queue most of the time since
they are I/O intensive. When a process get its turn for I/O operation, it accesses data
which is striped across all the disks of the disk array. Having completed an I/O operation,
the process reenters the I/O queue within a very short time and waits for the next I/O
operation. To study the performance of the system, we can model the disk array as a
closed fork/join queueing system.

A closed fork/join queueing model can also be used to study the performance of
multiprocessor systems. Consider a computer with K processors running batch jobs. Jobs
are queued in a job queue with a maximum number of M jobs. When the computer starts
serving a job, the job is divided into K tasks running on the K different processors. A job
completes when all its K tasks complete. When the system is fully loaded, a completed job
will immediately trigger a new job arrival. The job queue is therefore always occupied with
M jobs. Under full load condition, this system can be modeled as a closed fork/join
queueing system as shown in Figure 6-1. Analysis on closed fork/join queues can provide
performance insight on this multiprocessor computer.

The analysis on fork/join queues is usually difficult due to the presence of queueing
and fork/join synchronization. Take disk arrays as an example, an I/O request is broken up
or forked into K (^>1) disk requests on K different disks. The I/O request is completed
only when all K disk requests are completed, or they must be synchronized. Because of
this, performance studies on disk arrays are either done by simulation or by analysis which
ignores either queueing or fork/join synchronization. Many references on disk array
performance studies can be found in [1].

Exact analysis on a closed 厂server fork/join queue using standard Markov chain
technique was proposed in [2]. But the amount of computations required grows
exponentially with K. This calls for many approximate analysis of 火-server fork/join
queues [2-4]i. In this chapter, we present a state reduction technique for the exact analysis
on fork/join queues having homogeneous servers. In the next section, we first discuss the
application of the state reduction technique on a closed fork/join queueing system. We
then extend our discussion to open fork/join queueing systems in section 6.3. At last, we
conclude the chapter in section 6.4.

1 For a literature review on the analysis of 厂server fork/join queues, see references in [2].

I l l

Synchronization
Task Queues Queues

Task 1 r n y ^ : ITT / : 个 \

/ Queue 1 \

/ / Queue 2 \ \

\ T a s k ^ 7 /
Queue K

Figure 6-1 The closed fork/join queueing system.

112

6.2 State Reduction For Closed Fork/Join Queueing Systems

A. Queueing System Under Study
An M job closed fork/join queueing system is shown in Figure 6-1. When a job in

the system departs, a new job immediately enters the system and forks into K tasks with
task k (k=l,2,...,K) goes to the k^^ task queue. The operations of the task queues are
assumed to be independent. All tasks entering the same task queue are served in a FCFS
manner. The service times for the tasks are assumed to be independent and exponentially
distributed with mean Hju. Upon the completion of its service, a task enters the
synchronization queue where it waits for the other tasks belonging to the same job. A job
leaves the system only when all its K tasks are completed. The tasks belonging to a
particular job are therefore joined before the job leaves the system. In the following, we
present the state reduction technique and derive the average delay experienced by the jobs.

B. States and State Grouping
In conventional analysis the state is represented by the random vector

where N^ denotes the number of task in task queue i including the one in
service. When � ，…， t %， w e denote the state of the system by
ir(ri2,n2,...,nj^). Since there areMjobs in the system, we have m a x (N j , N 2 , . . T h e
number of possible states U for the system is given by:

(The number of states with at least one queue having�
U = occupancy M and the remaining K -1 queues having

^occupancy < M y
,The number of states) (The number of s t a t e s �

= w i t h all queues having - with all queues having (6-1)
^occupancy < M.) (^occupancy < M - \ . �

Consider the arrival of a tagged job that brings the system to state ?̂=(�,�2，..，万火).
Let random variable X^ denote the delay experienced by task i of the new job. It is equal to
the sum of independent identically distributed exponential random variables and so has
distribution

Note that the average delays at tasks queues 7 and k are the same if «广《众.The average
delay X experienced by the tagged job is given by

113

Since the servers are independent, the distribution ofXis given by:
Prob[A^ < /] = Prob[而 < r]Prob[X2 <4-.Prob[Zj^ < t] (6-4)
The task queues and the servers are all identical. Therefore any two jobs which begin at
two different states, says and will have the same
average delay if the states have the same ranked list of task queue lengths. We can thus
merge all states having the same ranked list of queue lengths into a single system state.
This is the basic idea of the state reduction technique.

