
Identifying Reusable Knowledge in
Developer Instant Messaging

Communication

Camila Mariane Costa Silva

A thesis presented for the degree of
Doctor of Philosophy

in
Computer Science and Software Engineering

at the
University of Canterbury,

Christchurch, New Zealand.

30 November 2022

ACKNOWLEDGMENTS

First, I would like to thank my supervisors for their support and encouragement along
my PhD journey. I would like to express my wholehearted gratitude to Matthias Galster,
my senior supervisor, for sharing with me his creativity and extensive knowledge on
research, collaborative work and teaching. I also would like to thank Fabian Gilson, my
associate supervisor, for inspiring me with his ideas and guidance.

I would like to thank the CSSE department for their support. I would like to thank
Sharon and Kat for their kindness and help. I also would like to thank Andreas Willig,
Miguel Morales and Kourosh Neshatian for their encouragement.

I would like to thank the learning advisors from the Academic Skills Centre and
UC Library for their helpful tutorials and research support.

I would like to thank the donors of the GB Battersby Trimble Scholarship in
Computer Science for supporting my PhD, and Leonie for helping me liaise with them.

I would like to thank the companionship and emotional support from the colleagues
I made in and outside lab JE343.

I would like to thank the anonymous participants who answered the questionnaires
for this thesis. I really appreciate their effort and availability.

I would like to thank the members of the exam committee, Christoph Treude and
Alexander Serebrenik. I thank them for their insightful and detailed feedback on my
thesis.

I also would like to appreciate and acknowledge the support of some of my past
professors: Paulo Marcotti, Onófrio Notarnicola, Edmir Parada Vasques Prado and
Wilson Carlos da Silva Junior. Their trust in my potential and their guidance helped
me get to the PhD.

Finally, I would like to thank my family and friends. I would like to express immense
gratitude for their patience, unconditional support, encouragement and love.

ABSTRACT

Context and background: Software engineering is a complex and knowledge-intensive
activity. Required knowledge (e.g., about technologies, frameworks, and design decisions)
changes fast and the knowledge needs of those who design, code, test and maintain
software constantly evolve. On the other hand, software developers use a wide range of
processes, practices and tools where developers explicitly and implicitly “produce” and
capture different types of knowledge.
Problem: Software developers use instant messaging tools (e.g., Slack, Microsoft
Teams and Gitter) to discuss development-related problems, share experiences and to
collaborate in projects. This communication takes place in chat rooms that accumulate
potentially relevant knowledge to be reused by other developers. Therefore, in this
research we analyze whether there is reusable knowledge in developer instant messaging
communication by exploring (a) which instant messaging platforms can be a source
of reusable knowledge, and (b) software engineering themes that represent the main
discussions of developers in instant messaging communication. We also analyze how
this reusable knowledge can be identified with the use of topic modeling (a natural
language processing technique to discover abstract topics in text) by (c) surveying the
literature on how topic modeling has been applied in software engineering research, and
(d) evaluating how topic models perform with developer instant messages.
Method: First, we conducted a Field Study through an exploratory case study and a
reflexive thematic analysis to check whether there is reusable knowledge in developer
instant messaging communication, and if so, what this knowledge (main themes dis-
cussed) is. Then, we conducted a Sample Study to explore how reusable knowledge in
developer instant messaging communication can we identified. In this study, we applied
a literature survey and software repository mining (i.e. short text topic modeling).
Findings and contributions: We (a) developed a comparison framework for instant
messaging tools, (b) identified a map of the main themes discussed in chat rooms of an
instant messaging tool (Gitter, a platform used by software developers), (c) provided a
comprehensive literature review that offers insights and references on the use of topic
modeling in software engineering, and (d) provided an evaluation of the performance of
topic models applied to developer instant messages based on topic coherence metrics
and human judgment for topic quality.

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported
in co-authored work that has been published, accepted for publication, or submitted for
publication. A copy of this form should be included for each co-authored work that is
included in the thesis. Completed forms should be included at the front (after the thesis
abstract) of each copy of the thesis submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

• Chapter 3 is adapted from a published conference paper: Costa Silva, C., Gilson,
F., Galster, M. (2019). Comparison Framework for Team-Based Communication
Channels. In: International Conference on Product-Focused Software Process
Improvement (PROFES). Springer, pp. 315-322. https: // doi. org/ 10. 1007/

978-3-030-35333-9_ 22

Please detail the nature and extent (%) of contribution by the candidate:
First author, and primary researcher. Wrote the text, with guidance and feedback from
co-authors. Performed all research. Overall contribution of effort, including research
and writing: 80%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

• The above statement correctly reflects the nature and extent of the PhD candidate’s
contribution to this co-authored work

• In cases where the candidate was the lead author of the co-authored work, they
wrote the text.

Name: Professor Matthias Galster Date: 30 November 2022

https://doi.org/10.1007/978-3-030-35333-9_22
https://doi.org/10.1007/978-3-030-35333-9_22

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported
in co-authored work that has been published, accepted for publication, or submitted for
publication. A copy of this form should be included for each co-authored work that is
included in the thesis. Completed forms should be included at the front (after the thesis
abstract) of each copy of the thesis submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

• Chapter 4 is adapted from a published journal paper: Costa Silva, C., Galster,
M., & Gilson, F. (2022). A qualitative analysis of themes in instant messaging
communication of software developers. Journal of Systems and Software, 192, pp.
1-25. https: // doi. org/ 10. 1016/ j. jss. 2022. 111397

Please detail the nature and extent (%) of contribution by the candidate:
First author, and primary researcher. Wrote the text, with guidance and feedback from
co-authors. Performed all research. Overall contribution of effort, including research
and writing: 80%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

• The above statement correctly reflects the nature and extent of the PhD candidate’s
contribution to this co-authored work

• In cases where the candidate was the lead author of the co-authored work, they
wrote the text.

Name: Professor Matthias Galster Date: 30 November 2022

https://doi.org/10.1016/j.jss.2022.111397

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported
in co-authored work that has been published, accepted for publication, or submitted for
publication. A copy of this form should be included for each co-authored work that is
included in the thesis. Completed forms should be included at the front (after the thesis
abstract) of each copy of the thesis submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

• Chapter 5 is adapted from a published journal paper: Silva, C. C., Galster, M.,
& Gilson, F. (2021). Topic modeling in software engineering research. Empiri-
cal Software Engineering, 26(6), 120, pp. 1-62. https: // doi. org/ 10. 1007/

s10664-021-10026-0

Please detail the nature and extent (%) of contribution by the candidate:
First author, and primary researcher. Wrote the text, with guidance and feedback from
co-authors. Performed all research. Overall contribution of effort, including research
and writing: 80%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

• The above statement correctly reflects the nature and extent of the PhD candidate’s
contribution to this co-authored work

• In cases where the candidate was the lead author of the co-authored work, they
wrote the text.

Name: Professor Matthias Galster Date: 30 November 2022

https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1007/s10664-021-10026-0

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported
in co-authored work that has been published, accepted for publication, or submitted for
publication. A copy of this form should be included for each co-authored work that is
included in the thesis. Completed forms should be included at the front (after the thesis
abstract) of each copy of the thesis submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

• Chapter 6 is adapted from a manuscript under preparation (as of December
2022): Costa Silva, C., Galster, M., & Gilson, F. (2022). Evaluation of short text
topic models applied to instant messaging communication of software developers.

Please detail the nature and extent (%) of contribution by the candidate:
First author, and primary researcher. Wrote the text, with guidance and feedback from
co-authors. Performed all research. Overall contribution of effort, including research
and writing: 80%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

• The above statement correctly reflects the nature and extent of the PhD candidate’s
contribution to this co-authored work

• In cases where the candidate was the lead author of the co-authored work, they
wrote the text.

Name: Professor Matthias Galster Date: 30 November 2022

CONTENTS

Acknowledgments ii
Abstract iii

CHAPTER 1 INTRODUCTION 1
1.1 Problem and Motivation 1
1.2 Research Questions and Scope 3
1.3 Research Method 7
1.4 Thesis-related Publications 9
1.5 Structure of Thesis 10

CHAPTER 2 BACKGROUND AND RELATED WORK 12
2.1 Reusable Knowledge 12
2.2 Software Developer Communication 14
2.3 Related Work 16

2.3.1 Developer Communication as Knowledge Repository 16
2.3.2 Developer Instant Messaging Communication 17

2.4 Summary 18

CHAPTER 3 COMPARISON FRAMEWORK FOR TEAM-BASED
COMMUNICATION CHANNELS 19
3.1 Introduction 19
3.2 Comparison Framework 20
3.3 Case Study 21

3.3.1 Popularity 22
3.3.2 Openness 22
3.3.3 Administration 22
3.3.4 Interaction Features 23
3.3.5 Interoperability 24
3.3.6 API 24

3.4 Discussion 25
3.4.1 Summary of Findings 25
3.4.2 Applicability of Framework 25
3.4.3 Threats to Validity 26

3.5 Conclusion 27

CONTENTS ix

CHAPTER 4 THEMES IN DEVELOPER INSTANT MESSAGING
COMMUNICATION 28
4.1 Introduction 28
4.2 Research Method 30

4.2.1 Data Sampling 30
4.2.1.1 Context 30
4.2.1.2 Units of Analysis 31
4.2.1.3 Data Collection 32

4.2.2 Data Analysis 32
4.2.3 Applicability of Themes 36

4.3 Results 37
4.3.1 Characterizing Chat Rooms 37
4.3.2 Overview of Themes 38

4.3.2.1 Themes in Communities 42
4.3.2.2 Similar Themes in Different Contexts 42

4.3.3 Themes and the SWEBOK 43
4.3.4 Themes and Developer Knowledge Needs 44

4.3.4.1 Web Search Queries 44
4.3.4.2 Stack Overflow 47

4.3.5 Patterns and Insights from Themes 49
4.3.5.1 Trends in Themes 50
4.3.5.2 Popularity, Activity and Engagement of

Themes 50
4.3.6 Applicability of Themes in Slack Chat Rooms 52

4.4 Discussion 55
4.4.1 Comparison to Related Work 55
4.4.2 Implications for Practitioners 57
4.4.3 Implications for Researchers 58
4.4.4 Limitations and Validity 59

4.5 Conclusions 62

CHAPTER 5 TOPIC MODELING IN SOFTWARE ENGINEERING
RESEARCH 64
5.1 Introduction 64
5.2 Topic Modeling 66

5.2.1 Data Input 68
5.2.2 Modeling 68
5.2.3 Output 69

5.3 Related Work 69
5.3.1 Literature Reviews 69
5.3.2 Meta-studies 71

5.4 Research Method 72
5.4.1 Search Procedure 72
5.4.2 Study Selection Criteria 73

x CONTENTS

5.4.3 Data Extraction and Synthesis 73
5.5 Results 75

5.5.1 Overview 75
5.5.2 RQ3.1: Topic Models Used 76

5.5.2.1 Topic Modeling Techniques 76
5.5.2.2 Supported Tasks 80
5.5.2.3 Types of Contribution 84

5.5.3 RQ3.2: Topic Model Inputs 85
5.5.3.1 Types of Data 85
5.5.3.2 Corpus Size 86
5.5.3.3 Documents 86
5.5.3.4 Model Parameters 93

5.5.4 RQ3.3: Pre-processing Steps 94
5.5.5 RQ3.4: Topic Naming 97

5.6 Discussion 99
5.6.1 RQ3.1: Topic Modeling Techniques 99

5.6.1.1 Summary of Findings 99
5.6.1.2 Comparative Studies 99

5.6.2 RQ3.2: Inputs to Topic Models 105
5.6.2.1 Summary of Findings 105
5.6.2.2 Documents and Parameters 105
5.6.2.3 Supported Tasks, Types of Data and Types

of Contribution 108
5.6.3 RQ3.3: Data Pre-processing 111

5.6.3.1 Summary of Findings 111
5.6.3.2 Pre-processing Different Types of Data 111

5.6.4 RQ3.4: Assigning Names to Topics 115
5.6.5 Implications 116
5.6.6 Threats to Validity 118

5.7 Conclusions 119

CHAPTER 6 SHORT TEXT TOPIC MODELS APPLIED TO
DEVELOPER MESSAGES 120
6.1 Introduction 120
6.2 Short Text Topic Modeling 122

6.2.1 Overview 123
6.2.2 Short Text Topic Models 123

6.3 Topic Quality 125
6.3.1 Intrusion Tasks 125
6.3.2 Topic Naming 126
6.3.3 Topic Coherence Metrics 127
6.3.4 Comparing Measures for Topic Quality 128

6.4 Research Method 129
6.4.1 Selection of Data Sets 129

CONTENTS xi

6.4.2 Data Pre-processing 130
6.4.3 Short Text Topic Modeling 132

6.4.3.1 Selection of Models 132
6.4.3.2 Parameter Setting and Execution of Models132

6.4.4 Topic Coherence Metrics 133
6.4.5 Human Assessment 133

6.4.5.1 Intrusion Tasks 133
6.4.5.2 Topic Naming 135
6.4.5.3 Participant Selection and Recruitment 137

6.4.6 Comparison of Model Performance 139
6.5 Results 140

6.5.1 Topic Coherence Metrics 140
6.5.2 Comparison of Stemmed and Lemmatized Corpora 142
6.5.3 Word and Topic Intrusion 144

6.5.3.1 Word Intrusion Tasks 144
6.5.3.2 Topic Intrusion Tasks 144
6.5.3.3 Best Performing Model based on Word

versus Topic Intrusion 144
6.5.3.4 Participants Feedback on Intrusion Tasks 148

6.5.4 Topic Naming 148
6.5.4.1 Number of Topics Named and Average

Ratio of Names per Topic 149
6.5.4.2 Compatibility between Names Assigned

to Topics 150
6.5.4.3 Corpus Size and Topic Naming 151
6.5.4.4 Best Performing Models based on Topic

Naming 151
6.5.4.5 Participant Feedback on Naming Topics 152

6.5.5 Overall Model Performance 152
6.5.5.1 Comparison of Short Text Topic Models 152
6.5.5.2 Correlation between Metrics 153

6.6 Discussion 156
6.6.1 Summary of Findings 156
6.6.2 Practical Use of Topic Models 158
6.6.3 Comparison to Related Work 159
6.6.4 Implications 161
6.6.5 Threats to Validity 162

6.7 Conclusion 164

CHAPTER 7 CONCLUSIONS 166
7.1 Summary of Findings 166
7.2 Contributions 168
7.3 Limitations 169
7.4 Future work 171

xii CONTENTS

APPENDIX A INTRODUCTION 173
A.1 Study Approval for RQ4 173

APPENDIX B THEMES IN DEVELOPER INSTANT MESSAGING
COMMUNICATION 176
B.1 Description of Themes 176

APPENDIX C TOPIC MODELING IN SOFTWARE ENGINEERING
RESEARCH 183
C.1 Papers Reviewed 183
C.2 Metrics Used in Comparative Studies 188

APPENDIX D SHORT TEXT TOPIC MODELS APPLIED TO
DEVELOPER MESSAGES 192
D.1 Sub-surveys Distributed - Intrusion Tasks 192
D.2 Sub-surveys Distributed - Topic Naming 193
D.3 Topics Named by Participant 194
D.4 Topics (10-word clusters) generated with GPU_PDMM 199

REFERENCES 240

LIST OF FIGURES

1.1 Summary of the Research Scope 4
1.2 Relationship between Research Questions 7

4.1 Overview of data analysis 33
4.2 Professional Development Themes 39
4.3 Software Quality Themes 40
4.4 Software Architecture Themes 40
4.5 Software Development Themes 41
4.6 Themes that appeared in different contexts 43

5.1 General topic modeling process 67
5.2 Number of papers per topic modeling technique 76
5.3 Documents (leaves in the figure) by type of data (nodes in the figure) 90

6.1 Steps of the Study for RQ4 130
6.2 Examples of Word Intrusion and Topic Intrusion Tasks 135
6.3 Example of a Topic Naming Task 137
6.4 Topic Coherence Metrics by Model 141
6.5 Average Scores of Corpus by Topic Coherence Metric 145
6.6 Average Scores for Intrusion Tasks by Model 147

A.1 Human Ethics Committee Approval 174
A.2 Amending - Human Ethics Committee Approval 175

LIST OF TABLES

2.1 Modes of Knowledge Conversion [Nonaka and Takeuchi 1995] 13

2.2 Communication channels ordered by importance as perceived by developers 15

3.1 Comparison framework 21

3.2 Popularity of Tools 22

3.3 Openness of Tools 23

3.4 Interaction features of Tools 23

3.5 Interoperability of Tools 24

4.1 Descriptive statistics of Gitter chat rooms (age of 1 includes chat room
less than one month old) 32

4.2 Descriptive analysis of ROUGE scores 34

4.3 Descriptive statistics related to the number of users of Slack chat rooms 37

4.4 Gitter chat rooms by type of room and type of discussion 39

4.5 Themes in Gitter chat rooms from the same community 42

4.6 Mapping of themes to SWEBOK sections and subsections 45

4.6 Mapping of themes to SWEBOK sections and subsections (continued) 46

4.7 Comparing Stack Overflow Topics to Themes 48

4.8 Popularity (r: number of chat rooms per theme; u: number of users of all
chat rooms related to a theme; size = u/r), activity and engagement by
theme; numbers rounded to closest integer (e.g., engagement of 0 means
that the average engagement was close to 0, i.e. very low) 53

4.9 Slack chat rooms by type of room and discussion 54

4.10 Mapping of Gitter themes to Slack chat rooms 56

5.1 Comparison of RQ3 to previous reviews 70

5.2 Data extraction form 74

5.3 Number of papers by venue and year 75

5.4 LDA-based techniques 78

LIST OF TABLES xv

5.4 LDA-based techniques (continued) 79

5.5 Techniques and supported tasks 82

5.5 Techniques and supported tasks (continued) 83

5.6 Types of data for topic modeling 86

5.7 Corpus Size as reported in papers 87

5.7 Corpus Size as reported in papers (continued) 88

5.7 Corpus Size as reported in papers (continued) 89

5.8 Document length as reported in papers 92

5.9 Pre-processing steps found in papers 95

5.10 Noisy content removed 96

5.11 Procedures for naming topics 98

5.12 Studies that include comparison of topic models 102

5.13 Studies that include comparison of topic-based approaches 103

5.14 Studies that include comparison of different settings for a technique 104

5.15 Number of papers by type of data and hyperparameter settings 107

5.16 Number of papers by types of data and supported tasks 110

5.17 Number of papers by type of data and pre-processing steps 114

5.18 Number of papers by topic naming procedure and types of data 116

5.19 Number of papers by topic naming procedure and types of contribution 116

6.1 Size of Data Sets (number of messages) and Messages length (number of
words) before Data Pre-processing 130

6.2 Description of Corpora 132

6.3 Number of Intrusion Tasks* by Model and Corpus 135

6.4 Topic Coherence Metrics by Model and Corpus 143

6.5 Description of Participants of the Intrusion Tasks 146

6.6 Scores by Intrusion Tasks 147

6.7 Description of Participants of Topic Naming 149

6.8 Topic Naming by Model and Corpus 150

6.9 Scores for each Model and Corpus 153

6.10 Correlation between Metrics at Topic Level 155

B.1 Description of Themes under SQ - Software Quality* 176

B.2 Description of Themes under SA - Software Architecture 177

B.3 Description of Themes under SD - Software Development 178

B.3 Description of Themes under SD - Software Development (continued) 179

xvi LIST OF TABLES

B.3 Description of Themes under SD - Software Development (continued) 180
B.3 Description of Themes under SD - Software Development (continued) 181
B.4 Description of Themes under PD - Professional Development 182

D.1 Topic Naming for BTM 195
D.2 Topic Naming for DMM 196
D.3 Topic Naming for GPU_PDMM 197
D.4 Topic Naming for WNTM 198

Chapter 1

INTRODUCTION

1.1 PROBLEM AND MOTIVATION

Software development requires different types of knowledge, skills and expertise [Baltes
and Diehl 2018], for example, about development processes, practices and techniques,
design and programming, a particular code base or specific application domains [Ro-
billard 1999]. This knowledge constantly evolves as new technologies, programming
languages and practices emerge [Kruchten 2008]. One way for developers to get help
when performing development activities is to participate in online communities of devel-
opers. These communities comprise groups of people connected by a shared interest in
learning from one another about a particular topic (e.g., application development with
Java) or to collaborate in a project (e.g., to develop an application) [Aniche et al. 2018].

Communities offer incentives to help each other to solve problems or to collaborate on
a project that has been conducted within or outside an organization [Aniche et al. 2018,
Sharrat and Usoro 2003, Soliman et al. 2018]. They are also typically self-organized
and their lifespan is defined by the common goals of their members [Aniche et al.
2018, Sharrat and Usoro 2003, Wenger and Synder 2000]. Users of these communities
informally share their personal experience, knowledge and practices and gain knowledge
from each other through, for example, apprenticeship or mentoring [Aniche et al. 2018].
These shared experiences are kept in these communities as explicit knowledge [Philipson
and Kjellström 2020] (see details about tacit and explicit knowledge in Chapter 2,
Section 2.1).

Online communities of developers are supported by communication channels such as
blogs (Angular Hashnode1 about web application development), social media websites
(Scrum Master Growth2 about software development practices and methodologies),
and web forums (R Studio community3 about data analysis and statistical computing).
Some of these communities have their discussions in instant messaging (e.g., Slack,4

1https://hashnode.com/n/angularjs
2https://www.facebook.com/groups/ScrumMasterCommunity/
3https://community.rstudio.com/
4https://slack.com/

https://hashnode.com/n/angularjs
https://www.facebook.com/groups/ScrumMasterCommunity/
https://community.rstudio.com/
https://slack.com/

2 1 INTRODUCTION

Gitter,5 Microsoft Teams6) [Aniche et al. 2018, Storey et al. 2017]. Instant messaging
allows developers to share knowledge in a highly collaborative manner [Dittrich and
Giuffrida 2011, Storey et al. 2017, Zagalsky et al. 2016]. In chat rooms (or “channels”
in Slack), which are often grouped in “workspaces” (in Slack) or “communities” (in
Gitter), developers exchange messages to share experiences (e.g., related to the use of
a technology), insights on how to solve practical problems (e.g., how to implement a
particular feature) and even concrete software artifacts (e.g., software documentation or
code snippets) [Storey et al. 2017]. Over the years, the popularity of instant messaging
in software engineering has been increasing [Chatterjee et al. 2019, Statista 2018].

Communication via instant messaging accumulate large amounts of information
in form of messages sent between developers [Storey et al. 2017]. Here we emphasize
that Data, information and knowledge are related but different concepts [Groff and
Jones 2012]. Data is a number or a text without context (e.g., a list of issues in an
issue tracker); information is contextualized data (e.g., a list of issues reported by users
of a particular web application); and knowledge is a combination of information with
understanding and capability [Groff and Jones 2012]. For example, knowledge might be
“created” by a developer who analyzes errors in the issues reported for a web application,
and based on this analysis identifies a particular trend of errors and opportunities for
improving that application. Groff and Jones [2012] explain that “knowledge guides
action, whereas information and data can merely inform or confuse”.

Instant messages of developers contain knowledge potentially useful for other
developers, such as code snippets and software documentation [Chatterjee et al. 2019,
2021]. On the other hand, the large amount of messages and information makes it
difficult to find what one is looking for. Developer communication is unstructured,
and sometimes developers may not be experts in the problem domain [Antonino et al.
2016] to perform a meaningful search [Soliman et al. 2021]. Hence, simple searches
in such communication (e.g., based on keywords) often do not satisfy the information
needs of developers since search results are not relevant or not reusable in a particular
context [Soliman et al. 2017, 2021, Treude et al. 2015]. Furthermore, software engineering
concepts are often abstract, the same concept can be described by many keywords, and
the same keyword might refer to different concepts [Soliman et al. 2017]. For example,
in a search using the search string “Apache server performance”, keywords can have
different meanings (e.g., “server” could be related to a software architecture components,
to deployment infrastructures or even hardware components), influencing the relevance
of the search results.

The problem is that although knowledge is stored and available in instant messaging
communication, it is hard for developers to decide if there is knowledge to be reused
in contexts outside of online communities of developers and if so, how to identify this

5https://gitter.im/
6https://www.microsoft.com/en-ww/microsoft-teams/group-chat-software

https://gitter.im/
https://www.microsoft.com/en-ww/microsoft-teams/group-chat-software

1.2 RESEARCH QUESTIONS AND SCOPE 3

knowledge (see the description of reusable knowledge in Section 2.1). Therefore, the
overall research question explored in this thesis is: Is there reusable knowledge in
developer instant messaging communication? If so, how can we identify this
knowledge?

1.2 RESEARCH QUESTIONS AND SCOPE

To identify reusable knowledge in developer communities, studies frequently investigated
Stack Overflow,7 a Q&A web forum where developers discuss problems [Barua et al.
2014, Chatterjee et al. 2019, Rosen and Shihab 2016, Soliman et al. 2016, Zou et al.
2017]. For example, Soliman et al. [2016] identified relevant software architecture
knowledge in Stack Overflow posts. Other studies analyzed web queries [Xia et al.
2017a], tweets [Nayebi et al. 2018] and mailing lists [Chatterjee et al. 2017, Zagalsky et al.
2016]. For example, Nayebi et al. [2018] identified complementary feedback for mobile
apps in tweets posted by their users. Our study, on the other hand, focus on identifying
reusable knowledge that was externalized in communities in instant messaging tools.

Previous research has explored benefits of instant messaging in software devel-
opment [Giuffrida and Dittrich 2013]. For example, Niinimäki and Lassenius [2008]
found that developers use instant messaging because it is “instant” and real-time (i.e.
there are no delays in message delivery), supports peer-to-peer messaging (rather than
reaching out to a broad and potentially anonymous audience), and creates presence
awareness. However, there are few studies to investigate to what extent instant mes-
saging is a suitable source for reusable software development knowledge. Additionally,
in contrast to Stack Overflow, there is a limited number of studies analyzing what
knowledge is shared through instant messaging communication and how to extract this
knowledge [Chatterjee et al. 2019, Ehsan et al. 2021, Elmezouar et al. 2021, Lin et al.
2016, Sahar et al. 2021, Shi et al. 2021].

Identifying knowledge from software developer discussions and characterizing it can
support filtering relevant content for reuse. Since developers rely on many sources of
knowledge to help them stay up-to-date on the latest technologies and to accomplish their
tasks Sulistya et al. [2020], accessing relevant knowledge quickly could save them time
for development activities. In fact, reusing knowledge can support concrete activities
like software design, coding, documentation, etc. In this thesis we explore in more
detail what types of activities could be supported by reusable knowledge from developer
communication. We currently do not have theories and concepts that describe reusable
knowledge in developer communication. One approach to identify such knowledge in
an exploratory way (i.e. without previous information, theories and concepts about
the data to be analyzed), is topic modeling Miner et al. [2012]. Unlike classification
techniques, which need to be trained using labeled data to identify patterns (e.g., if

7https://stackoverflow.com/

https://stackoverflow.com/

4 1 INTRODUCTION

Figure 1.1 Summary of the Research Scope

there is relevant or not relevant knowledge in a conversation or message), topic modeling
uncovers latent topics (or clusters of words) based on the occurrence and co-occurrence
of words in textual documents. These topics can then be “named” to represent the
knowledge in instant messages, or used to train classification techniques to support
software development and maintenance tasks Sulistya et al. [2020].

In this thesis, we aimed at exploring if there is reusable knowledge in chat rooms of
developer instant messaging communication. By finding such knowledge, we also aimed
at describing ways to analyze the content of developer chat rooms to identify what has
been discussed. Figure 1.1 shows a summary of the scope of this research. To address
our overall research question (as illustrated in Figure 1.1), we asked two questions that
led us to four research questions addressed in this thesis:

1. Is there reusable knowledge in developer instant messaging communi-
cation? What is this knowledge?

In the first part of this thesis, we checked if there is reusable knowledge in devel-
oper instant messaging communication, and if so, characterized this knowledge.
Therefore, we analyzed and compared instant messaging tools used by developers
(RQ1) and, based on the data of a selected tool, we identified the main themes
discussed in developer chat rooms (RQ2).

RQ1 What instant messaging tools can be a source of reusable

1.2 RESEARCH QUESTIONS AND SCOPE 5

knowledge?
We analyzed four instant messaging tools that are used by communities of
developers. By comparing these instant messaging tools, we developed a
framework that we used to select a data source (of content from instant
messaging communication) for our research (RQ2).

RQ2 What themes represent the main discussions of developers in
chat rooms?
With the content of an instant messaging tool analyzed in RQ1, we identified
the main themes (i.e. dominant ideas) discussed by developers in public
chat rooms. We analyzed chat rooms’ description and a summary of their
messages using a reflexive thematic analysis [Braun and Clarke 2006]. With
RQ2, we created a “picture” of the main themes discussed and gained insights
about the characteristics of these themes in the context of the chat rooms
studied. We found, for example, that developers mostly discuss themes
related to software development, especially regarding tools and libraries,
in our selection of chat rooms. By answering this question, we checked
the conceptual feasibility of instant messaging communication as a source
of reusable knowledge. However, as our data analysis was manual, we
acknowledge that this approach, in comparison to automated approaches, is
not always practical or easily reproducible when there are large amounts of
text to be analyzed. Therefore, in RQ3 and RQ4 we explored an automated
technique to identify reusable knowledge in the messages of chat rooms.

2. How can we identify reusable knowledge in developer instant messaging
communication?

In the second part of this thesis, we analyzed an automated approach to identify
reusable knowledge in developer instant messaging communication. We selected
topic modeling as our automated approach, as the topics generated with developer
instant messaging communication would represent specific subjects discussed by
developers. Topic modeling is a text mining technique that extracts topics (i.e.
coherent word clusters) from textual documents [Miner et al. 2012]. Therefore,
we searched the literature to understand the use of topic modeling in software
engineering research (RQ3) and experimented with some topic modeling techniques
applied to developer chat messages (RQ4).

RQ3 How has topic modeling been applied in software engineering
research?
To investigate the messages of our selection of chat rooms in more detail
and identify the topics discussed (topics represent specific subjects within
a theme), we used topic modeling [Miner et al. 2012]. Topic modeling

6 1 INTRODUCTION

is an unsupervised technique8 that automatically finds topics (i.e. word
clusters) within textual documents based on their words’ occurrences and
co-occurrences. To find out more about this technique and how it would
apply to our data, we surveyed the literature and developed an overview
of the use of topic modeling in software engineering studies. In detail, we
explored the following questions:

– RQ3.1 Which topic modeling techniques have been used and
for what purpose?
In this sub-question, we identified which topic modeling techniques
have been used (e.g., LDA, LSI) and for what purpose (e.g., to support
software maintenance tasks). We also analyzed the types of contributions
obtained by studies applying topic modeling (e.g., a new approach as a
solution proposal, or an exploratory study).

– RQ3.2 What are the inputs into topic modeling?
In this sub-question, we analyzed which types of textual data (e.g.,
source code), actual documents (e.g., a Java class or an individual Java
method) and configured parameters were used for topic modeling to
address software engineering problems.

– RQ3.3 How is data pre-processed for topic modeling?
In this sub-question, we analyzed how previous studies pre-processed
the text used with topic modeling, including the steps for cleaning and
transforming text. This would help us understand if there are specific
pre-processing steps for a certain topic modeling technique or types of
textual data.

– RQ3.4 How are generated topics named?
In this sub-question, we analyzed if and how topics were named in studies.
Giving meaningful names to topics may be difficult but may be required
to help humans comprehend topics. These labels or names must capture
the overarching meaning of all words in a topic. We described different
approaches to naming topics, such as manual or automated labeling with
names based on the most frequent words of a topic [Hindle et al. 2013].

By answering RQ3, we were able to identify characteristics and limitations
in the use of topic models and discuss: (a) the appropriateness of topic
modeling techniques (RQ3.1), (b) the importance of pre-processing (RQ3.2),
(c) challenges related to defining meaningful topics (RQ3.3), and (d) the
importance of context when manually naming topics (RQ3.4). With these
findings, we were able to perform our experiments with the messages of our
selection of chat rooms (RQ4).

8Unsupervised learning: algorithms based on unsupervised learning identify patterns in data sets
containing unlabeled data [Kumar et al. 2022].

1.3 RESEARCH METHOD 7

RQ4 How do short text topic models perform with discussions of
developers?
From the results of RQ3, we learned that by using each message of a chat
room as a document for topic modeling, we would have to experiment with
models developed to process short text. We focused on modeling the messages
individually (rather than the entire conversation or disentangled conversation
threads) to identify which topics discussed in a chat room are related to
each message. Therefore, we selected short text topic modeling techniques
and experimented with them using the messages of some of our selected
chat rooms. The performance of these models was measured based on
topic coherence metrics for the generated topics, as well as how well human
experts were able to intrusion tasks and topic naming for the generated
topics. Our findings offered guidance to select short text topic models based
on characteristics of models and their performance with different sizes of
corpora, and based on different strategies for topic quality.

1.3 RESEARCH METHOD

We used two methodological approaches to address the main parts of this thesis, Field
Study and Sample Study [Stol and Fitzgerald 2018] as described in the following list.
In this section we describe the methods used for each research question and how the
results of each research question influenced the other (see Figure 1.2 – the gray rounded
squares represent the output of each research question).

Figure 1.2 Relationship between Research Questions

8 1 INTRODUCTION

1. Is there reusable knowledge in developer instant messaging communi-
cation? What is this knowledge?

For the first part of this thesis, we performed a Field Study which is a type
of study that facilitates the study of phenomena, its related actors and their
behavior in natural contexts. Field Study are generally exploratory and aiming at
understanding “what’s going on”, “how things work” or generating hypotheses [Stol
and Fitzgerald 2018].

To answer RQ1, we performed an exploratory case study which refers to the
analysis of phenomena in their real-life context for later broader investigation. A
typical reason to undertake case studies is to make a novel contribution on a subject
by developing new or testing existing theories and hypotheses [Runeson et al.
2012b]. In our case study, we aimed at understanding how a software engineering
problem (if there is reusable knowledge in instant messaging) could be addressed,
and to seek a solution (identification of this reusable knowledge). Considering
that instant messaging tools offer a space for communities of developers and
allows them to share knowledge, we analyzed and compared (e.g., in terms of
popularity and interaction features) some public instant messaging tools. With
this comparison, we selected one tool to be further studied in RQ2.

For RQ2, we performed a reflexive thematic analysis which refers to a
qualitative approach for data analysis to identify and report patterns (themes)
through coding [Boyatzis 1998, Braun and Clarke 2006]. Thematic analysis
assumes that “knowledge of reality is gained [...] through social constructions such
as language [...], shared meanings, documents, tools [...]”, rather than aiming at
“evidence of [...] quantifiable measures of variables, hypothesis testing, and [...]
inferences about a phenomenon from a representative sample” [Klein and Myers
1999]. Thematic analysis applies analysis similar to Grounded Theory (e.g., coding
and memoing) [Braun et al. 2019]. However, thematic analysis (unlike Grounded
Theory) is a method, rather than a methodology that does not only involve
describing social processes or factors that influence a particular phenomenon, and
does not rely on one particular theoretical framework that carries assumptions
about the data and what they represent in “reality” (e.g., inductive, deductive,
constructionist frameworks) [Braun and Clarke 2006, Braun et al. 2019]. The map
of themes identified with this method described what knowledge can be found in
instant messaging communication for reuse. This map can be further detailed
with the use of topic modeling, which is analyzed in RQ3 and RQ4.

2. How can we identify reusable knowledge in developer instant messaging
communication?

For the second part of this thesis, we performed a Sample Study which is a
type of study that aims at finding the distribution of a particular characteristic

1.4 THESIS-RELATED PUBLICATIONS 9

in a population of actors (e.g., developers, software systems, or artifacts of a
development process), or the correlation between two or more characteristics
in a population. Data collection is not interactive, the repository data comes
“as-is” [Stol and Fitzgerald 2018].

For RQ3, we performed a literature survey which refers to an approach for litera-
ture review. This approach, similarly to systematic literature reviews [Kitchenham
2004] and mapping study methods [Petersen et al. 2015], aims at applying system-
atic steps (e.g., for data selection and analysis) that can be traced and repeated by
other studies. We used this method to search the literature and describe how topic
modeling has been applied in software engineering research. With the findings of
this search, we were able to prepare the experiment for RQ4.

For RQ4, we performed software repository mining by experimenting with
different topic modeling techniques applied to the messages of some of the chat
rooms selected in RQ1 and RQ2. Software repository mining refers to the overall
process of discovering useful knowledge from data, and generally involves the
performance of these steps [Fayyad et al. 1996]:

• Data pre-processing: data preparation procedures like data extraction, clean-
ing and normalization.

• Data mining: application of an automated technique for data analysis that
produces a particular enumeration of patterns over the data.

• Data post-processing: interpretation of resulting patterns and their use (e.g.,
creating traceability links between data).

With this experiment, we provided recommendations on what to consider when
applying topic modeling to individual messages of developer instant messaging
communication. As this study required the participation of human subjects (e.g.,
software developers) to assess the quality of topics, we had the proposal of this
study approved by the Human Ethics Committee of the University of Canterbury
(see letters of approval in Appendix A.1).

1.4 THESIS-RELATED PUBLICATIONS

Conference proceedings:

• Costa Silva, C., Gilson, F., Galster, M. (2019). Comparison Framework for
Team-Based Communication Channels. In: International Conference on Product-
Focused Software Process Improvement (PROFES). Springer, pp. 315-322. https:

//doi.org/10.1007/978-3-030-35333-9_22. (adapted in Chapter 3)

Journal papers:

https://doi.org/10.1007/978-3-030-35333-9_22
https://doi.org/10.1007/978-3-030-35333-9_22

10 1 INTRODUCTION

• Costa Silva, C., Galster, M., & Gilson, F. (2022). A qualitative analysis of themes
in instant messaging communication of software developers. Journal of Systems
and Software, 192, pp. 1-25. https://doi.org/10.1016/j.jss.2022.111397.
(adapted in Chapter 4)

• Silva, C. C., Galster, M., & Gilson, F. (2021). Topic modeling in software
engineering research. Empirical Software Engineering, 26(6), 120, pp. 1-62.
https://doi.org/10.1007/s10664-021-10026-0. (adapted in Chapter 5)

• [Manuscript under preparation] as (December 2022): Costa Silva, C.,
Galster, M., & Gilson, F. (2022). Evaluation of short text topic models applied to
instant messaging communication of software developers. (adapted in Chapter 6)

Doctoral symposia:

• Costa Silva, C. M. (2020). Reusing software engineering knowledge from developer
communication. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp. 1682–1685. New York: ACM. https://doi.org/

10.1145/3368089.3418540.

1.5 STRUCTURE OF THESIS

This thesis is divided into six chapters which present the contributions of this thesis:

• Chapter 1: In this chapter we presented the problem, the scope, the research
questions and the research methods of this thesis.

• Chapter 2: In this chapter we describe background concepts and related studies.

• Chapter 3: In this chapter we contribute a comparison framework aiming at the
evaluation of team-based communication channels. This framework also captures
the criteria used to analyze four communication tools for our research (Microsoft
Teams, Slack, Gitter, Spectrum).

• Chapter 4: The contribution described in this chapter is a map of the themes
discussed in developer chat rooms. In this chapter we describe how we identified
47 themes in Gitter chat rooms, and how 36 of these themes were related to 173
Slack chat rooms.

• Chapter 5: In this chapter we contribute a literature survey regarding how topic
modeling was applied in 111 papers from ten highly-ranked software engineering
venues (five journals and five conferences) published between 2009 and 2020.

https://doi.org/10.1016/j.jss.2022.111397
https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1145/3368089.3418540
https://doi.org/10.1145/3368089.3418540

1.5 STRUCTURE OF THESIS 11

• Chapter 6: With this chapter we contribute recommendations for short text topic
modeling based on how four short text topic models perform with discussions of
three chat rooms with different numbers of messages. We also describe how we
compared the performance of these models using topic coherence metrics, intrusion
tasks and topic naming to assess topic quality.

• Chapter 7: In this chapter we summarize the findings of this thesis, its contributions
and limitations. We also describe future work.

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter we discuss the two main concepts regarding our research: reusable knowl-
edge (Section 2.1) and software developer communication (Section 2.2). Furthermore,
we discuss work related to the main question of this thesis (developer communication
as knowledge repository and the analysis of instant messaging communication) in Sec-
tion 2.3. Specific concepts (e.g., topic modeling) and related work regarding research
questions RQ3 and RQ4 are described in their chapters (Chapter 5 and Chapter 6,
respectively).

2.1 REUSABLE KNOWLEDGE

Knowledge in software engineering is diverse and constantly growing. Kruchten [2008]
conjectured that the half-life of software engineering is about five years since new
technologies, like new programming languages and processes, emerge very fast. Therefore,
it is difficult to keep track of what knowledge is necessary, where it can be found and
what its relevance is for certain development tasks [Rus et al. 2002]. Rus et al. [2002]
identified types of software engineering knowledge:

• Process and product knowledge: knowledge obtained with experience when working
on projects and products (e.g., knowledge about quality requirement of a software
project for a public agency).

• Domain knowledge: knowledge regarding methodologies, techniques and tools
for a specific application or technology domain (e.g., knowledge regarding legal
procedures when developing software for a government agency).

• New technologies knowledge: knowledge related to a new technology that may
affect the project/product features or how software is developed in general (e.g., a
new test automation tool or a new programming framework).

• Local policies knowledge: specific knowledge concerning an existing software
system and programming conventions (e.g., practices adopted by a team to solve
reported issues or to analyze requirements).

Tofan [2010] characterizes software engineering knowledge using Nonaka and

2.1 REUSABLE KNOWLEDGE 13

Takeuchi’s modes of knowledge conversion, which proposes two types of knowledge:
tacit and explicit (or externalized) [Nonaka and Takeuchi 1995]. Explicit knowledge is
codified experience, such as software documentation or processes regarding requirements
and architecture, that were captured and stored in standard or knowledge reposito-
ries [Agresti 2000, Nonaka and Takeuchi 1995]. Tacit knowledge is not documented
and refers to personal skills and experiences that are influenced by beliefs, values
and individual perspectives (or any kind of knowledge in the head of software engi-
neers) [Agresti 2000, Nonaka and Takeuchi 1995]. Table 2.1 describes the modes of
knowledge conversion [Nonaka and Takeuchi 1995].

