1,222 research outputs found

    Comparison of numerical solvers for anisotropic diffusion equations arising in plasma physics

    Get PDF
    International audienceThis work is devoted to the comparison of numerical schemes to approximate anisotropic diffusion problems arising in tokamak plasma physics. We focus on the spatial approximation by using finite volume method and on the time discretization. This latter point is delicate since the use of explicit integrators leads to a severe restriction on the time step. Then, implicit and semi-implicit schemes are coupled to finite volumes space discretization and are compared for some classical problems relevant for magnetically confined plasmas. It appears that the semi-implicit approaches (using ARK methods or directional splitting) turn out to be the most efficient on the numerical results, especially when nonlinear problems are studied on refined meshes, using high order methods in space

    An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code

    Full text link
    Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-diffusion equation augmenting the equations of magnetohydrodynamics. We introduce a new method for solving the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive time-stepping in the RAMSES code. We apply this numerical solver to the diffusion of cosmic ray energy, and diffusion of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.Comment: 11 pages, 10 figures, A&

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time-stepping

    Full text link
    An important ingredient in numerical modelling of high temperature magnetised astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures.Magnetohydrodynamics (MHD) typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx\Delta x) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time stepping (STS) methods has been discussed in literature but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work we highlight a second order (in time) Runge Kutta Legendre (RKL) scheme (first described by Meyer et. al. 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first order super time stepping schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 10410^4 processors.Comment: 15 pages, 9 figures, incorporated comments from the referee. This version is now accepted for publication in MNRA

    Diffusion of energetic particles in turbulent MHD plasmas

    Full text link
    In this paper we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical MHD simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e. pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.Comment: Accepted for publication in Ap

    The Inertial Range of Turbulence in the Inner Heliosheath and in the Local Interstellar Medium

    Get PDF
    The governing mechanisms of magnetic field annihilation in the outer heliosphere is an intriguing topic. It is currently believed that the turbulent fluctuations pervade the inner heliosheath (IHS) and the Local Interstellar Medium (LISM). Turbulence, magnetic reconnection, or their reciprocal link may be responsible for magnetic energy conversion in the IHS.   As 1-day averaged data are typically used, the present literature mainly concerns large-scale analysis and does not describe inertial-cascade dynamics of turbulence in the IHS. Moreover, lack of spectral analysis make IHS dynamics remain critically understudied. Our group showed that 48-s MAG data from the Voyager mission are appropriate for a power spectral analysis over a frequency range of five decades, from 5e-8 Hz to 1e-2 Hz [Gallana et al., JGR 121 (2016)]. Special spectral estimation techniques are used to deal with the large amount of missing data (70%). We provide the first clear evidence of an inertial-cascade range of turbulence (spectral index is between -2 and -1.5). A spectral break at about 1e-5 Hz is found to separate the inertial range from the enegy-injection range (1/f energy decay). Instrumental noise bounds our investigation to frequencies lower than 5e-4 Hz. By considering several consecutive periods after 2009 at both V1 and V2, we show that the extension and the spectral energy decay of these two regimes may be indicators of IHS regions governed by different physical processes. We describe fluctuations’ regimes in terms of spectral energy density, anisotropy, compressibility, and statistical analysis of intermittency.   In the LISM, it was theorized that pristine interstellar turbulence may coexist with waves from the IHS, however this is still a debated topic. We observe that the fluctuating magnetic energy cascades as a power law with spectral index in the range [-1.35, -1.65] in the whole range of frequencies unaffected by noise. No spectral break is observed, nor decaying turbulence

    A mimetic finite difference based quasi-static magnetohydrodynamic solver for force-free plasmas in tokamak disruptions

    Full text link
    Force-free plasmas are a good approximation where the plasma pressure is tiny compared with the magnetic pressure, which is the case during the cold vertical displacement event (VDE) of a major disruption in a tokamak. On time scales long compared with the transit time of Alfven waves, the evolution of a force-free plasma is most efficiently described by the quasi-static magnetohydrodynamic (MHD) model, which ignores the plasma inertia. Here we consider a regularized quasi-static MHD model for force-free plasmas in tokamak disruptions and propose a mimetic finite difference (MFD) algorithm. The full geometry of an ITER-like tokamak reactor is treated, with a blanket module region, a vacuum vessel region, and the plasma region. Specifically, we develop a parallel, fully implicit, and scalable MFD solver based on PETSc and its DMStag data structure for the discretization of the five-field quasi-static perpendicular plasma dynamics model on a 3D structured mesh. The MFD spatial discretization is coupled with a fully implicit DIRK scheme. The algorithm exactly preserves the divergence-free condition of the magnetic field under the resistive Ohm's law. The preconditioner employed is a four-level fieldsplit preconditioner, which is created by combining separate preconditioners for individual fields, that calls multigrid or direct solvers for sub-blocks or exact factorization on the separate fields. The numerical results confirm the divergence-free constraint is strongly satisfied and demonstrate the performance of the fieldsplit preconditioner and overall algorithm. The simulation of ITER VDE cases over the actual plasma current diffusion time is also presented.Comment: 43 page
    corecore