C. Delay Analysis
Let random variable Q^ denote the number of task queues with length i where i

includes the task in service. Since the system has K task queues, we have M (6-5)
1 = 0

Since there is at least one task queue which has M tasks, State occupancy time is
the time between two successive task departures which is exponentially distributed. The
evolution of (QO ,QJ , -;8M) is therefore a continuous time Markov Process. We denote
system state as 望=(彻，••，�M) when {Qo,Qi,…,QKi)=�qo,qi,…,Q}^.

Next, define the transition probability to be
Prob q�望

=Prob[(eo，a，…，2m) = (g'o，力，…，g.M) after state transition (6-6)
(0)，a，• •，2m)=(弥，奶，…，) before state transition

When the system is at 望=(你〜…，？从)，there are g广^+…十彻 non-empty queues. The
rate of state departure at that state is therefore equal to The possible
state transitions and the corresponding transition probabilities are calculated as follows:
Prob[f = (《。，‘.， l _ i + l ， l l ， . . .，《 j a � + J + � 1 仏 (6-7)

P r o l f e : (知 〜 + 1 , � - •] = � + 二 . + � � 2 (6-8)

P r o b [� = (。 ， 知 � - 1 + J . . . + � 知二1 (6 -9)
Equations (6-7) and (6-8) represent all cases when no job arrival is triggered by a task
departure. If the departed task is from a task queue with length i, the probability for this
kind of state transitions is given by 仏 / (% + . . . T h i s is because ^ task queues with
length i is found before state transition out of a total of … n o n - e m p t y queues.
After state transition, q ' r q r l and ？；心=g“j+l due to the task departure. Equation (6-9)
represents the case when a task departure triggers one new job arrival. This kind of state
transitions occurs when there is only one task queue with length M and a task departs
from it This departing task is the last task to finish for that particular job and so will
trigger that job to depart from the synchronization queues immediately. As we are

114

considering a closed queueing system, this means an immediate arrival of a new job to the
task queues. Therefore the task queue with M tasks before transition will have M-1+1=M
tasks after state transition. In addition, the q^^j task queues will each receive a task arrival
to have M-l+l=M tasks. Therefore, q'l^qu-i'^^- For task queues with length i less than
M-1, their lengths are increased by 1 after state transition. This make q'l+rqt- Since all
queues have at least 1 task after state transition, q’o=Q. The probability for this kind of
state transitions is given by qj{q；+.. •

Having obtained the transition probabilities, the set of equilibrium state
probabilities {Prob[^]} can be computed in the usual way. The long-term proportion of
time spend in state q, denoted a sp{q) , is given in [5] as:

p{q) 二 ^ L - | (6-10)

where S is the set of all possible states and can be enumerated by a simple computer
program.
The rate of task departures r； is :
r, = 2 > (咖 1 + % + . . . + �) " （6-11)

and so the rate of job departures r] is simply rj/K. The job arrival rate is the same as the
job departure rate for a closed queueing system. Using Little's formula, the expected job
delay D in the fork/join queueing system is:
D Expected number of jobs in the system 一M 一 MK (6-12)

- Job arrival rate r\ / / 仏 + 仏 • +〜）

D. Computational Complexities
In the original state space, the total number of states is:

UJ
If Gaussion Elimination is used to solve the state equations, the computation complexity
f,{M,K) = 0{u') (6-14)