Table 2.1 Modes of Knowledge Conversion [Nonaka and Takeuchi 1995]

Mode Conversion Description

Socialization Tacit to Tacit

It is the process of sharing knowledge as expe-
riences, for instance, in face-to-face interactions
(e.g., developers talking to each other about how
to fix a bug)

Internalization Explicit to Tacit
It is the process of embodying concepts and doc-
umented information into skills (e.g., learning a
new programming language by reading books)

Externalization Tacit to Explicit

It is the process of knowledge codification or cap-
ture, which refers to turning personal expertise
into documented information (e.g., developers doc-
umenting requirements on a product backlog)

Combination Explicit to Explicit
It is the process of systematizing concepts into
a body of knowledge (e.g., running tutorials on
coding best practices for a team of developers)

Transferring knowledge between software developers is challenging [Treude et al.
2011] because it is difficult to find existing knowledge (e.g., in an organization) and when
it is found, the knowledge is often not reusable [Komi-Sirviö et al. 2002]. Therefore, it
is important to take advantage of all types of sources of explicit knowledge, including
less formal communication channels (e.g., developers’ chat messages), and proposing
effective ways to identify, process and present reusable knowledge.

To characterize knowledge reusability, Markus [2001] defines three basic concepts
for knowledge reuse: process, roles and knowledge repositories. The process of
knowledge reuse comprises the following steps:

• Capturing and documenting knowledge to be reused. This can happen (a) passively
when, for instance, developers’ interactions are archived in their communication
channels to be searched in the future; (b) following a structured technique for
knowledge sharing (e.g., brain storming) mediated by an electronic meeting system;
(c) by structuring knowledge in records like a database; and (d) by collecting
pre-processed data to create a data warehouse.

• Packing knowledge for reuse. This refers to the process of cleaning, structuring,
formatting and indexing documents (e.g., attachments from e-mails exchanged by

14 2 BACKGROUND AND RELATED WORK

a group of developers), in order to develop data models, like ontologies (dynamic
structural classifications of concepts) and taxonomies (static hierarchical classifi-
cations of concepts) to describe the knowledge concepts and their relationships in
such documents.

• Distributing knowledge. This refers to the publishing and dissemination of reusable
knowledge, like an interactive dashboard of a software project.

• Actual knowledge reuse. This involves the recall of the information stored and
organized in a data model, for example; and the recognition of the information
that meets the needs of its consumers that can be software developers and other
IT professionals.

Regarding the roles in knowledge reuse, there are three: those who produce the
knowledge; the knowledge intermediary, which represents the ones who prepare the
knowledge for reuse by eliciting, pre-processing and packaging it; and the final consumer,
who will reuse the knowledge. In the context of software engineering, the roles can be
assumed by developers and other stakeholders [Markus 2001].

Markus [2001] argues that there are two basic types of reusable knowledge repos-
itories: data repositories and document repositories. Data repositories store raw
data as text, numbers and non-contextualized documents, while document repositories
contain indexed and contextualized information. In software engineering, both data and
document repositories can be represented by development tools, developer communica-
tion channels, software documentation, documents used and created in a project and
technology documentation.

In this thesis, we explore potentially relevant knowledge (e.g., new technologies
knowledge) in developer communication, as a “raw knowledge repository”, that can be
reused. Such knowledge was captured while developers were sharing and discussing their
experiences in an externalization mode of knowledge conversion. In Section 2.3.1, we
describe related work that, similar to us, explored which knowledge is shared in developer
communication channels, and in Section 2.2 we describe developer communication
channels.

2.2 SOFTWARE DEVELOPER COMMUNICATION

Software developers use a plethora of tools as part of their daily work, such as project
management tools, issue trackers, integrated development environments, version control
systems and communication tools (e.g., e-mail and mailing lists, social network sites,
team communication tools) [Storey et al. 2017, Turner et al. 2010]. To support the
needs of developers for collaboration and communication, development tools support
communities of developers by integrating communication channels and social media

2.2 SOFTWARE DEVELOPER COMMUNICATION 15

features like posting comments, sharing content, personalized user profiles and adding
other users as “friends”. These features of development tools have brought new oppor-
tunities for knowledge sharing among developers in communities of developers [Storey
et al. 2010, 2017].

Storey et al. [2014] analyzed how development tools and communication channels
play a critical role in communicating knowledge. The authors found that these tools and
channels are an extension of the developer, helping them extend and distribute their
knowledge. Furthermore, Storey et al. [2017] also investigated the role of communication
channels to developers’ daily activities and which ones they consider important as a
source of useful knowledge. Table 2.2 summarizes these communication channels ordered
from the most to the least important based on the perception of developers (adapted
from the study of Storey et al. [2017]).

Table 2.2 Communication channels ordered by importance as perceived by developers

Channel Why it is important Examples

Code hosting sites

Team collaboration, group awareness (e.g.,
to understand work dynamics as a team and
how some actions can affect other members)
and project coordination

GitHub
GitLab
SourceForge

Face-to-face interaction Rapid feedback from co-workers; easy to
discuss problems, decisions and ideas -

Question & Answer fo-
rums

High quality information regarding debug-
ging; code examples

Stack Overflow
Software Engineering
Stack Exchange
Quora

Web search Essential tool for finding information to
solve an issue

Google
Bing
Wolfram Alpha

Feeds and blogs
Up-to-date information on development
practices, technologies and the development
community

Twitter
Newsletters
RSS

Instant messaging Support team communication and collabo-
ration

Slack
Gitter
Skype
Zoom

Discussion groups
Support mass communication and coordi-
nation among people geographically dis-
tributed

Mailing lists
Google groups

News aggregators Updated information of new technologies
and trends in software engineering

Hacker News
Reddit
Slashdot

Project coordination Means for tracking activities and issues;
increase group awareness regarding them

Basecamp
Asana
Confluence

Books and magazines Way of learning about a topic of interest -

Social networking sites Help disseminate information and increase
community awareness

Facebook
LinkedIn

Rich content
Provide learning material about a topic in
a way that developers can consume at the
same time they are performing other tasks

Podcasts
Screencasts
YouTube

16 2 BACKGROUND AND RELATED WORK

Although the three most important channels are collaborative and socially enabled
tools, non-digital channels like face-to-face interaction were ranked rather high as well.
The four most important channels indicate that developers prioritize communication
channels that help them solve concrete problems, like code hosting sites and Q&A
forums. Additionally, apart from the web search, the seven most important channels
are related to collaborating and interacting with peers. The less important channels are
related to learning about a topic from books and rich content.

In this thesis, we analyze the content of public instant messaging communication
as a potential source of reusable knowledge. We describe public features of some of the
instant messaging tools used by developers in Chapter 3. In Section 2.3.2 we describe
other studies that also analyzed the content of instant messaging communication.

2.3 RELATED WORK

2.3.1 Developer Communication as Knowledge Repository

Related studies that analyzed developer communication channels as knowledge reposito-
ries focused on understanding how developers use and benefit from means of collaborative
communication, or on exploring the knowledge shared in this communication. Storey
et al. [2014, 2017], for example, reported how different forms of communication and
social interactions (e.g., face-to-face, voice calls, instant messaging, web searches and
source code repositories) play a critical role in gaining and sharing knowledge in software
engineering, and how the choice of communication channels influences developer activi-
ties. Chatterjee et al. [2017] explored which kinds of information regarding code snippets
are embedded in different software-related documents, such as developer discussions
in public chat rooms. The authors found that in public chat rooms there are more
explanatory information about code snippets (i.e. why and how a functionality was
implemented and it excepted output) than, for example, about data structure or code
efficiency.

Regarding identifying knowledge needs of developers based on developers’ commu-
nication, Barua et al. [2014], for example, discovered what topics are discussed in Stack
Overflow and their trends (e.g., discussions on tools for version control, technologies like
.NET, jobs and experience). Xia et al. [2017a] identified what developers search on the
web during software development, including the frequency and difficulty of the different
search tasks; and Pascarella et al. [2018] identified the knowledge needs of developers
in the context of code reviews, such as the need for knowing the uses of methods and
variables declared and modified.

Previous studies also explored how to find (and reuse) information from different
platforms that developers use as part of their daily work. For example, Soliman et al.
[2016] focused on one particular type of knowledge related to software technologies and

2.3 RELATED WORK 17

identified posts from Stack Overflow that provide useful technology-related architecture
knowledge. Furthermore, Soliman et al. [2018] developed a domain-specific search engine
to search for architecture knowledge in Stack Overflow posts. Treude and Robillard
[2016] extracted information from Stack Overflow posts to augment API documentation.
Their approach identifies “insight sentences” (sentences that are related to a particular
API type and that provide insight not contained in the API documentation of that
type) and augments API documentation accordingly.

2.3.2 Developer Instant Messaging Communication

Related studies explored benefits of instant messaging communication and found that
instant communication is a cost-effective technology that allow users to keep in touch, ask
for spontaneous advice when needed, and helps build relationships [Giuffrida and Dittrich
2013, Niinimäki and Lassenius 2008]. For example, Alkadhi et al. [2017a] investigated
the effects of their tool (REACT - RationalE Annotations in ChaT messages) on Slack
conversations. REACT aimed to help developers understand each other in instant
messaging by including emojis on messages to represent their rationale. Zhu et al.
[2021] analyzed the discussions in Stack Overflow rather than the answers given to the
questions posted. The authors found that such discussions contain a rich trove of data
that is integral to the Q&A processes on Stack Overflow (e.g., questions with a small
number of comments are likely to be answered more quickly than questions with no
discussion).

Studies that focused on global software development and distributed development
teams reported how instant messaging facilitates communication [Giuffrida and Dittrich
2013, Niinimäki and Lassenius 2008]. Lin et al. [2016], for example, explored the impact
of Slack on development team dynamics. Their study found that developers use Slack
for personal, team-wide and community-wide purposes, and that developers use and
create “bots” to support their work.

Regarding the quality of the content shared in instant messaging, Chatterjee et al.
[2019], for example, modeled topics (see more about topic modeling in Section 5.2) from
Stack Overflow posts and Slack conversations to analyze what is discussed in these
developer communications. Based on generated topics, the authors found that Stack
Overflow and Slack are venues where developers share similar types of information
(e.g., APIs and code). The authors found that “design”-related conversations (which
involve discussions of API usage and recommendations), and “explanatory”-type of
conversations (e.g., developers explaining to each other technologies and capabilities of
different programming languages) are frequent types of conversation in Slack. In another
study, Chatterjee et al. [2021] proposed an approach to automatically detect useful
information (for mining or reading after the conversation has ended) from developer
discussions in public chat rooms.

18 2 BACKGROUND AND RELATED WORK

More recently, Gitter (an instant messaging tool originally used by users of Git
repositories) caught the interest of software engineering research. For example, Sahar
et al. [2021] studied how developers discuss issue reports and found that issue reports
discussed in Gitter take more time to get resolved compared to issue reports that are
not discussed. Ehsan et al. [2021] examined the response behavior of developers on
Gitter to propose an approach to disentangle the messages in a single conversation
thread into topic-specific conversation threads. Shi et al. [2021] explored disentangled
Gitter conversations to better understand the collaboration and the data shared by
developers in instant messaging communication. Finally, using thematic analysis (like
in RQ2), Elmezouar et al. [2021] identified the reasons behind the use of Slack and
Gitter, the perceived impact on the associated projects and the quality characteristics
of these instant messaging tools. The authors found that developers seek knowledge
from instant messaging to obtain timely feedback from experts who, in return, share
their expertise with others. This two-way interaction helps build developer communities
and increases the reputations of those who contribute in these communities. In this
thesis we also analyze the content of Gitter chat rooms as described in Chapter 4.

2.4 SUMMARY

In this thesis we focus on analyzing the knowledge shared in instant messaging com-
munication channels. These channels provide a collaborative environment to support
the development of communities of developers. We consider instant messaging com-
munication channels as “raw” knowledge repositories because developers “externalize”
their knowledge when interacting in chat rooms of these channels, and this knowledge is
not easily accessible for reuse. In the first part of our research, we aimed at identifying
which relevant knowledge (e.g., process and product knowledge or new technologies
knowledge [Rus et al. 2002]) is in the messages exchanged by developers in instant
messaging communication. For the second part of our research, we aimed at exploring
topic modeling (see details in Sections 5.2 and 6.2) as an approach to identify reusable
knowledge in developer discussions (i.e. chat messages). In Chapters 3, 4, 5 and 6 we
discuss related work for each research question in detail. In these chapters we also
compare related studies to our research.

In the next chapters we describe the studies performed for our research questions.
We start in Chapter 3 by presenting a comparison framework of instant messaging tools
(RQ1). We developed this framework to characterize such tools and select one tool for
further analysis in this thesis.

Chapter 3

COMPARISON FRAMEWORK FOR TEAM-BASED
COMMUNICATION CHANNELS

Adapted from publication: Costa Silva, C., Gilson, F., Galster, M. (2019). Comparison
Framework for Team-Based Communication Channels. In: International Conference
on Product-Focused Software Process Improvement (PROFES). Springer, pp. 315-322.
https: // doi. org/ 10. 1007/ 978-3-030-35333-9_ 22

3.1 INTRODUCTION

As discussed in Chapter 2, social media support software development [Storey et al.
2014]. For example, distributed teams or individual developers can share knowledge and
discuss design decisions in online communities of developers (e.g., Stack Overflow). In
particular, instant messaging tools such as Slack improve team communication [Zhang
et al. 2010]. For example, Zahedi et al. [2016] found that instant messaging communica-
tion support formal planning (with chat history stored for latter reference). Additionally,
instant messaging communication is more suitable for ad-hoc and urgent communication
in teams than emails [Zahedi et al. 2016] and help clarify misunderstandings and collabo-
ratively solve problems [Forsgren and Byström 2018]. Instant messaging communication
helps team members collectively store and retrieve knowledge [Kotlarsky et al. 2008],
for example, about technical details of a product under development [Alkadhi et al.
2017b]. Instant messaging communication can be project-specific (e.g., developers who
communicate in a private Slack channel) or topic-specific and relevant to a broader
audience (e.g., a public Gitter group discussing Python problems).

Previous research has explored the use of social media-like communication platforms
such as Stack Overflow to share and discuss problems and solutions [Squire 2015],
Slack for discussions in communities of practice [Lin et al. 2016], and Discord, which
has been used to facilitated live communication and collaboration between software
developers [Subash et al. 2022]. In this chapter, we address the research question:
(RQ1) What instant messaging tools can be a source of reusable knowledge?
By addressing this question, we present a comparison framework for instant messaging

https://doi.org/10.1007/978-3-030-35333-9_22

20 3 COMPARISON FRAMEWORK FOR TEAM-BASED COMMUNICATION CHANNELS

communication channels. This framework supports (1) practitioners who may want
to identify the most suitable tool for their own purpose (e.g., to use in a specific
project or team), and (2) researchers studying developer communication interested in
comparing tools to find the one most suitable for their research (e.g., for mining studies).
Practitioners and researchers may also want to understand differences between instant
messaging tools to extend or develop new instant messaging tools.

3.2 COMPARISON FRAMEWORK

The framework, as shown in Table 3.1, needs to be general enough to characterize a
wide range of communication channels, but including too many criteria would limit its
usefulness. Therefore, criteria included in the framework are based on:

• Needs and challenges described in the literature: Developers need to understand
strengths and weaknesses of different team-based communication tools. In par-
ticular, developers need to understand differences between private versus public
chat rooms, synchronous versus asynchronous communication, ephemeral versus
archival channel properties, anonymous versus identified participation, and support
for different communication types, such as textual, verbal and video/voice-based
conversations [Storey et al. 2017].

• Needs expressed by practitioners: Developers may choose to keep using or leave
a team-based communication tool, if they receive late replies (response time)
or if they do not receive replies to their questions (participation level) [Squire
2015]. Forsgren and Byström [2018] explain that social media, such as team-based
platforms, help maintain coherence in terms of sharing work-related information,
improving ambient awareness and for socializing. However, inconsistent use or
lack of adoption of this social media within teams may have the opposite effect.

• Issues identified in empirical studies: In general, team-based communication
technologies should be useful for amplifying knowledge management processes
to allow knowledge sharing [Kotlarsky et al. 2008]. For software development,
social media-based tools should support activities ranging from requirements
engineering and development to testing and documentation [Storey et al. 2010].
Furthermore, Zahedi et al. [2016] identified that the cost of knowledge sharing,
contextual difference, and lack of openness are more frequent challenges for
knowledge sharing in the context of software development.

• Relevance for the practical use of a communication channel, such as pricing and
access to conversation data.

3.3 CASE STUDY 21

Additionally, we draw upon comparison frameworks proposed in other domains,
such as product line engineering [Rabiser et al. 2017, Rieger and Majchrzak 2019], and
integrate criteria from previously published evaluation frameworks [Albrecht 2003].

Table 3.1 Comparison framework

Type Criteria Description

Popularity
Year of release
of users
of public groups

Describe how known and widely used tools
and their groups are.

Openness
Service plans
Group types
Group visibility

Ability to access tools through different
service plans; group types can be topic-
specific or project-specific; visibility can be
private or public.

Administration User profile
Permission type

Functions and resources to manage users,
their profiles and access rights.

Interaction
features

Interaction group/space
Interaction format
Message format
Conversation
Notifications/mentions
Search capability

Spaces for interactions (public/private) and
their format (e.g., rich text, file sharing,
videoconferencing); mechanisms for direct
interactions and notifications between users;
search capabilities (e.g., history and file
search).

Interoperability External apps
Client platforms

How tools interact with external resources
and how tools can be accessed (e.g., via the
web, mobile and desktop apps).

API APIs documentation
Description of APIs to extract data from
groups, chat rooms and messages and/or
build analysis tools or extensions.

The framework is rather qualitative and “descriptive” in nature and does not
include numerical evaluation criteria. While a quantitative evaluation would allow
visual representations, assigning numerical values to criteria such as popularity seems
rather arbitrary and subjective, and would provide only limited insights (e.g., number of
users might be misleading as a sole measure for popularity if many users are inactive).

3.3 CASE STUDY

We used the proposed framework in an exploratory case study [Runeson et al. 2012a]
to compare four team-based communication tools. As cases, we selected Microsoft
Teams (Microsoft Teams)1 and Slack2 because (at the time of writing this study) they
were the most popular tools for team communication [Lardinois 2019, Matney 2019].
We included Gitter3 since it is frequently used by software developers [Storey et al.
2014]. We selected Spectrum4 as alternative to Slack suggested in a Slack discussion.
To collect data, we reviewed documentation of the tools available online between
September 2018 and February 2019, and tested their features following the framework.

1https://products.office.com/en-us/microsoft-teams
2https://slack.com/
3https://gitter.im/
4https://spectrum.chat/

https://products.office.com/en-us/microsoft-teams
https://slack.com/
https://gitter.im/
https://spectrum.chat/

22 3 COMPARISON FRAMEWORK FOR TEAM-BASED COMMUNICATION CHANNELS

For data analysis, we compared the data collected for each case based on the criteria
by type of criteria, as described in the following subsections. Then, we discussed how
our cases performed in this comparison (see Section 3.4). Data were collected and
analyzed by one researcher and then reviewed and discussed by all researchers.

3.3.1 Popularity

In Table 3.2 we compare tools based on popularity. Microsoft Teams is the latest of
the four tools. It has gradually been replacing “Office365 classrooms” and “Skype for
Business” and is used by more than 500,000 organizations Wright [2019]. Slack is the
oldest tool and currently used by 85,000 organizations Matney [2019]. Slack has no
public groups, but users can request access to groups they want to join.5 Gitter was
released to assist GitHub users and was acquired by Gitlab in 2017 but kept its GitHub
integration. Spectrum’s number of users is unknown.

Table 3.2 Popularity of Tools

Criteria Teams Slack Gitter Spectrum

Year of release 2017 2013 2014 2017
of users ≈13,000,000 ≈10,000,000 ≈800,000 Unknown
of public groups Unknown ≈2,000 ≈90,000 ≈5,000

3.3.2 Openness

In Table 3.3 we compare tools based on openness. Microsoft Teams offers different
service plans, i.e. attached to their Office365 ecosystem on top of a free plan. Slack
has three plans for teams (free, standard and plus) and an enterprise grid (i.e. a local
instance with enhanced privacy and security). Spectrum used to be a paid service, but
became free when joining GitHub. Regarding group types and group visibility,
groups in Microsoft Teams are organization-wide and invitation-only. As Microsoft
Teams, Slack distinguishes organization-wide and invitation-only groups, but links to
topic-related groups can be found on blogs or open sources repositories making groups
on Slack both project and topic-specific. Gitter offers public or private groups that may
be linked to private GitHub repositories and therefore offers project- and topic-specific
groups. An open group may be restrained to GitHub users only. Spectrum offers both
open and private as well as project- and topic-specific groups.

3.3.3 Administration

Registered users can customize their profile in all tools except Gitter by adding a picture
(one per group in Slack) and a bio or status message. Spectrum and Gitter are tightly

5See, for example, https://slofile.com/ and https://standuply.com/

https://slofile.com/
https://standuply.com/

3.3 CASE STUDY 23

Table 3.3 Openness of Tools

Criteria Teams Slack Gitter Spectrum

Service plans Free + 4 paid Free + 3 paid Free Free
Group types Project Project/topic Project/topic Project/topic
Group visibility Orga./Private Orga./Private Public/Private Public/Private

connected to Github accounts, Microsoft Teams requires a Microsoft account and Slack
an email address only. All tools offer basic administrative features at least to create,
delete, invite members to and ban members from groups. Slack and Microsoft Teams
provide more advanced features with the ability to give (partial) admin permissions
to members, e.g., to add/ban users, create/delete chat rooms or connect third party
components.

3.3.4 Interaction Features

In Table 3.4 we compare interaction features of tools. In Microsoft Teams, interaction
groups are organized as “teams”, in Slack as “workspaces”, and as “communities” in
Gitter and Spectrum. In Microsoft Teams, Slack and Spectrum, interaction spaces
are called “channels”, while in Gitter they are called “rooms”. In Microsoft Teams,
Slack and Spectrum, public chat rooms are accessible to all users inside a group, but
users can create private interaction spaces such as private chat rooms and direct
messages. In Gitter, users can join each room of a community independently. Both
Microsoft Teams and Slack offer the possibility to invite guests into rooms. In Slack, a
room can be shared with another Slack group to create a communication bridge between
two organizations (paid plan).

Table 3.4 Interaction features of Tools

Criteria Teams Slack Gitter Spectrum

Interact. group Team Workspace Community Community
Interact. space Channel Channel Room Channel
Private space Yes Yes Yes Yes

Interact. format Text, audio,
video

Text, audio,
video Text Text

Message format Rich text Markdown Markdown Markdown
File posting All types All types All types Images
Conversation Threaded Threaded Unthreaded Threaded
Notif./mentions Yes Yes Yes Yes
Search capability Content + files Content + files Content + users Content

Tools offer various interaction formats and message formats. Microsoft Teams
offers a rich text editor with an optional subject and compulsory content. Messages
may be formatted as “announcements” with dedicated icons and formatting options.
In Spectrum, conversations always contain a subject and an optional content whereas
in Slack and Gitter messages are simple text notes with no title. Slack, Gitter and

24 3 COMPARISON FRAMEWORK FOR TEAM-BASED COMMUNICATION CHANNELS

Spectrum use a Markdown syntax to format messages. Microsoft Teams is the only tool
that supports (video) calls in its free plan, while Slack requires a paid plan. Additionally,
regarding file posting, any kind of files are supported in Microsoft Teams, Slack and
Gitter but only images in Spectrum.

All tools but Gitter use “threaded” conversations, i.e. each message can have
multiple replies that are indented under their parent message. However, replies cannot
have their own replies, limiting the indentation to one single level. At the opposite,
Gitter conversations are linear. All tools support notifications and mentions to let
other members know about: (a) answers to a conversation they were part of or (b) when
referrals are made (e.g., a user A calls out user B). All four tools offer a keyword-based
search capability to retrieve messages, files (Microsoft Teams and Slack) or other
users (all but Spectrum). Microsoft Teams and Slack allow to search through mentions.
Slack has the most powerful search allowing structured queries (e.g., based on dates).

3.3.5 Interoperability

In Table 3.5 we compare interoperability features of tools. Regarding external apps,
Microsoft Teams has been designed to be part of the Office365 ecosystem and may
interface with Office tools (paid plan). As Slack, it offers connectors to many software
development tools such as Trello, Bitbucket or GitHub, but unlike Slack, all of these
connectors are free without any limitations. Gitter is highly coupled to GitLab and
offers connectors to Trello, Bitbucket and GitHub, but supports fewer connectors than
Slack and Microsoft Teams. Spectrum can connect to an existing Slack group and
import its members and chat rooms, but has no connectors to any additional third-party
applications. In addition to web-based user interfaces offered by all tools, supported
platforms of clients for Slack and Gitter include Windows, Mac and Linux as well as
Android and iOS mobile apps. Microsoft Teams offers clients for all aforementioned
platforms except Linux. Spectrum only offers a client for Mac.

Table 3.5 Interoperability of Tools

Criteria Teams Slack Gitter Spectrum

External apps Yes-unlimited Yes-limited Yes No

Client platforms Win/Mac
Android/iOS

Win/Mac/Linux
Android/iOS

Win/Mac/Linux
Android/iOS Mac

3.3.6 API

Apart from Spectrum, all tools offer APIs to retrieve messages or activity-related data
from existing rooms through a REST API. They also offer more powerful hooks to
integrate custom apps into groups or chat rooms (such as bots). Microsoft Teams and
Slack offer software development kits for Javascript/nodejs and C#/.NET (Microsoft

3.4 DISCUSSION 25

only). However, Slack restricts more advanced monitoring and analysis API endpoints
to their paid plans. No tool provides “out-of-the-box” statistics or analyses of messages
in depth, for example, to summarize main findings about a project (e.g., to “brief” users
who join a channel).

3.4 DISCUSSION

3.4.1 Summary of Findings

Following our comparison framework, Microsoft Teams appears to be the most complete
and flexible tool even with its free plan. Slack closely follows Microsoft Teams, but
requires a paid plan for audio/video features and limits the number of third-party plugins.
Gitter specifically focuses on the software development community and integrating
development tools, whereas the ecosystems of Slack and Microsoft Teams are more
diverse. Another notable distinction is that Gitter is the only tool that still uses linear
rather than threaded discussions in individual chat rooms. To that regard, Microsoft
Teams and Slack are the most powerful tools since they support rich text formatting
and any file types in messages. Lastly, all tools but Spectrum offer built-in connectors
to additional apps (e.g., agile software development tools or source code repositories),
the ability to programmatically interact with chat rooms, to create custom apps and
offer client software for a wide range of operating systems.

3.4.2 Applicability of Framework

Regarding the developed framework, we believe all criteria are potentially useful for
both researchers studying communities of developers and also practitioners. Criteria
describe most of the functionalities and characteristics of team-based communication
platforms that should be considered when selecting such tools to support software
development (see details in Section 3.2). Therefore, researchers and practitioners can
use our framework to make an informed choice on an instant messaging tool for further
analysis or use based on the comparison criteria.

This framework provides a foundation for a systematic comparison of team-based
communication platforms and helps understand the differences between those platforms.
The following criteria may be of particular interest to researchers who study developer
communication:

• Popularity: This criterion offers a big picture of the impact of a team communi-
cation channel within a community and gives credibility to data gathered from
that channel. It also helps understand how a communication tool evolves over
time and how functionality impacts the number of users.

26 3 COMPARISON FRAMEWORK FOR TEAM-BASED COMMUNICATION CHANNELS

• Interaction features: Message threads and user mentions inside a group may
give insights about the team dynamics in that group; for example, how often
direct call-outs are made among members, the nature of these mentions or if there
are any blaming issues in a particular group.

• API: Since researchers are often interested in mining data in an automated
way, knowing about resources of a team communication tool API will help them
understand how feasible it is to collect data from a channel.

For practitioners, the potentially most helpful criteria are:

• Openness: Practitioners care about the cost when choosing a team-based com-
munication tool and how organization members can easily be added.

• Administration and interaction features: It is important to manage the
resources of a communication tool, understand what type of content can be shared
and how such content can be retrieved. For instance, depending on the complexity
of a project, practitioners will need features to ban or apply restrictions to users’
access or define shared spaces between projects.

• Interoperability: It may be critical to integrate a team-based communication
channel with other existing tools to keep a centralized source of knowledge inside
an organization or project (e.g., interfaces to project management software or
collaborative document repositories).

• API: Like researchers, practitioners would need a communication tool that offers
the ability to plug in custom data mining or monitoring features from external
resources (e.g., to add a chat bot to trigger a software development pipeline or
record tasks into a project board).

3.4.3 Threats to Validity

Our work is subject to the validity threats:

• Construct validity: When selecting the tools under review, we applied a series
of selection criteria that may have influenced to what extent our framework fits
the needs for such a comparison. However we do not claim that our framework
includes an exhaustive list of criteria. Rather, we expect it to be modified and
extended in the future.

• Internal validity: The influence of our personal experiences with instant mes-
saging tools may have played a role in defining the comparison criteria. However,
we carefully analyzed (meta) empirical studies and experience reports in order to
consolidate previously identified principles into the proposed framework.

3.5 CONCLUSION 27

• External validity: The case study is limited to four team-based communication
channels and the extent to which those tools are representative is unknown.
However, according to latest available statistics, at least Microsoft Teams and
Slack are widely used in the software development community.

3.5 CONCLUSION

In this chapter we introduced a comparison framework for team-based communication
channels that we applied in an exploratory case study involving four instant messaging
tools. We identified a series of evaluation criteria from the literature covering aspects like
the popularity of the tool, its features, the types of interactions and its interoperability.
We do not claim that this framework is exhaustive but believe it offers a structured
evaluation scheme for researchers and practitioners to assess the suitability of a particular
messaging tool. In Chapter 4 we describe which instant messaging tool was selected,
based on the results of this chapter, to address RQ2. We also describe how and which
chat rooms of the selected tool were analyzed, and what themes were identified in their
data.

Chapter 4

THEMES IN DEVELOPER INSTANT MESSAGING
COMMUNICATION

Adapted from publication: Costa Silva, C., Galster, M., & Gilson, F. (2022). A
qualitative analysis of themes in instant messaging communication of software developers.
Journal of Systems and Software, 192, pp. 1-25. https: // doi. org/ 10. 1016/ j. jss.

2022. 111397

4.1 INTRODUCTION

To understand the role of developer instant messaging communication as a source
of reusable knowledge, we first need to understand the nature of knowledge in such
communication and the main themes discussed. Therefore, in this chapter we explore
the research question: (RQ2) What themes represent the main discussions
of developers in chat rooms of instant messaging? Since we are interested in
reusable and accessible knowledge, our study focuses on public chat rooms of instant
messaging tools rather than instant messaging tools within organizations (e.g., Slack
channels within companies).1

We manually identified software engineering themes based on the description of
87 public developer chat rooms of Gitter using thematic analysis [Braun and Clarke
2006]. We organized the themes in a map of themes. A manual analysis of themes
(rather than using automated information retrieval techniques such as topic modeling)
allowed us to contextualize themes and to get richer insights about themes. Therefore,
our map of themes represents a contextualized description of the chat rooms selected
for this study. We identified 47 themes grouped into four first-level themes: (1)
Software development (example theme: web development), (2) Software architecture
(example theme: microservices), (3) Software quality (example theme: testing), and (4)
Professional development (example theme: coding). We also compared themes to:

• A standardized knowledge framework for software engineering, the Software
Engineering Body of Knowledge (SWEBOK) [Bourque and Fairley 2014]. We

1Note that in this study we do not assess the quality of the knowledge shared in instant messaging.

https://doi.org/10.1016/j.jss.2022.111397
https://doi.org/10.1016/j.jss.2022.111397

4.1 INTRODUCTION 29

found that most themes are related to concrete implementation problems, rather
than higher-level process issues.

• Information needs of developers based on web search queries typically executed by
developers [Xia et al. 2017a] and on topics discussed in Stack Overflow [Barua et al.
2014]. We found that our themes can be associated with most of the high-level
categories of search queries proposed by Xia et al. [2017a], such as queries related
to programming, tools, testing, third party code reuse, and software development
practices. In relation to Stack Overflow [Barua et al. 2014], we checked that our
themes are in alignment with the topics discussed in Stack Overflow, for example,
regarding web-related themes, platform-specific concerns, security and quality
assurance.

To verify the applicability of themes, we checked whether our themes from Gitter
would also appear in a sample of 184 public chat rooms of Slack. By doing that, we were
able to check our themes in other contexts and if they can also represent the discussions
in other instant messaging tools used by software developers. We found 36 of the 47
themes from Gitter in 173 of the 184 Slack chat rooms.

In summary, the main contribution of this chapter is a “picture” of the main themes
discussed in developer instant messaging (i.e. a map of themes) and insights about
the characteristics of these themes in the context of the chat rooms. Researchers
and practitioners can use our analysis to understand latest trends and challenges
emerging in developer communities. Furthermore, the map of themes can be used
to develop data-driven software tools to identify knowledge in instant messages or
other community-like environments for developer communication. For example, our
themes can be used as labels to train automated techniques such as classifiers (e.g.,
Chatterjee et al. [2021] created an approach based on classifiers that automatically
identifies useful information to software developers in public chat rooms). Our map of
themes can also be applied in approaches for augmenting software documentation or
“semantically tagging” chat rooms (e.g., Souza et al. [2019] created a semi-automatic
approach that organizes the knowledge available on Stack Overflow to build cookbooks
for APIs). Finally, our study can be used as a guide to apply thematic analysis and
expand our map of themes by incorporating new themes identified in chat rooms from
other instant messaging tools such as Microsoft Teams,2 Discord3 or Stack Overflow
chats.4 We discuss detailed implications of our findings for practitioners in Section 4.4.2
and researchers in Section 4.4.3.

2https://www.microsoft.com/en-nz/microsoft-teams/group-chat-software
3https://discord.com/
4https://chat.stackoverflow.com/

https://www.microsoft.com/en-nz/microsoft-teams/group-chat-software
https://discord.com/
https://chat.stackoverflow.com/

30 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

4.2 RESEARCH METHOD

We applied thematic analysis to obtain software engineering themes from instant messag-
ing communication of developers. Thematic analysis is a “manual” method to identify,
analyze and report patterns (themes) in qualitative data through coding [Boyatzis
1998, Braun and Clarke 2006]. We applied reflexive thematic analysis [Braun and
Clarke 2019] and adopted a semantic approach. This means that the analysis process
progressed from the description of data (i.e. themes as they were identified as implicit
and explicit patterns in data) to the interpretation of themes (i.e. the analysis of their
significance) [Braun and Clarke 2006, 2019]. For this study, we adopted the reflexive
approach for our thematic analysis, rather than a “coding reliabity” or a “codebook”
approach [Braun and Clarke 2021a], because we aimed at exploring themes based on an
open coding process without using any coding framework. In the following subsections
we outline the details of the study design. When conducting and reporting the study,
we considered the evaluation guidelines for thematic analysis studies as proposed by
Braun and Clarke [2021a].

4.2.1 Data Sampling

To select the cases (i.e. chat rooms) for our study, we adopted a purposive sampling
approach as mentioned by Baltes and Ralph [2022], i.e. the sample is selected based
on the usefulness for achieving the objective of the study. We provide details in the
following sections.

4.2.1.1 Context

The context of our study is an instant messaging tool used by software developers. To
select the tool for our study, we used the comparison framework and results of the
study for RQ1, as described in Chapter 3, where we compared four tools: Slack, Gitter,
Spectrum and MS-Teams [Costa Silva et al. 2019]. We selected Gitter for the following
reasons:

• Discussions on Gitter focus on software development issues. Therefore, we did
not need to filter discussions that are not about software development (as they
might appear in Slack or Microsoft Teams);

• Gitter (unlike Spectrum, Slack and Microsoft Teams) offers comprehensive APIs to
access communication data without paying a fee. Furthermore, Gitter’s data use
policy and privacy regulations do not restrict the use of data by other users [GitLab
2020]);

• Unlike Slack and Microsoft Teams, Gitter does not restrict access to chat rooms
(e.g., no authorization required from chat room administrators).

4.2 RESEARCH METHOD 31

Gitter is a free open source instant messaging tool released in 2014 with the original
goal to support community collaboration among developers that use Git repositories
for their projects. At the time of conducting this study in 2019 (see Section 4.2.1.3 for
details about when we extracted communication data from Gitter), Gitter had more
than 300,000 chat rooms in more than 90,000 communities and more than 800,000
users5. This number may have increased since then. In Gitter, a community is a group
of users. Conversations between users happen in chat rooms and a community can have
more than one chat room. For example, gitterHQ5 is a community with several chat
rooms such as “developers”, “javascript” and “services”. Users can join any chat room of
a community. All communities and chat rooms in Gitter are public by default [GitLab
2020].

4.2.1.2 Units of Analysis

Our units of analysis are chat rooms within Gitter communities. Gitter does not provide
a complete list of chat rooms, it only allows users to browse communities that are
grouped based on tags assigned to those communities. Searching Gitter based on
keywords on the other hand provides a list of chat rooms as the search results. Since we
conducted a manual analysis of chat rooms, we could not use all publicly available chat
rooms like other studies that analyzed Gitter data, such as Ehsan et al. [2021]. Others,
such as Shi et al. [2021] selected top-participated communities, and Parra et al. [2020]
that selected chat rooms from ten communities. Therefore, to create our own list of chat
rooms and to identify chat rooms for our study, we used Gitter’s search which searches
the tags, names and description of chat rooms. We used 25 generic search terms related
to software development activities (e.g., requirements, architecture, maintenance) and
generic terms like “software engineering”, “development”, “management”, “quality” and
“technology” found in textbooks [Bass et al. 2003]. The complete list of search terms
and the number of chat rooms for each term is available online.6

The search returned 116 unique chat rooms. After removing non-English chat rooms,
chat rooms without messages or with messages from bots only, and chat rooms with
one-to-one conversations between two users (to ensure that we elicit themes relevant to
a broader audience), we selected chat rooms with more than three users, but ended up
with chat rooms with five or more users, since at the time of conducting the study, there
were no chat rooms that met selection criteria with three or four users. This resulted in
87 chat rooms. Table 4.1 shows descriptive statistics of these chat rooms. The complete
list of chat rooms is available online6. Seventy-five chat rooms appeared in separate
communities, while twelve chat rooms are from five communities (e.g., chat rooms
spring-security and spring-security-oauth are both from the spring-projects community)

5https://gitter.im/gitterHQ/home
6https://doi.org/10.5281/zenodo.6668356

https://gitter.im/gitterHQ/home
https://doi.org/10.5281/zenodo.6668356

32 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

– see Table 4.5 for a full list of communities that contribute more than one chat room to
the sample. In Gitter, names of chat rooms include the community they belong to. For
example, chat room FreeCodeCamp/Contributors belongs to community FreeCodeCamp.

Table 4.1 Descriptive statistics of Gitter chat rooms (age of 1 includes chat room less than one month
old)

Min Max Stdev Mean Median

Users 5 16,642 2,757 1,453 291
Messages 10 365,706 55,409 27,726 4,295
Age (months) 1 68 16 36 39
� messages/month 1 9,624 1,333 658 137
� messages/user 1 597 93 40 12

4.2.1.3 Data Collection

For each Gitter chat room, we extracted the following data (using Gitter’s API7):
• URL, name, tags (optional);
• Description (optional, up to 80 words);
• Number of users;
• List of messages;
• Age (months from first to last message at time of study).

We collected this data between June 24 and August 7, 2019. All data were stored
in spreadsheets and later imported into NVivo 128 for data analysis.

4.2.2 Data Analysis

Figure 4.1 illustrates the data analysis steps of our study. One researcher conducted
the initial data analysis. During the coding, another researcher reviewed the codes
and contributed to the characterization of chat rooms. A third researcher reviewed
the themes during the final steps of the data analysis. All researchers discussed the
results. We followed the thematic analysis steps suggested by Braun and Clarke [2006]
(see Figure 4.1). We iteratively and incrementally defined, reviewed and refined themes
because thematic analysis involves constantly moving back and forth between the data,
the coded extracts of data, and the analysis being produced [Braun and Clarke 2006].
Below we discuss each step in detail.

Step 1 – get familiar with data: To get familiar with the data, we created
memos to capture the context of chat rooms and conversations. Memoing is the
process of writing notes about the data to be coded. Memoing also helps elaborate
categories (themes in our study), preliminary properties and relationships between

7https://developer.gitter.im/docs/welcome
8https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

https://developer.gitter.im/docs/welcome
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

4.2 RESEARCH METHOD 33

Figure 4.1 Overview of data analysis

these categories [Stol et al. 2016]. To create the memo for each chat room, one of the
researchers screened the messages in the chat rooms and read parts of the conversation.
This process of reading the chat rooms’ conversations was “ad-hoc” in the sense that we
did not have systematic criteria in place that guided the reading (e.g., “read the first
10 messages of every conversation”, or “read every second message in a conversation”,
etc.). We read as many messages as necessary to understand the context of discussions.
If available we also consulted external content (e.g., GitHub or GitLab repositories and
related websites) to obtain more insights about each chat room.

To add more context-related content to the memos for each chat room, we also
automatically created a natural language summary of all messages exchanged in a chat
room (El-Kassas et al. [2021] provide an overview of text summarization). To create
the summary, we selected BART, an abstractive text summarization technique.9 We
used the implementation of BART from the Transformers Python library10 (Model
BartForConditionalGeneration.from_pretrained(′facebook/bart−large−cnn′), set-
ting the model to get summaries with 500 to 1,000 words. We selected BART because
it is a Sequence-to-Sequence (Seq2Seq) technique that usually performs well with short
text summarization [El-Kassas et al. 2021]. In addition to our own judgement of how
fluent summaries sounded, we used ROUGE scores11 to measure BART performance

9Abstractive summarization techniques “abstract” the text to create summaries with words and
sentences that differ from the original text sentences, rather than identify “important” sentences as done
with extractive summarization techniques. This typically increases the readability and cohesiveness of
summaries [El-Kassas et al. 2021].

10https://huggingface.co/docs/transformers/model_doc/bart
11ROUGE is a set of metrics that measure the number of matching n-grams (based on words’

https://huggingface.co/docs/transformers/model_doc/bart

34 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

and adequacy of summaries (i.e. is the length appropriate and does the summary cover
the most important information of the text it summarizes). We calculated the recall,
precision and F1-score of ROUGE-1 (unigrams), ROUGE-2 (bigrams) and ROUGE-L
(longest common sub-sequence) for the summaries of all chat rooms selected (see an
overview of these scores in Table 4.2). Scores for each summary were within limits
reported in literature [Khatri et al. 2018, Paulus et al. 2018].

