112,374 research outputs found

    Automated Functional Testing based on the Navigation of Web Applications

    Full text link
    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Identifying reusable knowledge in developer instant messaging communication.

    Get PDF
    Context and background: Software engineering is a complex and knowledge-intensive activity. Required knowledge (e.g., about technologies, frameworks, and design decisions) changes fast and the knowledge needs of those who design, code, test and maintain software constantly evolve. On the other hand, software developers use a wide range of processes, practices and tools where developers explicitly and implicitly “produce” and capture different types of knowledge. Problem: Software developers use instant messaging tools (e.g., Slack, Microsoft Teams and Gitter) to discuss development-related problems, share experiences and to collaborate in projects. This communication takes place in chat rooms that accumulate potentially relevant knowledge to be reused by other developers. Therefore, in this research we analyze whether there is reusable knowledge in developer instant messaging communication by exploring (a) which instant messaging platforms can be a source of reusable knowledge, and (b) software engineering themes that represent the main discussions of developers in instant messaging communication. We also analyze how this reusable knowledge can be identified with the use of topic modeling (a natural language processing technique to discover abstract topics in text) by (c) surveying the literature on how topic modeling has been applied in software engineering research, and (d) evaluating how topic models perform with developer instant messages. Method: First, we conducted a Field Study through an exploratory case study and a reflexive thematic analysis to check whether there is reusable knowledge in developer instant messaging communication, and if so, what this knowledge (main themes discussed) is. Then, we conducted a Sample Study to explore how reusable knowledge in developer instant messaging communication can we identified. In this study, we applied a literature survey and software repository mining (i.e. short text topic modeling). Findings and contributions: We (a) developed a comparison framework for instant messaging tools, (b) identified a map of the main themes discussed in chat rooms of an instant messaging tool (Gitter, a platform used by software developers), (c) provided a comprehensive literature review that offers insights and references on the use of topic modeling in software engineering, and (d) provided an evaluation of the performance of topic models applied to developer instant messages based on topic coherence metrics and human judgment for topic quality

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience
    • 

    corecore