In the reduced state space, there is at least one task queue with length M. The
remaining K-\ queues can have queue lengths ranging from 0 to M The total number of
queue length combinations can be found by comparing to the classical problem of finding
the number of possible ways of distributing K-\ indistinguishable balls into M+\ urns.
From [7] we find that the size of the new state space Fis given by:

115

From Stirling's formula [8], we find that n\ can be approximated by:
(6-16)

Substitute into (6-15), we obtain
\{M^K-\) (M + X-1)—1 (6_17)

〜乂 2;zM(尺一 1) M ^ ' i K - l f - y
Therefore, computation complexity of the reduced state space system/^CMX) is simply:
f,[M,K) = 0{v') (6-18)
Note that (6-13) and (6-17) are complicated functions of M and K. To see how well the
state reduction technique works, let us choose K=M-^\ to obtain:

(6-19)
and
f - o \ — (6 - 2 0)
Therefore/； grows much faster than力.We will show some typical numbers in the next
section.

E. Numerical Examples and Simulation Results
Figure 6-2 shows both analytic and simulation results of the average job delay D

against the number of jobs M We assume in this example that //=1 for all servers. The
simulation time is made sufficiently long to make the 95% confidence intervals smaller
than the size of the markers shown. We find that for all values of K shown, D grows
linearly withM.

Figure 6-3 compares the size of the original state space to that of the reduced state
space for different values of M and K. Observe that whenM=2 and K=4, state reduction is
about one order of magnitude. When K increases to 10, state reduction reaches three
orders of magnitude for the sameM When Mis larger, we find that the state reduction is
even more significant for all values of 尤 shown. Comparing the two curves for M=10 at
points J^=10 we find that state reduction amounts to more than five orders of magnitude.
The size of the original state space U\n this case is about l.SxlQio states, whereas the
new state space has size F^0，000 states. We will not show any results on/； and力 as
they are simply the cube of U and F respectively.

116

25
7 - o Simulation 乂

Points

.L 1 1 ‘ ‘ ^
‘ 1 2 3 4 5 6

M
Figure 6-2 Average job delay against the number of jobs in the system. —

- / ^ 1 0 � u —— / Z -…/Z
Size ^ / y ^ X of 106_ / y ^ Z State - / ^ ^ ^ ^ ^

Space . ^ ^ ^

-

1 I I I “ ‘ ‘ 1 ^
丄 1 2 3 4 5 6 7 8 9 1 0

K
Figure 6-3 Comparison on the size of the original state space U

and that of the reduced state space V.

117

6.3 Extension to Open Fork/Join Queueing Systems
Like the closed fork/join queueing model, the open fork/join queueing model is

very useful in the performance study of many computer systems such as distributed
replicated database and multiprocessor architecture [4]. In this section, we extend the
state reduction technique described in section 6.2 to the analysis of open fork/join
queueing systems.

A. Queueing System Under Study
The open queueing system under study is shown in Figure 6-4. Let the job arrivals

be a Poisson process with rate A. Upon arrival, a job is forked into K tasks with task k
(̂=1，2”..,幻 being placed to 种 task queue. Tasks are served independently and in a FCFS
manner. Upon the completion of its service, a task enters the synchronization queue where
it waits for the other tasks of the same job. A job leaves the system only when all its K
tasks are completed. Also let B be the maximum number of jobs allowed in the queueing
system.

Synchronization
Task Queues Queues

/ B Queue 1 \

/ B Queue 2 \ \ M V - .
Jobs \ / \

XTask^ Q _ 一 J
B Queue K

Figure 6-4 The open fork/join queueing system.
118

B. States and State Grouping
As before, let random variable Q^ denote the number of task queues with length i

where i includes the task in service. Like the closed fork/join queueing system, the
evolution of (QO,QI," ,QB) is a Markov Process. We denote system state as
望=(彻，…，…，办）when (2o,27，..，25)=(彻，…,. .，fe).