Table 4.2 Descriptive analysis of ROUGE scores

ROUGE-1 ROUGE-2 ROUGE-L
r p f1 r p f1 r p f1

Min 0.0004 0.4649 0.0008 0.0001 0.1509 0.0003 0.0004 0.4649 0.0008
Max 0.8632 0.9683 0.7398 0.7814 0.8700 0.6207 0.8632 0.9643 0.7358
Mean 0.1038 0.8402 0.1400 0.0746 0.6842 0.0966 0.1027 0.8322 0.1385
Median 0.0194 0.8617 0.0379 0.0068 0.6978 0.0134 0.0193 0.8504 0.0376
Std
Dev 0.1822 0.0923 0.2043 0.1545 0.1214 0.1692 0.1813 0.0930 0.2028

r: Recall; p: Precision; and f1: F1-score

Therefore, each memo had the summary of the messages shared in a chat room,
notes about our understand of the conversations, URL links to external content (e.g.,
GitHub repository, websites) and definitions of terms mentioned in the chat rooms’
descriptions. An example memo is below:

Chat room iluwatar/java-design-patterns: Members discuss the use of design
patterns in Java, and help each other with questions and answers. Chat room
offers examples of patterns through a GitHub account: https: // github.

com/ iluwatar/ java-design-patterns

Abstractive summary: Im saying apply Lombok for Builder design pattern
only not to whole project Lombok Builder real use case scenario for builder
pattern this is for making people aware it is not required to write code
manually Hi there is someone able to help me in a problem [...] Hey all
question Im looking at contributing to the Iterator pattern Id like to implement
an Iterator for a few different data structures instead of just a List as the
current implementation does Is the process different if Im contributing to
an existing pattern instead of creating a new one Ive read the Wiki and its
got instructions for the latter but not the former Should I just fork the repo
make my changes squash the commit and submit a pull request as otherwise
described in the Wiki Thanks [...]

Step 2 – generate initial codes: During this step, we inductively identified
codes in the name and description of chat rooms and the memos created in Step 1. In
our study, codes refer to words or terms found in these data that could (a) represent the

syntactic) between the summary generated and a reference, which is usually the original text [Lin 2004]

https://github.com/iluwatar/java-design-patterns
https://github.com/iluwatar/java-design-patterns

4.2 RESEARCH METHOD 35

potential subjects of discussion (e.g., “JavaScript”, “Jobs”, “Flutter”) and (b) high level
classes to characterize each chat room (type of chat room, e.g., project- or topic-related)
and its object of discussion (type of discussion, e.g., tool or process). To identify the
types of chat room, we analyzed the terms used in a conversation. For example, when
users used terms like “pull request”, “merge”, “branch” in a conversation where users
organized tasks between them. This was an indicator that this chat room is project-
related (rather than, for example, product-related). Regarding types of discussion, we
searched for definitions related to keywords that were part of the chat room’s name or
description (e.g., description of Laravel from the chat room laravel/laravel31) to help
us identify if the object of discussion was, for example, a tool or a process. For details
about types of chat room and types of discussion, see Section 4.3.1.

Step 3 – search for themes: In the search for themes, we analyzed all codes
and grouped them into themes (the fourth- and third-level themes in our final map of
themes), and higher-level themes (the second- and first-level themes in our final map of
themes; see 4.3.2). For example, the second-level theme “Types of development” under
the first-level theme “Software development” groups all themes related to different types
of software development (e.g., web and mobile applications). For each chat room, we
derived one, two or (in few cases) three themes.

Step 4 – review themes: In this step, we designed a map of themes to describe
the relationship between themes. We show the resulting map of themes (final, after
several iterations) and themes’ descriptions in Appendix B.1. When creating this map,
we reviewed the relationship between themes, i.e. whether higher level themes were
grouping lower level themes appropriately. We also looked for inconsistencies (such as
duplicated themes) and required changes in the name of themes.

Step 5 – define and name themes: In this step, we described each theme that
was assigned to the chat rooms. These descriptions are presented in more detail later in
Section 4.3.2. The authors rechecked: (a) whether themes and their descriptions were
appropriately representing the chat rooms. For example, a chat room assigned “Coding”
may in fact discuss experiences exchange on coding, which would then better refer to
theme “Coding quality”; (b) whether the types of chat room and types of discussion
were describing the context of chat rooms. For example, we checked whether a chat
room is about a general topic or the development of a software. Finally, we stopped the
process of revisiting steps 3 and 4 to review our themes when, based on our experience
and understanding, we could not identify new themes and the themes identified were
describing the context of the chat rooms (see more details in Section 4.4.4).

Step 6 – report findings: When reporting our findings, we also contextualize
themes, as suggested by Clarke and Braun [2019], by performing the following:

• Mapping of themes to existing knowledge framework: We mapped themes to
topics in the SWEBOK [Bourque and Fairley 2014] as a standardized knowledge

36 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

framework in software engineering to identify similarities and differences.
• Comparison of themes with information needs of developers: We mapped themes

to information needs of developers. Here, information needs are based on questions
developers typically try to answer by searching the internet [Xia et al. 2017a] and
on the topics discussed by developers in Stack Overflow [Barua et al. 2014, Beyer
et al. 2019].

4.2.3 Applicability of Themes

We checked whether the themes also appear in public chat rooms of Slack [Slack 2022],
another instant messaging tool. By applying our themes to Slack, rather than to other
Gitter chat rooms, we are able to check our themes in other contexts and if they can
also represent discussions of other instant messaging communication channels used by
software developers.

Slack, similar to Gitter, was released in 2014. In 2019, this instant messaging tool
had more than 10 million users, including organizations and individuals in different
domains, such as engineering, marketing and project management [Slack 2022, Statista
2018]. In Slack, a workspace (community in Gitter) is a group of users. Conversations
happen in channels (chat rooms in Gitter). A workspace can have more than one
channel. Here, we refer to a Slack workspace as a community and a Slack channel as
chat room.

We searched public Slack communities on a website, called Slofile, which hosts a
public database of public Slack communities [Slofile 2020]. We filtered communities
based on language (English) and category based on tags (programming). From these,
we selected communities that had at least one chat room with more than two users
(similar to what we did for Gitter). Not all users in the community were users in all
chat rooms of the community. Note that the Slofile website was our main source of
information about Slack communities and their chat rooms and this website only shows
up to ten of the most popular chat rooms of each community (as described in Slofile
[2021]). Slofile does not provide an API to create customized queries for communities).

This resulted in 184 Slack communities. In each of these communities, we chose
the chat room with the largest number of users that was (a) not a list of community
announcements and news, and (b) not used to introduce new users to the community.
Furthermore, we did not chose chat rooms when their description (or the description of
the community they belong to) was not comprehensive enough to understand what the
chat room was about (e.g., “#investing”). Table 4.3 shows descriptive statistics for the
number of users of these Slack chat rooms. The complete list of communities selected is
available online6.

Due to access restrictions of Slack, we did not collect data directly from the Slack
chat rooms but from the Slofile website. Therefore, we could not access the actual

4.3 RESULTS 37

messages or the age of chat rooms. We manually collected the following data for each
chat room and the community a chat room belongs to (February 28 and March 1, 2020):

• Community URL and name;
• Community description (optional, up to 80 words);
• Community number of users;
• Chat room name;
• Chat room description (optional, up to 80 words);
• Chat room number of users.

We followed a semantic approach to associate the themes from Gitter chat rooms
to Slack chat rooms. Based on a Slack chat room’s description (and sometimes the
community’s description), we labelled each Slack chat room with one or two themes. For
context, we also identified the types of chat rooms (project-related or topic-related) and
types of discussion (e.g., products, frameworks, libraries - based on the communities’
descriptions) of these Slack chat rooms.

Table 4.3 Descriptive statistics related to the number of users of Slack chat rooms

Min Max Stdev Mean Median

Community 5 25,730 3,599 1,544 264
Chat room 3 25,209 3,242 1,236 122

4.3 RESULTS

4.3.1 Characterizing Chat Rooms

As described in Section 4.2.2, during Step 2 of the thematic analysis we identified the
type of chat room and the type of discussion in each chat room based on its name,
description and related memo. Types of chat rooms describe the purpose of the chat
room (e.g., to discuss the development or maintenance of a particular project, or to
share issues, advice and personal experiences regarding a topic):

• Project-related: Chat room is about development-related issues and the plan-
ning, distribution and tracking of tasks in a specific software project (e.g., Simple
Invoices, an invoice management system for IT professionals12). In this type of
chat room the users were developers working on that project discussing what tasks
to work on.

• Topic-related: Chat room is about general topics (e.g., front-end programming
using Java libraries13) or issues and experiences with using a specific software
(e.g., Snipe IT, an IT licensing management system14). In this type of chat

12https://gitter.im/simpleinvoices/simpleinvoices
13https://gitter.im/vaadin/web-components
14https://gitter.im/snipe/snipe-it

https://gitter.im/simpleinvoices/simpleinvoices
https://gitter.im/vaadin/web-components
https://gitter.im/snipe/snipe-it

38 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

room, discussions were conducted by developers who were dealing with the topic
discussed (e.g., users of the product discussed).

Types of discussions describe what is the object of discussion in that chat room:
• Frameworks: Users discuss issues and experiences with frameworks (e.g., Flut-

ter,15 which is an open source framework for the development of multi-platform
applications);

• Libraries: Users discuss issues and experiences with software libraries (e.g.,
Scikit-learn,16 which is a library with machine learning models);

• Principles & practices: Users discuss fundamental concepts of software engi-
neering and programming paradigms and/or practices for software development
(e.g., best practices for smart contracts17);

• Processes: Users discuss processes for developing and maintaining software (e.g.,
processes for building solutions for data science problems18);

• Products: Users discuss issues and experiences with a particular software product
or suite (e.g., Snipe IT14, which is an open source Information Technology (IT)
asset management system);

• Tools: Users discuss issues, use experiences or the development of tools to create,
debug, test or maintain software (e.g., Semantic-release,19 which is an automated
tool for version management and package publishing);

• Other: Users discuss anything not related to the previous types (e.g., job oppor-
tunities for developers20).

Table 4.4 shows the number of Gitter chat rooms by type of chat room and type
of discussion. We found that most chat rooms are related to topics (64 out of 87 chat
rooms) rather than projects. Regarding the type of discussion, most chat rooms are
about libraries (e.g., scikit-learn/scikit-learn16), frameworks (e.g., ConsenSys/truffle21)
and tools (e.g., ngrx/store22).

4.3.2 Overview of Themes

The resulting map of themes, after several iterations, includes types of nodes:
• Third- and fourth-level: Themes identified in chat rooms that derived from

codes.
• Second-level: Themes which aggregate third- and fourth-level themes.

15https://gitter.im/flutter/flutter
16https://gitter.im/scikit-learn/scikit-learn
17https://gitter.im/ConsenSys/smart-contract-best-practices
18https://gitter.im/FreeCodeCamp/DataScience
19https://gitter.im/semantic-release/semantic-release
20https://gitter.im/lnug/london-node-jobs
21https://gitter.im/ConsenSys/truffle
22https://gitter.im/ngrx/store

https://gitter.im/flutter/flutter
https://gitter.im/scikit-learn/scikit-learn
https://gitter.im/ConsenSys/smart-contract-best-practices
https://gitter.im/FreeCodeCamp/DataScience
https://gitter.im/semantic-release/semantic-release
https://gitter.im/lnug/london-node-jobs
https://gitter.im/ConsenSys/truffle
https://gitter.im/ngrx/store

4.3 RESULTS 39

Table 4.4 Gitter chat rooms by type of room and type of discussion

Type of chat room
Type of discussion Project Topic Total

Frameworks 3 18 21 (24%)
Libraries 6 21 27 (31%)
Principles & practices 3 7 10 (11%)
Processes 0 1 1 (1%)
Products 4 3 7 (8%)
Tools 7 11 18 (21%)
Other 0 3 5 (3%)
Total 23 (26%) 64 (74%) 87 (100%)

• First-level: Themes that describe the four main branches in the map of themes
and aggregate second-level themes. These themes are:

– SD – Software development: Themes related to software development and
maintenance activities;

– SA – Software architecture: Themes related to the structure of systems and
technologies;

– SQ – Software quality: Themes related to quality of functionality and cor-
rectness;

– PD – Professional development: Themes related to software engineering
learning and training.

The complete version of this map, including third- and fourth-level themes is shown
in Figures 4.2, 4.3, 4.4 and 4.5. In brackets we included the number of times a theme
was identified in a chat room. Since we identified more than one theme in rooms (see
Section 4.2.2), the total number exceeds 87.

Figure 4.2 Professional Development Themes

In B.1 we included Tables B.1, B.2, B.3 and B.4 where we describe second-, third-
and fourth-level themes in detail, organized by second-level themes. For each theme
we also included a chat room description as an example. SQ - Software Quality (a
first-level theme) do not have third- and fourth-level themes; therefore, the descriptions
and examples in Table B.1 refer to the second-level themes. The complete list of chat

40 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Figure 4.3 Software Quality Themes

Figure 4.4 Software Architecture Themes

4.3 RESULTS 41

Figure 4.5 Software Development Themes

42 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

rooms with assigned themes can be found online6.
In thirty-five (out of 87) chat rooms we identified two or three themes. The assign-

ment of multiple themes added details to the characterization of the main discussion of
these chat rooms. For example, chat rooms hopelessoptimism/data-engineering-101 23

and webuildsg/live24 are both about PD1.2 Workshops but the former refer to workshops
on SD5.1.1 Big data and the latter, workshops on SD6.1 Graphical user interface.

4.3.2.1 Themes in Communities

Table 4.5 shows the themes of chat rooms that came from the same community.25 As
shown in Table 4.5, in some chat rooms from the same community we identified the
same theme (e.g., chat rooms of the spring-projects community), but not all chat rooms
of a community discuss the same theme. For example, chat rooms of the ConsenSys
community were labelled with SA1.2 Blockchain in addition to other themes. Therefore,
we cannot assume that all chat rooms of a community always address the same theme.

Table 4.5 Themes in Gitter chat rooms from the same community

Community Chat room Themes

FreeCodeCamp

Contributors PD2.1 Coding

DataScience SD1.2.1 Libraries
SD1.2.3 Machine learning [Systems]

HelpBackEnd SD7 Back-end
PD2.1 Coding

testable-projects-fcc PD2.1 Coding

ConsenSys
smart-contract-best-
practices

SA2.1 Patterns
SA1.2 Blockchain

truffle
SD1.3 Integrated development envi-
ronment
SA1.2 Blockchain

ManageIQ manageiq SA1.1 Cloud computing

manageiq/ui SA1.1 Cloud computing
SD6.1 Graphical user interface

Spring-projects spring-security SA2.2.1 Security
spring-security-oauth SA2.2.1 Security

Webpack docs SD2.1.1 Build automation
SD3 Software documentation

webpack SD2.1.1 Build automation
SQ1 Code quality

4.3.2.2 Similar Themes in Different Contexts

We identified similar themes in different contexts. We show these themes in Figure 4.6.
The themes PD2.1 Coding and SQ1 Code quality are both referring to programming
activities but in different contexts. PD2.1 Coding appeared in the context of users

23https://gitter.im/hopelessoptimism/data-engineering-101
24https://gitter.im/webuildsg/live
25Communities may have more chat rooms than the ones selected for our study.

https://gitter.im/hopelessoptimism/data-engineering-101
https://gitter.im/webuildsg/live

4.3 RESULTS 43

helping each other to deal with coding issues, while SQ1 Code quality appeared in chat
rooms where users discuss resources to create quality code. Similarly, SQ2 Software
testing appears in the context of discussions about methods and resources for testing
and PD2.2 Testing in the context of discussing testing practices.

Figure 4.6 Themes that appeared in different contexts

4.3.3 Themes and the SWEBOK

To check how the themes identified in our study align with a standardized knowledge
framework for software engineering, we mapped them to the SWEBOK [Bourque and
Fairley 2014]. The SWEBOK is organized into 15 chapters which have sections. For
example, chapter “1 Software Requirements” consists of the sections “1.1 Software
Requirements Fundamentals”, “1.2 Requirements Process”, etc. Each section has
subsections (e.g., under “1.1 Software Requirements Fundamentals”, there are subsections
“1.1.1 Definition of a Software Requirement”, “1.1.2 Product and Process Requirements”,
etc). We were able to relate all our themes to SWEBOK (sub)sections based on their
conceptual similarities and considering the context of the themes (i.e. the chat rooms in
which they occur), see Table 4.6. The mapping was conducted, reviewed and discussed
by three researchers. When mapping themes to (sub)sections, we followed a bottom-up
approach, i.e. we first tried to map themes to subsections and if that was not possible
(e.g., if themes were more general than subsections) tried to map them to a section. In
Table 4.6, we also record how we mapped themes and SWEBOK (sub)sections following
these mapping rules:

• Explicit: Theme is referenced in the SWEBOK (sub)section (e.g., SD1.1 Applica-
tion programming interface is explicitly covered by subsection “3.4.1 API Design
and Use”);

• Implicit: Theme is not directly referenced in SWEBOK (sub)section, but it is
related to the content of the SWEBOK (sub)section due to the context of chat
rooms under that theme (e.g., SD2 Software deployment is implicitly covered by
subsection “6.6.1 Software Building”);

44 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

• Example: Theme can be considered as an example of what is described in a
SWEBOK (sub)section (e.g., SD2.1.1 Build automation is a concrete example for
the concepts discussed in subsection “3.3.8 Integration”).

We could not map themes to (sub)sections in the following chapters:

• 9 Software Engineering Models and Methods
• 12 Software Engineering Economics
• 14 Mathematical Foundations
• 15 Engineering Foundations

4.3.4 Themes and Developer Knowledge Needs

In this section, we discuss themes and how they relate to knowledge needs of developers.
We identify knowledge needs based on what developers search on the web (see Sec-
tion 4.3.4.1) as well as what developers discuss on Stack Overflow (see Section 4.3.4.2).

4.3.4.1 Web Search Queries

Xia et al. [2017a] identified knowledge needs of developers based on what they search on
the web. The authors described 34 search tasks, grouped into seven search categories:

1. General searches (e.g., to understand terminology, software development practices);
2. Debugging and bug fixing (e.g., to understand exceptions/errors and security or

performance bugs);
3. Programming (e.g., to learn about design patterns, code examples, standards);
4. Third party code reuse (e.g., to find reusable code snippets, libraries, HTML/

CSS templates);
5. Tools (e.g., to learn how to use and/or customize IDEs, version control systems,

issue management systems);
6. Database (e.g., to learn about SQL, no-SQL database issues and optimization);
7. Testing (e.g., to find guidelines on testing methods, how to use a testing tool, data

sets for testing).

We related the search categories to themes by comparing the description of each
category (including its list of search tasks) to the scope of each first-level theme:

• SD - Software Development, SA - Software Architecture and PD - Professional De-
velopment can be related to search categories “Programming”, “General searches”
and “Tools”.

• SQ - Software Quality can be related to search category “Testing”.
• SD - Software Development can also be related to search category “Third party

code reuse”.

Search categories “Database”, and “Debugging and bug fixing” were not clearly
related to our themes. Even though we could not associate these search tasks to a

4.3 RESULTS 45

Table 4.6 Mapping of themes to SWEBOK sections and subsections

First-
level
theme

Second-, third- and
fourth-level theme SWEBOK chapter SWEBOK

(sub)section Mapping

SD 1.1 Application program-
ming interface

3 Software Construc-
tion 3.4.1 API Design and Use Explicit

SD 1.2.1
Configuration

6 Software Configura-
tion Management

6.4.1 Software Configura-
tion Status Information Explicit

8 Software Engineer-
ing Process 8.2 Software Life Cycles Implicit

SD 1.2.2 Release 6 Software Configura-
tion Management

6.6.2 Software Release
Management Explicit

SD 1.3 Integrated develop-
ment environment

3 Software Construc-
tion

3.5.1 Development Envi-
ronments Explicit

SD 1.4 Reverse engineering 5 Software Mainte-
nance

5.4.3 Reverse Engineer-
ing
5.5 Software Mainte-
nance Tools

Explicit

SD 1.5 Version control 6 Software Configura-
tion Management

6.7 Software Configura-
tion Management Tools Explicit

SD 2 Software deployment 6 Software Configura-
tion Management 6.6.1 Software Building Implicit

SD 2.1 Continuous integra-
tion

3 Software Construc-
tion
6 Software Configura-
tion Management

3.2.1 Construction in Life
Cycle Models
6.6.2 Software Release
Management

Implicit

SD SD2.1.1 Build automa-
tion

3 Software Construc-
tion 3.3.8 Integration Example

SD 2.2 Distributed software 3 Software Construc-
tion

3.4.12 Construction
Methods for Distributed
Software

Explicit

SD 3 Software
documentation

1 Software Require-
ments

1.5.1 System Definition
Document Explicit

7 Software Engineer-
ing Management

7.4 Review and Evalua-
tion Implicit

SD 4 Software maintenance

5 Software Mainte-
nance

5.1.5 Evolution of Soft-
ware Explicit

6 Software Configura-
tion Management

6.3.1 Requesting, Eval-
uating, and Approving
Software Changes

Implicit

SD 5.1.1 Big data 13 Computing Foun-
dations 13.12.6 Data Mining Implicit

SD [Machine learning]
5.1.2.1 Libraries

13 Computing Foun-
dations 13.12.6 Data Mining Example

SD [Machine learning]
5.1.2.2 Research

13 Computing Foun-
dations 13.12.6 Data Mining Example

SD [Machine learning]
5.1.2.3 Systems

13 Computing Foun-
dations 13.12.6 Data Mining Example

SD 5.2 Games 3 Software Construc-
tion

3.4 Construction Tech-
nologies Implicit

SD 5.3 Mobile development 3 Software Construc-
tion

3.3.2 Construction Lan-
guages Implicit

SD 5.4 Web development 3 Software Construc-
tion

3.3.2 Construction Lan-
guages Implicit

SD 5.5 Multi-platform devel-
opment

3 Software Construc-
tion

3.5 Software Construc-
tion Tools Example

46 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table 4.6 Mapping of themes to SWEBOK sections and subsections (continued)

First-
level
theme

Second-, third- and
fourth-level theme SWEBOK chapter SWEBOK

(sub)section Mapping

SD 6 Front-end 2 Software Design 2.4 User Interface Design Implicit

SD 6.1 Graphical user inter-
face 2 Software Design 2.4.2 User Interface De-

sign Issues Explicit

SD 7 Back-end 2 Software Design 2.3.1 Architectural Struc-
tures and Viewpoints Implicit

PD 1.1 Jobs
11 Software Engineer-
ing Professional Prac-
tice

11.1 Professionalism Implicit

PD 1.2 Workshops
11 Software Engineer-
ing Professional Prac-
tice

11.1 Professionalism Implicit

PD 2.1 Coding

3 Software Construc-
tion
13 Computing Foun-
dations

3.3.3 Coding
13.1.5 Problem Solving
Using Programs

Explicit

PD 2.2 Testing

3 Software Construc-
tion
4 Software Testing

3.3.4 Construction Test-
ing
4.5.1 Practical Consider-
ations

Explicit

10 Software Quality 3.3.2 Testing Implicit

SA 1.1 Cloud computing 2 Software Design 2.3 Software Structure
and Architecture Example

SA 1.2 Blockchain 13 Computing Foun-
dations

13.6.2 Types of Data
Structure Example

SA 2.1 Patterns 2 Software Design 2.3.3 Design Patterns Explicit

SA 2.2.1 Security 2 Software Design 2.3.4 Architecture Design
Decisions Example

SA 2.3.1 Service-oriented ar-
chitecture 2 Software Design 2.3.2 Architectural Styles Example

SA 2.3.1.1 Microservices 2 Software Design 2.3.2 Architectural Styles Example
SA 2.3.1.2 Containers 2 Software Design 2.3.2 Architectural Styles Example

SQ 1 Code quality 2 Software Design
2.5.2 Quality Analysis
and Evaluation Tech-
niques

Example

10 Software Quality 3.3.1 Static Techniques Implicit

SQ 2 Software testing 4 Software Testing
4.5.2 Test Activities
4.6.1 Testing Tool Sup-
port

Implicit

10 Software Quality 4 Software Quality Tools Implicit

4.3 RESULTS 47

particular theme, developers may discuss questions related to “Debugging and bug
fixing” in individual messages. However, we did not find it as the theme (i.e. the main
subject of discussion in a chat room).

Although the first-level themes Software quality and Professional development were
related to some of the search categories, we could not associate the themes SQ1 Code
quality, PD1.1 Jobs and PD1.2 Workshops to the search tasks within such categories.
For example, there were no search tasks for job opportunities under “General searches”
or any other search category.

In summary, since web searches of developers can be related to themes in developer
communication, practitioners may also search developer communication to satisfy
information needs captured in web searches, in particular information needs regarding
new technologies, programming, tools and third party code reuse.

4.3.4.2 Stack Overflow

Barua et al. [2014] analyzed what topics were discussed by developers in Stack Overflow.
Furthermore, Beyer et al. [2019] analyzed what types of questions developers ask on
Stack Overflow. Both studies describe knowledge needs of developers that they try
to satisfy by consulting when using a Q&A website. Table 4.7 shows the comparison
between the main topics identified by Barua et al. [2014] in Stack Overflow and our
themes. Note that we could not associate any of our themes to the main topic “Data
management” found by Barua et al. [2014]. As can be seen in Table 4.7, the granularity
of topics from Barua et al. [2014] and the themes from our study differ, i.e. a mapping
is not always straightforward.

In Table 4.7 we did not associate the Stack Overflow topics “Problem/solution”
and “QA and links” of Barua et al. [2014] with our themes. However, these topics are
expressed in the chat rooms’ discussions as we checked in the summaries of the chat
rooms’ conversations (see Step 1 of Section 4.2.2), rather than to a particular theme. In
some degree, all conversations in our selection of Gitter chat rooms revolved around
sharing experiences, code snippets and external links on how to solve issues.

Beyer et al. [2019] found that in Stack Overflow, users ask questions about the
following (referred to as “types of question”):

• API usage: how to use an API;
• Conceptual: finding ways to solve an issue or implement a feature;
• Discrepancy: tentative solutions to solve an issue or implement features;
• Errors: report of errors and exceptions;
• Review: rechecking suggestions to find better ways to solve an issue or implement

a feature;
• API change: differences in features between versions of an API;
• Learning: suggesting and asking for tutorial material.

48 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table 4.7 Comparing Stack Overflow Topics to Themes

Main Topic
[Barua et al. 2014]

Stack Overflow Topic
[Barua et al. 2014] Theme

Web-related
Website design/CSS SD6 Front-end

SD6.1 Graphical user interface
Web development SD5.4 Web development

Web service/application
SD5.4 Web development
SD1.1 Application programming in-
terface

Data management

Database platform -
SQL -
XML -
Object-relational mapping -

Platform-specific

.NET Framework -

Java SD5.4 Web development
SD5.5 Multi-platform development

Windows/Visual Studio -

Web-related
SD2.1.1 Build automation
SD1.3 Integrated development envi-
ronment

Mobile App Development SD5.3 Mobile development

Security Authentication/security SA2.2.1 Security
Cryptography -

Quality assurance Version control SD1.5 Version control
Testing SQ2 Software testing

Knowledge/Experience Job/experience PD1.1 Jobs

Learning PD2 Training
PD1.2 Workshops

General
Coding style/practice PD2.1 Coding
Problem/solution -
QA and links -

4.3 RESULTS 49

Except for the theme SD1.1 Application programming interface, which is related to
both types of question “API usage” and “API change” in the classification of Beyer et al.
[2019], our themes cannot be clearly associated with these types of question. This is
because the types of question are represented at a different level of granularity compared
to our themes. This means, these types of questions are more about the content of
actual questions asked on Stack Overflow, which are more focused and smaller in scope,
compared to themes, which are about the main subject discussed by developers in a
chat room. This also means that question types such as “Learning” and “Errors” (for
example, in chat rooms under second-level theme PD2 Training) may be answered in
chat rooms’ conversation threads, but this would be another dimension of analysis.

4.3.5 Patterns and Insights from Themes

After identifying themes, types of chat rooms and types of discussions, we explored how
they related to each other to look for insights about the discussions in the chat rooms.
We found that:

• Developers discuss mostly in chat rooms that were related to general topics rather
than in chat rooms of specific software projects (see Section 4.3.1).

• Chat rooms tend to discuss themes related to first-level theme SD - Software
Development, regardless of whether a chatroom is project- or topic-related. This
can be related to the nature of Gitter, which was initially created for software
developers using GitHub or GitLab;

• Developers very often discuss web development (SD5.4) and in particular libraries
for web development (e.g., the library Xcodeproj from the chat room CocoaPod-
s/Xcodeproj 26). Other re-occurring themes that are discussed in the selected
Gitter chat rooms were PD2.1 Coding (nine occurrences), SD6.1 Graphical user
interface (eight occurrences), SA2.1 Patterns (seven occurrences), SD4 Software
maintenance (seven occurrences) and SQ2 Software testing (six occurrences);

• We confirmed that developers do indeed share knowledge related to Principles
& practices, such as practices for coding (PD2.1) or design patterns (SA2.1)
principles. Other themes related to this type of discussion were back-end (SD7),
mobile development (SD 5.3), Blockchain (SA1.2), and testing (PD2.2). On the
other hand, many of our themes were not identified in chat rooms we associated
to Principles & practices. For example, software testing (SQ2), themes under
design style (SA2.3) and themes under data intensive systems (SD5).

26https://gitter.im/CocoaPods/Xcodeproj

https://gitter.im/CocoaPods/Xcodeproj

50 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

4.3.5.1 Trends in Themes

Two of the chat rooms in our sample were created in 2013, ten in 2014, 39 in 2015, 24
in 2016, six in 2017 and six in 2018. However, considering that the total number of chat
rooms created in each of these years is larger than our sample, it would be misleading to
analyze trends in themes over time (e.g., by analyzing the themes of chat rooms created
in a certain year). On the other hand, even in our limited and unbalanced set of chat
rooms regarding the years when they were created, we observe similar developments of
themes as in other discussion channels. For example, Barua et al. [2014] observed (a)
an increasing trend of discussions on Stack Overflow around mobile development and
web applications between 2008 and 2010, and (b) that discussions on Stack Overflow
around jobs and version control were decreasing. In our sample, we found more chat
rooms related to web development (including six new chat rooms on that topic between
2014 and 2015), but we did not find that the number of job- or version control-related
chat rooms was decreasing.

4.3.5.2 Popularity, Activity and Engagement of Themes

To expand the contextualization of themes found it our sample, we analyzed themes
regarding their popularity, activity and engagement based on the number of messages,
number of users and age of chat rooms related to that theme:

• Popularity of a theme is the interest of people in it, using the number of users
and chat rooms related to gauge this interest (it does not consider the number of
messages exchanged regarding a theme, but simply how many people are interested
in a theme).

• Activity of a theme is the frequency of messages exchanged about it over time,
using the number of messages in related chat rooms to measure this frequency
(this metric does not consider the number of users, but rather the “traffic” related
to a theme which can be from many or few users).

• Engagement of a theme is how constantly people discuss it over time, which was
measured based on the number of messages exchanged by users during a certain
period of time (i.e. this metric considers messages, time as well as users).

Therefore, in the context of the chat rooms selected for our study, we considered
that popular themes are the most interesting themes in Gitter; active themes are the
most frequently discussed; and engaging themes are the themes which kept more users
participating in discussions over time. Table 4.8 shows the results of these metrics for
each third- and fourth-level theme. The higher these metrics’ score the better.

Popularity considers (a) the number of chat rooms per theme (denoted as r), (b)
the number of users of all chat rooms related to a theme (denoted as u), and (c) the

4.3 RESULTS 51

average number of users per chat room related to a theme (denoted as size = u/r).
Regarding the popularity in terms of the number of rooms (r), the most popular themes
are SD5.4 Web development (19 chat rooms) and PD2.1 Coding (nine chat rooms).
In terms of the total number of users (u), the most popular themes are SD5.4 Web
development (almost 22,000 users) and PD2.1 Coding (around 19,000 users). Finally,
regarding popularity in terms of size, the most popular themes are SQ1 Code quality
(8,503 users on average per related chat room) and SD2.1.1 Build automation (8,406
users on average per related chat room).

Activity refers to how active a theme was over time. Here, we first calculated the
activity of each chat room as m/a (with m as the number of messages of a chat room
and a as the chat room’s age in months since the first message in the chat room was
sent). Then, the activity of a theme is the average activity of all chat rooms related
to that theme. The most active themes are SD5.5 Multi-platform development (9,624
messages), SD7 Back-end (1,890 messages), SQ1 Code quality (1,639 messages) and
SD2.1.1 Build automation (1,621 messages).

Engagement refers to how engaged users were in discussing a theme over time. Here,
we first calculated the engagement of each chat room as m/(u∗a) with m as the number
of messages of a chat room related to a theme, u as the number of users of that chat
room and a as its age in months (as above). Then, the engagement of a theme is the
average engagement of all chat rooms related to that theme. Note that we multiplied
the number of users by the age of the chat room because we aimed at checking the
impact of users on the number of messages shared in a specific time frame. For example,
we can compare the engagement of two themes T1 and T2 where T1 is represented in a
2-month old chat room with 1,000 messages and 10 users, and T2 is represented by a
10-month old chat room with 1,000 messages and 20 users. By calculating engagement
of these two themes, we would check that T1 was more engaging than T2 because the
T1 had fewer users (10 versus 20) that contributed with more messages in a shorter
time frame. The most engaging themes are PD2.2 Testing (16 messages per user) and
SA2.2.1 Security (9 messages per user).

We summarize our insights regarding popularity, activity and engagement of first-
level themes below:

• SD - Software Development is the most popular theme in terms of the number of
chat rooms and users, it is also the most active theme;

• SQ - Software Quality is the most popular theme in terms of average number of
users in related chat rooms (e.g., rooms where we identified SQ1 Code quality);

• PD - Professional Development is the most engaging theme by considering the
theme PD2.2 Testing;

• Although SA - Software Architecture did not stand out in terms of popularity,
activity or engagement, themes under this theme are amongst the most engaging

52 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

themes (e.g.,SA2.2.1 Security).

4.3.6 Applicability of Themes in Slack Chat Rooms

Since thematic analysis cannot show generalization or transferability [Braun and Clarke
2021a, Stol and Fitzgerald 2018], we checked whether the themes identified in Gitter also
appear in 184 chat rooms of public Slack communities (as described in Section 4.2.3).
By checking the applicability of our themes, we could analyze whether and how our
themes describe discussions of other chat rooms.

Regarding the characterization of Slack chat rooms (see Table 4.9), we found that
similarly to Gitter chat rooms, most Slack chat rooms are related to topics (143 chat
rooms) rather than projects (41 chat rooms). On the other hand, in terms of types of
discussion, most Slack chat rooms are related to Other (55 chat rooms, e.g., events in
community codeCommunity 27 and main of the PIGSquad community28), and Principles
& practices (54 chat rooms, e.g., beginners in the Elm community29).

When applying our themes to Slack chat rooms, we realized that our themes could
not describe some of their discussions fully. For example, the Slack chat room lounge30

from the community “Space Coast Tech” was associated to the theme PD1.2 Workshops
but we could not associate this room to other of our themes, which would describe the
topic of such workshops. Therefore, for some chat rooms we only got a single perspective
over what might be their main discussions. The complete list of Slack chat rooms with
related themes is available online6.

We labelled 173 Slack chat rooms with 36 themes identified in Gitter. We could not
assign 11 themes to Slack chat rooms (see Table 4.10). The most frequent Gitter themes
found in Slack chat rooms were SD5.4 Web development (40 occurrences), PD2.1 Coding
(29 occurrences), PD1.2 Workshops (22 occurrences) and PD1.1 Jobs (22 occurrences).
Although some themes did not apply to our selection of Slack chat rooms, they may be
found in other Slack chat rooms which were not selected for this study. The 11 chat
rooms that we could not assign to any theme seem to be related, based on their name
and description, to bots development, issue management tools or system administration
(servers, operational systems and virtual environments).

Even though we cannot determine popularity, activity and engagement of themes for
Slack as we did for Gitter (see the data collection for Slack chat rooms in Section 4.2.3),
we checked whether popular, active and engaging themes in Gitter at least appeared in
Slack:

• Popular themes: Frequent themes, such as SD5.4 Web development and PD2.1
Coding were also frequently associated to Slack chat rooms. Some popular themes

27https://slofile.com/slack/codecommunity
28https://slofile.com/slack/pigsquad
29https://slofile.com/slack/elmlang
30https://slofile.com/slack/spacecoasttech

https://slofile.com/slack/codecommunity
https://slofile.com/slack/pigsquad
https://slofile.com/slack/elmlang
https://slofile.com/slack/spacecoasttech

4.3 RESULTS 53

Table 4.8 Popularity (r: number of chat rooms per theme; u: number of users of all chat rooms
related to a theme; size = u/r), activity and engagement by theme; numbers rounded to closest integer
(e.g., engagement of 0 means that the average engagement was close to 0, i.e. very low)

First-
level
theme

Second-, third- and
fourth-level Theme

Popularity
(r)

Popularity
(u)

Popularity
(size) Activity Engagement

PD 1.1 Jobs 2 272 136 3 0
PD 1.2 Workshops 2 123 62 72 1
PD 2.1 Coding 9 18,527 2,059 807 4
PD 2.2 Testing 1 24 24 379 16
SA 1.1 Cloud computing 5 1,304 261 519 2
SA 1.2 Blockchain 4 13,606 3,402 920 0
SA 2.1 Patterns 7 2,457 351 70 0
SA 2.2.1 Security 5 2,308 462 1,132 9

SA 2.3.1 Service-oriented
architecture 1 5 5 2 0

SA 2.3.1.2 Containers 2 1,519 760 542 0
SA 2.3.1.1 Microservices 1 54 54 3 0

SD 1.1 Application pro-
gramming interface 3 5,046 1,682 1,250 1

SD 1.2.1 Configuration 2 608 304 15 0
SD 1.2.2 Release 2 213 107 68 1

SD 1.3 Integrated develop-
ment environment 1 4,821 4,821 1,334 0

SD 1.4 Reverse engineering 1 215 215 44 0
SD 1.5 Version control 1 2,984 2,984 271 0
SD 2 Software deployment 2 345 173 72 0

SD 2.1 Continuous integra-
tion 1 291 291 588 2

SD SD2.1.1 Build automa-
tion 2 16,813 8,407 1,621 0

SD 2.2 Distributed soft-
ware 2 4,650 2,325 1,394 0

SD 3 Software documenta-
tion 5 506 101 97 4

SD 4 Software maintenance 7 4,073 582 169 4
SD 5.1.1 Big data 2 98 49 64 1

SD [Machine learning]
5.1.2.1 Libraries 3 5,857 1,952 1,197 3

SD [Machine learning]
5.1.2.2 Research 1 556 556 551 1

SD [Machine learning]
5.1.2.3 Systems 5 4,483 897 112 0

SD 5.2 Games 3 1,518 506 1,014 4
SD 5.3 Mobile development 3 9,457 3,152 139 0
SD 5.4 Web development 19 21,555 1,134 312 1

SD 5.5 Multi-platform
development 1 7,456 7,456 9,624 1

SD 6 Front-end 1 420 420 137 0

SD 6.1 Graphical user inter-
face 8 14,286 1,786 229 2

SD 7 Back-end 2 5,436 2,718 1,890 1
SQ 1 Code quality 2 17,006 8,503 1,639 0
SQ 2 Software testing 6 7,735 1,289 928 1

54 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table 4.9 Slack chat rooms by type of room and discussion

Type of chat room
Type of discussion Project Topic Total

Frameworks 3 8 11 (6%)
Libraries 1 3 4 (2%)
Principles & practices 3 51 54 (29%)
Processes 0 12 12 (7%)
Products 13 18 31 (17%)
Tools 4 13 17 (9%)
Other 17 38 55 (30%)

Total 41 (22%) 143 (78%) 184 (100%)

in Gitter less frequent in Slack are: SA1.2 Blockchain (four occurrences) and SQ1
Code quality (one occurrence).

• Active themes: Active themes (high average number of messages per month),
such as SD5.5 Multi-platform development, were associated to Slack chat rooms.

• Engaging themes: Engaging themes (high average number of messages ex-
changed by users over time), such as SA2.2.1 Security and PD2.2 Testing, were
associated to Slack chat rooms.

Regarding the eleven themes that were not associated with Slack, since we did not
intend to generalize themes (not a goal in thematic analysis Braun and Clarke [2006,
2021b]), these themes are as important for Gitter as the themes that were associated
with Slack. The themes identified in Gitter reflect our selection of chat rooms at the
time the study was conducted and are based on the analysis of descriptions of chat
rooms and summaries of discussions. Hence, the themes not associated with Slack chat
rooms are still valid for Gitter.

Out of the eleven Gitter themes that we could not associate with Slack chat rooms,
seven themes (SA2.2 Tactics, SA2.3 Style, SA2.3.1 Service-oriented architecture, SD1.2.2
Release, SD2.1.1 Build automation, 1.4 Reverse engineering and SD2.1 Continuous
integration) are third- and fourth-level themes, which represent more specialized themes
in comparison to second- and first-level themes. This may indicate that our selection
of Gitter chat rooms presented some specific themes that were not applicable to the
context of the selected of Slack chat rooms.

On the other hand, there were four second-level themes (SA1 Technologies, SA2
Design, SD1 Resources, and SD5 Types of development) that, unlike other second-level
themes in our map, such as PD1 Announcements and PD2 Training; we could not
associate to Slack chat rooms. In the development of our map of themes, some second-
level themes (including these four themes) were created to group themes identified in
Gitter chat rooms, as described in Section 4.2.2. This means, they were not directly
identified in Gitter, but derived from commonalities of themes we did find in Gitter.
However, most of the third- and fourth-level themes under these themes (e.g., SA1.1
Cloud computing and SA1.2 Blockchain under SA1 Technologies) were associated to Slack.

4.4 DISCUSSION 55

This indicates that some of the second-level themes under SA - Software architecture
and SD - Software development may not be easily associated to other contexts because
they alone are less descriptive than the themes grouped by them (third- and fourth-level
themes).

4.4 DISCUSSION

4.4.1 Comparison to Related Work

In Section 4.3, we already compared our findings with the findings of other studies
that identified themes and topics relevant to developers. In this section, we provide a
discussion of our work in the broader context of developer instant communication on
Gitter.

Our study aimed at identifying themes that would represent the main discussions
of developers in chat rooms of instant messaging communication. By applying thematic
analysis to the data of 87 Gitter chat rooms, we identified 47 themes (shown in Section 4.3
and described in Appendix B.1) contextualized with two types of chat room and seven
types of discussion. We organized these themes in a map to represent their context.

Related studies have also analyzed the content of instant messaging communication
and Gitter. Each study focused on a different approach of data analysis. The results of
our study could provide an additional layer and new angle of analysis of their findings:

• Sahar et al. [2021] focused their analysis on issue reports discussed in Gitter chat
rooms; they analyzed who reports issues, what issues are discussed, the resolution
time of issues, and how discussing issue reports in Gitter impact their resolution
time. Our map of themes could complement this study, for example, by classifying
their selection of chat rooms and contextualizing the issue reports analyzed.

• Ehsan et al. [2021] disentangled conversation threads in Gitter chat rooms and
identified what makes a question getting responses and which features of a
conversation are associated with the resolution outcome (e.g., URL, code snippets,
active GitHub contributor). For this study, our map of themes could be used to
classify each conversation thread and to contextualize the features associated to
the resolution of questions.

• The study of Shi et al. [2021] could be also benefit from our map of themes to
contextualize the conversation threads disentangled and analyzed by them. Shi
et al. [2021] identified the communication profile, the community structure, the
topics discussed and the interaction pattern of developers on Gitter. The topics
identified by Shi et al. [2021] were based on the types of question organized by
Beyer et al. [2019]. As already discussed earlier in Section 4.3.4.2, even though

56 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table 4.10 Mapping of Gitter themes to Slack chat rooms

First-level
theme Second-, third- and fourth-level theme Frequency

PD 1 Announcements 1
PD 1.1 Jobs 22
PD 1.2 Workshops 22
PD 2 Training 11
PD 2.1 Coding 29
PD 2.2 Testing 1
SA 1 Technologies 0
SA 1.1 Cloud computing 5
SA 1.2 Blockchain 4
SA 2 Design 0
SA 2.1 Patterns 3
SA 2.2 Tactics 0
SA 2.2.1 Security 3
SA 2.3 Style 0
SA 2.3.1 Service-oriented architecture 0
SA 2.3.1.2 Containers 2
SA 2.3.1.1 Microservices 2
SD 1 Resources 0
SD 1.1 Application programming interface 5
SD 1.2 Management 2
SD 1.2.1 Configuration 4
SD 1.2.2 Release 0
SD 1.3 Tools 0
SD 1.3 Integrated development environment 1
SD 1.4 Reverse engineering 0
SD 1.5 Version control 1
SD 2 Software deployment 2
SD 2.1 Continuous integration 0
SD 2.1.1 Build automation 0
SD 2.2 Distributed software 4
SD 3 Software documentation 1
SD 4 Software maintenance 6
SD 5 Types of development 0
SD 5.1 Data intensive systems 1
SD 5.1.1 Big data 2
SD 5.1.2 Machine learning 4
SD 5.1.2.1 Libraries 1
SD 5.1.2.2 Research 1
SD 5.1.2.3 Systems 1
SD 5.2 Games 11
SD 5.3 Mobile development 15
SD 5.4 Web development 40
SD 5.5 Multi-platform development 1
SD 6 Front-end 7
SD 6.1 Graphical user interface 9
SD 7 Back-end 3
SQ 1 Code quality 1
SQ 2 Software testing 4

4.4 DISCUSSION 57

these types of question are represented at a different level of granularity compared
to our themes, describing more of the content of each message, our themes could
be used to classify the conversation threads at a higher level of abstraction.

• Similarly to our study, Elmezouar et al. [2021] applied thematic analysis. However,
in that study, thematic analysis was applied to responses to a survey of users
of Slack or Gitter chat rooms. By using this method, Elmezouar et al. [2021]
explored why developers use chat rooms, what is their perceived impact in software
development processes, and what defines the quality of chat rooms and their related
chat service (e.g., the available features). Our themes could be used to complement
the study of Elmezouar et al. [2021] to describe what are the themes developers
have interest on discussing when selecting a chat room to participate.

4.4.2 Implications for Practitioners

Based on our study, practitioners can get an overview of software engineering discussions
and the interest of developers. For example, we found that most of the Gitter chat
rooms cover topics related to libraries, frameworks and tools; this could be because
Gitter is an instant messaging tool mostly associated to GitHub and GitLab projects.
Among the chat rooms related to libraries, there are several about web application
development. For instance, the first chat room created in Gitter about web development
is Laravel, a PHP framework.31

Most of the chat rooms that we analyzed are topic- rather than project-related.
However, there are chat rooms (related to Tools, Libraries and Products types of
discussion) about the development or maintenance of particular projects. Therefore,
newcomers interested in joining and contributing to these projects could use Gitter to
familiarize themselves with problems and issues arising in those projects. This might
be particularly useful for open-source projects where newcomers face barriers, such as
a lack of orientation during on-boarding and poor project documentation [Ford et al.
2018, Steinmacher et al. 2019].

Practitioners interested in discussions about software development may access
some popular Gitter chat rooms. At the time this research was conducted, the most
popular chat rooms (number of messages or number of users) were flutter/flutter (toolkit
for development of user interfaces)15, webpack/webpack (a build automation tool),32

cypress-io/cypress (a software testing framework)33 and akka/akka (toolkit for building
reactive applications in Java and Scala).34

31https://gitter.im/laravel/laravel
32https://gitter.im/webpack/webpack
33https://gitter.im/cypress-io/cypress
34https://gitter.im/akka/akka

https://gitter.im/cypress-io/cypress

58 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Furthermore, the map of themes covered by developer chat rooms in Gitter rep-
resents a contextualized description of instant messaging communication of developer
communities. This map of themes can be used to improve the management of the
knowledge within such communities, a type of knowledge that is normally unstructured
and hard to retrieve. For example, these themes could be used to tag communities,
making them easier to be found in web searches.

4.4.3 Implications for Researchers

In general, researchers may use Gitter to engage and identify the latest trends and
challenges emerging in developer communities. Based on the year of creation of chat
rooms, researchers can check when and which themes appeared and, based on themes’
popularity, engagement and activity (see details in Section 4.3.5), how themes changed
in developer communication over time. For example, we observed the following:

• Themes regarding jobs, coding, machine learning, graphical user interface, Block-
chain, service-oriented architecture, design patterns, software maintenance, soft-
ware documentation, version control and web development started to appear in
2014, the same year as Gitter was released.

• In 2015, some of the themes were games, testing, workshops, software testing,
security, back-end, big data, cloud computing, management resources, software
deployment, integrated development environment (IDE), mobile development,
application programming interface (API), and service-oriented architecture.

• Between the years 2016 and 2018, few new themes appeared, such as code quality,
multi-platform development and reverse engineering in 2016.

Therefore, researchers can use the results of our study as a starting point for un-
derstanding how developer communication has been evolving based on the themes
discussed.

The insights and map of themes obtained in this study can be used for further
analysis (e.g., topics discussed in communities and structure of discussions) of developer
communication, focusing on the characterization of the knowledge shared. Furthermore,
Chatterjee et al. [2019] suggest linking information in Stack Overflow posts to information
in Slack communities, since information on both platforms address similar concerns.
Therefore, the map of themes identified in our study could be used to semantically
link the content from instant messaging and online discussion forums. Additionally,
we can use the map of themes in supervised information retrieval techniques applied
to developer communication (e.g., to develop a machine learning classifier to identify
relevant themes in communities).

4.4 DISCUSSION 59

By associating our themes with public Slack chat rooms, we demonstrated how
applicable are the themes to other chat rooms (173 chat rooms out of 184 were associated
to our themes). Researchers may identify further software engineering themes in a
different sample of chat rooms of Gitter or in chat rooms of different instant messaging
tools (e.g., Microsoft Teams, Spectrum, Discord or chat rooms from Stack Overflow)
using different research methods (e.g., Design Science Research [Hevner et al. 2004] to
develop a theoretical framework of themes in instant messaging). However, researchers
may need to adjust the data analysis process and may not be able to strictly replicate
our study. For example, even though chat rooms on Stack Overflow (used in previous
studies such as Ford et al. [2018]) allow software developers to share knowledge on
specific topics (e.g., RUST programming language35), an analysis based on users and
activity may be difficult since number of users per chat room is not available. In Stack
Overflow chat rooms everyone (logged in or not) can read discussions, but only users
with 20 reputation points36 can send messages. Further studies may, for example,
explore how the themes in our map appear in Stack Overflow chat rooms considering
the reputation of users (i.e. that users have to contribute to the Stack Overflow web
forum first before contributing to discussions in chat rooms).

Additionally, researchers may associate and expand our themes using other data sets.
For example, Chatterjee et al. [2020] created a data set with disentangled messages of
three public Slack communities; Parra et al. [2020] created a data set with the messages
of ten Gitter communities, where messages received a label identifying their purpose on
the conversation.

4.4.4 Limitations and Validity

Since we followed a qualitative approach in our study, typical strategies for general-
izing findings (such as lab-to-field, sample-based or case-based generalization strate-
gies [Wieringa and Daneva 2015]) are not applicable. Therefore, the potential threats
to validity of our study are related to trustworthiness. Trustworthiness typically refers
to four aspects: credibility, transferability, dependability and confirmability [Boyatzis
1998, Korstjens and Moser 2018]. Credibility is about the confidence in the truth-value
of the research findings; transferability is about the applicability of the study results
and to what extent the findings interest other researchers and contexts; dependability
and confirmability are about whether methods were applied correctly and if the results
are grounded in data, not in assumptions [Korstjens and Moser 2018]. In general,
dependability and confirmability require that researchers check procedures and the data
analyzed with study participants [Korstjens and Moser 2018]. Since we did not involve
any participants, we only discuss credibility and transferability.

35https://chat.stackoverflow.com/rooms/62927/rust
36https://stackoverflow.com/help/whats-reputation

https://chat.stackoverflow.com/rooms/62927/rust
https://stackoverflow.com/help/whats-reputation

60 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Credibility: Due to the nature of the data analyzed (chat room names and descrip-
tions are short text with fewer than 100 words) and the importance of contextualizing
themes and understanding relationships and meanings of themes, we did not use an
automated approach (e.g., topic modeling) for this part of the research presented in the
thesis, but opted for a “manual” reflexive thematic analysis. This analysis also included
the manual analysis of automatically generated summaries of chat rooms. We therefore
analyzed a limited number of chat rooms. However, we recognize that by analyzing
more Gitter chat rooms, we may have identified different themes. At the same time
we acknowledge that, according to Braun and Clarke [2021b], data saturation may not
be a useful concept in thematic analysis studies because the idea of saturation may be
“incompatible” with the idea of reflexive thematic analysis. Braun and Clarke [2021b]
describe that in thematic analysis codes are not fixed, over time and during analysis they
can evolve, expand, contract, be collapsed with other codes or be abandoned. This is
because the coding process is often more interpretive and conceptual across an analysis
and its developments and refinements reflect the researchers’ deepening engagement
with their data. In general, data saturation is typically achieved when “nothing new”
can be identified in data, which is not necessarily needed for reflexive thematic analysis
studies [Braun and Clarke 2021b]. During Step 5 of our thematic analysis, we rechecked
our map of themes many times until we could not find other opportunities for changing
it. This does not necessarily mean that we observed saturation, but it means that we
reached a stage where we could not develop more of our map of themes.

To ensure credibility we used triangulation and persistent observation. For tri-
angulation we applied data and investigator triangulation. In data triangulation, we
collected data from different time periods, different chat rooms and consulted additional
sources, e.g., related GitHub/Gitlab repositories. In investigator triangulation, two
researchers analyzed the data and three researchers reviewed the results. For persistent
observation, which is the constant review of the data collection and analysis [Korstjens
and Moser 2018], we constantly reviewed the description of themes and reassigned them
as necessary.

We acknowledge that our map of themes is a snapshot of themes covered by
chat rooms of Gitter at the time of the study, influenced by our understanding and
interpretation of the data (as described by Braun and Clarke [2021b]). Since new
chat rooms may appear and existing chat rooms might disappear, as much as other
researchers may engage with the data and identify themes differently, we recognize that
replications of our study may find different themes. Similarly, the description of chat
rooms, etc. may not always be up-to-date or may change over time. We checked the
Gitter API documentation37 and unfortunately there is no tracking for the date of a
chat room’s creation and description update to get a “time stamp” of the analyzed data.

37https://developer.gitter.im/docs/rooms-resource

https://developer.gitter.im/docs/rooms-resource

4.4 DISCUSSION 61

Similarly, we acknowledge that the results of our study may have been influenced
by our selection of chat rooms. By using different keywords in the Gitter search (e.g.,
“agile”) to obtain a list of chat rooms (as discussed in Section 4.2.1.2, Gitter does not
provide a list of chat rooms but only allows browsing rooms), we may have found more
chat rooms related to software development processes or to themes that we did not
include in our map of themes. However, running a search with “agile” as search keyword
led to only one chat room that met our selection criteria for Gitter chat rooms (see
Section 4.2.1). Regarding Gitter chat rooms, we recognize that users may be members
of more than one chat room. Therefore, popularity and engagement, i.e. metrics based
on the number of users, consider the overall number of users per chat room instead of
the number of unique users. Hence, a user of multiple chat rooms related to a theme
contributed to higher popularity and engagement of themes related to these chat rooms.

Furthermore, even though the SWEBOK captures different broad knowledge areas
that software engineering professionals should be aware of and which describe the
different types of information needs, we also acknowledge that not all of its knowledge
areas are covered by our themes (see details in Section 4.3.3). For example, we did not
map themes to “9 Software Engineering Models and Methods”, which are generally
relevant in daily tasks of software development projects. To check whether these themes
are really not covered in Gitter chat rooms or if we missed them because of our sampling,
we searched Gitter chat rooms using explicit keywords such as “process”, “model” and
“method” (i.e. keywords practitioners may use to find chat rooms related to these
themes). The chat rooms we found were not describing software engineering processes,
models and methods as defined in SWEBOK chapters. For example, rooms we found
about “process” were about software processes, threads, etc., rather than development
processes; similarly, chat rooms found with keyword “method” were about Java methods
or methods to implement a certain feature, rather than software development methods.

Transferability: Although we checked the applicability of themes identified in
Gitter with another instant messaging tool (Slack), we cannot transfer our findings to
other chat rooms or to other developer communication channels. Besides the different
contexts between the chat rooms in these instant messaging tools, we did not try to
identify themes in Slack because we could not access as much information about chat
rooms as in Gitter (e.g., number of users of chat rooms, etc.) due to data access
restrictions of Slack [Costa Silva et al. 2019]. This may have impacted the association
of themes to Slack chat rooms. To clarify the context of chat rooms in these tools,
we described the chat rooms of Gitter and Slack in detail, considering the metadata
available, the procedures used to collect and analyze data and the limitations related to
our findings.

We acknowledge bias and the influence of the authors’ experience with software
engineering in the identification of themes (i.e. researchers with different experiences
may identify different themes). One of the authors who identified the themes has

62 4 THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

less experience with software engineering than the other authors. On the other hand,
reflexive thematic analysis assumes that the background of researchers may affect
the identification of themes [Braun and Clarke 2006]. Furthermore, as mentioned in
Section 4.2, we considered the evaluation of thematic analysis studies proposed by
[Braun and Clarke 2021a] as a guideline for reporting our study.

Regarding the abstractive summaries used with the memos for the thematic analysis,
we acknowledge that BART generates better summaries (in terms of readability and
cohesiveness) with different words and sentences that do not belong to the original text
by using more flexible expressions based on paraphrasing, compression or fusion [El-
Kassas et al. 2021]. However, abstractive techniques can generate summaries with
repeated words [El-Kassas et al. 2021]. Regarding the quality of summaries measured
with ROUGE scores and considering the scores from the study of Paulus et al. [2018],
our ROUGE scores were at the lower end of the recommended spectrum (e.g., some
below 0.4 - see an overview of these scores in Table 4.2). This is particularly true for
recall scores because there were few overlapping n-grams between our summaries and
the original text (i.e. the messages of chat rooms). Still, given the precision the ROUGE
scores gave us a “sense” of the quality of our summaries. Additionally, by reading the
summaries we were able to judge that they were comprehensible enough to supporting
our data analysis (more about the evaluation of abstractive summaries can be found in
Gupta and Gupta [2019], Schluter [2017]). In our study we used the summaries as a
complementary source of data, rather than the sole source of data.

4.5 CONCLUSIONS

In this chapter we described how we applied thematic analysis to 87 Gitter chat rooms to
identify the themes they cover. Our insights offer a first step towards comprehending the
characteristics of the knowledge shared in developer instant messaging communication.
We noticed that in general, the themes were consistent with topics in the SWEBOK,
a standardized knowledge framework for software engineering (e.g., software design
and construction) and could be related to developer knowledge needs, such as software
development practices, version control systems and design patterns. The map of themes
we present in this study represents a contextualized description of instant messaging
communication of developers in the context of the selected chat rooms. Considering that
the knowledge presented in discussions of developer communications is unstructured
and hard to retrieve, this map of themes can be used to improve utilizing the knowledge
within such communities, for example, by semantically tagging chat rooms.

Our results indicate that, in the context of our study, chat rooms in developer instant
messaging communication are mostly about software development technologies and
practices rather than development processes. However, as mentioned in Section 4.4.4,
this finding maybe have been influenced by our selection of chat rooms. When comparing

4.5 CONCLUSIONS 63

themes to SWEBOK chapters and subsections (see Section 4.3.3), we noticed that themes
were mostly represented by topics in (sub)sections under the chapters related to software
construction and design. Regarding developer information needs (see Section 4.3.4),
our themes could be related to knowledge needs related to programming and testing.
We also found that popular, active and engaging themes were related to lower-level
implementation-related concerns (e.g., libraries for web development and integrated
development environment) and practices (e.g., coding and testing).

By associating themes from Gitter to Slack chat rooms, we also verified the oc-
currence of themes related to software development technologies and practices. For
example, PD2.1 Coding and SD5.4 Web development were also themes in Slack chat
rooms. On the other hand, we observed a difference between Gitter and Slack chat
rooms: In Slack, themes related to professional development appeared frequently (PD1.1
Jobs and PD1.2 Workshops). This may indicate that instant messaging is important
for developers to keep informed about events and new job opportunities. Few chat
rooms in Gitter are related to processes for software development, as their main topic
of discussion. In Gitter we had one chat room for processes, while in Slack chat rooms
there were twelve.

Since we could not map our themes to some sections of SWEBOK (see details in
Section 4.3.3), further studies may investigate why software engineering themes such as
models and methods are not commonly discussed by developers in instant messaging
communication. For example, we can explore if (and why) developers discuss less about
higher-level process-related aspects of software development, and if this is because they
are interested in more concrete (and implementation-related) questions and problems.
For example, Elmezouar et al. [2021] found that developers use Gitter chat rooms
to support development activities such as “issue resolution” and “project tracking”.
Additionally, given that the analyzed chat rooms involve open source systems, we could
explore if there is a lack of awareness related to processes or a lack of interest in models
and methods.

In this chapter, we analyzed the content of chat rooms manually. While a manual
analysis allowed us to obtain a deep understanding of contextualized information, it is
difficult to analyze large sets of communication data and do so effectively and efficiently.
Therefore, we explore topic modeling as one way to automatically analyze the content
of chat rooms. As a first step towards utilizing topic modeling for our own work
(i.e. identifying topics in the messages of the chat rooms analyzed in this chapter), in
Chapter 5 we present a literature survey (RQ3) that we performed to identify how topic
modeling techniques have been used in research engineering studies.

Chapter 5

TOPIC MODELING IN SOFTWARE ENGINEERING
RESEARCH

Adapted from publication: Silva, C. C., Galster, M., & Gilson, F. (2021). Topic
modeling in software engineering research. Empirical Software Engineering, 26(6), 120,
pp. 1-65. https: // doi. org/ 10. 1007/ s10664-021-10026-0

5.1 INTRODUCTION

Text mining is about searching, extracting and processing text to provide meaningful
insights from textual sources based on a certain goal. Techniques for text mining include
natural language processing (NLP) to process, search and understand the structure of
text (e.g., part-of-speech tagging), web mining to discover information resources on the
web (e.g., web crawling), and information extraction to extract structured information
from unstructured text and relationships between pieces of information (e.g., co-reference,
entity extraction) [Miner et al. 2012]. Text mining has been widely used in software
engineering research [Bi et al. 2018], for example, to uncover architectural design
decisions in developer communication [Soliman et al. 2016] or to link software artifacts
to source code [Asuncion et al. 2010].

Topic modeling is a text mining and concept extraction method that extracts topics
(i.e. coherent word clusters) from large corpora of textual documents to discovery
hidden semantic structures in text [Miner et al. 2012]. An advantage of topic modeling
over other techniques is that it helps analyzing long texts [Miner et al. 2012, Treude
and Wagner 2019], creates clusters as “topics” (rather than individual words) and is
unsupervised [Miner et al. 2012].

Topic modeling has become popular in software engineering research [Chen et al.
2016, Sun and Stolee 2016]. For example, Sun and Stolee [2016] found that topic
modeling had been used to support source code comprehension, feature location and
defect prediction. Additionally, Chen et al. [2016] found that many repository mining
studies apply topic modeling to textual data such as source code and log messages

https://doi.org/10.1007/s10664-021-10026-0

5.1 INTRODUCTION 65

to recommend code refactoring [Bavota et al. 2014b] or to localize bugs [Lukins et al.
2010].

Probabilistic topic models such as Latent Semantic Indexing (LSI) [Deerwester
et al. 1990] and Latent Dirichlet Allocation (LDA) [Blei et al. 2003b] discover topics in
a corpus of textual documents, using the statistical properties of word frequencies and
co-occurrences [Lin et al. 2014]. However, Agrawal et al. [2018] warn about systematic
errors (e.g., generation of less distinct topics due to topic modeling instability) in the
analysis of LDA topic models that limit the validity of topics. Lin et al. [2014] also
advise that classical topic models usually generate sub-optimal topics when applied “as
is” to small amounts or short text documents.

Considering the limitations of topic modeling techniques and topic models on the
one hand and their potential usefulness in software engineering on the other hand, the
research question explored in this chapter is: (RQ3) How has topic modeling been
applied in software engineering research?. In detail, we explore the following
research questions:

• RQ3.1 Which topic modeling techniques have been used and for what
purpose? There are different topic modeling techniques (see Section 5.2), each
with their own limitations and constraints [Chen et al. 2016]. This RQ aims at
understanding which topic modeling techniques have been used (e.g., LDA, LSI)
and for what purpose studies applied such techniques (e.g., to support software
maintenance tasks). Furthermore, we analyze the types of contributions in studies
that used topic modeling (e.g., a new approach as a solution proposal, or an
exploratory study).

• RQ3.2 What are the inputs into topic modeling? Topic modeling tech-
niques accept different types of textual documents and require the configuration
of parameters (see Section 5.2.1). Carefully choosing parameters (such as the
number of topics to be generated) is essential for obtaining valuable and reliable
topics [Agrawal et al. 2018, Treude and Wagner 2019]. This RQ aims at analyzing
types of textual data (e.g., source code), corpus size, actual documents (e.g., a
Java class or an individual Java method) and configured parameters used for topic
modeling to address software engineering problems.

• RQ3.3 How is data pre-processed for topic modeling? Topic modeling
requires that the analyzed text is pre-processed (e.g., by removing stop words) to
improve the quality of the produced output [Aggarwal and Zhai 2012, Bi et al.
2018]. This RQ aims at analyzing how previous studies pre-processed textual data
for topic modeling, including the steps for cleaning and transforming text. This
will help us understand if there are specific pre-processing steps for a certain topic
modeling technique or types of textual data.

66 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

• RQ3.4 How are generated topics named? This RQ aims at analyzing if and
how topics were named in studies. Giving meaningful names to topics may be
difficult but may be required to help humans comprehend topics. For example,
naming topics can provide a high-level view on topics discussed by developers
in Stack Overflow (a Q&A website) [Barua et al. 2014] or by end mobile app
users in tweets [Mezouar et al. 2018]. Analysts (e.g., developers interested in what
topics are discussed on Stack Overflow or app reviews) can then look at the name
of the topic (i.e. its “label”) rather than the cluster of words. These labels or
names must capture the overarching meaning of all words in a topic. We describe
different approaches to naming topics, such as manual or automated labeling with
names based on the most frequent words of a topic [Hindle et al. 2013].

In this chapter we contribute an overview of the use of topic modeling in 111 papers
published between 2009 and 2020 in highly ranked venues of software engineering (five
journals and five conferences). We describe characteristics and limitations in the use of
topic models and discuss (a) the appropriateness of topic modeling techniques, (b) the
importance of pre-processing, (c) challenges related to defining meaningful topics, and
(d) the importance of context when manually naming topics. By answering RQ3, we
found that (1) LDA and LDA-based techniques are the most frequent topic modeling
techniques; (2) developer communication and bug reports have been modeled most; (3)
data pre-processing, corpus size and modeling parameters vary quite a bit and are often
vaguely reported; and (4) manual topic naming (such as deducting names based on
frequent words in a topic) is common.

5.2 TOPIC MODELING

Topic modeling aims at automatically finding topics, typically represented as clusters
of words, in a given textual document [Bi et al. 2018]. Unlike (supervised) machine
learning-based techniques that solve classification problems, topic modeling does not
use tags, training data or predefined taxonomies of concepts [Bi et al. 2018]. Based
on the frequencies of words and frequencies of co-occurrence of words within one or
more documents, topic modeling clusters words that are often used together [Barua
et al. 2014, Treude and Wagner 2019]. Figure 5.1 illustrates the general process of topic
modeling, from a raw corpus of documents (“Data input”) to topics generated for these
documents (“Output”). Below we briefly introduce the basic concepts and terminology
of topic modeling (based on Chen et al. [2016]):

• Word w: a string of one or more alphanumeric characters (e.g., “software” or
“management”);

• Document d: a set of n words (e.g., a text snippet with five words: w1 to w5);

5.2 TOPIC MODELING 67

Figure 5.1 General topic modeling process

• Corpus C: a set of t documents (e.g., nine text snippets: d1 to d9);

• Vocabulary V : a set of m unique words that appear in a corpus (e.g., m = 80
unique words across nine documents);

• Term-document matrix A: an m by t matrix whose Ai,j entry is the weight
(according to some weighting function, such as term-frequency) of word wi in
document dj . For example, given a matrix A with three words and three documents
as

d1 d2 d3

w1 = code 5 1 4
w2 = develop 4 3 1

w3 = test 1 2 1

A1,1 = 5 indicates that “code” appears five times in d1, etc.;

• Topic z: a collection of terms that co-occur frequently in the documents of a
corpus. Considering probabilistic topic models (e.g., LDA), z refers to an m-length
vector of probabilities over the vocabulary of a corpus. For example, in a vector
z1 = (code : 0.35; test : 0.17; bug : 0.08), 0.35 indicates that when a word is picked
from a topic z1, there is a 35% chance of drawing the word “code”, etc.;

• Topic-term matrix ϕ (or T): a k by m matrix with k as the number of topics
and ϕi,j the probability of word wj in topic zi. Row i of ϕ corresponds to zi. For
example, given a matrix ϕ as

w1 = code w2 = develop w3 = test

z1 0.25 0.10 0.80
z2 0.10 0.00 0.05
z3 0.05 0.20 0.09

68 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

0.05 in the first column indicates that the word “code” appears with a probability
of 0.5% in topic z3, etc.;

• Topic membership vector θd: for document di, a k-length vector of probabilities
of the k topics. For example, given a vector θdi

= (z1 : 0.25; z2 : 0.10; z3 : 0.08),
0.25 indicates that there is a 25% chance of selecting topic z1 in di;

• Document-topic matrix θ (or D): an n by k matrix with θi,j as the probability
of topic zj in document di. Row i of θ corresponds to θdi

. For example, given a
matrix θ as

z1 z2 z3

d1 0.25 0.10 0.80
d2 0.10 0.00 0.05
d3 0.05 0.00 0.00

0.10 in the first column indicates that document d2 contains topic z1 with proba-
bility of 10%, etc.

5.2.1 Data Input

Data used as input into topic modeling can take many forms. This requires decisions
on what exactly are documents and what the scope of individual documents is [Miner
et al. 2012]. Therefore, we need to determine which unit of text shall be analyzed (e.g.,
subject lines of e-mails from a mailing list or the body of emails).

To model topics from raw text in a corpus C (see Figure 5.1), the data needs to be
converted into a structured vector-space model, such as the term-document matrix A.
This typically also requires some pre-processing. Although each text mining approach
(including topic modeling) may require specific pre-processing steps, there are some
common steps, such as tokenization, stemming and removing stop words [Miner et al.
2012].

5.2.2 Modeling

Different models can be used for topic modeling. Models typically differ in how they
model topics and underlying assumptions. For example, besides LDA and LSI men-
tioned before, other examples of topic modeling techniques include Probabilistic Latent
Semantic Indexing (pLSI) [Hofmann 1999]. LSI and pLSI reduce the dimensionality of
A using Singular Value Decomposition (SVD) [Hofmann 1999]. Furthermore, variants of
LDA have been proposed, such as Relational Topic Models (RTM) [Chang and Blei 2010]
and Hierarchical Topic Models (HLDA) [Blei et al. 2003a]. RTM finds relationships
between documents based on the generated topics (e.g., if document d1 contains the

5.3 RELATED WORK 69

topic “microservices”, document d2 contains the topic “containers” and document dn

contains the topic “user interface”, RTM will find a link between documents d1 and
d2 [Chang and Blei 2010]). HLDA discovers a hierarchy of topics within a corpus, where
each lower level in the hierarchy is more specific than the previous one (e.g., a higher
topic “web development” may have subtopics such as “front-end” and “back-end”).

Topic modeling techniques need to be configured for a specific problem, objectives
and characteristics of the analyzed text [Agrawal et al. 2018, Treude and Wagner
2019]. For example, Treude and Wagner [2019] studied parameters, characteristics
of text corpora and how the characteristics of a corpus impact the development of a
topic modeling technique using LDA. Treude and Wagner [2019] found that textual
data from Stack Overflow (e.g., threads of questions and answers) and GitHub (e.g.,
README files) require different configurations for the number of generated topics
(k). Similarly, Barua et al. [2014] argued that the number of topics depends on the
characteristics of the analyzed corpora. Furthermore, the values of modeling parameters
(e.g., LDA’s hyperparameters α and β which control an initial topic distribution) can
also be adjusted depending on the corpus to improve the quality of topics [Agrawal
et al. 2018].

5.2.3 Output

By finding words that are often used together in documents in a corpus, a topic modeling
technique creates clusters of words or topics zk. Words in such a cluster are usually
related in some way, therefore giving the topic a meaning. For example, we can use a
topic modeling technique to extract five topics from unstructured document such as a
combination of Stack Overflow posts. One of the clusters generated could include the
co-occurring words “error”, “debug” and “warn”. We can then manually inspect this
cluster and by inference suggest the label “Exceptions” to name this topic [Barua et al.
2014].

5.3 RELATED WORK

5.3.1 Literature Reviews

Sun and Stolee [2016] and Chen et al. [2016], similar to our RQ3, surveyed software
engineering papers that applied topic modeling. Table 5.1 shows a comparison between
our study and prior reviews. As shown in the table, Sun and Stolee [2016] focused
on finding which software engineering tasks have been supported by topic models
(e.g., support source code comprehension, feature location, traceability link recovery,
refactoring, software testing, developer recommendations, software defects prediction
and software history comprehension), and Chen et al. [2016] focused on characterizing
how studies used topic modeling to mine software repositories.

70 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Furthermore, as shown in Table 5.1, in comparison to Sun and Stolee [2016] and
Chen et al. [2016], our study (RQ3) surveys the literature considering other aspects of
topic modeling such as data inputs (RQ3.2), data pre-processing (RQ3.3), and topic
naming (RQ3.4). Additionally, we searched for papers that applied topic models to any
type of data (e.g., Q&A websites) rather than to data in software repositories. We also
applied a different search process to identify relevant papers.

Although some of the search venues of these two previous studies and our study
(RQ3) overlap, our search focused on specific venues. We also searched papers published
between 2009 and 2020, a period which only partially overlaps with the searches
presented by Sun and Stolee [2016] and Chen et al. [2016].

Regarding the data analyzed in previous studies, Chen et al. [2016] analyzed two
aspects not covered in our study for RQ3: (a) tools to implement topic models in papers,
and (b) how papers evaluated topic models (note that even though we did not cover
this aspect explicitly, we checked whether papers compared different topic models, and
if so, what metrics they used to compare topic models). However, different to Chen
et al. [2016] we analyzed (a) the types of contribution of papers (e.g., a new approach);
(b) details about the types of data and documents used in topic modeling techniques,
and (c) whether and how topics were named. Additionally, we extend the survey of
Chen et al. [2016] by investigating hyperparameters (see Section 5.2.1) of topic models
and data pre-processing in more detail. We provide more details of our research method
in Section 5.4.

Table 5.1 Comparison of RQ3 to previous reviews

[Sun and Stolee
2016] [Chen et al. 2016] Study for RQ3

Reviewed time range 2003-2015 1999-2014 2009-2020

Search venues 4 journals
9 conferences

6 journals
9 conferences

5 journals
5 conferences

Papers analysed 38 167 111
Analysed data items

Topic modeling technique ✓ ✓ ✓

Supported tasks Specific (e.g., fea-
ture localization)

Specific and high-level
(e.g., feature localization
(specific) under concept
localization (high-level))

High-level (e.g.,
documentation)

Type of contribution - - ✓
Tools used - ✓ -
Types of data and docu-
ments - - ✓

Parameters used - Number of topics Number of topics
Hyperparameters

Data pre-processing General analysis Detailed analysis
Topic naming - - ✓
Evaluation of topic models - ✓ -

5.3 RELATED WORK 71

5.3.2 Meta-studies

In addition to literature surveys, there are “meta-studies” on topic modeling that address
and reflect on different aspects of topic modeling more generally (and are not considered
primary studies for the purpose of our review, see our inclusion and exclusion criteria
for RQ3 in Section 5.4). In the following paragraphs we organized their discussion into
three parts: (1) studies about parameters for topic modeling, (2) studies on topic models
based on the type of analyzed data, and (3) studies about metrics and procedures to
evaluate the performance of topic models. We refer to these studies in Chapter 5.

Regarding parameters used for topic modeling, Treude and Wagner [2019] performed
a broad study on LDA parameters to find optimal settings when analyzing GitHub
and Stack Overflow text corpora. The authors found that popular rules of thumb for
topic modeling parameter configuration were not applicable to their corpora, which
required different configurations to achieve good model fit. They also found that it is
possible to predict good configurations for unseen corpora reliably. Agrawal et al. [2018]
also performed experiments on LDA parameter configurations and proposed LDADE, a
tool to tune the LDA parameters. The authors found that due to LDA topic model
instability, using standard LDA with “off-the-shelf” settings is not advisable. We also
discuss parameters for topic modeling in Section 5.2.2.

For studies on topic models based on the analyzed data, researchers have investigated
topic modeling involving short texts (e.g., a tweet) and how to improve the performance
of topic models that work well with longer text (e.g., a book chapter) [Lin et al. 2014].
For example, the study of Qiang et al. [2022] compared short-text topic modeling
techniques and developed an open-source library of the short-text models. Another
example is the work of Mahmoud and Bradshaw [2017] who discussed topic modeling
techniques specific for source code.

Finally, regarding metrics and procedures to evaluate the performance of topic
models, some works have explored how semantically meaningful topics are for hu-
mans [Chang et al. 2009]. For example, Poursabzi-Sangdeh et al. [2021] discuss the
importance of interpretability of models in general (also considering other text mining
techniques). Another example is the work of Chang et al. [2009] who presented a method
for measuring the interpretability of a topic model based on how well words within
topics are related and how different topics are between each other. On the other hand,
as an effort to quantify the interpretability of topics without human evaluation, some
studies developed topic coherence metrics. These metrics score the probability of a pair
of words from topics being found together in (a) external data sources (e.g., Wikipedia
pages) or (b) in the documents used by the model that generated those topics [Röder
et al. 2015]. Röder et al. [2015] combined different implementations of coherence metrics
in a framework. Perplexity is another measure of performance for statistical models
in natural language processing, which indicates the uncertainty in predicting a single

72 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

word [Blei et al. 2003b]. This metric is often applied to compare the configurations of a
topic modeling technique (e.g., Zhao et al. [2020]). Other studies use perplexity as an
indicator of model quality (such as Chen et al. [2019], Yan et al. [2016b]).

5.4 RESEARCH METHOD

We conducted a literature survey to describe how topic modeling has been applied in
software engineering research. To answer the research questions introduced in Section 5.1,
we followed general guidelines for systematic literature review [Kitchenham 2004] and
mapping study methods [Petersen et al. 2015]. This was to systematically identify
relevant works, and to ensure traceability of our findings as well as the repeatability of
our study. However, we do not claim to present a fully-fledged systematic literature
review (e.g., we did not assess the quality of primary studies) or a mapping study (e.g.,
we only analyzed papers from carefully selected venues). Furthermore, we used parts
of the procedures from other literature surveys on similar topics [Bi et al. 2018, Chen
et al. 2016, Sun and Stolee 2016] as discussed throughout this section.

5.4.1 Search Procedure

To identify relevant research, we selected high-quality software engineering publication
venues. This was to ensure that our literature survey includes studies of high quality
and described at sufficient level of detail. We identified venues rated as A and A∗

for Computer Science and Information Systems research in the Excellence Research
for Australia (CORE) ranking [ARC 2012]. Only one journal was rated B (IST), but
we included it due to its relevance for software engineering research. These venues
are a subset of venues also searched by related previous literature surveys [Chen et al.
2016, Sun and Stolee 2016], see Section 5.3.1. The list of searched venues includes five
journals: (1) Empirical Software Engineering (EMSE); (2) Information and Software
Technology (IST); (3) Journal of Systems and Software (JSS); (4) ACM Transactions
on Software Engineering & Methodology (TOSEM); (5) IEEE Transaction on Soft-
ware Engineering (TSE). Furthermore, we included five conferences: (1) International
Conference on Automated Software Engineering (ASE); (2) ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM); (3) Interna-
tional Symposium on the Foundations of Software Engineering / European Software
Engineering Conference (ESEC/FSE); (4) International Conference on Software Engi-
neering (ICSE); (5) International Workshop/Working Conference on Mining Software
Repositories (MSR).

We performed a generic search on SpringerLink (EMSE), Science Direct (IST,
JSS), ACM DL (TOSEM, ESEC/FSE, ASE, ESEM, ICSE, MSR) and IEEE Xplore
(TSE, ASE, ESEM, ICSE, MSR) using the venue (journal or conference) as a high-level

5.4 RESEARCH METHOD 73

filtering criterion. Considering that the proceedings of ASE, ESEM, ICSE and, MSR are
published by ACM and IEEE, we searched these venues on ACM DL and IEEE Xplore
to avoid missing relevant papers. We used a generic search string (“topic model[l]ing”
and “topic model”). Furthermore, in order to find studies that apply specific topic
models but do not mention the term “topic model”, we used a second search string with
topic model names (“lsi” or “lda” or “plsi” or “latent dirichlet allocation” or “latent
semantic”). This second string was based on the search string used by Chen et al.
[2016], who also present a review and analysis of topic modeling techniques in software
engineering (see Section 5.3). We applied both strings to the full text and metadata
of papers. We considered works published between 2009 and 2020. The search was
performed in March 2021. Limiting the search to the last twelve years allowed us to
focus on more mature and recent works.

5.4.2 Study Selection Criteria

We only considered full research papers since full papers typically report (a) mature
and complete research, and (b) more details about how topic modeling was applied.
Furthermore, to be included, a paper should either apply, experiment with, or propose a
topic modeling technique (e.g., develop a topic modeling technique that analyzes source
code to recommend refactorings [Bavota et al. 2014b]), and meet none of the exclusion
criteria: (a) the paper does not apply topic models (e.g., it applies other text mining
techniques and only cites topic modeling in related or future work, such as the paper by
Lian et al. [2020]; (b) the paper focuses on theoretical foundation and configurations for
topic models (e.g., it discusses how to tune and stabilize topic models, such as Agrawal
et al. [2018] and other meta-studies listed in Section 5.3.2); and (c) the paper is a
secondary study (e.g., a literature review like the studies discussed in Section 5.3.1).
We evaluated inclusion and exclusion criteria by first reading the abstracts and then
reading full texts.

The search with the first search string (see Section 5.4.1) resulted in 215 papers and
the search with the second search string resulted in an additional 324 papers. Applying
the filtering outlined above resulted in 114 papers. Furthermore, we excluded three
papers from the final set of papers: (a) Hindle et al. [2011], (b) Chen et al. [2012], and
(c) Alipour et al. [2013]. These papers were earlier and shorter versions of follow-up
publications; we considered only the latest publications of these papers [Chen et al.
2017, Hindle et al. 2013, 2016]. This resulted in a total of 111 papers for analysis.

5.4.3 Data Extraction and Synthesis

We defined data items to answer the research questions and characterize the selected
papers (see Table 5.2). The extracted data was recorded in a spreadsheet for analysis

74 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

(raw data are available online1). One of the authors extracted the data and the other
authors reviewed it. In case of ambiguous data, all authors discussed to reach agreement.
To synthesize the data, we applied descriptive statistics and qualitatively analyzed the
data as follows:

Table 5.2 Data extraction form

Item Description RQ

Year Publication year n/a
Author(s) List of all authors n/a
Title Title of paper n/a
Venue Publication venue n/a
Technique Topic modeling technique used RQ3.1

Supported tasks Development tasks supported by topic modeling
(e.g., to predict defects) RQ3.1

Type of contribu-
tion

General outcome of study (e.g., a new approach
or an empirical exploration) RQ3.1

Type of data Type of data used for topic modeling (e.g., source
code and commit messages) RQ3.2

Corpus size Total number of documents in the corpus (or cor-
pora) used in topic modeling RQ3.2

Document Documents in corpus, i.e. “instances” of type of
data (e.g., Java methods) RQ3.2

Parameters Topic modeling parameters and their values (e.g.,
number of topics) RQ3.2

Pre-processing Pre-processing of textual (e.g., tokenization and
stop words removal) RQ3.3

Topic naming How topics were named (e.g., manual labeling by
domain experts) RQ3.4

• RQ3.1: Regarding the data item “Technique”, we identified the topic modeling
techniques applied in papers. For the data item “Supported tasks”, we assigned
to each paper one software engineering task. Tasks emerged during the analysis
of papers (see more details in Section 5.5.2.2). We also identified the general
study outcome in relation to its goal (data item “Type of contribution”). When
analyzing the type of contribution, we also checked whether papers included a
comparison of topic modeling techniques (e.g., to select the best technique to be
included in a newly proposed approach). Based on these data items we checked
which techniques were the most popular, whether techniques were based on other
techniques or used together, and for what purpose topic modeling was used.

• RQ3.2: We identified types of data (data item “Type of data”) in selected papers
as listed in Section 5.5.3.1. Considering that some papers addressed one, two or
three different types of data, we counted the frequency of types of data and related
them with the document. For the data item “Corpus size”, we identified how
many documents were included in the corpus (or corpora) inputted to the topic
model, if reported in the paper (not all papers reported corpus size). Regarding

1https://zenodo.org/record/5280890

https://zenodo.org/record/5280890

5.5 RESULTS 75

Table 5.3 Number of papers by venue and year

Year
Venue 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

ASE 0 0 1 1 0 0 0 0 0 0 0 0 2
EMSE 2 0 1 1 3 5 2 3 4 4 4 3 32
ESEC
FSE 0 0 0 0 0 1 0 2 1 1 1 1 7

ESEM 0 0 0 0 0 0 0 1 0 3 0 1 5
ICSE 0 1 0 1 2 2 0 1 3 1 1 1 13
IST 0 1 0 0 0 0 2 4 3 2 3 2 17
JSS 0 0 0 0 0 0 1 2 4 2 3 0 12
MSR 1 0 2 0 2 2 2 2 0 1 1 3 16
TOSEM 0 0 0 0 1 1 0 0 0 0 1 0 3
TSE 0 0 0 0 1 1 0 0 1 1 0 0 4
Total 3 2 4 3 9 12 7 15 16 15 14 11 111

“Document”, we identified the textual document and (if reported in the paper) its
length. For the data item “Parameters”, we identified whether papers described
modeling parameters and if so, which values were assigned to them.