C. Delay Analysis
Define the transition probability to be

Prob q
=Prob[(eo，a，…，&}=(…0，…1，…，？丨万} after state transition (6-11)

(2o, a，…，&) 二 (彻’仍,…，办)before state transition
When the system is at 望=(彻，…,".，办)，there are ？广力+."+办 non-empty queues.
Therefore, jobs arrives at rate X and tasks departs with rate (…+力+...+办at that state.
The rate of state transition at 望 is therefore equal to 力+• •+办Consider the
departure of a task from task queue i. The probability that this event occurs before others
is 仏 . / / / [义办)川 . A f t e r the departure, the number of queues with i tasks is
q ’ i=q� \ and the number of queues with i-l tasks is ？•广仏心+1. Therefore,
P r o b [� = (办,仍，...，h + l，tl’..•，办 ％] 、 + (奶 + 二 + � • 1 仍万

(6-22)

Consider the arrival of a job to the system. The probability that this event occurs before
others is ；(…+力+…+办)川.After the job arrival, all queues increase their length by 1
and the number of queues with i tasks i s T h e r e is no more empty queue and

Since the maximum queue length is B, the number of queues with B tasks is
q,B二qB+qB-1- Therefore, ^
Prob[么= (Mg，札…,抓 + 仍 + . . . + 办 (6 - 2 3)

Having obtained the transition probabilities, the set of equilibrium state
probabilities {Prob[^]} can be computed in the usual way. The long-term proportion of
time spend in state q is given in [5] as:

1 r *

•义 + (仍 + 处 +".+彻 H

119

Next, let L{q) be the length of the longest queue at state ^. It is equal to the number of
jobs not yet completed at state q. Therefore, the average number of jobs in the system,
denoted as N, is given by:
N= Z 華(望） (6-25)
Using Little's formula, the expected job delay D in the fork/join queueing system is: j j
D = — (6-26) A,

D. Sizes of the State Spaces
In the original state space, the total number of states U is because all K

queues can have queue lengths ranging from 0 to B. The total number of queue length
combinations in the reduced state space can be found by comparing to the classical
problem of finding the number of possible ways of distributing K indistinguishable balls
into 5+1 urns. From [7], we find that the size of the new state space Vis given by:

+ (叫)— l) = p : + ， （6-27)

I K) [K)
If Gaussion Elimination is used to solve the state equations, the computation complexities
for these two state spaces are similar to those of the closed fork/join queues discussed in
Section 6.2.

E. Numerical Examples and Simulation Results
Figure 6-5 plots the average job delay against the arrival rate. The service rate is

assumed to be 1 for all servers. The exact matching between the analytic and simulation
results verify the analysis given above.

Figure 6-6 compares the size of the original state space to that of the reduced state
space for open fork/join queueing systems. Observe that for both 万=100 and 万=500，the
state reduction amounts to more than six orders of magnitude when

120

o Simulation / / /
Points / / /

1 , I , I . 1 ‘

0 0.2 0.4 0.6 0.8

Figure 6-5 Average job delay against the arrival rate.
Z

1(^4 一 u , Z
V , Z

. . l o i z ,
Size z
of Z

State 12 _
pace ‘ 5=500

I |_| I I I I 1 1 1 1 L
1 2 3 4 5 6 7 8 9 10

K
Figure 6-6 Comparison on the size of the original state space U

and that of the reduced state space V.

121

6.4 Chapter Summary
A state reduction technique for the exact analysis of fork/join queues has been

presented in this chapter. The technique is based on the standard Markov model and can
be applied on a system having K homogeneous exponential servers. For a closed system
with M jobs, the technique reduces the size of the state space from states to

+ K — 1 � states. The state reduction amounts to more than five orders of magnitude I J
for a typical value of^=M=10. For a open system, the technique reduces the size of the

fB + K �
state space from (万+1)̂ states to states. The state reduction amounts to more

{ ^ J
than six orders of magnitude for a typical value of 尤 =10 and 5=500.