• RQ3.3: Considering that some papers may have not mentioned any pre-processing,
we first checked which papers described data pre-processing. Then, we listed all
pre-processing steps found and counted their frequencies.

• RQ3.4: Considering the papers that described topic naming, we analyzed how
generated topics were named (see Section 5.5.5). We used three types of approaches
to describe how topics were named: (a) Manual - manually analysis and labeling
of topics; (b) Automated - use automated approaches to label names to topics;
and (c) Manual & Automated - mix of both manual and automated approaches
to analyse and name topics. We also described the procedures performed to name
topics.

5.5 RESULTS

5.5.1 Overview

As mentioned in Section 5.4.1, we analyzed 111 papers published between 2009 and
2020 (see Appendix C.1 - Papers Reviewed). Most papers were published after 2013.
Furthermore, most papers were published in journals (68 papers in total, 32 in EMSE
alone), while the remaining 43 papers appeared in conferences (mostly MSR with sixteen
papers). Table 5.3 shows the number of papers by venue and year.

76 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

5.5.2 RQ3.1: Topic Models Used

In this Section we first discuss which topic modeling techniques are used (Subsec-
tion 5.5.2.1). Then, we explore why or for what purpose these techniques were used
(Subsection 5.5.2.2). Finally, we describe the general contributions of papers in relation
to their goals (Subsection 5.5.2.3).

5.5.2.1 Topic Modeling Techniques

The majority of the papers used LDA (80 out of 111), or a LDA-based technique (30 out
of 111), such as Twitter-LDA [Zhao et al. 2011]. The other topic modeling technique
used is LSI. Figure 5.2 shows the number of papers per topic modeling technique. The
total number (125) exceeds the number of papers reviewed (111), because ten papers
experimented with more than one technique: Thomas et al. [2013], De Lucia et al.
[2014], Binkley et al. [2015], Tantithamthavorn et al. [2018], Abdellatif et al. [2019]
and Liu et al. [2020] experimented with LDA and LSI; Chen et al. [2014] experimented
with LDA and Aspect and Sentiment Unification Model (ASUM); Chen et al. [2019]
experimented with Labeled Latent Dirichlet Allocation (LLDA) and Label-to-Hierarchy
Model (L2H); Rao and Kak [2011] experimented with LDA and MLE-LDA; and Hindle
et al. [2016] experimented with LDA and LLDA. ASUM, LLDA, MLE-LDA and L2H
are techniques based on LDA.

Figure 5.2 Number of papers per topic modeling technique

The popularity of LDA in software engineering has also been discussed by others,
e.g., Treude and Wagner [2019]. LDA is a three-level hierarchical Bayesian model [Blei
et al. 2003b]. LDA defines several hyperparameters, such as α (probability of topic zi

in document di), β (probability of word wi in topic zi) and k (number of topics to be
generated) [Agrawal et al. 2018].

Thirty-seven (out of 75) papers applied LDA with Gibbs Sampling (GS). Gibbs
sampling is a Markov Chain Monte Carlo algorithm that samples from conditional

5.5 RESULTS 77

distributions of a target distribution. Used with LDA, it is an approximate stochastic
process for computing α and β [Griffiths and Steyvers 2004]. According to experiments
conducted by Layman et al. [2016], Gibbs sampling in LDA parameter estimation (α
and β) resulted in lower perplexity than the Variational Expectation-Maximization
(VEM) estimations. Perplexity is a standard measure of performance for statistical
models of natural language, which indicates the uncertainty in predicting a single word.
Therefore, lower values of perplexity mean better model performance [Griffiths and
Steyvers 2004].

Thirty papers applied modified or extended versions of LDA (“LDA-based” in
Figure 5.2). Table 5.4 shows a comparison between these LDA-based techniques. Eleven
papers proposed a new extension of LDA to adapt LDA to software engineering problems
(hence the same reference in the third and fourth column of Table 5.4). For example, the
Multi-feature Topic Model (MTM) technique by Xia et al. [2017b], which implements
a supervised version of LDA to create a bug triaging approach. The other 19 papers
applied existing modifications of LDA proposed by others (third column in Table 5.4).
For example, Hu and Wong [2013] used the Citation Influence Topic Model (CITM),
developed by Dietz et al. [2007], which models the influence of citations in a collection
of publications.

The other topic modeling technique, LSI [Deerwester et al. 1990], was published
in 1990, before LDA which was published in 2003. LSI is an information extraction
technique that reduces the dimensionality of a term-document matrix using a reduction
factor k (number of topics) [Deerwester et al. 1990]. Compared to LDA, LDA follows a
generative process that is statistically more rigorous than LSI [Blei et al. 2003b, Griffiths
and Steyvers 2004]. From the 16 papers that used LSI, seven papers compared this
technique to others:

• One paper [Rosenberg and Moonen 2018] compared LSI with other two dimen-
sionality reduction techniques: Principal Component Analysis (PCA) [Wold et al.
1987] and Non-Negative Matrix Factorization (NMF) [Lee and Seung 1999]. The
authors applied these models to automatically group log messages of continuous
deployment runs that failed for the same reasons.

• Four papers applied LDA and LSI at the same time to compare the performance of
these models to Vector Space Model (VSM) [Salton et al. 1975], an algebraic model
for information extraction. These studies supported documentation [De Lucia
et al. 2014]; bug handling [Tantithamthavorn et al. 2018, Thomas et al. 2013];
and maintenance tasks [Abdellatif et al. 2019]).

• Regarding the other two papers, Binkley et al. [2015] compared LSI to Query
likelihood LDA (QL-LDA) and other information extraction techniques to check the
best model for locating features in source code; and Liu et al. [2020] compared LSI

78 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Table 5.4 LDA-based techniques

Technique Comparison to LDA Proposed
by Papers

Labeled LDA
(LLDA)

Supervised approach of LDA that constrains topics
to a set of pre-defined labels

[Ramage
et al. 2009]

[Chen et al.
2019, McIlroy
et al. 2016]

Label-to-
Hierarchy
model (L2H)

Builds concept hierarchy from a set of documents,
where each document contains multiple labels;
learns from label co-occurrence and word usage
to discover a hierarchy of topics associated with
user-generated labels

[Nguyen
et al. 2014]

[Chen et al.
2019]

Semi-
supervised
LDA

Uses samples of labeled documents to train model;
relies on similarity between the unclassified docu-
ments and the labeled documents

[Fu et al.
2015] [Fu et al. 2015]

Twitter-LDA
Short-text topic modeling for tweets; considers
each tweet as a document that contains a single
topic

[Zhao et al.
2011]

[Hu et al.
2019]

BugScout-LDA

Uses two implementations of LDA (one implemen-
tation to model topics from source code and an-
other one to model topics in bug reports) to rec-
ommend a short list of candidate buggy files for a
given bug report

[Nguyen
et al. 2011]

[Nguyen et al.
2011]

O-LDA

Method for feature location that applies strate-
gies for filtering data used as input to LDA and
strategies for filtering the output (words in topics
to describe domain knowledge)

[Liu et al.
2017]

[Liu et al.
2017]

DAT-LDA

Extended LDA to infer topic probability distribu-
tions from multiple data sources (Mashup descrip-
tion text, Web APIs and tags) to support Mashup
service discovery

[Cao et al.
2017]

[Cao et al.
2017]

LDA-GA Determines the near-optimal configuration for
LDA using genetic algorithms

[Panichella
et al. 2013]

[Catolino
et al. 2019,
Panichella
et al. 2013,
Sun et al.
2015, Yang
et al. 2017,
Zhang et al.
2018]

Aspect and
Sentiment Uni-
fication Model
(ASUM)

Finds topics in textual data, reflecting both aspect
(i.e. a word that expresses a feeling, e.g., “disap-
pointed”) and sentiment (i.e. a word that conveys
sentiment, e.g., “positive” or “negative”)

[Jo and Oh
2011]

[Chen
et al. 2014,
Galvis Car-
reno and
Winbladh
2012]

Citation In-
fluence Topic
Model (CITM)

Determines the citation influences of a citing paper
in a document network based on two corpora: (a)
incoming links of publications (cited papers), and
(b) outgoing links of publications (citing papers);
a paper can select words from topics of its own
topics or from topics found in cited papers

[Dietz
et al.
2007]

[Hu and Wong
2013]

5.5 RESULTS 79

Table 5.4 LDA-based techniques (continued)

Technique Comparison to LDA Proposed
by Papers

Collaborative
Topic Modeling
(CTM)

Creates recommendations for users based on the
topic modeling of two types of data: (a) libraries
of users, and (b) content of publications; for each
user, finds both old papers that are important to
other similar users and newly written papers that
are related to that user interests

[Wang and
Blei 2011]

[Sun et al.
2017]

Discriminative
Probability
Latent Seman-
tic Analysis
(DPLSA)

Supervised approach that recommends compo-
nents for bug reports; receives assigned bug reports
for training and generates a number of topics that
is the same as the number of components

[Yan et al.
2016a]

[Yan et al.
2016a, b]

Multi-feature
Topic Model
(MTM)

Supervised approach that considers features (prod-
uct and component information) of bug reports;
emphasizes occurrence of words in bug reports
that have the same combination of product and
component

[Xia et al.
2017b]

[Xia et al.
2017b]

Relational
Topic Model
(RTM)

Defines probability distribution of topics among
documents, but also derives semantic relationships
between documents

[Chang
and Blei
2009]

[Bavota et al.
2014a, b]

T-Model Detects duplicate bug reports [Nguyen
et al. 2012]

[Nguyen et al.
2012]

Temporal LDA Extends LDA to model document streams consid-
ering a time window

[Damevski
et al. 2018]

[Damevski
et al. 2018]

TopicSum

Estimates content distribution for summary extrac-
tion. Different to LDA, it generates a collection of
document sets: background (background distribu-
tion over vocabulary words); content (significant
content to be summarized); and docspecific (local
words to a single document that do not appear
across several documents)

[Haghighi
and Van-
derwende
2009]

[Fowkes et al.
2016]

Adaptively
Online LDA
(AOLDA)

Adaptively combines the topics of previous versions
of an app to generate topic distributions of current
versions

[Gao et al.
2018]

[Gao et al.
2018]

Hierarchical
Dirichlet Pro-
cess (HDP)

Implements a non-parametric Bayesian approach
which iteratively groups words based on a proba-
bility distribution (i.e. the number of topics is not
known a priori)

[Teh et al.
2006]

[Palomba et al.
2017]

Maximum-
likelihood
Representation
LDA (MLE-
LDA)

Represents a vocabulary-dimensional probability
vector directly by its first order distribution

[Rao and
Kak 2011]

[Rao and Kak
2011]

Query like-
lihood LDA
(QL-LDA)

Combines Dirichlet smoothing (a technique to ad-
dress overfitting) with LDA

[Wei and
Croft
2006]

[Binkley et al.
2015]

80 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

and LDA to Generative Vector Space Model (GVSM), a deep learning technique,
to select the best performer model for documentation traceability to source code
in multilingual projects.

5.5.2.2 Supported Tasks

As mentioned before, we aimed to understand why topic modeling was used in papers,
e.g., if topic modeling was used to develop techniques to support specific software
engineering tasks, or if it was used as a data analysis technique in exploratory studies to
understand the content of large amounts of textual data. We found that the majority of
papers aimed at supporting a particular task, but 21 papers (see Table 5.5) used topic
modeling in empirical exploratory and descriptive studies as a data analysis technique.

We extracted the software engineering tasks described in each study (e.g., bug
localization, bug assignment, bug triaging) and then grouped them into eight more
generic tasks (e.g., bug handling) considering typical software development activities
such as requirements, documentation and maintenance [Leach 2016]. The specific
tasks collected from papers are available online1. Note that we kept “Bug handling”
and “Refactoring” separate rather than merging them into maintenance because of the
number of papers (bug handling) and the cross-cutting nature (refactoring) in these
categories. Each paper was related to one of these tasks:

• Architecting: tasks related to architecture decision making, such as selection of
cloud or mash-up services (e.g., Belle et al. [2016]);

• Bug handling: bug-related tasks, such as assigning bugs to developers, prediction
of defects, finding duplicate bugs, or characterizing bugs (e.g., Naguib et al. [2013]);

• Coding: tasks related to coding, e.g., detection of similar functionalities in code,
reuse of code artifacts, prediction of developer behaviour (e.g., Damevski et al.
[2018]);

• Documentation: support software documentation, e.g., by localizing features in
documentation, automatic documentation generation (e.g., Souza et al. [2019]);

• Maintenance: software maintenance-related activities, such as checking consistency
of versions of a software, investigate changes or use of a system (e.g., Silva et al.
[2019]);

• Refactoring: support refactoring, such as identifying refactoring opportunities and
removing bad smell from source code (e.g., Bavota et al. [2014b]);

• Requirements: related to software requirements evolution or recommendation of
new features (e.g., Galvis Carreno and Winbladh [2012]);

• Testing: related to identification or prioritization of test cases (e.g., Thomas et al.
[2014]).

Table 5.5 groups papers based on the topic modeling technique and the purpose.
Few papers applied topic modeling to support Testing (three papers) and Refactoring

5.5 RESULTS 81

(three papers). Bug handling is the most frequent supported task (33 papers). From
the 21 exploratory studies, 13 modeled topics from developer communication to identify
developers’ information needs: 12 analyzed posts on Stack Overflow, a Q&A website
for developers [Abdellatif et al. 2020, Ahmed and Bagherzadeh 2018, Bagherzadeh and
Khatchadourian 2019, Bajaj et al. 2014, Barua et al. 2014, Chatterjee et al. 2019, Chen
et al. 2019, Han et al. 2020, Haque and Ali Babar 2020, Rosen and Shihab 2016, Ye et al.
2017, Zou et al. 2017] and one paper analyzed blog posts [Pagano and Maalej 2013].
Regarding the other eight exploratory studies, three papers investigated web search
queries to also identify developers’ information needs [Bajracharya and Lopes 2009,
2012, Xia et al. 2017a]; four papers investigated end user documentation to analyse
users’ feedback on mobile apps [El Zarif et al. 2020, Hu et al. 2018, Noei et al. 2018,
Tiarks and Maalej 2014]; and one paper investigated historical “bug” reports of NASA
systems to extract trends in testing and operational failures [Layman et al. 2016].

82 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH
T

ab
le

5.
5

Te
ch

ni
qu

es
an

d
su

pp
or

te
d

ta
sk

s

T
ec

hn
iq

ue

Su
pp

or
te

d
ta

sk
LD

A
LD

A
-b

as
ed

LS
I

LD
A

-b
as

ed
,

(L
D

A
or

LS
I)

LD
A

,L
SI

T
ot

al

A
rc

hi
te

ct
in

g
[B

el
le

et
al

.
20

16
,

D
em

is
si

e
et

al
.

20
20

,
G

op
al

ak
ri

sh
na

n
et

al
.

20
17

,
G

or
la

et
al

.
20

14
,

N
ab

li
et

al
.2

01
8]

D
A

T
-L

D
A

[C
ao

et
al

.
20

17
],

LD
A

-G
A

[Y
an

g
et

al
.

20
17

]
R

T
M

[C
ui

et
al

.2
01

9]

[P
os

hy
va

ny
k

et
al

.
20

09
,

R
ev

el
le

et
al

.
20

11
]

-
-

10

B
ug

ha
nd

lin
g

[A
ha

sa
nu

zz
am

an
et

al
.

20
20

,
C

he
n

et
al

.
20

17
,

C
ho

et
ki

er
-

ti
ku

l
et

al
.

20
17

,
H

in
dl

e
et

al
.

20
15

,
Le

et
al

.
20

17
,

Lu
ki

ns
et

al
.2

01
0,

M
ar

ti
n

et
al

.2
01

5,
M

ez
ou

ar
et

al
.

20
18

,
M

ur
al

i
et

al
.2

01
7,

N
ag

ui
b

et
al

.2
01

3,
N

ay
eb

ie
ta

l.
20

18
,N

gu
ye

n
et

al
.

20
12

,
N

oe
i

et
al

.
20

19
,

Si
lv

a
et

al
.2

01
6,

Za
m

an
et

al
.2

01
1,

Zh
an

g
et

al
.

20
16

,
Zh

ao
et

al
.

20
20

,2
01

6]

B
ug

Sc
ou

t-
LD

A
[N

gu
ye

n
et

al
.2

01
1]

,
C

IT
M

[H
u

an
d

W
on

g
20

13
],

C
T

M
[S

un
et

al
.2

01
7]

,
D

P
LS

A
[Y

an
et

al
.

20
16

b]
,

LL
D

A
[M

cI
lr

oy
et

al
.

20
16

],
LD

A
-G

A
[C

at
ol

in
o

et
al

.2
01

9,
Zh

an
g

et
al

.
20

18
],

M
T

M
[X

ia
et

al
.

20
17

b]
,

Se
m

i-s
up

er
vi

se
d

LD
A

[F
u

et
al

.2
01

5]
,

A
O

LD
A

[G
ao

et
al

.
20

18
]

-

A
SU

M
,

LD
A

[C
he

n
et

al
.2

01
4]

,
LL

D
A

,
LD

A
[H

in
dl

e
et

al
.2

01
6]

,
M

LE
-L

D
A

,
LD

A
[R

ao
an

d
K

ak
20

11
]

[T
an

ti
th

am
th

av
or

n
et

al
.

20
18

,
T

ho
m

as
et

al
.

20
13

]

33

D
oc

um
en

ta
tio

n

[A
su

nc
io

n
et

al
.

20
10

,
B

ig
ge

rs
et

al
.

20
14

,
H

en
ß

et
al

.
20

12
,

H
in

dl
e

et
al

.2
01

3,
Ji

an
g

et
al

.
20

17
,M

os
le

hi
et

al
.2

01
6,

20
18

,
20

20
,S

ou
za

et
al

.2
01

9,
W

an
g

et
al

.2
01

5]

LD
A

-
G

A
[P

an
ic

he
lla

et
al

.2
01

3]
,

O
-L

D
A

[L
iu

et
al

.
20

17
]

[D
it

et
al

.
20

13
,

N
oe

i
an

d
H

ey
-

da
rn

oo
ri

20
16

,
P

ér
ez

et
al

.
20

18
,

P
os

hy
va

ny
k

et
al

.
20

12
]

Q
L-

LD
A

,
LS

I
[B

in
kl

ey
et

al
.2

01
5]

[D
e

Lu
ci

a
et

al
.

20
14

,
Li

u
et

al
.

20
20

]
19

5.5 RESULTS 83

T
ab

le
5.

5
Te

ch
ni

qu
es

an
d

su
pp

or
te

d
ta

sk
s

(c
on

tin
ue

d)

T
ec

hn
iq

ue

Su
pp

or
te

d
ta

sk
LD

A
LD

A
-b

as
ed

LS
I

LD
A

-b
as

ed
,

(L
D

A
or

LS
I)

LD
A

,L
SI

T
ot

al

C
od

in
g

[A
lt

ar
aw

y
et

al
.2

01
8,

C
he

n
et

al
.2

02
0,

D
am

ev
sk

ie
t

al
.2

01
8,

R
ay

et
al

.2
01

4,
Ta

ba
et

al
.2

01
7]

[F
ow

ke
s

et
al

.
20

16
]

-
-

-
6

M
ai

nt
en

an
ce

[C
ap

ilu
pp

i
et

al
.

20
20

,
Li

et
al

.
20

18
,

M
ar

ti
n

et
al

.2
01

6,
Pe

tt
in

at
o

et
al

.2
01

9,
Si

lv
a

et
al

.2
01

9]

D
P

LS
A

[Y
an

et
al

.
20

16
a]

,
LD

A
-G

A
[S

un
et

al
.

20
15

],
T

w
it

er
-L

D
A

[H
u

et
al

.
20

19
],

H
D

P
[P

al
om

ba
et

al
.

20
17

]

[R
os

en
be

rg
an

d
M

oo
ne

n
20

18
,

Ta
ira

s
an

d
G

ra
y

20
09

]

-
[A

bd
el

la
tif

et
al

.2
01

9]
12

R
ef

ac
to

rin
g

[C
an

fo
ra

et
al

.2
01

4]
RT

M
[B

av
ot

a
et

al
.2

01
4a

,b
]

-
-

-
3

R
eq

ui
re

m
en

ts
[J

ia
ng

et
al

.2
01

9]
A

SU
M

[G
al

vi
sC

ar
-

re
no

an
d

W
in

-
bl

ad
h

20
12

]

[B
la

sc
o

et
al

.
20

20
]

-
[A

li
et

al
.

20
15

]
4

Te
st

in
g

[L
uo

et
al

.
20

16
,

Sh
im

ag
ak

i
et

al
.2

01
8,

T
ho

m
as

et
al

.2
01

4]
-

-
-

-
3

E
xp

lo
ra

to
ry

st
ud

ie
s

[A
bd

el
la

ti
f

et
al

.
20

20
,

A
hm

ed
an

d
B

ag
he

rz
ad

eh
20

18
,

B
ag

he
rz

ad
eh

an
d

K
ha

tc
ha

do
ur

ia
n

20
19

,B
aj

aj
et

al
.2

01
4,

B
aj

ra
ch

ar
ya

an
d

Lo
pe

s
20

09
,

20
12

,
B

ar
ua

et
al

.2
01

4,
C

ha
tt

er
je

e
et

al
.2

01
9,

E
l

Za
ri

f
et

al
.

20
20

,
H

an
et

al
.

20
20

,
H

aq
ue

an
d

A
li

B
ab

ar
20

20
,

La
ym

an
et

al
.

20
16

,
N

oe
i

et
al

.
20

18
,

P
ag

an
o

an
d

M
aa

le
j

20
13

,
R

os
en

an
d

Sh
ih

ab
20

16
,T

ia
rk

s
an

d
M

aa
le

j2
01

4,
X

ia
et

al
.

20
17

a,
Y

e
et

al
.2

01
7,

Zo
u

et
al

.2
01

7]

L2
H

,L
LD

A
[C

he
n

et
al

.
20

19
],

Tw
it

te
r-

LD
A

[H
u

et
al

.
20

18
]

-
-

-
21

84 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

5.5.2.3 Types of Contribution

For each study, we identified what type of contribution it presents based on the study goal.
We used three types of contributions (“Approach”, “Exploration” and “Comparison”, as
described below) by analyzing the research questions and main results of each study. A
study could contribute either an “Approach” or an “Exploration”, while “Comparison”
is orthogonal, i.e. a study that presents a new approach could present a comparison of
topic models as part of this contribution. Similarly, a comparison of topic models can
also be part of an exploratory study.

• Approach: a study develops an approach (e.g., technique, tool, or framework)
to support software engineering activities based on or with the support of topic
models. For example, Murali et al. [2017] developed a framework that applies
LDA to Android API methods to discover types of API usage errors, while Le et al.
[2017] developed a technique (APRILE+) for bug localization which combines
LDA with a classifier and an artificial neural network.

• Exploration: a study applies topic modeling as the technique to analyze textual
data collected in an empirical study (in contrast to for example open coding).
Studies that contributed an exploration did not propose an approach as described
in the previous item, but focused on getting insights from data. For example,
Barua et al. [2014] applied LDA to Stack Overflow posts to discover what software
engineering topics were frequently discussed by developers; Noei et al. [2018]
explored the evolution of mobile applications by applying LDA to app descriptions,
release notes, and user reviews.

• Comparison: the study (that can also contribute with an “Approach” or an
“Exploration”) compares topic models to other approaches. For example, Xia
et al. [2017b] compared their bug triaging approach (based on the so called
Multi-feature Topic Model - MTM) with similar approaches that apply machine
learning (Bugzie [Tamrawi et al. 2011]) and SVM-LDA (combining a classifier
with LDA [Somasundaram and Murphy 2012]). On the other hand, De Lucia
et al. [2014] compared LDA and LSI to define guidelines on how to build effective
automatic text labeling techniques for program comprehension.

From the papers that contributed an approach, twenty-two combined a topic
modeling technique with one or more other techniques applied for text mining:

• Information extraction (e.g., VSM) [Chen et al. 2020, Fowkes et al. 2016, Nguyen
et al. 2012, Thomas et al. 2013, Zhang et al. 2018];

• Classification (e.g., Support Vector Machine - SVM) [Demissie et al. 2020,
Gopalakrishnan et al. 2017, Hindle et al. 2013, Le et al. 2017, Liu et al. 2017,
Shimagaki et al. 2018, Thomas et al. 2013, Zhao et al. 2020];

5.5 RESULTS 85

• Clustering (e.g., K-means) [Altarawy et al. 2018, Cao et al. 2017, Demissie et al.
2020, Gorla et al. 2014, Jiang et al. 2019, Liu et al. 2017, Zhang et al. 2016];

• Structured prediction (e.g., Conditional Random Field - CRF) [Ahasanuzzaman
et al. 2020];

• Artificial neural networks (e.g., Recurrent Neural Network - RNN) [Le et al. 2017,
Murali et al. 2017];

• Evolutionary algorithms (e.g., Multi-Objective Evolutionary Algorithm - MOEA)
[Blasco et al. 2020, Pérez et al. 2018];

• Web crawling [Nabli et al. 2018].

Pagano and Maalej [2013] was the only study that contributed an exploration
that combined LDA with another text mining technique. To analyze how developer
communities use blogs to share information, the authors applied LDA to extract keywords
from blog posts and then analyzed related “streams of events” (commit messages and
releases by time in relation to blog posts), which were created with Sequential pattern
mining.

Regarding comparisons we found that (1) 13 out of the 63 papers that contribute
an approach also include some form of comparison, and (2) ten out of the 48 papers
contribute an exploration also include some form of comparison. We discuss comparisons
in more detail below in Section 5.6.1.2

5.5.3 RQ3.2: Topic Model Inputs

In this section we first discuss the type of data (Subsection 5.5.3.1). Then we discuss
the actual textual documents used for topic modeling (Subsection 5.5.3.3). Finally, we
describe which model parameters were used (Subsection 5.5.3.4) to configure models.

5.5.3.1 Types of Data

Types of data help us describe the textual software engineering content that has been
analyzed with topic modeling. We identified 12 types of data in selected papers as
shown in Table 5.6. In some papers we identified two or three of these types of data;
for example, the study of Tantithamthavorn et al. [2018] dealt with issue reports, log
information and source code.

Source code (37 occurrences), issue/bug reports (22 occurrences) and developer
communication (20 occurrences) were the most frequent types of data used. Seventeen
papers used two to four types of data in their topic modeling technique; twelve of these
papers used a combination of source code with another type of data. For example, Sun
et al. [2015] generated topics from source code and developer communication to support
software maintenance tasks, and in another study, Sun et al. [2017] used topics found in
source code and commit messages to assign bug-fixing tasks to developers.

86 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Table 5.6 Types of data for topic modeling

Type of data Description Number
of papers

“Lessons learned” as
free text

Lessons learned from issues and risks of a software
project (e.g., record of lessons learned from an
issue of the OpenOffice project)

1

URL content Text of a URL (e.g., URLs in a Cloud service
priority queue) 1

Transcripts Transcripts of audio or video recordings 3
Developer documen-
tation

Documentation used by developers (e.g., Web API
documentation) 4

Search query Keywords in web search queries (e.g., “software
development” used in Google search) 4

Log information Log events of a software, such as registries of up-
dates in a code repository 5

Commit messages Comments of developers when committing changes
to a code repository 10

End user communica-
tion App reviews of end users in app stores 12

End user documenta-
tion

Apps and features descriptions, requirement docu-
ments, or API tutorials 15

Issue/bug reports Reports of bugs, change requests and/or issues of
a software project 22

Developer communi-
cation

Developer discussions such as Q&A websites, e-
mails, and instant messaging 20

Source code Scripts, methods and classes of a software 37

5.5.3.2 Corpus Size

We described the corpus size as the total number of documents in the corpus (or corpora)
applied to the topic modeling techniques of our studies. From our 111 papers, we found
that 27 papers did not mention the size of their corpora. Table 5.7 shows the corpus size
mentioned in the other 84 papers. These studies generally described the total number
of documents in each of their corpora, except by [Chen et al. 2020] who mentioned that
their corpus had an average of 130.37 Java source files per project studied.

5.5.3.3 Documents

A document refers to a piece of textual data that can be longer or shorter, such as a
requirements document or a single e-mail subject. Documents are concrete instances of
the types of data discussed above. Figure 5.3 shows documents (per type of data) and
how often we found them in papers. The most frequent documents are bug reports (12
occurrences), methods from source code (9 occurrences), Q&A posts (9 occurrences)
and user reviews (8 occurrences).

We also analyzed document length and found the following:

• In general, papers described the length of documents in number of words, see

5.5 RESULTS 87

Table 5.7 Corpus Size as reported in papers

Corpus Size Num* Type of data Paper

Calorie Tracker (327 comments, 874 sentences, 865 word list);
Mint.com (383 comments, 579 sentences, 1,029 word list); Face-
book (1,941 comments, 3,131 sentences, 2,592 word list)

3 End user communi-
cation

[Galvis Carreno
and Winbladh
2012]

Stack Overflow (825,294 posts); Slack (23,893 mes-
sages) 2 Developer commu-

nication
[Chatterjee et al.
2019]

JavaScript (342,363 questions); HTML5 (31,777 ques-
tions); CSS (125,906 questions) 3 Developer commu-

nication [Bajaj et al. 2014]

GSFC-ST1 (312 documents; 178,406 words); GSFC-PS (715
documents; 90,845 words); GSFC-ST2 (908 documents; 205,436
words); JPL-PS (3,885 documents; 1,081,897 words); JPL-RE1
(3,683 documents; 1,586,430 words); JPL-RE2 (7,166 docu-
ments; 3,585,891 words)

6 Issue/bug report [Layman et al.
2016]

Atlas (149 + 46 reports); Birt (506 +118 reports);
Unicase (98 + 28 reports) 3 Issue/bug report [Naguib et al. 2013]

554 PHP files 1 Transcript text
from speech [Moslehi et al. 2018]

Blog (35 transcripts); Font (21 transcripts); Password (23 tran-
scripts); Gravatar (29 transcripts); Feed (29 transcripts) 5 Transcript text

from speech [Moslehi et al. 2016]

Subsets: Pa (5,422 apps; 1,034,151 reviews); F (6,919
apps; 1,694,952 reviews); Z (2,754 apps; 0 reviews) 1 End user communi-

cation [Martin et al. 2015]

1,055,105 search queries and 755,588 download activi-
ties 1 Search query [Bajracharya and

Lopes 2009]
Jazz (53,820 words); Eclipse (45,387 words); AspectJ
(7,234 words); ArgoUML (16,762 words) 4 Source code [Nguyen et al. 2011]

AgilePlanner (299 classes, 2,731 methods); eXVantage (352
classes, 2,172 methods); GESA (295 classes, 1,643 methods);
jEdit (425 classes, 1,864 methods); jFreeChart (436 classes,
1,847 methods); SMOS (121 classes, 599 methods)

4 Source code [Bavota et al.
2014b]

Microsoft Visual Studio (1,275 interactions events); ABB Robot
Studio (18,863 interactions events) 2 Log information [Damevski et al.

2018]
Eclipse (120,000 methods); Rhino (1,870 methods); jEdit (6,400
methods) 4 Source code [Dit et al. 2013]
12,051 queries (8,102 queries in English, 3,949 queries
in Chinese) 1 Search query [Xia et al. 2017a]

Eclipse (10,333 posts); GNOME (18,323 posts); Post-
greSQL (3,385 posts); Python (18,660 posts); 4 Developer commu-

nication
[Pagano and Maalej
2013]

ArgoUML (4,040 commit notes); Eclipse-JDT (6,687 commit
notes); Mozilla (31,891 commit notes); Samba (2,326 commit
notes)

4 Commit messages [Canfora et al.
2014]

Android (2,237 posts); Neo4j (290 posts); Jenkins (275
posts) 3 Developer commu-

nication
[Ahasanuzzaman
et al. 2020]

Android (519 reviews) and iOS (267 reviews) 1 End user communi-
cation [Hu et al. 2019]

75 requirements documents being 1,500 pages of docu-
mentation 1 Developer docu-

mentation [Hindle et al. 2015]

Apache (6,289 issues); Duraspace (3,676 issues); Java.net
(16,326 issues); JBoss (3,526 issues); JIRA (4,428 issues); Moo-
dle (17,004); Mulesoft (8,269 issues); WSO2 (5,229 issues)

8 Issue/bug report [Choetkiertikul
et al. 2017]

8,978,719 knowledge units in total 6 Developer commu-
nication [Ye et al. 2017]

1,055,105 search queries and 755,588 download activi-
ties 1 Search query [Bajracharya and

Lopes 2012]
Hadoop (42,700 methods); Directory-S. (7,900 methods) Qpid-
Java (20,000 methods); CloudStack (40,100 methods); Camel
(41,100 methods); Airavata (29,400 methods)

6 Source code [Li et al. 2018]

Ant (105 tests); Derby (98; 106; 120; 53 tests) 5 Source code [Thomas et al.
2014]

AspectJ (286 bug reports); Eclipse (3,075 bug reports); SWT
(98 bug reports); Tomcat (341 bug reports) 3 Issue/bug report [Le et al. 2017]

Apple (1,066 user reviews); Google (1,066 user reviews) 2 End user communi-
cation [McIlroy et al. 2016]

3,474,987 posts 1 Developer commu-
nication [Barua et al. 2014]

1,267,895 reviews in total 2 End user communi-
cation [Nayebi et al. 2018]

*Number of corpora used in the study

88 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Table 5.7 Corpus Size as reported in papers (continued)

Corpus Size Num* Type of data Paper

1,642,602 posts 1 Developer commu-
nication

[Rosen and Shihab
2016]

501 methods 1 Source code [Zhang et al. 2018]

2,329 classes 1 Source code [Bavota et al.
2014a]

533 features of 100 apps 1 Developer docu-
mentation [Jiang et al. 2019]

Apache Ant (67 packages, 4,134 keywords); JFreechart
(37 packages, 1,522 keywords); JHotDraw (24 packages,
1,177 keywords); JUnit (28 packages, 625 keywords)

4 Source code [Belle et al. 2016]

21.7 million posts and 32.5 million comments 1 Developer commu-
nication [Zou et al. 2017]

114 distinct words (testbed); 169 distinct words (eval-
uation sample) 1 Log information [Pettinato et al.

2019]

5,303 apps (being 3,691 benign; 1,612 malicious) 1 Developer docu-
mentation [Yang et al. 2017]

212 LL records of 30 software projects 1 Lessons learned [Abdellatif et al.
2019]

Mozilla (60,000 methods); Rhino (30,411 methods);
Eclipse (1,968,436 methods) 3 Source code [Lukins et al. 2010]

Android (366 questions, 129 how to do questions);
Swing (372 questions, 163 how to do questions) 2 Developer commu-

nication [Souza et al. 2019]

6,629 mashup services 1 Developer docu-
mentation [Cao et al. 2017]

Eclipse (3,898 bug reports, 1,882-2,559 source code files);
Mozilla (1,368 bug reports, 6,656-7,466 source code files) 2 Issue/bug report

and Source code
[Tantithamthavorn
et al. 2018]

Bugzilla (27,539 changes); Wireshark (40,511 changes); Boost
(42,208 changes); Firebird (48,622 changes); Python (45,032
changes)

5 Commit messages [Fu et al. 2015]

dataset01 (120 apps); dataset02 (454 apps) 2 Developer docu-
mentation [Liu et al. 2017]

Eclipse (39,669 bug reports); NetBeans (19,249 bug reports);
Mozilla (15,501 bug reports); OpenOffice (23,402 bug reports);
GCC (13,301 bug reports)

5 Issue/bug report [Zhang et al. 2016]

1,280 bug reports 1 Issue/bug report [Catolino et al.
2019]

jEdit (23,724 commit messages); Hadoop (10,394 commit mes-
sages); JDT-debug (9104 commit messages); Elastic (22,191
commit messages); Libgdx (12,414 commit messages)

5 Commit messages [Sun et al. 2017]

13,472,796 questions 1 Developer commu-
nication [Chen et al. 2019]

Mylyn (833, 923, 1,115 files); Firefox (5,523, 5,879, 5,942 files);
Eclipse (6,716, 7,799, 10,496 files); Netbeans (4,253, 8,849,
16,383 files)

4 Source code [Chen et al. 2017]

2,083,353 commits 1 Log information [Silva et al. 2019]
Bugzilla (27,539 changes); Wireshark (40,551 changes); Boost
(42,208 changes); Firebird (48,622 changes); Python (45,032
changes)

5 Commit messages [Yan et al. 2016a]

ArgoUML (27 features); Freenet (33 features); iBatis (13 fea-
tures); JMeter (85 features); Mylyn (57 features); Rhino (105
features)

6 Source code [Poshyvanyk et al.
2012]

1,258 official apps; 20 mutated apps 1 Developer docu-
mentation

[Demissie et al.
2020]

Tensorflow (23,908 Stack Overflow posts; 13,666 GiHub
records); PyTorch (615 posts Stack Overflow posts; 5,753
GitHub records); Theano (2,364 Stack Overflow posts; 4,977
GitHub records)

6
Developer commu-
nication and Com-
mit messages

[Han et al. 2020]

643,079 revision commits and 101,364 bug reports 1
Commit messages
and Issue/bug re-
port

[Cui et al. 2019]

Average of 130.37 Java files per project 1 Source code [Chen et al. 2020]
dataset01 (38,858 Android apps); dataset02 (680 app
descriptions); dataset03 (14,592 apps and 26,339 re-
leases)

3 Developer docu-
mentation [Martin et al. 2016]

*Number of corpora used in the study

5.5 RESULTS 89

Table 5.7 Corpus Size as reported in papers (continued)

Corpus Size Num* Type of data Paper

42,203 of bug re-openings; 14,273 of re-patching studies 1 Issue/bug report [Zhao et al. 2016]
dataset01 (847 security bugs); dataset02 (294,351 non-
security bugs) 2 Issue/bug report [Zaman et al. 2011]

729 projects; 1,586,333 commits; 566,198 bug-fixes 1 Developer docu-
mentation [Ray et al. 2014]

9,389 test cases in total 1 Developer docu-
mentation

[Shimagaki et al.
2018]

3,890 chatbot posts 1 Developer commu-
nication

[Abdellatif et al.
2020]

81,290 questions and 32,632 accepted answers 1 Developer commu-
nication

[Haque and
Ali Babar 2020]

32,136 apps 1 Developer docu-
mentation [Gorla et al. 2014]

1,200 tutorials in total 6 End user communi-
cation

[Tiarks and Maalej
2014]

dataset01 (290 browser alternatives); dataset02 (296 IDE alter-
natives); dataset03 (134 web-server alternatives) 3 End user communi-

cation [El Zarif et al. 2020]

164,026 reviews in total 6 End user communi-
cation [Gao et al. 2018]

13,510 user feedback 1 End user communi-
cation

[Palomba et al.
2017]

iOS (51,192 posts + 93,333 answers); Android (90,132
posts + 157,864 answers) 2 Developer commu-

nication [Wang et al. 2015]

4,878,011 user-reviews in total 1 End user communi-
cation [Noei et al. 2018]

Memory management (335 classes); Registry config
(196 classes); Process/thread support (132 classes);
Security functions (121 classes); I/O management (138
classes)

5 Source code [Tairas and Gray
2009]

Firefox (14,489 fixed bug reports) and Chrome (15,771
fixed bug reports) 1 Issue/bug report [Mezouar et al.

2018]

8,000 bug reports per corpus 3 Issue/bug report [Thomas et al.
2013]

storm (761 classes); elasticsearch (4,990 classes); spring-
framework (8,395 classes); libgdx (2,651 classes); big-
bluebutton (852 classes); netty (1,267 classes)

6 Source code [Fowkes et al. 2016]

ArgoUML (12,448 documents); Eclipse (96,309 documents);
JabRef (4,741 documents); jEdit 4.3 (7,118 documents); mu-
Commander (8,538 documents)

5 Source code [Binkley et al. 2015]

ArgoUML (91 features); JabRef (38 features); jEdit (149 fea-
tures); muCommander (90 features); Mylyn (93 features);
Rhino (157 features)

6 Source code [Biggers et al. 2014]

Android (519 reviews) and iOS (267 reviews) 1 End user communi-
cation [Hu et al. 2019]

Android (37,536 bug reports); Eclipse (43,729 bug reports);
Mozilla (71,292 bug reports); OpenOffice (29,455 bug reports) 4 Issue/bug report [Alipour et al. 2013]
dataset01 (8,959 test cases at method level); dataset02
(845 test cases at class level) 2 Source code [Luo et al. 2016]

1,436 failing events in total and 40,269 passing events
in total 18 Log information [Rosenberg and

Moonen 2018]
75 KLOC 1 Source code [Rao and Kak 2011]
Rhino (59,182 LOC); jEdit (109,446 LOC) 2 Source code [Silva et al. 2016]
3,815 issues and 4,394 commits 1 Commit messages [Liu et al. 2020]

391 bug reports 1 Issue/bug report [Poshyvanyk et al.
2009]

dbViz (554 methods); Rhino (1,800 methods); iBatis
(1,800 methods) 3 Source code [Revelle et al. 2011]

*Number of corpora used in the study

90 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Figure 5.3 Documents (leaves in the figure) by type of data (nodes in the figure)

5.5 RESULTS 91

Table 5.8.2 On the other hand, two papers (Moslehi et al. [2016, 2020]) described
their documents’ length in minutes of screencast transcriptions (videos with one
to ten minutes, no information about the size of transcripts). Sixteen papers
mentioned the actual length of the documents, see Table 5.8. Ten papers that
described the actual document length did that when describing the data used for
topic modeling; four papers discussed document length while describing results;
and one mentioned document length as a metric for comparing different data
sources;

• Most papers (80 out of 111) did not mention document length and also do not
acknowledge any limitations or the impact of document length on topics.

• Fifteen papers did not mention the actual document length, but at some point
acknowledge the influence of document length on topic modeling. For example,
Abdellatif et al. [2019] mentioned that the documents in their data set were
“not long”. Similarly, Yan et al. [2016b] did not mention the length of the bug
reports used but discussed the impact of the vocabulary size of their corpus on
results. Moslehi et al. [2018] mentioned document length as a limitation and
acknowledge that using LDA on short documents was a threat to construct validity.
According to these authors, using techniques specific for short documents could
have improved the outcomes of their topic modeling.

2This table also shows hyperparameters and the number of topics which are discussed in the following
subsection.

92 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH
T

ab
le

5.
8

D
oc

um
en

t
le

ng
th

as
re

po
rt

ed
in

pa
pe

rs

D
oc

um
en

t
L

en
gt

h
T

op
ic

m
od

el
H

yp
er

pa
ra

m
et

er
s

N
um

b
er

of
to

pi
cs

P
ap

er
s

A
n

in
di

vi
du

al
co

m
m

it
m

es
-

sa
ge

9
to

20
w

or
ds

LD
A

-
10

[C
an

fo
ra

et
al

.2
01

4]

A
n

in
di

vi
du

al
bl

og
po

st
27

3
w

or
ds

av
er

ag
e

LD
A

-
50

[P
ag

an
o

an
d

M
aa

le
j

20
13

]

A
n

in
di

vi
du

al
Q

&
A

po
st

50
0

w
or

ds
av

er
ag

e
LD

A
α

=
50

/
k

,β
=

0.
01

40
[B

ar
ua

et
al

.2
01

4]
50

to
40

0
w

or
ds

LL
D

A
;L

2H
α

=
10

,β
=

10
00

3
[C

he
n

et
al

.2
01

9]

A
n

in
di

vi
du

al
us

er
re

vi
ew

65
to

15
5

w
or

ds
Tw

itt
er

-L
D

A
-

10
[H

u
et

al
.2

01
9]

28
to

97
w

or
ds

LD
A

-
85

,1
70

[N
ay

eb
ie

t
al

.2
01

8]

A
n

in
di

vi
du

al
bu

g
re

po
rt

40
4

w
or

ds
av

er
ag

e
LD

A
α

=
50

/
k

,β
=

0.
01

20
,

[s
te

ps
of

10
],

10
0,

12
5,

15
0,

[s
te

ps
of

25
],

22
5

[L
ay

m
an

et
al

.2
01

6]

12
7

w
or

ds
(E

cl
ip

se
da

ta
)a

nd
14

6
w

or
ds

(M
oz

ill
a

da
ta

)
av

er
ag

e
LD

A
;L

SI
-

32
,6

4,
12

8,
25

6
[T

an
ti

th
am

th
av

or
n

et
al

.2
01

8]
*

A
co

m
bi

na
ti

on
of

lo
g

m
es

-
sa

ge
s

95
w

or
ds

(t
es

t
da

ta
)

an
d

22
1

w
or

ds
(v

al
id

at
io

n
da

ta
)

av
er

ag
e

LD
A

α
=

50
/
k

,β
=

0.
1

9
[P

et
tin

at
o

et
al

.2
01

9]

A
n

in
di

vi
du

al
re

qu
ir

em
en

t
do

cu
m

en
t

3,
80

0
w

or
ds

av
er

ag
e

LD
A

α
=

0.
1,

β
=

0.
1

20
[H

in
dl

e
et

al
.2

01
5]

A
n

in
di

vi
du

al
fr

ag
m

en
t

of
A

P
I

tu
to

ria
ls

10
0

to
30

0
w

or
ds

LD
A

α
=

0.
1,

β
=

0.
1

-
[J

ia
ng

et
al

.2
01

7]

A
co

m
bi

na
ti

on
of

tu
to

ri
al

s
of

an
ap

p
st

or
e

3,
23

1
w

or
ds

av
er

ag
e

LD
A

-
20

,5
0

[T
ia

rk
s

an
d

M
aa

le
j

20
14

]
A

co
m

bi
na

ti
on

of
cl

as
se

s
fr

om
a

di
re

ct
or

y
4,

15
3

w
or

ds
in

92
2

do
cu

m
en

ts
(t

ot
al

)
LS

I
-

-
[T

ai
ra

s
an

d
G

ra
y

20
09

]

A
n

in
di

vi
du

al
m

et
ho

d
14

w
or

ds
(E

cl
ip

se
da

ta
)

an
d

35
w

or
ds

(M
oz

ill
a

da
ta

)
av

er
ag

e
LD

A
;L

SI
-

32
,6

4,
12

8,
25

6
[T

an
ti

th
am

th
av

or
n

et
al

.2
01

8]
*

A
n

in
di

vi
du

al
sc

re
en

ca
st

tr
an

sc
rip

t
1

to
10

m
in

ut
es

LD
A

α
=

50
/
k

,β
=

0.
01

20 55
,8

0,
13

0
[M

os
le

hi
et

al
.2

01
6]

[M
os

le
hi

et
al

.2
02

0]
*

Sa
m

e
st

ud
y

th
at

us
ed

tw
o

di
ffe

re
nt

do
cu

m
en

ts

5.5 RESULTS 93

5.5.3.4 Model Parameters

Topic models can be configured with parameters that impact how topics are generated.
For example, LDA has typically been used with symmetric Dirichlet priors over θ

(document-topic distributions) and ϕ (topic-word distributions) with fixed values for α

and β [Wallach et al. 2009]. Wallach et al. [2009] explored the robustness of a topic
model with asymmetric priors over θ (i.e. varying values for α) and a symmetric prior
(fixed value for β) over ϕ. Their study found that such topic model can capture more
distinct and semantically-related topics, i.e. the words in clusters are more distinct.
Therefore, we checked which parameters and values were used in papers. Overall, we
found the following:

• Eighteen of the 111 papers do not mention parameters (e.g., number of topics k,
hyperparameters α and β). Thirteen of these papers use LDA or an LDA-based
technique, four papers use LSI, while [Liu et al. 2020] use LDA and LSI.

• The remaining 93 papers mention at least one parameter. The most frequent
parameters discussed were k, α and β:

– Fifty-eight papers mentioned actual values for k, α and β;

– Two papers mentioned actual values for α and β, but no values for k;

– Twenty-nine papers included actual values for k but not for α and β;

– Thirty-two (out of 58) papers mentioned other parameters in addition to k,
α and β. For example, Chen et al. [2019] applied L2H (in comparison to
LLDA), which uses the hyperparameters γ1 and γ2;

– One paper [Rosenberg and Moonen 2018] that applied LSI, mentioned the
parameter “similarity threshold” rather than k, α and β.

We then had a closer look at the 60 papers that mentioned actual values for
hyperparameters α and β:

• α based on k: The most frequent setting (29 papers) was α = 50/k and β = 0.01
(i.e. α was depending on the number of topics, a strategy suggested by Steyvers
and Griffiths [2007], Wallach et al. [2009]). These values are a default setting in
Gibbs Sampling implementations for LDA such as Mallet.3

• Fixed α and β: Five papers fixed 0.01 for both hyperparameters, as suggested
by Hoffman et al. [2010]. Another eight papers fixed 0.1 for both hyperparameters,
a default setting in Stanford Topic Modeling Toolbox (TMT)4; and three other
papers fixed α = 0.1 and β = 1 (these three studies applied RTM).

3http://mallet.cs.umass.edu/topics.php
4https://nlp.stanford.edu/software/tmt/tmt-0.4/

94 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

• Varying α or β: Four papers tested different values for α, where two of these
papers also tested different values for β; and one paper varied β but fixed a value
for α.

• Optimized parameters: Four papers obtained optimized values for hyperparam-
eters [Catolino et al. 2019, Sun et al. 2015, Yang et al. 2017, Zhang et al. 2018].
These papers applied LDA-GA (as proposed by Panichella et al. [2013]) which,
based on genetic algorithms; finds the best values for LDA hyperparameters. In
regards to the actual values chosen for optimized hyperparameters, Catolino et al.
[2019] did not mention the values for hyperparameters; Sun et al. [2015] and
Yang et al. [2017] mentioned only the values used for k; and Zhang et al. [2018]
described the values for k, α and β.

Regarding the values for k we observed the following:

• The 90 papers that mentioned values for k modeled three [Cao et al. 2017] to
500 [Chen et al. 2017, Li et al. 2018, Lukins et al. 2010] topics;

• Twenty-four (out of 90) papers mentioned that a range of values for k was tested
in order to check the performance of the technique (e.g., Xia et al. [2017b]) or as
a strategy to select the best number of topics (e.g., Layman et al. [2016]);

• Although the remaining 66 (out of 90) papers mentioned a single value used for k,
most of them acknowledged that had tried several number of topics or used the
number of topics suggested by other studies.

As can be seen in Table 5.8, there is no common trend of what values for hyperpa-
rameter or k depending on the document or document length.

5.5.4 RQ3.3: Pre-processing Steps

Thirteen of the papers did not mention what pre-processing steps were applied to the
data before topic modeling. Seven papers only described how the data analyzed were
selected, but not how they were pre-processed. Table 5.9 shows the pre-processing steps
found in the remaining 91 papers. Each of these papers mentioned at least one of these
steps.

Removing noisy content (76 occurrences), Stemming terms (61 occurrences) and
Splitting terms (33 occurrences) were the most used pre-processing steps. The least
frequent pre-processing step (Resolving negations) was found only in the studies of
Noei et al. [2018, 2019]. Resolving synonyms and Expanding contractions were also less
frequent, with three occurrences each.

Table 5.10 shows the types of noise removal in papers and their frequency. Most of
the papers that described pre-processing steps removed stop words (76 occurrences).

5.5 RESULTS 95

Table 5.9 Pre-processing steps found in papers

Pre-processing step Description Number
of papers

Resolving negations

Negations refer to negative sentences with positive
meaning, such as “No problem”; used depending
on the context of study (e.g., the paper in which we
found this step removed negations in user reviews)

2

Expanding contractions Normalizing contracted terms into expanded forms
(e.g., “couldn’t” into “could not”) 3

Resolving synonyms
Replacing words with similar meaning with a com-
mon representative word (e.g., “bug”, “error”, and
“glitch” can be synonyms for “exception”)

3

Identifying n-grams

Words may have a more concrete meaning when
used together; n-grams are a sequence of n words;
e.g., bi-gram (n-gram of two words) software devel-
opment can be more informative than the words
“software” and “development” separately

6

Correcting typos Replacing misspelled words with the correct ones 7

Splitting document
Breaking a long document into shorter documents
(e.g., splitting long project specifications and wiki
pages)

7

Lemmatizing
Reducing words to their lemmas based on the
words’ part of speech (e.g., words “is” and “are”
can be resolved as “be”)

11

Tokenizing
Breaking up text in document into individual to-
kens (e.g., using white space and punctuation as
token delimiters)

17

Lowercasing
Entire document is converted to lowercase char-
acters regardless of the spelling in the original
document

20

Splitting words

Splitting two or more words with no separating
spaces or punctuation (e.g., many papers that
analyze source code separated camel cases like
“processFile” into “process” and “File”)

33

Stemming

Normalizing words into their single forms by iden-
tifying and removing prefixes, suffixes and plurali-
sation (e.g., “development”, “developer”, “devel-
oping” become “develop”)

61

Removing noise

Noise is any text that will interfere in the topic
modeling (e.g., slowing down the processing or re-
sulting in meaningless topics); due to the different
types of noise removal, we discuss noise removal
separately in Table 5.10

76

96 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Stop words are the most common words in a language, such as “a/an” and “the” in
English. Removing stop words allows topic modeling techniques to focus on more
meaningful words in the corpus [Miner et al. 2012]. Eight papers mentioned the stop
words list used: Layman et al. [2016] and Pettinato et al. [2019] used the SMART stop
words list5; Martin et al. [2015] and Hindle et al. [2013] used the Natural Language
Toolkit English stop words list6; Bagherzadeh and Khatchadourian [2019], Ahmed and
Bagherzadeh [2018] and Yan et al. [2016b] used the Mallet stop words list7; and Mezouar
et al. [2018] used the Moby stop words list.8

Table 5.10 Noisy content removed

Noisy content Number of papers

Empty documents 1
Long paragraphs 1
Extra white space 1
Short documents 2
Words shorter than four, three or two letters 2
URLs 4
Least frequent terms 8
Most frequent terms 8
Code snippets 9
HTML tags 9
Non-informative content 11
Numbers 17
Programming language keywords 23
Symbols and special characters 20
Punctuation 21
Stop words 75

As can be seen in Table 5.10, some papers removed words based on the frequency
of their occurrence (most or least frequent terms) or length (words shorter than four,
three or two letters or long terms). Other papers removed long paragraphs. For
example, Henß et al. [2012] removed paragraphs longer than 800 characters because
most paragraphs in their data set were shorter than that. We also found two papers that
removed short documents: Gorla et al. [2014] removed documents with fewer than ten
words, and Palomba et al. [2017] removed documents with fewer than three words. The
concept of non-informative content depends on the context of each paper. In general, it
refers to any data considered not relevant for the objective of the study. For example,
Choetkiertikul et al. [2017], which aimed at predicting bugs in issue reports, removed
issues that took too much time to be resolved. Noei et al. [2019] and Fu et al. [2015]
removed content (end user reviews and commit messages) that did not describe feedback

5http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/
english.stop

6https://gist.github.com/sebleier/554280
7https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt
8http://icon.shef.ac.uk/Moby/mwords.html

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
https://gist.github.com/sebleier/554280
https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt
http://icon.shef.ac.uk/Moby/mwords.html

5.5 RESULTS 97

or cause of change.

5.5.5 RQ3.4: Topic Naming

Topic naming is about assigning labels (names) to topics (word clusters) to give the
clusters a human-understandable meaning. Seventy-five papers (out of 111) did not
mention whether or how topics were named. These papers only used the word clusters
for analysis, but did not require a name. For example, Xia et al. [2017a] and Canfora
et al. [2014] did not name topics, but mapped the word clusters to the documents (search
queries and source code comments) used as input for topic modeling. These papers
used the probability of a document to belong to a topic (θ) to associate a document to
the topic with the highest probability.

From the 36 papers (out of 111) that mentioned topic naming (see Table 5.11), we
identified three ways of how they named topics:

• Automated: Assigning names to word clusters without human intervention;
• Manual: Manually checking the meaning and the combination of words in cluster

to “deduct” a name, sometimes validated with expert judgment;
• Manual & Automated: Mix of manual and automated; e.g., topics are manually

labeled for one set of clusters to then train a classifier for naming another set of
clusters.

Most of the papers (30 out of 36) assigned one name to one topic. However, we
identified six papers that used one name for multiple topics [Bajracharya and Lopes
2012, Hindle et al. 2013, Pagano and Maalej 2013, Rosen and Shihab 2016] or labeled
a topic with multiple names [Gao et al. 2018, Zou et al. 2017]. Two of the papers
(Bajracharya and Lopes [2012], Hindle et al. [2013]) that assigned one name to multiple
topics used predefined labels, and in the other two papers (Pagano and Maalej [2013],
Rosen and Shihab [2016]) authors interpreted words in the clusters to deduct names.

Regarding the papers that assigned multiple names to a topic, Zou et al. [2017]
assigned no, one or more names, depending on how many words in the predefined word
list matched words in clusters. Gao et al. [2018] used an automated approach to label
topics with the three most relevant phrases and sentences from the end user reviews
inputted to their topic model. The relevance of phrases and sentences were obtained
with the metrics Semantic and Sentiment scores proposed by these authors.

98 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Table 5.11 Procedures for naming topics

References

Procedure Description Manual Automated Manual &
Automated Total

Deducting
name based
on words in
clusters

Assign names to top-
ics based on under-
standing of the most
frequent words in top-
ics (in one paper Pet-
tinato et al. [2019],
authors asked domain
experts to validate
the names)

[Abdellatif et al. 2020,
Aggarwal and Zhai 2012,
Ahmed and Bagherzadeh
2018, Bagherzadeh and
Khatchadourian 2019, Ba-
jaj et al. 2014, Bajracharya
and Lopes 2009, Barua
et al. 2014, El Zarif et al.
2020, Gorla et al. 2014,
Han et al. 2020, Haque
and Ali Babar 2020, Hindle
et al. 2015, Layman et al.
2016, Mezouar et al. 2018,
Noei et al. 2019, Pagano
and Maalej 2013, Pettinato
et al. 2019, Ray et al. 2014,
Rosen and Shihab 2016,
Tiarks and Maalej 2014,
Yang et al. 2017]

- - 21

Naming
based on
most frequent
word(s) in
cluster

The most frequent
word or the combina-
tion of frequent words
in the topic were used
as the name of that
topic

[Galvis Carreno and
Winbladh 2012, Li et al.
2018]

[Panichella
et al. 2013] - 3

Assigning
predefined
names to
clusters

A list of predefined
names is related to
topics based on their
similarities with the
most frequent words
in clusters

[Bajracharya and Lopes
2012, Martin et al. 2015,
Taba et al. 2017, Zou
et al. 2017]

[Chen et al.
2019, Fu
et al. 2015,
Gao et al.
2018, McIl-
roy et al.
2016, Yan
et al. 2016a,
b]

[Hindle
et al. 2013,
2016]

12

5.6 DISCUSSION 99

5.6 DISCUSSION

5.6.1 RQ3.1: Topic Modeling Techniques

5.6.1.1 Summary of Findings

LDA is the most frequently used topic model. Almost all papers (95 out of 111) applied
LDA or a LDA-based technique, while nine papers applied LSI to identify topics and
seven papers used LDA and LSI. Regarding the papers that used LDA-based techniques,
eleven (out of 30) proposed their own LDA-based technique [Cao et al. 2017, Damevski
et al. 2018, Fu et al. 2015, Gao et al. 2018, Liu et al. 2017, Nguyen et al. 2011, 2012,
Panichella et al. 2013, Rao and Kak 2011, Xia et al. 2017b, Yan et al. 2016a]. This
may indicate that the LDA default implementation may not be adequate to support
specific software engineering tasks or extract meaningful topics from all types of data.
We discuss more about topic modeling techniques and their inputs in Subsection 5.6.2.2.
Furthermore, we found that topic modeling is used to develop tools and methods to
support software engineers and concrete tasks (the most frequently supported task we
found was bug handling), but also as a data analysis technique for textual data to
explore empirical questions (see for example the “oldest” paper in our sample published
in 2009 [Bajracharya and Lopes 2009]).

One aspect that we did not specifically address in this review, but which impacts the
applicability of topics models is their computational overhead. Computational overhead
refers to processing time and computational resources (e.g., memory, CPU) required
for topic modeling. As discussed by others, topic modeling can be computational
intensive [Agrawal et al. 2018, Hoffman et al. 2010, Treude and Wagner 2019]. However,
we found that only few papers (seven out of 111) mentioned computational overhead
at all. From these seven papers, five mentioned processing time [Bavota et al. 2014b,
Chen et al. 2020, Luo et al. 2016, Moslehi et al. 2016, Zhao et al. 2020], one paper
mentioned computational requirements and some processing times (e.g., processor, data
pre-processing time, LDA processing time and clustering processing time), and one
paper only mention that their technique was processed in “few seconds” [Murali et al.
2017]. Hence, based on the reviewed studies we cannot provide broader insights into
the practical applicability and potential constraints of topic modeling based on the
computational overhead.

5.6.1.2 Comparative Studies

As mentioned in Sections 5.5.2.1 and 5.5.2.3, we identified studies that used more
than one topic modeling technique and compared their performance. In detail, we
found studies that (1) compared topic modeling techniques to information extraction
techniques, such as Vector Space Model (VSM), an algebraic model [Salton et al. 1975]

100 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

(see Table 5.12), (2) proposed an approach that uses a topic modeling technique and
compared it to other approaches (which may or may not use topic models) with similar
goals (see Table 5.13), and (3) compared the performance of different settings for a
topic modeling technique or a newly proposed approach that utilizes topic models (see
Table 5.14). In column “Metric” of Tables 5.12, 5.13 and 5.14 the metrics show the
metrics used in the comparisons to decide which techniques performed “better” (based
on the metrics’ interpretation). Metrics in bold were proposed for or adapted to a
specific context (e.g., SCORE and Effort reduction), while the other metrics are standard
NLP metrics (e.g., Precision, Recall and Perplexity). Details about the metrics used to
compare the techniques are provided in Appendix C.2 - Metrics Used in Comparative
Studies.

As shown in Table 5.12, ten papers compared topic modeling techniques to infor-
mation extraction techniques. For example, Rosenberg and Moonen [2018] compared
LSI with two other dimensionality reduction techniques (PCA and NMF) to group log
messages of failing continuous deployment runs. Nine out of these ten papers presented
explorations, i.e. studies experimented with different models to discuss their application
to specific software engineering tasks, such as bug handling, software documentation
and maintenance. Thomas et al. [2013] on the other hand experimented with multiple
models to propose a framework for bug localization in source code that applies the best
performing model.

Four papers in Table 5.12 [Abdellatif et al. 2019, De Lucia et al. 2014, Tantithamtha-
vorn et al. 2018, Thomas et al. 2013] compared the performance of LDA, LSI and VSM
with source code and issue/bug reports. Except for De Lucia et al. [2014], these studies
applied Top-k accuracy (see Appendix C.2 - Metrics Used in Comparative Studies) to
measure the performance of models, and the best performing model was VSM. Tan-
tithamthavorn et al. [2018] found that VSM achieves both the best Top-k performance
and the least required effort for method-level bug localization. Additionally, according
to De Lucia et al. [2014], VSM possibly performed better than LSI and LDA due to
the nature of the corpus used in their study: LDA and LSI are ideal for heterogeneous
collections of documents (e.g., user manuals from different systems), but in De Lucia
et al. [2014] study each corpus was a collection of code classes from a single software
system.

Ten studies proposed an approach that uses a topic modeling technique and com-
pared it to similar approaches (shown in Table 5.13). In column “Approaches compared”
of Table 5.13, the approach in bold is the one proposed by the study (e.g., [Cao et al.
2017]) or the topic modeling technique used in their approach (e.g., [Thomas et al.
2014]). All newly proposed approaches were the best performing ones according to the
metrics used.

In addition to the papers mentioned in Tables 5.12 and 5.13, four papers compared

5.6 DISCUSSION 101

the performance of different settings for a topic modeling technique or tested which
topic modeling technique works best in their newly proposed approach (see Table 5.14).
Biggers et al. [2014] offered specific recommendations for configuring LDA when localizing
features in Java source code, and observed that certain configurations outperform
others. For example, they found that commonly used heuristics for selecting LDA
hyperparameter values (beta = 0.01 or beta = 0.1) in source code topic modeling are
not optimal (similar to what has been found by others, see Section 5.3). The other
three papers [Chen et al. 2014, Fowkes et al. 2016, Poshyvanyk et al. 2012] developed
approaches which were tested with different settings (e.g., the approach applying LDA
or ASUM [Chen et al. 2014]).

Regarding the datasets used by comparative studies, only Rao and Kak [2011]
used a benchmarking dataset (iBUGS). Most of the comparative studies (13 out of 24)
used source code or issue/bug reports from open source software, which are subject to
evolution. The advantage of using benchmarking datasets rather than “living” datasets
(e.g., an open source Java system) is that its data will be static and the same across
studies. Additionally, data in benchmarking datasets are usually curated. This means
that the results of replicating studies can be compared to the original study when both
used the same benchmarking dataset.

Finally, we highlight that each of the above mentioned comparisons has a specific
context. This means that, for example, the type of data analyzed (e.g., Java classes), the
parameter setting (e.g., k = 50), the goal of the comparison (e.g., to select the best model
for bug localization or for tracing documentation in source code) and pre-processing
(e.g., stemming and stop word removal) were different. Therefore, it is not possible to
“synthesize” the results from the comparisons across studies by aggregating the different
comparisons in different papers, even for studies that appear to have similar goals or use
the same topic modeling techniques, such as comparing the same models with similar
types of data (such as [Tantithamthavorn et al. 2018] and [Abdellatif et al. 2019]).

102 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

T
ab

le
5.

12
St

ud
ie

s
th

at
in

cl
ud

e
co

m
pa

ris
on

of
to

pi
c

m
od

el
s

P
ap

er
Su

pp
or

te
d

ta
sk

T
ec

hn
iq

ue
s

co
m

-
pa

re
d

T
yp

e
of

da
ta

D
at

as
et

T
yp

e
of

co
n-

tr
ib

ut
io

n
M

et
ri

cs
B

es
t

p
er

fo
rm

-
in

g
te

ch
ni

qu
e

[D
e

Lu
ci

a
et

al
.

20
14

]
D

oc
um

en
ta

ti
on

LD
A

,L
SI

,V
SM

So
ur

ce
co

de
JH

ot
D

ra
w

an
d

eX
V

an
-

ta
ge

E
xp

lo
ra

ti
on

T
er

m
en

tr
op

y;
A

v-
er

ag
e

ov
er

la
p

V
SM

[T
an

ti
th

am
th

av
or

n
et

al
.2

01
8]

B
ug

ha
nd

lin
g

LD
A

,L
SI

,V
SM

So
ur

ce
co

de
;I

s-
su

e/
bu

g
re

po
rt

E
cl

ip
se

an
d

M
oz

ill
a

E
xp

lo
ra

ti
on

To
p-

k
ac

cu
ra

cy
V

SM

[A
bd

el
la

ti
f

et
al

.
20

19
]

M
ai

nt
en

an
ce

LD
A

,L
SI

,V
SM

Is
su

e/
bu

g
re

-
po

rt
D

at
a

re
co

rd
s

fr
om

an
In

du
st

ry
pa

rt
ne

r
E

xp
lo

ra
ti

on
T

op
-k

ac
cu

ra
cy

;
M

ea
n

av
er

ag
e

pr
ec

is
io

n
(M

A
P

)
V

SM

[L
iu

et
al

.2
02

0]
D

oc
um

en
ta

ti
on

LD
A

,
LS

I,
G

V
SM

-
ba

se
d

te
ch

ni
qu

es

C
om

m
it

m
es

-
sa

ge
s;

Is
-

su
e/

bu
g

re
po

rt
17

op
en

so
ur

ce
pr

oj
ec

ts
E

xp
lo

ra
ti

on
A

ve
ra

ge
pr

ec
is

io
n

(A
P

)
G

V
SM

-b
as

ed
te

ch
ni

qu
es

[B
in

kl
ey

et
al

.
20

15
]

D
oc

um
en

ta
ti

on
LS

I,
V

SM
,

V
SM

-W
S,

Q
L-

lin
,

Q
L-

D
ir

,
Q

L-
LD

A
So

ur
ce

co
de

A
rg

oU
M

L
0.

22
,E

cl
ip

se
3.

0,
Ja

bR
ef

2.
6,

jE
di

t
4.

3
an

d
m

uC
om

m
an

de
r

0.
8.

5

E
xp

lo
ra

ti
on

M
ea

n
R

ec
ip

ro
ca

l
R

an
k

(M
R

R
)

Q
L-

LD
A

[R
ao

an
d

K
ak

20
11

]
B

ug
ha

nd
lin

g
M

LE
-L

D
A

;L
D

A
;U

M
;

V
SM

;L
SA

;C
B

D
M

So
ur

ce
co

de
iB

U
G

S
be

nc
hm

ar
k

da
ta

se
t

E
xp

lo
ra

ti
on

M
A

P
;S

C
O

R
E

U
M

[R
os

en
be

rg
an

d
M

oo
ne

n
20

18
]

M
ai

nt
en

an
ce

LS
I,

P
C

A
,N

M
F

Lo
g

in
fo

rm
a-

ti
on

C
is

co
Sy

st
em

s
N

or
w

ay
lo

g
ba

se
E

xp
lo

ra
ti

on

A
dj

us
te

d
m

ut
ua

l
in

fo
rm

at
io

n
(A

M
I)

;
E

ff
or

t
re

du
ct

io
n;

H
om

og
en

ei
ty

;
C

om
pl

et
en

es
s

N
M

F

[S
ilv

a
et

al
.2

01
6]

B
ug

ha
nd

lin
g

LD
A

;X
Sc

an
So

ur
ce

co
de

R
hi

no
an

d
jE

di
t

E
xp

lo
ra

ti
on

P
re

ci
si

on
;

R
ec

al
l;

F
-m

ea
su

re
X

Sc
an

[L
uo

et
al

.2
01

6]
Te

st
in

g

C
al

l-g
ra

ph
-b

as
ed

;
St

ri
ng

-d
is

ta
nc

e-
ba

se
d;

LD
A

;
G

re
ed

y
te

ch
-

ni
qu

es
;

A
da

pt
iv

e
ra

nd
om

te
st

in
g

Te
st

ca
se

s
30

op
en

so
ur

ce
Ja

va
pr

og
ra

m
s

E
xp

lo
ra

ti
on

A
ve

ra
ge

p
er

ce
nt

-
ag

e
of

fa
ul

ts
de

-
te

ct
ed

(A
P

F
D

)

C
al

l-g
ra

ph
-

ba
se

d

[T
ho

m
as

et
al

.
20

13
]1

B
ug

ha
nd

lin
g

LD
A

,L
SI

,V
SM

So
ur

ce
co

de
;I

s-
su

e/
bu

g
re

po
rt

E
cl

ip
se

,
Ja

zz
an

d
M

oz
ill

a
A

pp
ro

ac
h

To
p-

k
ac

cu
ra

cy
V

SM

1
T

hi
s

st
ud

y
us

ed
th

e
be

st
pe

rf
or

m
in

g
m

od
el

s
to

de
ve

lo
p

an
ap

pr
oa

ch
fo

r
bu

g
lo

ca
liz

at
io

n

5.6 DISCUSSION 103

T
ab

le
5.

13
St

ud
ie

s
th

at
in

cl
ud

e
co

m
pa

ris
on

of
to

pi
c-

ba
se

d
ap

pr
oa

ch
es

P
ap

er
Su

pp
or

te
d

ta
sk

A
pp

ro
ac

he
s

co
m

pa
re

d
T

yp
e

of
da

ta
D

at
as

et
T

yp
e

of
co

nt
ri

bu
-

ti
on

M
et

ri
cs

B
es

t
p

er
fo

rm
-

in
g

ap
pr

oa
ch

[N
ag

ui
b

et
al

.2
01

3]
B

ug
ha

nd
lin

g
L

D
A

;L
D

A
-S

V
M

Is
su

e/
bu

g
re

-
po

rt
A

tl
as

,
E

cl
ip

se
B

IR
T

an
d

U
ni

ca
se

A
pp

ro
ac

h
A

ct
ua

l
as

si
gn

ee
hi

t
R

at
io

;T
op

-k
hi

t
LD

A

[M
ur

al
i

et
al

.2
01

7]
B

ug
ha

nd
lin

g

Sa
le

nt
o

(L
D

A
+

P
ro

ba
-

bi
lis

ti
c

B
eh

av
io

r
M

od
el

an
d

A
rt

ifi
ci

al
N

eu
ra

l
N

et
w

or
ks

);
N

on
-B

ay
es

ia
n

m
et

ho
d

So
ft

w
ar

e
do

cu
-

m
en

ta
ti

on

A
nd

ro
id

A
P

Is
:

al
er

t
di

-
al

og
s,

bl
ue

to
ot

h
so

ck
-

et
s

an
d

cr
yp

to
gr

ap
hi

c
ci

ph
er

s

A
pp

ro
ac

h
P

re
ci

si
on

;
R

ec
al

l;
A

no
m

al
y

sc
or

e
Sa

le
nt

o

[X
ia

et
al

.
20

17
b]

B
ug

ha
nd

lin
g

T
op

ic
M

in
er

(M
T

M
);

B
ug

zi
e;

LD
A

-K
L;

SV
M

-
LD

A
;L

D
A

-A
ct

iv
ity

Is
su

e/
bu

g
re

-
po

rt

G
C

C
,

O
pe

nO
ffi

ce
,

N
et

be
an

s,
E

cl
ip

se
an

d
M

oz
ill

a
A

pp
ro

ac
h

To
p-

k
ac

cu
ra

cy
To

pi
cM

in
er

[T
ho

m
as

et
al

.2
01

4]
Te

st
in

g
L

D
A

;
C

al
l-g

ra
ph

-b
as

ed
;

St
ri

ng
-d

is
ta

nc
e-

ba
se

d;
A

da
pt

iv
e

ra
nd

om
te

st
in

g
So

ur
ce

co
de

So
ft

w
ar

e-
ar

ti
fa

ct
In

-
fr

as
tr

uc
tu

re
R

ep
os

it
or

y
(S

IR
)

A
pp

ro
ac

h
A

P
F

D
;

M
an

n-
W

hi
tn

ey
-W

ilc
ox

on
te

st
;A

m
ea

su
re

LD
A

[J
ia

ng
et

al
.

20
19

]
R

eq
ui

re
m

en
ts

SA
F

E
R

(L
D

A
+

C
lu

s-
te

ri
ng

te
ch

ni
qu

e)
;

K
N

N
+

;C
LA

P

So
ft

w
ar

e
do

cu
-

m
en

ta
ti

on
10

0
G

oo
gl

e
P

la
y

ap
ps

A
pp

ro
ac

h

H
it

ra
ti

o;
N

or
m

al
-

iz
ed

D
is

co
un

te
d

C
um

ul
at

iv
e

G
ai

n
(N

D
C

G
)

SA
F

E
R

[C
ao

et
al

.
20

17
]

A
rc

hi
te

ct
in

g

D
A

T
-L

D
A

+
C

lu
st

er
-

in
g

te
ch

ni
qu

e;
W

T
C

lu
s-

te
r;

W
T

-L
D

A
;C

D
SR

;O
D

-
D

M
SC

;C
D

A
-D

M
SC

;C
D

T
-

D
M

SC

So
ft

w
ar

e
do

cu
-

m
en

ta
ti

on

66
29

m
as

hu
p

se
r-

vi
ce

s
fr

om
P

ro
-

gr
am

m
ab

le
W

eb
A

pp
ro

ac
h

P
re

ci
si

on
;

R
ec

al
l;

F
-

M
ea

su
re

;P
ur

ity
;T

er
m

en
tr

op
y

D
A

T
-L

D
A

+
C

lu
st

er
in

g
te

ch
ni

qu
e

[Y
an

et
al

.
20

16
b]

B
ug

ha
nd

lin
g

D
P

L
SA

;
LD

A
-K

L;
LD

A
-

SV
M

Is
su

e/
bu

g
re

-
po

rt
E

cl
ip

se
,

B
ug

zi
lla

,
M

y-
ly

n,
G

C
C

an
d

F
ir

ef
ox

A
pp

ro
ac

h
R

ec
al

l@
k;

P
er

pl
ex

ity
D

P
LS

A

[Z
ha

ng
et

al
.2

01
6]

B
ug

ha
nd

lin
g

L
D

A
+

C
lu

st
er

in
g

te
ch

-
ni

qu
e;

IN
SP

ec
t;

N
B

M
ul

ti
-

no
m

ia
l;

D
R

E
T

O
M

;D
R

E
X

;
D

ev
R

ec

Is
su

e/
bu

g
re

-
po

rt

G
C

C
,

O
pe

nO
ffi

ce
,

E
cl

ip
se

,N
et

B
ea

ns
an

d
M

oz
ill

a
A

pp
ro

ac
h

P
re

ci
si

on
;

R
ec

al
l;

F
-

m
ea

su
re

;M
R

R
LD

A
+

C
lu

st
er

-
in

g
te

ch
ni

qu
e

[D
em

is
si

e
et

al
.2

02
0]

A
rc

hi
te

ct
in

g

P
R

E
V

(L
D

A
+

C
lu

st
er

-
in

g
an

d
C

la
ss

ifi
ca

ti
on

te
ch

ni
qu

es
);

C
ov

er
t;

Ic
-

cT
A

So
ft

w
ar

e
do

cu
-

m
en

ta
ti

on
11

,7
96

G
oo

gl
e

P
la

ys
ap

ps
A

pp
ro

ac
h

P
re

ci
si

on
;R

ec
al

l
P

R
E

V

[B
la

sc
o

et
al

.2
02

0]
R

eq
ui

re
m

en
ts

C
O

D
F

R
E

L
(L

SI
+

E
vo

-
lu

ti
on

ar
y

al
go

ri
th

m
);

R
eg

ul
ar

-L
SI

So
ur

ce
co

de
K

ro
m

ai
a

vi
de

o
ga

m
e

da
ta

A
pp

ro
ac

h
P

re
ci

si
on

;
R

ec
al

l;
F

-
m

ea
su

re
C

O
D

F
R

E
L

104 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

T
ab

le
5.

14
St

ud
ie

s
th

at
in

cl
ud

e
co

m
pa

ris
on

of
di

ffe
re

nt
se

tt
in

gs
fo

r
a

te
ch

ni
qu

e

P
ap

er
Su

pp
or

te
d

ta
sk

T
ec

hn
iq

ue
s

co
m

-
pa

re
d

T
yp

e
of

da
ta

D
at

as
et

T
yp

e
of

co
nt

ri
bu

-
ti

on
M

et
ri

cs
O

ut
co

m
e

of
co

m
pa

ri
so

n

B
ig

ge
rs

et
al

.
[2

01
4]

D
oc

um
en

ta
tio

n

LD
A

(s
et

ti
ng

s
te

st
ed

:
hy

pe
rp

ar
am

et
er

sα
an

d
β

,
do

cu
m

en
t,

nu
m

be
r

of
to

pi
cs

an
d

qu
er

y
(i

.e
.

a
st

ri
ng

fo
rm

u-
la

te
d

m
an

ua
lly

or
au

-
to

m
at

ic
al

ly
by

an
en

d
us

er
or

de
ve

lo
pe

r)
)

So
ur

ce
co

de

A
rg

oU
M

L,
Ja

bR
ef

,j
E

di
t,

m
uC

om
m

an
-

de
r,

M
yl

yn
,

R
hi

no

Ex
pl

or
at

io
n

E
ffe

ct
iv

en
es

s
m

ea
su

re

R
ec

om
m

en
da

ti
on

fo
r

va
lu

es
of

LD
A

hy
pe

rp
ar

am
et

er
s

an
d

nu
m

be
r

of
to

pi
cs

co
ns

id
er

in
g

th
e

nu
m

be
r

of
do

cu
m

en
ts

us
ed

Po
sh

yv
an

yk
et

al
.[

20
12

]
D

oc
um

en
ta

tio
n

LS
I-

ba
se

d
te

ch
ni

qu
e

(s
et

ti
ng

s
te

st
ed

:
nu

m
-

be
r

of
do

cu
m

en
ts

,
nu

m
be

r
of

at
tr

ib
ut

es
,

st
em

m
in

g
of

co
rp

us
an

d
qu

er
ie

s)

So
ur

ce
co

de

A
rg

oU
M

L,
Fr

ee
ne

t,
iB

at
is

,
JM

e-
te

r,
M

yl
yn

an
d

R
hi

no

A
pp

pr
oa

ch

P
re

ci
si

on
;

R
e-

ca
ll;

E
ffe

ct
iv

e-
ne

ss
;M

in
im

al
br

ow
si

ng
ar

ea
(M

B
A

);
M

ax
-

im
um

p
os

si
-

bl
e

pr
ec

is
io

n
ga

in
(M

P
G

)

C
on

fig
ur

at
io

n
se

t-
ti

ng
s

fo
r

th
e

pr
o-

po
se

d
te

ch
ni

qu
e

ba
se

d
on

th
e

ch
ar

-
ac

te
ri

st
ic

s
of

th
e

co
rp

or
a

us
ed

C
he

n
et

al
.

[2
01

4]
B

ug
ha

nd
lin

g

A
R

-M
in

er
:

E
xp

ec
ta

-
ti

on
M

ax
im

iz
at

io
n

fo
r

N
ai

ve
B

ay
es

(E
M

N
B

)
+

LD
A

;
E

M
N

B
+

A
SU

M

E
nd

us
er

co
m

-
m

un
ic

at
io

n

A
pp

s
Sw

ift
K

ey
K

ey
bo

ar
d,

Fa
ce

bo
ok

,
Te

m
pl

e
R

un
2,

Ta
p

Fi
sh

A
pr

oa
ch

P
re

ci
si

on
;

R
ec

al
l;

F-
m

ea
su

re
;

N
D

C
G

E
M

N
B

+
LD

A

Fo
w

ke
s

et
al

.
[2

01
6]

C
od

in
g

T
A

SS
A

L
+

LD
A

;
T

A
SS

A
L

+
V

SM
So

ur
ce

co
de

Si
x

op
en

so
ur

ce
Ja

va
pr

oj
ec

ts
A

pp
ro

ac
h

A
re

a
U

nd
er

th
e

C
ur

ve
(A

U
C

)
T

A
SS

A
L

+
LD

A

5.6 DISCUSSION 105

5.6.2 RQ3.2: Inputs to Topic Models

5.6.2.1 Summary of Findings

Source code, developer communication and issue/bug reports were the most frequent
types of data used for topic modeling in the reviewed papers. Consequently, most of the
documents referred to individual or groups of functions or methods, individual Q&A
posts, or individual bug reports; another frequent document was an individual user
review (more discussions are in Subsection 5.6.2.3). We also found that few papers
(16 out of 111) mentioned the actual length of documents used for topic modeling (we
discuss this more in Subsection 5.6.2.2).

For the corpus size, we found that most of the papers describe the size of their
corpora (84 out of 111). Most of these papers, as shown in Table 5.5.3.2, used one
corpus rather than two or more corpora. The corpora sizes were very different across
studies and most of them (60 out of 84) had more than a thousand documents in each
of their corpora. In relation to types of data, we found that some of the largest corpora
in our selection of studies were related to developer communication (e.g., 1,642,602
Stack Overflow posts [Rosen and Shihab 2016], 3,474,987 Stack Overflow posts [Barua
et al. 2014], 8,978,719 knowledge units in total [Ye et al. 2017] and 13,472,796 Stack
Overflow questions [Chen et al. 2019]), log information (e.g., 2,083,353 commits [Silva
et al. 2016]), search queries (e.g., 1,055,105 search queries [Bajracharya and Lopes 2012])
and end user communication (e.g., 1,267,895 reviews [Nayebi et al. 2018]).

Regarding modeling parameters, most of the papers (93 out of 111) explicitly
mentioned the configuration of at least one parameter, e.g., k, α or β for LDA. We
observed that the setting α = 50/k and β = 0.01 (asymmetric α and symmetric β)
as suggested by Steyvers and Griffiths [2007] and Wallach et al. [2009] was frequently
used (28 out of 93 papers). Additionally, papers that applied LDA mostly used the
default parameters of the tools used to implement LDA (e.g., Mallet3 with α = 50/k

and β = 0.01 as default). This finding is similar to what has been reported by others,
e.g., according to another review by Agrawal et al. [2018], LDA is frequently applied
“as is out-of-the-box” or with little tuning. This means that studies may rely on the
default settings of the tools used with their topic modeling technique, such as Mallet
and TMT, rather than try to optimize parameters.

5.6.2.2 Documents and Parameters

Short texts: According to Lin et al. [2014], topic models such as LDA have been widely
adopted and successfully used with traditional media like edited magazine articles.
However, applying LDA to informal communication text such as tweets, comments on
blog posts, instant messaging, Q&A posts, may be less successful. Their user-generated
content is characterized by very short document length, a large vocabulary and a

106 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

potentially broad range of topics. As a consequence, there are not enough words
in a document to create meaningful clusters, compromising the performance of the
topic modeling. This means that probabilistic topic models such as LDA perform
sub-optimally when applied “as is” with short documents even when hyperparameters
(α and β in LDA) are optimized [Lin et al. 2014]. In our sample there were only
two papers that mentioned the use of a LDA-based technique specifically for short
documents [Hu et al. 2018, 2019]. Hu et al. [2018, 2019] applied Twitter-LDA with
end user reviews. Furthermore, Moslehi et al. [2018] used a weighting algorithm in
documents to generate topics with more relevant words, they also acknowledge that the
use of a short text technique could have improved their topic model.