122

References
[1] Edward K. Lee and Randy H. Katz, "An Analytic Performance Model of Disk

Arrays," Proc. ACMSIGMETRICS, pp.98-109, May 1993.
[2] Y. C. Liu and H. G. Perros, "A Decomposition Procedure for the Analysis of a

Closed Fork/Join Queueing System," IEEE Transactions on Computers, VoL40,
No.3, March 1993.

[3] Philip Heidelberger and Kishor S. Trivedi, "Queueing Network Models for Parallel
Processing with Asynchronous Tasks," IEEE Transactions on Computers, Vol.C-31,
No. 11, pp. 1099-1109，November 1982.

[4] R. Nelson and A. N. Tantawi, "Approximate Analysis of Fork/Join Synchronization in
Parallel Queues," IEEE Transactions on Computers, Vol.37, No.6, June 1988.

[5] Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering,
2/Ed, pp.485-6, Addison-Wesley, 1993.

[6] M. J. Maron and R. J. Lopez, Numerical Analysis, 3/Ed, pp. 134-135, Wadsworth
Publishing Company, 1991.

[7] Sheldon Ross, A First Course in Probability, 3/Ed, pp.14, Macmillan Publishing
Company, 1989.

[8] M. O. Albertson and J. P. Hutchinson, Discrete Mathematics with Algorithms,
pp.158, John Wiley & Sons, 1988.

123

Chapter Seven
Conclusion and Future Research

124

7.1 Summary
Previous studies on RAID show that using disk arrays can improve the I/O

performance. The availability of commercial RAID products also indicates that disk arrays
can practically be used in real systems. However, problems still exist in designing RAID
systems for different kinds of applications. In this thesis, we propose techniques to solve
some of the problems.

In chapter 1，we have briefly discussed why I/O system design is important in view
of the rapid developments on computer and communication technologies. A brief
introduction on Redundant Arrays of Inexpensive Disks (RAID) has also given.

In chapter 2, a novel technique called the Selective Broadcast technique for high
speed data distributions is proposed. The technique significantly reduces the response time
for data retrievals when compared to non-selective broadcast techniques. This chapter also
gives a complete analysis on the Selective Broadcast technique.

In chapter 3，we address the problem of slow I/O rates for "write" operations
found in RAID level，5. We propose a novel architecture called Dynamic Multiple Parity
(DMP) Disk Arrays DMP Disk Arrays reduces the blocking delays of "write" operations
for database systems executing transaction in a strict order. Analysis on DMP Disk Arrays
using Markov model is also given in the chapter.

Another disk array architecture called Dynamic Parity Logging (DPL) Disk
Arrays is proposed in chapter 4 for fast engineering database systems. DPL Disk Arrays
aim at both solving the small "write" problem found in RAID levels 4 and 5 and reducing
the blocking delays for "write" operations. Analysis show that DPL Disk Array provide
much higher "write" throughput than that of RAID level 5. DPL Disk Arrays also have the
journalling capability which is very desirable for engineering database systems.

In chapter 5，a performance analysis on mirrored disk array is presented. The
analysis is verified by computer simulation given in the chapter.

Chapter 6 describes a state reduction technique on the exact analysis on closed
fork/join queues. Analysis on fork/join queues is very useful in the performance study on
disk arrays For typical values of system parameters, the proposed technique reduces the
number of states required in describing the queueing systems by several orders of
magnitude.

125

7.2 Future Research
Before the end of this thesis, we highlight some of the possible future research

emerging from the work described above.

A. Selective Broadcast Technique
1. Based on the analysis given in chapter 2, we may study the average cycle time of disk

arm movements for a disk using the CSCAN algorithm. The requests to the disk may
be aperiodic.

2. We may extend the analysis given in chapter 2 to study the average cycle time of a
token passing system. Input traffics to the nodes of the system may be asymmetric.

3. We may also study the cyclic behaviors of different kinds of polling systems by
extending the analysis given in chapter 2.