As shown in Table 5.8, few papers mentioned the actual length of documents.
Considering a single document from a corpus, we observed that most papers potentially
used short texts (all documents found in papers are shown in Figure 5.3). For example,
papers used an individual search query [Xia et al. 2017a], an individual Q&A post [Barua
et al. 2014], an individual user review [Nayebi et al. 2018], or an individual commit
message [Canfora et al. 2014] as a document. Among the papers that mentioned
document length, the shortest documents were an individual commit message (9 to 20
words) [Canfora et al. 2014] and an individual method (14 words) [Tantithamthavorn
et al. 2018]. Both studies applied LDA.

Two approaches to improve the performance of LDA when analyzing short documents
are pooling and contextualization [Lin et al. 2014]. Pooling refers to aggregating similar
(e.g., semantically or temporally) documents into a single document [Mehrotra et al.
2013]. For example, among the papers analyzed, Pettinato et al. [2019] used temporal
pooling and combined short log messages into a single document based on a temporal
order. Contextualization refers to creating subsets of documents according to a type of
context; considering tweets as documents, the type of context can refer to time, user
and hashtags associated with tweets [Tang et al. 2013]. For example, Weng et al. [2010]
combined all the individual tweets of an author into one pseudo-document (rather than
treating each tweet as a document). Therefore, with the contextualization approach,
the topic model uses word co-occurrences at a context level instead of at the document
level to discover topics.

Hyperparameters: Table 5.15 shows the hyperparameter settings and types of
data of the papers that mentioned the value of at least one model parameter. In
Table 5.15 we also highlight the topic modeling techniques used. Note that some topic
modeling techniques (e.g., RTM) can receive more parameters that the ones mentioned in
Table 5.15 (e.g., number of documents, similarity thresholds); all parameters mentioned
in papers are available online in the raw data of our study1). When comparing
hyperparameter settings, topic modeling techniques and types of data, we observed the
following:

5.6 DISCUSSION 107

• Papers that used LDA-GA, an LDA-based technique that optimizes hyperparame-
ters with Genetic algorithms, applied it to data from developer documentation or
source code;

• LDA was used with all three types of hyperparameter settings across studies. The
most common setting was α based on k for developer communication and source
code;

• Most of the LDA-based techniques applied fixed values for α and β.
Most of the papers that applied only LSI as the topic modeling technique did not

mention hyperparameters. As LSI is a model simpler than LDA, it generally requires
the number of topics k. For example, a paper that applied LSI to source code mentioned
α and k [Poshyvanyk et al. 2012].

Table 5.15 Number of papers by type of data and hyperparameter settings

Types of Data α based on k
Fixed α and
β

Varying α or
β

Optimized
parame-
ters

Commit messages

DPLSA: 1
Semi-
supervised
LDA: 1

LDA: 1
RTM: 1 - -

Developer communi-
cation LDA: 8 LDA: 3

LLDA; L2H: 1 - -

End user communi-
cation LDA: 1

LDA: 1
LDA; ASUM:
1
LLDA: 1
AOLDA: 1

- -

Issue/bug report

LDA: 3
LDA; LSI: 1
DPLSA: 1
MTM: 1

LDA: 3
RTM: 1
LDA; LLDA: 1

LDA: 1
MLE-LDA: 1 -

Log information LDA: 2 - - -
Search query - LDA: 2 - -
End user documenta-
tion LDA: 3 LDA: 3 LDA: 1 -

Developer documen-
tation - DAT-LDA: 1 - LDA-GA: 1

Source code LDA: 6
LDA; LSI: 1

LDA: 3
BugScout: 1
RTM: 3
LDA; LSI: 1

LDA: 2
MLE-LDA: 1
QL-LDA; LSI:
2

LDA-GA: 2

“Lessons learned” - - - -
Transcript LDA: 3 - - -
URL content - LDA: 1 - -

Number of topics: By relating the type of data to the number of topics, we aimed
at finding whether the choice of the number of topics is related to the data used in the
topic modeling techniques (see also Table 5.8). However, the number of topics used and
data in the studies are rather diverse. Therefore, synthesizing practices and offering
insights from previous studies on how to choose the number topics is rather limited.

108 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

From the 90 papers that mentioned number of topics (k), we found that 66 papers
selected a specific number of topics (e.g., based on previous works with similar data or
addressing the same task), while 24 papers used several numbers of topics (e.g., Yan
et al. [2016b] used 10 to 120 topics in steps of 10). To provide an example of how
the number of topics differed even when the same type of data was analyzed with the
same topic modeling technique, we looked at studies that applied LDA in textual data
from developer communication (mostly Q&A posts) to propose an approach to support
documentation. For these papers we found one paper that did not mention k [Henß et al.
2012], one paper that modeled different numbers of topics (k = 10, 20, 30) [Asuncion
et al. 2010], one paper that modeled k = 15 [Souza et al. 2019] and another paper
that modeled k = 40 [Wang et al. 2015]. This illustrates that there is no common or
recommended practice that can be derived from the papers.

Some papers mentioned that they tested several numbers of topics before selecting
the most appropriate value for k (in regards to studies’ goals) but did not mention the
range of values tested. In regards to papers that mentioned such range, we identified
four studies [Chen et al. 2014, Layman et al. 2016, Nabli et al. 2018, Nayebi et al.
2018] that tested several values for k and used perplexity (see details in Appendix C.2 -
Metrics Used in Comparative Studies) of models to evaluate which value of k generated
the best performing model; three studies [El Zarif et al. 2020, Han et al. 2020, Zhao
et al. 2020] also selected the number of topics after testing several values for k; however
they used topic coherence [Röder et al. 2015] to evaluate models. One paper [Haque
and Ali Babar 2020] used both perplexity and topic coherence to select a value for k.
Metrics of topic coherence score the probability of a pair of words from the resulted word
clusters being found together in (a) external data sources (e.g., Wikipedia pages) or (b)
in the documents used by the topic model that generated those word clusters [Röder
et al. 2015].

5.6.2.3 Supported Tasks, Types of Data and Types of Contribution

We looked into the relationship between the tasks supported by papers, the type of
data used and the types of contributions (see Table 5.16). We observed the following:

• Source code was a frequent type of data in papers; consequently it appeared for
almost all supported tasks, except for exploratory studies;

• Considering exploratory studies, most papers used developer communication (13
out of 21), followed by search queries and end user communication (three papers
each);

• Papers that supported bug handling mostly used issue/bug reports, source code
and end user communication;

• Log information was used by papers that supported maintenance, bug handling,
and coding;

5.6 DISCUSSION 109

• Considering the papers that supported documentation, three used transcript texts
from speech;

• From the four papers related to the type of data developer documentation, two
supported architecting tasks and the other two, documentation tasks.

• Regarding the type of data, URLs and transcripts were only used in studies that
contributed an approach.

We found that most of the exploratory studies used data that is less structured.
For example, developer communication, such as Q&A posts and conversation threads
generally do not follow a standardized template. On the other hand, issue reports are
typically submitted through forms which enforces a certain structure.

110 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH
T

ab
le

5.
16

N
um

be
r

of
pa

pe
rs

by
ty

pe
s

of
da

ta
an

d
su

pp
or

te
d

ta
sk

s

Su
pp

or
te

d
T

as
ks

T
yp

es
of

da
ta

A
rc

hi
te

ct
in

g
B

ug
ha

nd
lin

g
C

od
in

g
D

oc
um

en
ta

ti
on

M
ai

nt
en

an
ce

R
ef

ac
to

ri
ng

R
eq

ui
re

m
en

ts
Te

st
in

g
E

xp
lo

ra
to

ry
st

ud
ie

s

C
om

m
it

m
es

-
sa

ge
s

E
xp

lo
ra

ti
on

:
1

A
pp

ro
ac

h:
3

E
xp

lo
ra

ti
on

[C
]:

1
-

A
pp

ro
ac

h:
1

E
xp

lo
ra

ti
on

[C
]:

1
A

pp
ro

ac
h:

1
E

xp
lo

ra
ti

on
:

1
-

-
E

xp
lo

ra
ti

on
:

1

D
ev

el
op

er
co

m
m

un
ic

at
io

n
-

A
pp

ro
ac

h:
1

-
A

pp
ro

ac
h:

5
A

pp
ro

ac
h:

1
-

-
-

E
xp

lo
ra

ti
on

:
13

E
nd

us
er

co
m

-
m

un
ic

at
io

n
-

A
pp

ro
ac

h:
4

E
xp

lo
ra

ti
on

:
2

-
-

A
pp

ro
ac

h:
1

E
xp

lo
ra

ti
on

:
1

-
A

pp
ro

ac
h:

1
-

E
xp

lo
ra

ti
on

:
3

Is
su

e/
bu

g
re

po
rt

E
xp

lo
ra

ti
on

:
1 E

xp
lo

ra
ti

on
[C

]:
1

A
pp

ro
ac

h:
6

E
xp

lo
ra

ti
on

:
2

A
pp

ro
ac

h
[C

]:
5

E
xp

lo
ra

ti
on

[C
]:

2

-
A

pp
ro

ac
h:

2
E

xp
lo

ra
ti

on
[C

]:
1

E
xp

lo
ra

ti
on

[C
]:

1
-

-
-

E
xp

lo
ra

ti
on

:
1

Lo
g

in
fo

rm
a-

ti
on

-
A

pp
ro

ac
h:

1
A

pp
ro

ac
h:

1
-

A
pp

ro
ac

h:
1

E
xp

lo
ra

ti
on

:
1 E

xp
lo

ra
ti

on
[C

]:
1

-
-

-
-

Se
ar

ch
qu

er
y

-
-

-
A

pp
ro

ac
h:

1
-

-
-

-
E

xp
lo

ra
ti

on
:

3

E
nd

us
er

do
cu

-
m

en
ta

ti
on

A
pp

ro
ac

h:
2

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

ti
on

:
1

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

ti
on

:
1

A
pp

ro
ac

h:
4

A
pp

ro
ac

h:
1

-
A

pp
ro

ac
h

[C
]:

1
A

pp
ro

ac
h:

1
E

xp
lo

ra
ti

on
:

2

D
ev

el
op

er
do

cu
m

en
ta

ti
on

A
pp

ro
ac

h:
1

A
pp

ro
ac

h
[C

]:
1

-
-

A
pp

ro
ac

h:
2

-
-

-
-

-

So
ur

ce
co

de
A

pp
ro

ac
h:

2
E

xp
lo

ra
ti

on
:

2

A
pp

ro
ac

h:
4

E
xp

lo
ra

ti
on

:
2

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

ti
on

[C
]:

3

A
pp

ro
ac

h:
2

E
xp

lo
ra

ti
on

:
1 A

pp
ro

ac
h

[C
]:

1

A
pp

ro
ac

h:
5

E
xp

lo
ra

ti
on

[C
]:

3

A
pp

ro
ac

h:
1

E
xp

lo
ra

ti
on

:
3

A
pp

ro
ac

h:
2

A
pp

ro
ac

h:
1

A
pp

ro
ac

h
[C

]:
1

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

ti
on

[C
]:

1

-

“L
es

so
ns

le
ar

ne
d”

-
-

-
-

E
xp

lo
ra

ti
on

[C
]:

1
-

-
-

-

Tr
an

sc
ri

pt
-

-
-

A
pp

ro
ac

h:
3

-
-

-
-

-
U

R
L

co
nt

en
t

A
pp

ro
ac

h:
1

-
-

-
-

-
-

-
-

[C
]-

St
ud

ie
s

th
at

al
so

co
nt

ri
bu

te
d

w
it

h
a

C
om

pa
ri

so
n

5.6 DISCUSSION 111

5.6.3 RQ3.3: Data Pre-processing

5.6.3.1 Summary of Findings

Most of the papers (91 out of 111) pre-processed the textual data before topic modeling.
Removing noisy content was the most frequent pre-processing step (as typical for natural
language processing), followed by stemming and splitting words. Miner et al. [2012]
consider tokenizing as one of the basic data pre-processing steps in text mining. However,
in comparison to other basic pre-processing steps such as stemming, splitting words
and removing noise, tokenizing was not frequently found in papers (it was at least not
mentioned in papers).

Eight papers [Abdellatif et al. 2019, Ahasanuzzaman et al. 2020, Binkley et al.
2015, Henß et al. 2012, Lukins et al. 2010, Poshyvanyk et al. 2012, Tantithamthavorn
et al. 2018, Xia et al. 2017b] tested how pre-processing steps affected the performance
of topic modeling or topic model-based approaches. For example, Henß et al. [2012]
tested several pre-processing steps (e.g., removing stop words, long paragraphs and
punctuation) in e-mail conversations analyzed with LDA. They found that removing
such content increased LDA’s capability to grasp the actual semantics of software
mailing lists. Ahasanuzzaman et al. [2020] proposed an approach which applies LDA
and Conditional Random Field (CRF) to localize concerns in Stack Overflow posts.
The authors did not incorporate stemming and stop words removal in their approach
because in preliminary tests these pre-processing steps decreased the performance of
the approach.

5.6.3.2 Pre-processing Different Types of Data

Table 5.17 shows how different types of data were pre-processed. We observed that
stemming, removing noise, lowercasing, and splitting words were commonly used for all
types of data. Regarding the differences, we observed the following:

• For developer communication there were specific types of noisy content that was
removed: URLs, HTML tags and code snippets. This might have happened
because most of the papers used Q&A posts as documents, which frequently
contain hyperlinks and code examples;

• Removing non-informative content was frequently applied to end user communica-
tion and end user documentation;

• Expanding contracted terms (e.g., “didn’t” to “did not”) were applied to end user
communication and issue/bug reports;

• Removing empty documents and eliminating extra white spaces were applied
only in end user communication. Empty documents occurred in this type of data
because after the removal of stop words no content was left [Chen et al. 2014];

112 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

• For source code there was a specific noise to be removed: program language
specific keywords (e.g., “public”, “class”, “extends”, “if”, and “while”).

Table 5.17 shows that splitting words, stop words removal and stemming were
frequently applied to source code and most of these studies (15) applied these three
steps at the same time. Studies that performed these pre-processing steps to source
code mostly used methods, classes, or comments in classes/methods as documents. For
example, Silva et al. [2016] who applied LDA, performed these three pre-processing steps
in classes from two open source systems using TopicXP [Savage et al. 2010]. TopicXP
is a Eclipse plug-in that extracts source code, pre-process it and executes LDA. This
plug-in implements splitting words, stop words removal and stemming.

Splitting words was the most frequent pre-processing step in source code. Studies
used this step to separate Camel Cases in methods and classes (e.g., the class constructor
InvalidRequestTest produces the terms “invalid”, “request” and “test”). For example,
Tantithamthavorn et al. [2018] compared LDA, LSI and VSM testing different combina-
tions of pre-processing steps to the methods’ identifiers inputted to these techniques.
The best performing approach was VSM with splitting words, stop words removal and
stemming.

Removing stop words in source code refer to the exclusion of the most common words
in a language (e.g., “a/an” and “the” in English), as in studies that used other types of
data. Removing stop words in source code is also different from removing programming
language keywords and studies mentioned these as separate steps. Lukins et al. [2010],
for example, tested how removing stop words from their documents (comments and
identifiers of methods) affected the topics generated by their LDA-based approach.
They found that this step did not improve the results substantially.

As mentioned in Section 5.5.4, stemming is the process of normalizing words into
their single forms by identifying and removing prefixes, suffixes and pluralisation (e.g.,
“development”, “developer”, “developing” become “develop”). Regarding stemming in
source code, papers normalized identifiers of classes and methods, comments related
to classes and methods, test cases or a source code file. Three papers tested the
effect of this pre-processing step in the performance of their techniques [Binkley et al.
2015, Poshyvanyk et al. 2012, Tantithamthavorn et al. 2018], and one of these papers
also tested removing stop words and splitting words [Tantithamthavorn et al. 2018].
Poshyvanyk et al. [2012] tested the effect of stemming classes in the performance
of their LSI-based approach. The authors concluded that stemming can positively
impact features localization by producing topics (“concept lattices” in their study) that
effectively organize the results of searches in source code. Binkley et al. [2015] compared
the performance of LSI, QL-LDA and other techniques. They also tested the effects
of stemming (with two different stemmers: Porter9 and Krovetz10) and non-stemming

9https://tartarus.org/martin/PorterStemmer/
10https://pypi.org/project/krovetz/

https://tartarus.org/martin/PorterStemmer/
https://pypi.org/project/krovetz/

5.6 DISCUSSION 113

methods from five open source systems. These authors found that they obtained better
performances in terms of models’ Mean Reciprocal Rank (MRR, details in Appendix C.2
- Metrics Used in Comparative Studies) with non-stemming.

Additionally, we found that even though some papers used the same type of data,
they pre-processed data differently since they had different goals and applied different
techniques. For example, Ye et al. [2017], Barua et al. [2014] and Chen et al. [2019] used
developer communication (Q&A posts as documents). Ye et al. [2017] and Barua et al.
[2014] removed stop words, code snippets and HTML tags, while Barua et al. [2014]
also stemmed words. On the other hand, Chen et al. [2019] removed stop words and the
least and the most frequent words, and identified bi-grams. Some studies considered
the advice on data pre-processing from previous studies (e.g., [Chen et al. 2017, Li
et al. 2018]), while others adopted steps that are commonly used in NLP, such as noise
removal and stemming [Miner et al. 2012] (e.g., [Demissie et al. 2020]). This means that
the choice of pre-processing steps do not only depend on the characteristics of the type
of data inputted to topic modeling techniques.

114 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH
T

ab
le

5.
17

N
um

be
r

of
pa

pe
rs

by
ty

pe
of

da
ta

an
d

pr
e-

pr
oc

es
si

ng
st

ep
s

T
yp

e
of

da
ta

P
re

-p
ro

ce
ss

in
g

st
ep

s
C

om
m

it
m

es
sa

ge
s

D
ev

el
op

er
co

m
m

u
n

i-
ca

ti
on

D
ev

el
op

er
d

oc
u

m
en

ta
-

ti
on

E
n

d
u

se
r

co
m

-
m

un
ic

at
io

n
E

nd
us

er
do

cu
-

m
en

ta
ti

on
Is

su
e/

b
u

g
re

p
or

t
“L

es
so

n
s

le
ar

ne
d”

L
og

in
fo

rm
a-

ti
on

S
ea

rc
h

qu
er

y
S

ou
rc

e
co

de
T

ra
ns

cr
ip

t
U

R
L

co
nt

en
t

R
es

ol
vi

ng
ne

ga
ti

on
s

0
0

0
2

1
0

0
0

0
0

0
0

C
or

re
ct

in
g

ty
p

os
0

0
0

6
1

1
0

0
0

0
0

0
E

xp
an

di
ng

co
nt

ra
ct

io
ns

0
0

0
2

0
1

0
0

0
0

0
0

R
es

ol
vi

ng
sy

no
ny

m
s

1
0

0
2

1
0

0
0

0
1

0
0

S
p

li
tt

in
g

se
nt

en
ce

s
or

a
d

oc
u

m
en

t
in

to
n

d
oc

u
-

m
en

ts
3

1
0

1
3

3
0

0
0

1
0

0

L
em

m
at

iz
in

g
1

2
0

5
1

1
0

0
0

2
0

0
Id

en
ti

fy
in

g
n-

gr
am

s
0

3
0

2
0

0
0

0
0

1
0

0
L

ow
er

ca
si

ng
1

1
0

5
1

3
0

2
1

5
1

1
T

ok
en

iz
in

g
1

1
0

2
2

5
0

2
1

4
0

0
Sp

li
tt

in
g

w
or

ds
4

0
0

0
2

8
0

0
2

24
1

0
St

em
m

in
g

5
8

3
9

8
14

1
1

1
21

2
1

R
em

ov
in

g
em

p
ty

d
oc

u
-

m
en

ts
0

0
0

1
0

0
0

0
0

0
0

0
R

em
ov

in
g

lo
ng

pa
ra

gr
ap

hs
0

1
0

0
0

0
0

0
0

0
0

0
R

em
ov

in
g

sh
or

t
do

cu
m

en
ts

0
0

0
1

1
0

0
0

0
0

0
0

R
em

ov
in

g
ex

tr
a

w
h

it
e

sp
ac

e
0

0
0

1
0

0
0

0
0

0
0

0
R

em
ov

in
g

no
n-

in
fo

rm
at

iv
e

co
nt

en
t

1
1

0
4

4
2

0
0

0
1

0
0

R
em

ov
in

g
w

or
d

s
sh

or
te

r
th

an
fo

ur
,

th
re

e
or

tw
o

le
t-

te
rs

0
0

0
1

0
1

0
1

0
1

0
0

R
em

ov
in

g
le

as
t

fr
eq

u
en

t
te

rm
s

0
2

0
2

1
2

0
0

0
1

0
0

R
em

ov
in

g
m

os
t

fr
eq

u
en

t
te

rm
s

0
2

0
2

1
0

0
0

0
3

0
0

R
em

ov
in

g
co

de
sn

ip
p

et
s

1
7

0
0

0
0

0
0

1
1

0
0

R
em

ov
in

g
H

T
M

L
ta

gs
1

6
0

0
2

1
0

0
0

0
0

0
R

em
ov

in
g

p
ro

gr
am

m
in

g
la

ng
ua

ge
ke

yw
or

ds
1

3
0

0
0

4
0

0
1

19
0

0
R

em
ov

in
g

sy
m

b
ol

s
an

d
sp

e-
ci

al
ch

ar
ac

te
rs

2
3

0
2

2
3

0
0

2
6

2
1

R
em

ov
in

g
pu

nc
tu

at
io

n
2

4
0

2
3

4
0

2
0

5
2

1
R

em
ov

in
g

st
op

w
or

ds
6

16
2

10
8

15
1

3
0

23
2

1
R

em
ov

e
U

R
L

1
4

0
0

1
0

0
0

0
0

0
0

R
em

ov
e

nu
m

b
er

s
1

4
0

1
3

4
0

1
0

5
2

0

5.6 DISCUSSION 115

5.6.4 RQ3.4: Assigning Names to Topics

Most papers did not mention if or how they named topics. The majority of papers that
explicitly assigned names to topics (27 out of 36) used a manual approach and relied on
human judgment (researchers’ interpretation) of words in clusters. One paper (Rosen
and Shihab [2016]) justified their use of a manual approach by arguing that there was
no tool that could give human readable topics based on word clusters. Thus, authors
checked every word cluster generated and the documents used (an individual question
of a Q&A website) to make sure they would label topics appropriately.

Table 5.18 shows how topics were named and the type of data analyzed. Table 5.19
shows how topics were named and the type of contributions they make. We observed
the following:

• Studies that modeled topics from developer documentation, transcripts and URLs
did not mention topic naming. Studies that contributed with both exploration
and comparison also did not mention topic naming;

• Topics were mostly named in studies that used data from developer communication
(ten occurrences) and in exploratory studies (22 occurrences).

• From studies that compared topic models or topic modeling-based approaches (see
Section 5.6.1.2), only one study [Yan et al. 2016b] named topics (automatically
with predefined labels).

Fourteen papers acknowledged limitations of manual topic naming:

• Twelve papers (Abdellatif et al. [2020], Ahmed and Bagherzadeh [2018], Bagherzadeh
and Khatchadourian [2019], Hindle et al. [2013], Layman et al. [2016], Martin et al.
[2015], Mezouar et al. [2018], Pagano and Maalej [2013], Pettinato et al. [2019],
Ray et al. [2014], Tiarks and Maalej [2014], Zou et al. [2017]) acknowledged that
how topics were named could be a threat to validity. For example, Layman et al.
[2016] mentioned that they did not evaluate the accuracy of the manual topic
naming, which was based on their expertise.

• Three papers (Bajracharya and Lopes [2012], Hindle et al. [2015], Li et al. [2018])
mentioned difficulties to assign names to topics. Hindle et al. [2015], for example,
explained that labeling topics was difficult due to many project specific and unclear
terms in clusters.

• One paper (Pettinato et al. [2019]) acknowledged that there is another topic
naming approach that could be applied to their data: authors acknowledged that
an automated extraction of topic names could replace manual labeling.

Hindle et al. [2015] provided some recommendations on topic analysis in software
engineering based on their experiences. Below are some of their recommendations
related to topic naming:

• Some of the generated topics will not be relevant (e.g., clusters filled with common
terms may not address any particular subject) and topics may be duplicated. This

116 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

means that not all topics have to be named and used for analysis;
• Domain experts can label topics better than non-experts, because they are more

familiar to domain-specific keywords that may appear in word clusters;
• It is important to rely on the relationship between topics generated and the

original data. Hindle et al. [2015] argued that “the content of the topic can be
interpreted in many different ways and LDA does not look for the same patterns
that people do”.

Table 5.18 Number of papers by topic naming procedure and types of data

Topic naming procedure

Types of data Based on word clus-
ters Most frequent words Predefined names

Commit messages Manual: 1 -
Automated: 2
Automated & Manual:
1

Developer communi-
cation Manual: 9 Automated: 1 Automated: 1

Manual: 1
End user communica-
tion Manual: 2 Manual: 1 Automated: 2

Manual: 1
End user documenta-
tion Manual: 5 - -

Issue/bug report Manual: 3 -
Automated: 1
Automated & Manual:
1

Log information Manual: 1 - -
Search query Manual: 1 - Manual: 1

Source code - Automated: 1
Manual: 1 Manual: 1

Table 5.19 Number of papers by topic naming procedure and types of contribution

Topic naming procedure
Types of contribu-
tion

Based on word clus-
ters Most frequent words Predefined names

Approach Manual: 5 Automated: 1
Manual: 1

Automated: 4
Automated & Manual:
2

Approach & Compar-
ison - - Automated: 1

Exploration Manual: 16 Manual: 1 Automated: 1
Manual: 4

5.6.5 Implications

The goal of this study was to describe how topic modeling is applied in software
engineering research. We found studies that experimented, explored data, or proposed
solutions to support different software engineering tasks with topic models. Our findings
help researchers and practitioners as follows:

5.6 DISCUSSION 117

• Understand which topic modeling techniques to use for what purpose.
Researchers and practitioners that are going to select and apply a topic modeling
technique, for example, to refactor legacy systems; may consider the experiences
of other studies with similar objectives.

• Pre-processing based on the type of data to be modeled. Pre-processing
steps depend on the type of data analyzed (e.g., removing HTML tags in developer
communication, mainly Q&A posts). Researchers and practitioners who, for
example, intend to model topics from source code; may consider the same pre-
processing steps that other studies applied to source code.

• Understand how to name topics. Researchers and practitioners may check
how other studies named topics to get insights on how to give meaning to their
own topics.

We present some additional insights:

• Appropriateness of topic modeling. Although we found that most of papers
applied LDA “as is”, it may not be the best approach for other studies or for
practical application. LDA is popular because it is an unsupervised model,
i.e. it does not require previous knowledge about the data (e.g., pre-defined
classes for model training), it is statistically more rigorous than other techniques
(e.g., LSI), and it discovers latent relationships (i.e. topics) between documents
in a large textual corpus [Griffiths and Steyvers 2004]. However, LDA is an
unstable and non-deterministic model. This means that generated topics cannot
be replicated by others, even if the same model inputs (data pre-processing and
configuration of parameters) are used. Furthermore, LDA performs poorly with
short documents [Lin et al. 2014].

• Meaningful topics. Topic models should discover semantically meaningful
topics. Chang et al. [2009] argue about the importance of the interpretability
of topics generated by probabilistic topic modeling techniques such as LDA. To
create meaningful and replicable topics with LDA, Mantyla et al. [2018] highlight
the importance of stabilizing the topic model (e.g., through tuning [Agrawal
et al. 2018]) and advocate the use of stability metrics (e.g., rank-biased overlap -
RBO [Mantyla et al. 2018]).

• Research opportunities. Researchers interested in investigating topic modeling
in software engineering may consider developing guidelines for researchers on
how to use topic modeling, depending on the type of data, goals, etc. Further
studies may also explore issues related to approaches for naming topics (e.g.,
based on domain experts), on the evaluation of the semantic accuracy of topics
generated (e.g., how meaningful the topics are and if the context of document have

118 5 TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

to be considered), and on metrics to measure the performance of topic models
supporting different software engineering tasks.

5.6.6 Threats to Validity

We analyzed the validity threats to our study considering four types of threats to validity
in systematic literature mapping studies [Petersen et al. 2015]:

Theoretical validity: This threat to validity refers to concerns related to capturing
the data as intended, i.e. bias and limitations in the data selection and extraction.
As we focused on the practice of topic modeling in software engineering, we restricted
the search to highly ranked software engineering venues, which generally publish more
mature studies. We used “topic model”, “topic model[l]ing”, “lsi”, “lda”, “plsi”, “latent
dirichlet allocation”, “latent semantic” as search keywords to find all papers related to
topic modeling. To select papers to the survey, we established inclusion and exclusion
criteria. One author selected the papers and the others checked whether the selection
criteria were applied appropriately. Furthermore, to minimize this threat in relation to
data extraction, we first defined the data items (details are in Table 5.2) to be extracted
from papers and the relevance of the data for each research question. Then, one author
extracted the data and the others reviewed the results. Controversial data results were
discussed to reach agreement.

Descriptive validity: In the context of a literature survey, descriptive validity
refers to bias and limitations in data synthesis and the accurate and objective description
of the data. To mitigate this threat, we described in detail how the data was synthesized
(see Section 5.4.3); furthermore, one of the authors synthesized the data and the others
reviewed the results. Still, data and results depend on what is reported in papers which
was sometimes incomplete, inconsistent or inaccurate (see for example information
about document length).

Interpretive validity: This threat to validity refers to bias and limitations in the
results of the data analysis. We frequently reviewed the synthesized data during the
data analysis and the authors with more experience in this type of study checked the
occurrence of inconsistencies in results. Still, we recognize that interpretation bias may
not have been removed completely.

Repeatability: This threat to validity concerns whether the study and its results
can be replicated. To reduce this threat, we described our search procedures in detail
(Section 5.4), and the processes of data selection, extraction and synthesis in detail.
We also followed general guidelines for systematic literature review as suggested by
Kitchenham [2004] and mapping study method as suggested by Petersen et al. [2015].
Furthermore, raw data of our study are available online1.

5.7 CONCLUSIONS 119

5.7 CONCLUSIONS

As described in this chapter, we analyzed 111 papers that applied topic modeling.
These papers were published in the last twelve years (2009-2020) in ten highly ranked
software engineering venues (five conferences and five journals). Below we summarize
our findings:

• LDA and LDA-based techniques are the most frequently used topic modeling
techniques;

• Topic modeling was mostly used to develop techniques for handling bugs (e.g., to
predict defects). Exploratory studies that use topic modeling as a data analysis
technique were also frequent;

• Most papers modeled topics from source code (using methods as documents);
• Most papers used LDA “as is” and without adapting values of hyperparameters

(α and β);
• Most papers describe pre-processing. Some pre-processing steps depend on the

type of textual data used (e.g., removal of URL and HTML tags), while others
are commonly used in NLP techniques (e.g., stop words removal or stemming);

• Only 36 (out of 111) papers named the topics. When naming topics, papers
mostly adopted manual topic naming approaches such as deducting names (or
labeling pre-defined names) based on the meaning of frequent words in that topic.

By analyzing topic modeling techniques, data inputs, data pre-processing, and
how topics were named, we identified characteristics and limitations in the use of topic
models. Our study can provide insights and references to researchers and practitioners
to make the best use of topic modeling, considering the experiences from previous
studies. Furthermore, by investigating the literature regarding the use of topic model-
ing techniques in software engineering research, we found that topic models perform
differently depending on the type of textual data. In our research each instant message
of a chat room was inputted as a document to a topic model. As a message exchanged
in a chat room can be, for example, a few words or a few sentences long (i.e. might be
a short piece of text), we present in Chapter 6 the results of an experiment with short
text topic models applied to developer instant messaging communication (RQ4).

Chapter 6

SHORT TEXT TOPIC MODELS APPLIED TO
DEVELOPER MESSAGES

Adapted from manuscript under preparation (as of December 2022): Costa Silva, C.,
Galster, M., & Gilson, F. Evaluation of short text topic models applied to instant
messaging communication of software developers.

6.1 INTRODUCTION

To identify relevant information in instant messaging communication, previous works
applied topic modeling to conversations in chat rooms (e.g., [Chatterjee et al. 2019]).
As discussed in Chapter 5, topic modeling, e.g., using Latent Semantic Indexing
(LSI) [Deerwester et al. 1990] or Latent Dirichlet Allocation (LDA) [Blei et al. 2003b],
is a text mining and concept extraction method that extracts topics from large corpora
of textual documents (e.g., chat messages) to discover hidden semantic structures in
text [Miner et al. 2012]. Topics are represented as clusters of words based on their co-
occurrence in different documents. Previous studies applied topic modeling to support
software engineering tasks such as software maintenance (e.g., by identifying code
similarities [Capiluppi et al. 2020]) and bug handling (by identifying topics in issue
reports that can be used to link bugs to source code [Tantithamthavorn et al. 2018] or
to assign a bug to a developer [Sun et al. 2017]).

Similarly, topic modeling has been used in exploratory studies as a data analysis
technique, for example, to explore what topics developers discuss in different forums [Silva
et al. 2021], what developers discuss related to specific topics (e.g., discussion about
bots on Stack Overflow [Abdellatif et al. 2020]), or to map Stack Overflow tags to
topics of posts [Chen et al. 2019]. In comparison to other text mining techniques
such as text summarization [Allahyari et al. 2017], topic modeling is an unsupervised
technique [Miner et al. 2012, Treude and Wagner 2019] that extracts latent topics of
several textual documents by grouping co-occurring words in “topics” (i.e. word clusters)
to represent concepts [Blei et al. 2003b, Miner et al. 2012].

The most popular topic model in software engineering studies and to analyze

6.1 INTRODUCTION 121

developer communication is LDA [Silva et al. 2021]. As LDA discovers topics using
word occurrences and co-occurrences, larger documents generally provide more word
frequencies [Blei et al. 2003b, Lin et al. 2014]. However, Lin et al. [2014] argue that LDA
may not be appropriate for informal communication text such as tweets, comments on
blog posts, instant messages and Q&A posts. For example, considering that each chat
message would be a short text document (typically a couple of words long), the quality
of the generated topics would be compromised because there are not enough words in
these documents to create meaningful word clusters [Lin et al. 2014].

To generate meaningful topics from short text, studies developed topic modeling
techniques specifically for short text documents. For example, Qiang et al. [2022]
analyzed and implemented eight short text topic models and used them to experiment
with several types of short text (e.g., tweets). However, the authors did not use their
models with discussions from developers instant messaging communication and we have
not found studies that applied short text topic modeling technique to instant messages
of developer discussions. Similarly to Stack Overflow posts [Chatterjee et al. 2019],
topic modeling applied to instant messages could help uncover topics that can be used
to trace information for augmenting software documentation [Henß et al. 2012, Souza
et al. 2019], identify tasks for software maintenance [Sun et al. 2015] and localize bugs
and/or requirements [Ahasanuzzaman et al. 2020]. Therefore, the research question that
we address in this chapter is: (RQ4) How do short text topic models perform
with discussions of developers?

In detail, in this chapter we provide the following contributions:

• We generate topics for conversations on Gitter using four existing topic modeling
techniques for short text. Like Chatterjee et al. [2019] who analyzed the topics
of conversations in four Slack communities, we analyze three public Gitter chat
rooms: a small (≈100 messages), a medium-sized (≈9,400 messages) and a large
chat room (≈160,000 messages). Focusing on three chat rooms allowed us to not
only experimentally compare topic models based on metrics, but also to assess
topics based on human judgment.

• We evaluate the quality of short text topic models applied to software developer
instant communication based on four established topic coherence metrics [Röder
et al. 2015]. Furthermore, we compare the coherence of topic models with two
text pre-processing techniques: stemming and lemmatization. We check whether
more human readable topics based on a lemmatized corpus compare favorably to
a stemmed corpus as frequently used for topic modeling [Silva et al. 2021].

• To understand how comprehensible topics are for humans (the “users” of the
topics), we recruited practitioners to evaluate the quality of topics based on two
types of human assessment: intrusion tasks (word and topic intrusion) [Chang

122 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

et al. 2009] and topic naming (i.e. assigning a name to a topic that summarizes its
concept) [Hindle et al. 2015]. Unlike other studies that asked humans to evaluate
the usefulness of topics based on a Likert scale [Aletras and Stevenson 2013, Lau
et al. 2014, Newman et al. 2009], we apply intrusion tasks and topic naming
since these require assessors to engage in actual tasks with topics. This helps
us understand how humans understand topics rather than how they perceive
them (e.g., as useful or not useful). Topic naming has been used in software
engineering studies before (e.g., to name the concepts discussed by developers
in Stack Overflow [Barua et al. 2014, Haque and Ali Babar 2020]). However, to
the best of our knowledge, only our study used topic naming as a strategy for
measuring the quality of topics.

• We compare topic coherence metrics and human assessments to understand whether
human assessment can be replaced by automatically calculated coherence scores
and if theoretical coherence aligns with human comprehension of topics.

Our results indicate that the performance of short text topic models applied to
developer discussions via instant messaging is not consistent when assessing topics based
on the different measures for topic quality. We found, for example, that models applied
to a large corpus had high scores with some topic coherence metrics, but low scores
for human judgment (see details in Section 6.5.5). Regarding topic naming, most topic
models had at least one name assigned per topic and when more names were assigned
to a topic (considering that we had four experts naming each topic), these names were
not always semantically compatible.

We did not intend to develop a new short text topic model, to customize or pre-train
existing models with domain-specific data to optimize their performance, but to explore
how existing topic models perform with developer discussions. In this sense, our study is
more of a comparative study rather than a study to develop a solution per se. Therefore,
our study is of interest to researchers and practitioners as it discusses implications and
insights related to the practical use and potential usefulness of short text topic modeling
in software engineering (see more in Section 6.6.4). Our findings offer guidance to select
short text topic models based on characteristics of models and their performance with
different sizes of corpora, and based on different strategies for assessing topic quality.

6.2 SHORT TEXT TOPIC MODELING

In Section 5.2, we already provided an overview of topic modeling. In this section, we
explore the specifics of short text topic modeling as relevant for the type of text in our
research.

6.2 SHORT TEXT TOPIC MODELING 123

6.2.1 Overview

Lengthy documents provide context and a higher number of word counts to probabilistic
topic models, while short documents do not [Yan et al. 2013]. Qiang et al. [2022]
identified four main characteristics of short text documents:

1. Each document has low word co-occurrences.
2. As documents have few words, sometimes only one topic can be inferred from all

documents.
3. Sometimes only few (less than k) topics can be inferred from all documents.
4. Word counts from short text documents cannot fully capture semantically related

words that rarely co-occur (e.g., “software testing” and “automated test” can be
related but may not be identified as related).

Several previous studies adapted LDA to improve its performance with short
documents via pooling and contextualization [Lin et al. 2014, Mehrotra et al. 2013, Tang
et al. 2013]. Pooling refers to aggregating similar (e.g., semantically or temporally)
documents into a single document [Mehrotra et al. 2013]. For example, Pettinato et al.
[2019] combined short log messages into a single document based on a temporal order.
Contextualization refers to creating subsets of documents according to a type of context
(e.g., the type of context for tweets can refer to time, user and hashtags associated with
tweets [Tang et al. 2013]). For example, Weng et al. [2010] combined all individual
tweets of an author into one pseudo-document (rather than treating each tweet as a
document). Therefore, with contextualization, the topic model uses word co-occurrences
at a context level instead of document level.

Other studies proposed topic modeling techniques and adapted LDA for specific
types of data. For example, Zhao et al. [2011] developed Twitter-LDA, a model that
infers topics from tweets by considering each tweet as a document which contains a
single topic. Hu et al. [2018, 2019] applied Twitter-LDA to user reviews. For RQ4 we
experimented with short text topic models not designed to deal with specific types of
data, such as tweets.

6.2.2 Short Text Topic Models

Short text topic models were created to reduce the sparsity problem (i.e. the sparse
word co-occurrence patterns in each short document) of probabilistic topic models, such
as LDA. Qiang et al. [2022] argue that short text topic modeling techniques deal with
one or two of the main characteristics of short documents (see above). The authors
divided short text topic models into three types [Qiang et al. 2022]:

• Dirichlet multinomial mixture-based models: Techniques that follow the assumption
that each text is sampled from only one latent topic. Models based on this type

124 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

address characteristic (1) of short text documents and, depending on the model,
characteristics (2) or (3) of short text documents.

• Global word co-occurrences-based models: Techniques that group the words of
all inputted documents into a rich global word co-occurrence patterns and use
it for inferring latent topics. Models based in this type of topic model address
characteristic (1) of short text documents.

• Self-aggregation-based models: Techniques that merge documents into long pseudo-
documents during topic inference. Topics are inferred from these long pseudo-
documents without depending on auxiliary information (e.g., pre-trained word
embeddings) or metadata (e.g., hashtags or timestamps). Models based in this
type of topic model address characteristic (4) of short text documents.

To address RQ4, we experimented with four models: (1) DMM (or GSDMM, Gibbs
Sampling Dirichlet Multinomial Mixture model) and (2) GPU_PDMM (Pólya urn
Poisson-based Dirichlet Multinomial Mixture model) which are based on Dirichlet
multinomial mixture; (3) BTM (Biterm topic model) and (4) WNTM (Word Network
topic model) which are based on Global word co-occurrences. We selected these four
short text topic models from the study of Qiang et al. [2022] because they performed
best with Stack Overflow posts (Stack Overflow documents were the most similar to
ours) rather than the best performing models for each of the types of topic model.
Since Self-aggregation-based models did not present a high performance with Stack
Overflow [Qiang et al. 2022], we did not experiment with them. The details about the
implementation of these models are in [Qiang et al. 2022]; here, we provide an overview
of each:

• DMM: This model was developed by Yin and Wang [2014]. DMM samples a
topic zd for document d by Multinomial distribution θ, and then generates all
words in the document d from topic zd by Multinomial distribution ϕzd

. The
sampling, with Gibbs sampling, is based on the assumption that each document
is sampled by a single topic.

• GPU_PDMM: This model was developed by Li et al. [2017]. They proposed a
Poisson-based Dirichlet Multinomial Mixture model (PDMM) that assumes that
each document can generate one or more (but less than k) topics. This model
was extended by incorporating generalized Pólya urn model (GPU) during the
sampling process. This sampling uses pre-trained word embeddings (training
based on semantic relationships between words [Mikolov et al. 2013]) to check the
semantic similarity (with cosine similarity) between words pairs. In GPU_PDMM,
each document is represented by td (0 < td ≤ ζ) topics, where ζ is the maximum
number of topics to be generated for a document (considering the characteristic
(4) of short text documents).

6.3 TOPIC QUALITY 125

• BTM: This model was created by Yan et al. [2013]. BTM first generates biterms
from corpus C, where any two words in a document are treated as a biterm:
bi = (wi,1, wi,2). For example, in the short text document “I visit the apple store”
and ignoring the stop words “I” and “the”, we will have three biterms, i.e. “visit
apple”, “visit store”, “apple store”. Then, the model infers topics over the biterms.