4. We may apply the Selective Broadcast technique to specific systems such as the
Video On Demand systems. The analysis given in chapter 2 can be modified to study
the performance of those systems.

5. In the study of the optimal choice of block sizes, we have assumed that disk delay is a
constant. Analysis with actual disk delays is desirable although it will be complicated.

B. DMP Disk Arrays
1. A global job queue for all disks is assumed in the analysis given in chapter 3.

Although DMP Disk Arrays are best for database systems executing transactions
serially, it is worthwhile to study DMP Disk Arrays having separate disk queues.

2. The analysis on DMP Disk Arrays may be extended to study other RAID
architectures.

3. The reliability of DMP Disk Arrays should be studied.

C. DPL Disk Arrays
1. It is possible to construct A^-dimensional DPL Disk Arrays. A^-dimensional DPL Disk

Arrays will survive under failure conditions of N simultaneous disks.

126

2. The reliability of DPL Disk Arrays should be studied.
3. Algorithms which can retrieve old contents of updated data should be developed.
4. The size of the block location table may be reduced by using appropriate techniques.
5. We may design another kind of DPL Disk Arrays which periodically write back

contents of popular blocks to their original locations. The PBA for this kind of DPL
Disk Arrays will therefore not overflow. Other than DBMS, such design is suitable
for used in general applications which does not require to keep a long journal of data
updates.

D. Performance Analysis of Mirrored Disk Array
1. The analysis can be extended to study the performance of other disk array

architectures.
2. The analysis can be extended to study the performance of other computer systems

such as multiple copy systems and distributed database systems.

E. State Reduction Technique
1. The state reduction technique and the analysis on fork/join queues may be applied to

analyze different kinds of disk array architectures.
2. The analysis given in chapter 6 may be extended to study other types of computer

systems such as data replication systems and distributed database systems.

127

—

,

：
•

\

‘
：

’

•

二

.

：

.
•

•

•

•

，
i

 s
r
H
^

^
 •

 .

 .

 .

/
 -
I
j

J
 .•

 •

 r

i
:
‘
：
.
-
 :r

i
 .
 .•

 •

 ‘

 ‘

 ,

 ,

 j

-
 r.

 ,

 .u

:

.

,

 妙
、

W...S.

 ,,,

 •

 .

 I

 -
 A

慕

h

、
.
.

.

.
 -

.

‘

I
 .,
:

 ,,•...,

 •

 •

 .

 .

 u

.
 f

 <

 ‘

i

,

 .

 ̂

J

 r
 ,

.

.

.

 •
黎
：
i

J

；

”

 I

。

.

；

t

‘

『

)

.

」

>

.

.

.

.

；
 “
：
'
1

#
 I

 -

 -

驟

"

.

、

.

.

。

’

 .
.
，
、
紅

%

.

.

.

.

一 i

M
l
 J

.

：

.

、

/
.
i
^
w

r
 /

：

.
.
.

f

”
了

.
 、、：.

，

 v
)
，
i
^

明
：
、
 .
.
.
.
.
-

/

,

 ̂
^
^
^

『
：
「
、
 .

•

 r

.

-

,

、
、
•

•

.
一

 /
•
、
 /

 h
鍵

f
>
」

，

’

 .
.
.

F
.
v
 \

 •

 .

 •

 J
s

î-”.，續̂
^̂
^̂
^̂
^̂
^̂

:

.

f
l
l
r
l
l
r
l
l
l
l
.
 j
l
,
 [

 —Lr

 .
.
.
.
.

”
.
.

〜
；
.
.
,
:
.
…
二
.
.
.
.
,
r
 丨
 i
?
.
:
:
.

 ..

 .

 .

 g

 .

 ,

..

 ,

-丨 - .’、

- . �

If;
. . I

'' i ‘ _ ‘• r
-i

. ：̂

C U H K L i b r a r i e s |

MMMMm I
•••ETHOb^ 1

- • I
I
I

； 寧 j