• WNTM: This model was developed by Zuo et al. [2016]. WNTM uses global word
co-occurrence to construct a word co-occurrence network and using LDA, infers
topics from this word co-occurrence network. To create the network, WNTM sets
the size of a sliding window1 to identify co-occurring words; then, it constructs a
network, where each node represents a word and the weight of each edge is the
co-occurrence of the two connected words. The number of nodes in the network
refers to the size of the vocabulary V .

6.3 TOPIC QUALITY

If topics are to be used by humans, they need to be interpretable and meaningful [Chang
et al. 2009]. Previous studies used different approaches to check the topics considering
human judgment (e.g., intrusion tasks, topic naming or evaluating a topic on a Likert
scale). Furthermore, topics are based on the probabilities of word co-occurrences in
documents. Therefore, “intrinsic” metrics for topic coherence (not based on human
judgment) exist.

6.3.1 Intrusion Tasks

Unsupervised learning methods such as topic models give no guarantees on the inter-
pretability of their output [Röder et al. 2015]. Chang et al. [2009] proposed two types
of intrusion tasks to evaluate the quality of topics models based on human judgment:

1. With word intrusion tasks, humans are asked to identify intruder words in
topics (i.e. the word with the lowest probability in the topic) to check how
well the topics match human concepts. Chang et al. [2009] evaluated the model
coherence by calculating model precision - MP for each model m and topic k.
MP m

k represents how well the intruders in topics detected by humans correspond
to the actual intruder. This metric is defined as follows:

MP m
k =

∑
p

1(im
k,p = wm

k)/P

where wm
k represents the intruding word selected from the kth topic inferred by

model m. The intruder selected by a human p on the set of words from the kth

1 A window is formed over consecutive words and slides over the data to capture different portions
of the data. The size of the window defines the number of consecutive words to be used at a time.

126 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

topic inferred by model m is represented by im
k,p. The number of human evaluators

is represented by P . The higher MP the higher the model coherence [Chang et al.
2009].

2. With topic intrusion tasks, humans are asked to identify intruder topics in
selected documents (i.e. the topic with the lowest probability of belonging to that
document) to check how well a topic model assigns topics to documents. For topic
intrusion tasks, Chang et al. [2009] evaluated the model coherence using topic log
odds - TLO. TLOm

d is defined as how well humans identify the true intruder topic.
It uses the log ratio of the probabilities of a topic in a document to compare true
intruder topics and the topics selected by humans as intruders. This metric is
defined as follows:

TLOm
d = (

∑
p

log θ̂m
d,jm

d,∗
− log θ̂m

d,jm
d,p

)/P

where the intruding topic selected by human p for document d on model m is
represented by θ̂m

d,jm
d,p

, and the real intruding topic selected for document d on
model m is represented by θ̂m

d,jm
d,∗

. The number of human evaluators is represented
by P . The higher TLO, the greater the agreement between the topics created by
the model and the judgments of humans. The upper bound of TLO is 0, which
is achieved when humans choose intruders with a probability no higher than the
probability of the real intruder (more details about this metric can be found in
the study of Chang et al. [2009]). Nguyen and Hovy [2019] describe TLO as an
“error function” because it considers that each topic has a probability of belonging
to document d. This is more accurate than calculating coherence only based on
whether humans selected the right intruder or not.

Examples of studies that assessed the quality of topics using intrusion tasks include
Nguyen and Hovy [2019] and Bhatia et al. [2018] who applied intrusion tasks to measure
the quality of topics generated with LDA using long text documents (e.g., a group of
user reviews and news articles). Guzman et al. [2017] applied BTM and LDA to three
corpora of tweets about Slack, Dropbox and Spotify. By comparing the results of the
intrusion tasks of BTM and LDA, Guzman et al. [2017] found that BTM outperformed
LDA.

6.3.2 Topic Naming

Topic naming requires humans to assign a “label” to a topic (word cluster). As with word
and topic intrusion tasks, assigning a name or a label to a topic requires understanding
the common concept in the words of that topic. The more coherent and cohesive the

6.3 TOPIC QUALITY 127

words in a topic, the easier it is to name a topic. Silva et al. [2021] (see Chapter 5)
identified three approaches to name topics:

• Automated: Assigning names to word clusters without human intervention;

• Manual: Manually checking the meaning and the combination of words in cluster
to “deduct” a name, sometimes validated with expert judgment;

• Manual & Automated: Mix of manual and automated; e.g., topics are manually
labeled for one set of clusters to then train a classifier for naming another set of
clusters.

Manual topic naming can help evaluate topics, i.e. the more topics can be named
and the more consistent the names of topics assigned by different experts, the more
comprehensible a topic is.

6.3.3 Topic Coherence Metrics

Due to the cost of running human judgment tasks, coherence metrics calculated based
on topics have been proposed [Röder et al. 2015]. Previous studies such as [Aletras and
Stevenson 2013, Lau et al. 2014, Mimno et al. 2011, Newman et al. 2009, 2010] proposed
automatic coherence metrics to rate topics regarding their understandability [Röder
et al. 2015]. Röder et al. [2015] implemented a set of coherence metrics.2 We provide a
brief overview of some of the metrics that were used in to address RQ4 (see Chapter 6):

• cnpmi defines coherence as a score (normalized point-wise mutual information -
NPMI) between top word3 pairs from the topics and word pairs from an external
corpus of general natural language. Word co-occurrences with the external corpus
are derived using a sliding window1 of size 10 [Bouma 2009, Stevens et al. 2012].
For cnpmi the scores are expected to be between -1 and +1. Scores of -1 mean
that the word pairs compared never occur together, while scores of +1 mean that
the word pairs compared always occur together [Bouma 2009].

• ca defines coherence as a score (NPMI and cosines similarity4) between top word3

pairs from the topics and word pairs from an external corpus of general natural
language. Word co-occurrences with the external corpus are derived using a sliding
window1 of size 5 [Aletras and Stevenson 2013, Röder et al. 2015]. The scores
for ca, similar to cnpmi, are expected to be between -1 (word pairs never occur
together) and +1 (word pairs always occur together [Aletras and Stevenson 2013].

2https://aksw.org/Projects/Palmetto.html
3 Most frequent word in a topic based on word probabilities obtained with the topic model
4Measure of similarity between two non-zero vectors of an inner product space

https://aksw.org/Projects/Palmetto.html

128 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

• cp defines coherence as a score between top word3 pairs from the topics and word
pairs from an external corpus of general natural language. Word co-occurrences
with the external corpus are derived using a sliding window1 of size 70. The
confirmation measure in this metric is calculated with Fitelson’s coherence, which
scores the probability of a word in comparison to preceding subsets of words that
do not contain such word [Röder et al. 2015]. The higher the scores obtained for
cp the better the coherence of that topic or model [Aletras and Stevenson 2013,
Newman et al. 2010].

• uMass defines coherence as a score (smoothed conditional probability) between
top word3 pairs where one word in the pair is frequent and the other word is
less frequent. Word probabilities are estimated based on the frequency of their
occurrence in documents from the corpus used as input for the topic model. This
metric attempts to confirm that the model learned topics known to be in the
corpus [Mimno et al. 2011, Stevens et al. 2012]. For uMass, the scores obtained are
generally negative values and the closer to zero, the better the coherence [Mimno
et al. 2011].

6.3.4 Comparing Measures for Topic Quality

Previous studies compared the performance of coherence metrics and coherence based
on human judgment like we did to address RQ4 (see Chapter 6). For example, Newman
et al. [2009] modeled topics using LDA and asked humans to decide whether these topics
are “useful” or not (defined rather loosely in the study as a combination of coherence,
meaningfulness, interpretability, something easy to label) based on a 3-point Likert
scale. They found that the metric point-wise mutual information (PMI) distinguished
useful topics from useless ones based on the high correlation between PMI and human
judgments on the same topics. To RQ4, we used the normalized version of PMI, cnpmi

which is described in Section 6.3.

Similarly, Aletras and Stevenson [2013] compared human judgment of the quality
of topic from LDA based on a Likert scale (“Useless”, “Average” and “Useful”) and
two metrics: cnpmi and uMass. The study found that cnpmi correlates well with human
judgments, while uMass does not correlates well.

Lau et al. [2014] performed two approaches for human judgment: humans who
performed word intrusion tasks (using MP to assess the human evaluation) and humans
who assessed topics using a 3-point Likert scale (e.g., “Useless”, “Average” and “Useful”).
The authors compared the scores of the two human judgment approaches with the
scores of automated coherence metrics, such as cnpmi, uMass and ca. At the topic level,
Lau et al. [2014] found that their automated coherence metrics align better with the
scores obtained from assessing topics on a 3-point Likert scale than with the scores of
the word intrusion tasks.

6.4 RESEARCH METHOD 129

To check the uMass metric, Mimno et al. [2011] compared it to the word intrusion
tasks and MP [Chang et al. 2009]. They found that topics with low MP (i.e. low
accuracy) tend to be “low quality”, which means that humans could not group together
the frequent words in that topic as a single coherent concept; on the other hand, some
“low quality” topics can have a high MP (i.e. high accuracy). This means that a topic
with unrelated words (e.g., “database”, “query”, “sql”, “table”, “excel”, [intruder:]
“exception”) can be considered good, if the intruder word differs too much to the others
(e.g., “excel” is not related to database theme, but it differs less than the intruder word
“exception”). Mimno et al. [2011] concluded that some “low quality” topics cannot be
detected using word intrusion tasks, but their metric can identify such topics. This is
because the metric relates words in a topic to the corpus based on which the topics were
created, while the humans would evaluate intruders based on a limited understanding
of the full context and corpus.

For RQ4, we also compared the performance of topic models using the scores of
intrusion tasks and topic coherence metrics. Our study differs from these studies by
comparing short text topic models rather than LDA and by using developer instant
messaging communication (i.e. messages from Gitter chat rooms).

6.4 RESEARCH METHOD

In this section we describe how we studied how short text topic models perform with
chat messages from developer instant messaging communication. First, we describe
how we modeled topics using short text topic modeling techniques (Sections 6.4.1, 6.4.2,
6.4.3), and then we discuss how we evaluated the topics (Sections 6.4.4 and 6.4.5) and
compare their results (Section 6.4.6). Figure 6.1 illustrates the steps of our study.

6.4.1 Selection of Data Sets

We used messages exchanged by developers in public chat rooms of Gitter (see Chapter 4).
The messages of each chat room represent a data set (or corpus). As described
in Chapter 4, we obtained 87 chat rooms with conversations in English. Based on the
number of messages of these 87 chat rooms (min: 10; max: 365,706; stdev: 55,409;
mean: 27,726; median: 4,295), we selected three chat rooms of different sizes for a
representative sample, i.e. small, medium and large: Android5 with ≈100 messages;
Jenkinsci6 with ≈9,400 messages; and Flutter7 with ≈160,000. Then, we downloaded all
messages posted until August 2019 (time of data collection) using the Gitter API.8 We
did not use all the messages from Flutter, our largest chat room, due to computational

5https://gitter.im/googlesamples/android-architecture
6https://gitter.im/jenkinsci/configuration-as-code-plugin
7https://gitter.im/flutter/flutter
8https://developer.gitter.im/docs/welcome

https://gitter.im/googlesamples/android-architecture
https://gitter.im/jenkinsci/configuration-as-code-plugin
https://gitter.im/flutter/flutter
https://developer.gitter.im/docs/welcome

130 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Figure 6.1 Steps of the Study for RQ4

constraints when modeling topics from individual messages. The files downloaded are
available online.9 Table 6.1 describes these data sets in terms their size.

Table 6.1 Size of Data Sets (number of messages) and Messages length (number of words) before
Data Pre-processing

Android Jenkinsci Flutter

Number of messages 119 9,408 162,426
Mean message length 15 17 17
Median message length 11 12 12
Std Deviation of message length 14 19 20
Minimum message length 1 1 1
Maximum message length 87 276 1,373

6.4.2 Data Pre-processing

We pre-processed data based on the data pre-processing performed by other studies
that modeled topics from developer and end user short text communication [Silva et al.
2021]:

1. Remove noise (URLs, e-mail addresses, mentions of users, new line characters,
non-English characters such as Chinese or Japanese characters, punctuation and
HTML tags) and extra white spaces;

9https://github.com/camimariane/review_sttmfiles

https://github.com/camimariane/review_sttmfiles

6.4 RESEARCH METHOD 131

2. Tokenize messages to break the text of a document (message) into individual
words, referred to as tokens;

3. Convert tokens to lowercase;
4. Remove tokens with fewer than three letters;
5. Remove stop words (e.g., “the”, “a”, “in”) from tokenized messages using a

customized stop word list.10 Our list of stop words is available online9;
6. Stemming (with Porter Stemmer - package from NLTK 3.6.211) or lemmatizing

(with spaCy lemmatizer library - version 3.012) to normalize tokens.
7. Remove empty documents (documents that ended up empty after the previous

steps).
For step (6) of the pre-processing, we duplicated our three data sets: one to be

normalized with stemming and another to be normalized with lemmatization (see
Figure 6.1). Stemming removes prefixes and suffixes to normalize words into their
morphological root, e.g., the words “tested” and “testing” can be stemmed to “test”,
and lemmatization captures only the base or dictionary form of words or bigrams.
We experimented with stemming and lemmatization because previous studies (that
modeled topics in short documents to be interpreted by humans) did not agree on using
stemming or lemmatization. For example, several previous studies used stemming as
a default normalization procedure [Ahmed and Bagherzadeh 2018, Bagherzadeh and
Khatchadourian 2019, Barua et al. 2014, Haque and Ali Babar 2020, Noei et al. 2019],
while some used lemmatization [Abdellatif et al. 2020, Martin et al. 2015, Nayebi et al.
2018]. One benefit of lemmatization over stemming is that lemmatization retains the
readable form of words (e.g., the lemmatized version of the words “programming” and
“programmer” are “programming” and “programmer”, while their stemmed version are
“program” and “programm”). Since lemmatization keeps different “versions” of the same
word, it leads to a larger vocabulary that, on the other hand, lowers the chances of
re-occurring words.

After these steps, we transformed the six corpora (three stemmed and three lem-
matized) into six bags of words to be submitted to our short text topic models. In our
study, these bags of words were text files (.txt) where each line in the file referred to one
message (i.e. one document), and each document was a sequence of words separated by
white spaces. Table 6.2 describes our pre-processed data sets.

10This list is a combination of the stop words from Ranks NL website https://www.ranks.nl/
stopwords, the SMART [Layman et al. 2016, Pettinato et al. 2019], Mallet [Ahmed and Bagherzadeh
2018, Bagherzadeh and Khatchadourian 2019, Yan et al. 2016b] lists, and words added by us (e.g., text
abbreviations like “lol” or “idk”)

11https://www.nltk.org/howto/stem.html
12https://spacy.io/api/lemmatizer

https://www.ranks.nl/stopwords
https://www.ranks.nl/stopwords
https://www.nltk.org/howto/stem.html
https://spacy.io/api/lemmatizer

132 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Table 6.2 Description of Corpora

Corpus Number of documents Vocabulary size

Android_stem 84 253
Android_lemma 84 262
Jenkinsci_stem 8,163 5,299
Jenkinsci_lemma 8,146 6,134
Flutter_stem 141,040 36,627
Flutter_lemma 140,757 41,565

6.4.3 Short Text Topic Modeling

6.4.3.1 Selection of Models

We modeled topics using four short text topic models reported by Qiang et al. [2022]
(BTM, DMM, GPU_PDMM and WNTM, see Section 6.2). To select these models,
we first checked which of the data sets used by Qiang et al. [2022] was similar to
ours in terms of document length. Qiang et al. [2022] used different data sets, for
example, posts from Stack Overflow, tweets and strings used in web search queries. The
data set with Stack Overflow posts was the most similar to our data sets after data
pre-processing (average of 5 words in each document). Then, we identified which were
the best performing models for the “Stack Overflow” data set in the study of Qiang
et al. [2022] based on the metrics we introduced in Section 6.3.3.

6.4.3.2 Parameter Setting and Execution of Models

We ran the four models selected on each of our three data sets using STTM,13 an
open-source Java library which was implemented by Qiang et al. [2022] with the models
used in their study. In our study, we set the hyperparameters α, β and i (i.e. number
of sampling iterations) as suggested by the authors who proposed the selected models
rather than grid searched values (see details in Section 6.6.5):

BTM: α = 50/k; β = 0.01; i = 1, 000
GPU_PDMM: α = 0.1; β = 0.01, i = 1, 000
DMM: α = 0.1; β = 0.1; i = 30
WNTM: α = 50/k; β = 0.01, i = 2, 000

Similarly, we generated ten topics for each model [Canfora et al. 2014, Hu et al.
2019, Ye et al. 2017], i.e. k = 10, based on the recommendations from other studies
that modeled topics from short text. The list of topics generated by each combination
of model and corpus is available online9.

13https://github.com/qiang2100/STTM

https://github.com/qiang2100/STTM

6.4 RESEARCH METHOD 133

6.4.4 Topic Coherence Metrics

We calculated the topic coherence metrics described in Section 6.3. We selected four
(cnpmi, ca, cp and uMass) of the six metrics analyzed in the study of Röder et al. [2015].
Our selection was based on the strongest average correlation of the metrics to human
ratings [Röder et al. 2015]. We used the Palmetto library14 to calculate cnpmi, ca and cp,
and the tmtoolkit library15 to calculate uMass. We obtained scores for each of the topic
coherence metrics at topic level. To get scores at the model level, we calculated the
average between the scores (at topic level) for each metric. This resulted in twenty-four
average scores, as shown in Table 6.4.

6.4.5 Human Assessment

Coherence metrics only measure “lexical similarity” between the topics and a corpus,
they do not capture comprehensibility or meaningfulness of topics [van der Lee et al.
2021]. Therefore, we also performed an evaluation of topics using human judgment16:
word and topic intrusion tasks, and topic naming. Considering the cost of human
judgment [Lau et al. 2014, Newman et al. 2010], we evaluated topics based on human
assessment only for topics based on our lemmatized corpora, but not for the stemmed
corpora (see details about data pre-processing in Section 6.4.2). This selection, as
detailed in Section 6.5.2, was made based on the higher average scores for the topic
coherence metrics of topics generated for each combination of model and lemmatized
corpus.

6.4.5.1 Intrusion Tasks

Word Intrusion Tasks: In this task, each topic generated for each combination of
model and corpus (e.g., BTM & Android_lemma) was presented to study participants
with six randomly ordered words, where five of these words belong to the topic and one
word is an “intruder” (e.g., for a topic with words “error”, “fail”, “glitch”, “message”,
“problem” and “wrong”, the word “message” can be the intruder), see Figure 6.2 for
an example. Participants were asked to identify the intruder in 20 topics of different
combinations of model and corpus. We then calculated to calculated MP as described
in Section 6.3.1.

To select an intruder word for a topic, we followed procedures suggested by Murphy
et al. [2012] and Chang et al. [2009]. For each topic we first created an list of its words
in ascending order based on the probabilities of words occurring in topics (according to
the topic-to-word distributions). Then, from each topic, we selected the first word from
the bottom half of that list. As suggested by Murphy et al. [2012], if the selected word

14https://aksw.org/Projects/Palmetto.html
15https://tmtoolkit.readthedocs.io/en/latest/topic_modeling.html
16The study received approval for our institution’s Human Ethics Board, see Appendix A.1

https://aksw.org/Projects/Palmetto.html
https://tmtoolkit.readthedocs.io/en/latest/topic_modeling.html

134 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

was found in any of the top tenth percentile words in any of the other topics (from the
same combination of model and corpus), it was selected as the intruder for that topic.
In case we did not find the selected word in the other topics, we picked the next word
in the bottom half list of words for that topic.

Topic Intrusion Tasks: To have the same number of tasks for both word and
topic intrusion, we developed ten topic intrusion tasks for each combination of model
and corpus. For each topic intrusion task, a document (i.e. a message) was presented to
study participants together with four topics where one topic was the intruder (i.e. the
topic that does not belong to the document presented), see Figure 6.2 for an example.
Participants had to identify the intruder topic in 20 documents of different combinations
of model and corpus. We then calculated TLO to measure the quality of the model (see
Section 6.3.1).

To decide which document to show with each group of four topics, we randomly
selected ten documents for each combination of model and corpus with at least 15
words (the average number of words in the messages of our smallest corpus before
pre-processing; our short documents had an average of 15 to 17 words per message in
the three corpora, see Table 6.1). Fifteen words is also the average length of sentences
in English language [TheAcropolitan 2017].

To decide which topics to show, we followed the guidelines of Chang et al. [2009]
and used the three topics with the highest probability to appear in that document
(according to the document-topic matrix for that combination of model and corpus)
and one additional topic as an intruder. The intruder topic was the least-probable topic
in that same document.

Execution of Tasks: To distribute intrusion tasks to participants, we created
one survey in Qualtrics.17 Figure 6.2 shows an example of a word intrusion and a
topic intrusion task (the text provided for the topic intrusion task shows the document
provided with the list of topics). We presented the answer options for each task (i.e.
the intruder word or topic) in random order. After each block of ten tasks we included
an optional open question for feedback “Feel free to leave any comments about the
previous tasks”. It took participants 15 to 25 minutes to complete all tasks.

We created 240 tasks in total (120 word intrusion and 120 topic intrusion tasks),
see Table 6.3. To have each word and topic intrusion task to be performed by three
different participants, we created 18 sub-surveys of 40 tasks each (20 word and 20 topic
intrusion tasks). The tasks in the sub-surveys partially overlap. As shown in the list of
sub-surveys in Appendix D.1, the 40 tasks in one sub-survey covered two combinations
of model and corpus: 20 word and topic intrusion tasks for a combination of model
and corpus, and 20 word and topic intrusion tasks for another combination of model
and corpus. For example, by asking participant IT.01 to perform sub-survey 1 and

17https://www.qualtrics.com/au/

https://www.qualtrics.com/au/

6.4 RESEARCH METHOD 135

Figure 6.2 Examples of Word Intrusion and Topic Intrusion Tasks

participant IT.02 to perform sub-survey 12, they would have performed tasks related to
different combinations of model and corpus (see Appendix D.1).

Table 6.3 Number of Intrusion Tasks* by Model and Corpus

BTM DMM GPU_PDMM WNTM Total

Android_lemma 20 20 20 20 80
Jenkinsci_lemma 20 20 20 20 80
Flutter_lemma 20 20 20 20 80
Total 60 60 60 60 240

*Ten word intrusion tasks and ten topic intrusion tasks for each combi-
nation of model and corpus

6.4.5.2 Topic Naming

We asked participants to analyze and inductively name the topics by deducting a name
based on the meaning of words in topics [Barua et al. 2014, Silva et al. 2021] (see
Section 6.3.2). We assessed the quality of the models based on:

• Number of topics named tnamed: We recorded how many topics (out of the ten
topics generated for each combination of model and corpus) were named by at
least one participant, e.g., for the combination of model and corpus BTM &

136 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Android_lemma, tnamed = 8 because eight topics for that combination of model
and corpus were named (detailed data is available online9). However, the number
of topics names tnamed does not differentiate how many participants named each
topic. Therefore, we complement that metric with the average ratio of names
aratio.

• Average ratio of names per topic aratio: To calculate aratio, we first counted how
many names were assigned to a topic n (out of the total number of participants p

who named a topic). Then, we divided this number n by p to get the ratio of names
per topic (n/p). For example, considering that topic01 of BTM & Android_lemma
was named by three (out of four) participants, its ratio of names per topic (3/4)
would be 0.75. We then calculated the average of the ratios of the ten topics t

generated for each combination of model and corpus (aratio = (n/p)/t).

• Compatibility between two or more names assigned to the topics: A topic could
be assigned up to four names (total number of participants naming each topic).
As we did not give participants predefined names that they could assign to topics,
we could not directly calculate agreement on the topic naming. Instead, we
interpreted how “compatible” names were. To check the compatibility between the
names assigned to a topic by at least two participants, we analyzed the semantic
meaning of names. In other words, we considered synonyms, dictionary meanings
and domain knowledge to judge if the names assigned to a topic were compatible.
For example, if a participant named a topic “Errors” and another participant
“Bugs”, we considered them compatible. Another example is the compatibility
between the names “software development” and “program development” because
“software” and “program” are synonyms in this context. One researcher judged
the compatibility of names across combinations of model and corpus and the other
researchers checked and validated this analysis.

Execution of Tasks: Similarly to the intrusion tasks, we created a survey in
Qualtrics17 for the topic naming tasks with a total of 120 topics to be named. Figure 6.3
shows a screenshot of a topic naming task in Qualtrics. After each block of ten topics
for naming, we included an optional open question for feedback “Feel free to leave any
comments about the previous items”. It took participants 30 minutes to complete all
topics.

To have four participants naming the same topics, we created six sub-surveys of
60 topics each (see the list of sub-surveys in Appendix D.2). This means that each
sub-survey had 10 topics of six different combinations of model and corpus. For example,
by asking participant TN.07 to perform sub-survey 2 and participant TN.08 to perform
sub-survey 4, they would have named topics related to different combinations of model
and corpus (see Appendix D.2).

6.4 RESEARCH METHOD 137

Figure 6.3 Example of a Topic Naming Task

6.4.5.3 Participant Selection and Recruitment

We asked 18 domains experts (e.g., software developers) working in software development
for at least three years to participate in word and topic intrusion tasks (Shrikanth
et al. [2021] mention that professionals with three or more years of experience can be
considered experts). Similarly, we asked eight domains experts also working in software
development for at least three years, who did not participate of the intrusion tasks, to
participate in topic naming tasks. Hindle et al. [2015] explained that domain experts can
name topics better than non-experts due to their familiarity to domain-specific keywords
that may appear in topics. We selected these numbers of participants to have at least
three participants evaluating the same intrusion tasks and four participants naming
the same topics. Domain experts were identified and recruited from our contacts in
industry and academia. We offered an incentive (i.e. eGift cards) for their participation,
but some of them participated without accepting this incentive.

To share the questionnaires with selected participants, we sent them the link to
the questionnaire (for the intrusion tasks or for the topic naming tasks) and a sorted
sub-survey number. When responding to the questionnaire, participants started by
reading the instructions and then completed all intrusion tasks or all topic naming tasks.
After that, each participant answered a survey about their professional background and
a final and optional open question for general feedback: “After completing the tasks
and the background questions above, is there anything else you would like to add?”.
Regarding participants’ background, we asked:

• What country do you currently reside in?
• How many years have you worked as a software development professional in

industry?

138 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

• Have you received any formal training (such an apprenticeship or a degree from
a college or university) in Computer Science, Software Engineering, Information
Systems or a related discipline?

• What is the highest level of formal training you received?
• If you have not received any formal training, how have you developed your skills

in software engineering and development?
• How familiar are you with these technologies? (Android app development; Jenkins

Continuous Integration; and Flutter development kit)
1. I have never heard about it
2. I have heard about it but don’t use or develop with it
3. I have used/developed with it it a few times
4. I occasionally use/develop with it
5. I frequently use/develop with it

Regarding the terms “use” and “develop” in the list above, we used both terms to
describe that Flutter and Jenkins could be “used” in software development, and
Android apps could be “developed” by participants (i.e. the meaning of ”use” of
Android apps as end user is different to “use” of Flutter or Jenkins as developer).

• Do you use instant messaging communication tools (e.g., Slack, Gitter, MS-Teams
etc.)?

• Why do you use instant messaging communication tools?
1. To chat with family and friends [Personal]
2. To chat with people while gaming [Personal]
3. To interact with a community (people with the same interests as you) [Per-

sonal]
4. To keep updated with companies and brands [Personal]
5. To discuss topics related to software development with a general community

[Professional]
6. To discuss software development issues in a particular project with other

project or team members or contributors [Professional]
7. To keep updated with software releases and new technologies for software

development [Professional]
8. Other

• How often do you use instant messaging communication tools to discuss software
development?

Questions regarding familiarity with technologies and use of instant messaging
communication helped us understand how comfortable participants would be with the
themes discussed in our corpora and with instant messaging tools. The characterization
of participants is shown in Tables 6.5 and 6.7, and detailed data is available online9.

We did not exclude any responses to our questionnaires, as there were no incomplete
responses (responses could have been incomplete either because of a lack of familiarity

6.4 RESEARCH METHOD 139

or lack of experience). Few of the experienced software developers we contacted declined
the invitation right away because they felt unfamiliar with technologies, with instant
messaging communication, or with the goal of our study in general.

6.4.6 Comparison of Model Performance

We first analyzed the performance of our models by comparing the resulting scores of
our three strategies for topic quality: topic coherence metrics, topic coherence based on
word and topic intrusion tasks, and topic naming. Then, we calculated the correlation
between scores of our topic coherence metrics and the scores of our human assessments
to understand their relationship and if they are aligned with each other.

As mentioned in Section 6.3.4, studies such as [Aletras and Stevenson 2013, Lau
et al. 2014, Mimno et al. 2011, Newman et al. 2009] compared how topic coherence
metrics of topic models align with human evaluations of topics. These studies mostly
used correlation coefficients to relate metrics and human-based scores. For example,
Lau et al. [2014] calculated the Pearson correlation18 between metrics and human
evaluations using scores obtained at the topic level and at the model level, while Aletras
and Stevenson [2013] used the Spearman’s Rank correlation19 to compare metrics and
human evaluations. Similarly to these studies, we chose to apply Pearson and Spearman
correlation coefficients to compare our metrics’ scores also with previous works. Since
these coefficients measure the linear relationship between two variables, we checked
if each of our automated and human-based metrics are equivalent measures for topic
quality or if they provide different insights that complement each other.

To correlate the scores of our topic coherence metrics and human assessments at
the topic level, we defined two additional metrics:

• RTI is the ratio of true intruders per topic, i.e. total number of true word
intruders i in a topic divided by the number of participants p who identified such
intruders (i/p). The higher RTI the better.

• RN is the ratio of names per topic, i.e. the number of names assigned to a topic
n divided by the total number of participants p who named that topic (n/p). The
higher RN the better.

We did not use MP (word intrusion tasks) and aratio (topic naming tasks) when
correlating coherence scores and human assessment because MP and aratio measure
topic quality at the model rather than topic level. Additionally, we did not compare
our topic coherence metrics with the scores of topic intrusion tasks TLO because this
metric evaluates the relation between documents and topics, which measures the quality

18Pearson correlation measures the strength of a linear association between two variables [Lund
Research Ltd 2018a]

19Spearman’s Rank correlation measures the strength and direction of association between two
ranked variables [Lund Research Ltd 2018b]

140 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

of the model rather than the topics individually. Therefore, we correlated the scores of
our topic coherence metrics ca, cp, cnpmi and uMass with RTI and RN .

6.5 RESULTS

6.5.1 Topic Coherence Metrics

As described in Section 6.4.4, we calculated four topic coherence metrics (at model
level) for all combinations of models and corpus, including the stemmed and lemmatized
corpora. Figure 6.4 shows how the topic coherence metrics performed for each com-
bination of model and corpus (organized by model). Scores are also available online9.
Considering the general performance of each metric, we found the following:

• ca: The combinations with the highest scores for this metric are Android_stem &
GPU_PDMM (score: 0.05), Android_stem & BTM (score: 0.08), Android_stem
& WNTM (score: 0.08) and Jenkinsci_stem & BTM (score: 0.08).

• cp: The combinations of model and corpus that best performed for this metric are
Jenkinsci_lemma & GPU_PDMM (score: 0.07) and Jenkinsci_lemma & DMM
(score: 0.01). The scores obtained for this metric were low in general.

• cnpmi: The combinations of model and corpus that best performed for this metric
got the score of -0.03. The combinations with this score are Android_stem & BTM,
Android_lemma & WNTM, Jenkinsci_lemma & GPU_PDMM, Flutter_lemma
& GPU_PDMM, and Flutter_stem & GPU_PDMM.

• uMass: The combinations of model and corpus that best performed are An-
droid_lemma & BTM (score: -0.22), Android_ stem & WNTM (score: -0.23),
Android_lemma & WNTM (score: -0.25) and Android_stem & BTM (score:
-0.25). The highest scores for uMass were related to the Android corpus, while the
uMass scores related to Jenkinsci and Flutter corpora were low.

Figure 6.4 shows that the scores of uMass varied more than the other metrics. This
might be because uMass checks the coherence of topics based on the co-occurrence of
words in the corpus inputted to the topic model while the other metrics check the
coherence of topics by comparing word pairs of the topics with word pair from an
external corpus of general natural language. On the other hand, ca varied less across
the corpora in all models. Unlike cp and cnpmi which have sliding windows1 of size 70
and 10, respectively; ca uses a sliding window of size 5 to compare co-occurrence of
words. With fewer words to be used in the comparison between word pairs (see details
about these metrics in Section 6.3.3), the size of the corpus may have less influence on
ca scores across the different corpora.

6.5 RESULTS 141

Figure 6.4 Topic Coherence Metrics by Model

142 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Regarding the performance of models considering the size of the corpora, which was
measured based on the number of documents and on the vocabulary size (see Table 6.1),
we found the following:

• BTM performed better with small and medium-sized corpora (Android_stem,
Android_lemma and Jenkinsci_stem) considering the coherence scores of ca, cp

and cnpmi. In general, the worst performance of BTM was with Flutter_stem and
Flutter_lemma considering uMass.

• DMM had lower scores for all metrics in comparison to the other models. For uMass,
DMM had low scores with Jenkinsci (stem and lemma) and Flutter (stem and
lemma). For cp, DMM had low scores with Android_stem and Jenkinsci_stem.

• GPU-PDMM performed better with the medium-sized and the large corpora
(Jenkinsci_lemma and Flutter_lemma) considering cp and cnpmi. On the other
hand, GPU-PDMM also performed well with Android_stem (smaller in number
of documents and vocabulary size) considering ca.

• WNTM performed better with Flutter_stem and Android_lemma. As these
corpora are very different in size (Android is small and Flutter is large in terms
of number of documents and vocabulary), the scores for WNTM do not indicate
that this model was particularly appropriate for smaller or larger corpora of short
texts.

Table 6.4 shows the detailed results of these metrics by combination of model
and corpus. In that table we highlighted the highest scores of each metric by model.
We found that some combinations of model and corpus had at least two metrics with
high scores at the same time: BTM & Android_stem and DMM & Android_stem
(with metrics ca and cnpmi); BTM & Android_lemma (with metrics cp and uMass);
GPU_PDMM & Flutter_lemma and WNTM & Android_lemma (both with metrics
cp and cnpmi). We also found that, without considering the differences between the
stemmed and lemmatized corpora, GPU_PDMM was the model that presented high
coherence scores for the three corpora with different metrics, specially for cnpmi.

6.5.2 Comparison of Stemmed and Lemmatized Corpora

We used the topic coherence metrics to compare our stemmed and lemmatized corpora
(see Section 6.4.2). This was to select topics for human assessment (see Section 6.4.5).
Figure 6.5 shows the average scores of our models by corpus and topic coherence metric
(i.e. the columns show the average over all models). The values highlighted in grey are
the highest scores. Based on these scores we could not identify if stemmed or lemmatized
corpora consistently lead to more coherent topics. As shown in Figure 6.5, stemmed

6.5 RESULTS 143

Table 6.4 Topic Coherence Metrics by Model and Corpus

Topic model Corpus ca cp cnpmi uMass

BTM Android_stem 0.08 -0.19 -0.03 -0.25
BTM Android_lemma 0.14 -0.01 -0.06 -0.22
BTM Jenkinsci_stem 0.08 -0.44 -0.07 -2.71
BTM Jenkinsci_lemma 0.13 -0.18 -0.10 -2.62
BTM Flutter_stem 0.15 -0.25 -0.08 -3.09
BTM Flutter_lemma 0.21 -0.13 -0.05 -3.08

DMM Android_stem 0.09 -0.29 -0.04 -0.46
DMM Android_lemma 0.10 -0.09 -0.06 -0.39
DMM Jenkinsci_stem 0.12 -0.27 -0.06 -3.02
DMM Jenkinsci_lemma 0.15 0.01 -0.08 -3.04
DMM Flutter_stem 0.24 -0.09 -0.04 -3.14
DMM Flutter_lemma 0.23 -0.10 -0.05 -3.18

GPU_PDMM Android_stem 0.05 -0.54 -0.07 -0.50
GPU_PDMM Android_lemma 0.14 -0.07 -0.07 -0.48
GPU_PDMM Jenkinsci_stem 0.10 -0.37 -0.09 -3.16
GPU_PDMM Jenkinsci_lemma 0.16 0.07 -0.03 -3.24
GPU_PDMM Flutter_stem 0.21 -0.16 -0.03 -3.38
GPU_PDMM Flutter_lemma 0.24 -0.06 -0.03 -3.52

WNTM Android_stem 0.08 -0.24 -0.04 -0.23
WNTM Android_lemma 0.11 -0.05 -0.03 -0.25
WNTM Jenkinsci_stem 0.14 -0.26 -0.06 -2.86
WNTM Jenkinsci_lemma 0.12 -0.21 -0.09 -2.90
WNTM Flutter_stem 0.13 -0.21 -0.08 -2.97
WNTM Flutter_lemma 0.22 -0.14 -0.05 -3.07

144 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

corpora had higher average scores for ca, lemmatized corpora had higher average scores
for cp and there were small differences between the average scores for cnpmi and uMass.

Without a “winning” corpora based on the topic coherence scores, we decided to
select the topics from the lemmatized corpora for the human assessment of topics (see
details about the human assessment in Section 6.4.5). We selected this corpora because
with lemmatization we retained the readable form of the words from our original data
sets. With readable words in topics, participants would be able to understand and
assess topics easier than with stemmed words (words without prefixes and suffixes).

6.5.3 Word and Topic Intrusion

The complete description of each of the 18 participants (identified as “IT<.number>”)
of word and topic intrusion tasks is shown in Table 6.5 (the categories regarding
familiarity with technologies and purpose of using instant messaging are described in
Section 6.4.5.3). The responses of all participants for all tasks are available online9.

6.5.3.1 Word Intrusion Tasks

As shown in Figure 6.6, DMM was the best performing model (score: 0.58) and
the worst performing model was BTM (score: 0.4). By analyzing the scores of each
combination of model and corpus, as shown in Table 6.6 (the highest scores per model
are highlighted), we found that the models BTM, DMM and GPU_PDMM had high
scores with Flutter_lemma, and low scores with Android_lemma. This indicates that a
large corpus (and consequently a large vocabulary) may influence the quality of topics
because of its more distinct words.

6.5.3.2 Topic Intrusion Tasks

As shown in Figure 6.6, we found that the best performing model was GPU_PDMM
(score: -8.78) and the worst performing model was DMM (score: -28.86). Based on
the TLO scores of each combination of model and corpus, as shown in Table 6.6 (the
highest scores per model are highlighted), we found that WNTM had high scores with
Jenkinsci_lemma and Flutter_lemma, and a low score with Android_lemma. The
lowest TLO scores were obtained by DMM with Jenkinsci_lemma and Flutter_lemma.

6.5.3.3 Best Performing Model based on Word versus Topic Intrusion

When comparing the results of our models based on the average scores for MP and TLO

we found that it was harder for participants to identify intruder topics than to identify
intruder words for topics generated with DMM. Therefore, DMM did not perform
consistently well in the intrusion tasks. The most consistent model was WNTM, which

6.5 RESULTS 145

Figure 6.5 Average Scores of Corpus by Topic Coherence Metric

146 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Table 6.5 Description of Participants of the Intrusion Tasks

Partici-
pant

Sub-
survey

Experience
(in years)

Level of
training Familiarity with technologies* Use of instant messaging

Android Jenkins Flutter Purpose* Frequency

IT.01 13 17 Post-
graduate 3 4 4 3

Sometimes (e.g.,
several times per
week)

IT.02 15 11 Post-
graduate 3 5 1 6

Always (e.g., it is
part of my daily
work)

IT.03 18 10 Post-
graduate 2 2 2 1, 2, 3, 6

Always (e.g., it is
part of my daily
work)

IT.04 16 16 Higher edu-
cation 3 1 1 4, 6

Always (e.g., it is
part of my daily
work)

IT.05 14 5 Higher edu-
cation 3 2 2 1, 2, 6

Always (e.g., it is
part of my daily
work)

IT.06 17 11 Masters 3 3 2 1, 3, 6, 8 a
Always (e.g., it is
part of my daily
work)

IT.07 7 6 Higher edu-
cation 3 2 2 2, 6, 7, 8 b

Always (e.g., it is
part of my daily
work)

IT.08 3 6 Higher edu-
cation 3 2 2 3, 5, 6

Always (e.g., it is
part of my daily
work)

IT.09 10 5 Higher edu-
cation 5 5 3 1, 5, 6, 8 c

Always (e.g., it is
part of my daily
work)

IT.10 9 15 Masters 2 2 1 1-7
Always (e.g., it is
part of my daily
work)

IT.11 2 4 Higher edu-
cation 3 2 2 1, 2, 6

Sometimes (e.g.,
several times per
week)

IT.12 6 5 Higher edu-
cation 3 1 1 1-7

Always (e.g., it is
part of my daily
work)

IT.13 11 5 Post-
graduate 4 2 5 1, 2, 6

Always (e.g., it is
part of my daily
work)

IT.14 5 3 Higher edu-
cation 3 2 1 5, 6

Always (e.g., it is
part of my daily
work)

IT.15 1 14 Higher edu-
cation 3 2 2 1-3, 5-7

Always (e.g., it is
part of my daily
work)

IT.16 12 7 Post-
graduate 4 2 2 3, 6

Always (e.g., it is
part of my daily
work)

IT.17 8 14 Post-
graduate 4 3 2 1, 3, 4, 6

Occasionally (e.g.,
several times per
month)

IT.18 4 6 Higher edu-
cation 3 2 2 1, 2, 6

Always (e.g., it is
part of my daily
work)

*see the detailed categories in Section 6.4.5.3
a. “Corporate communications”
b. “To keep track of development logs, e.g., build/deploy logs, bug auto reporting and other similar things”
c. “I use slack and MS Teams a lot for general work related subjects”

6.5 RESULTS 147

Figure 6.6 Average Scores for Intrusion Tasks by Model

Table 6.6 Scores by Intrusion Tasks

Topic model Corpus MP T LO

BTM Android_lemma 0.17 -14.24
BTM Jenkinsci_lemma 0.43 -11.55
BTM Flutter_lemma 0.60 -16.50

DMM Android_lemma 0.27 -19.22
DMM Jenkinsci_lemma 0.67 -30.43
DMM Flutter_lemma 0.80 -36.92

GPU_PDMM Android_lemma 0.17 -9.05
GPU_PDMM Jenkinsci_lemma 0.67 -11.47
GPU_PDMM Flutter_lemma 0.70 -5.82

WNTM Android_lemma 0.33 -22.42
WNTM Jenkinsci_lemma 0.67 -5.82
WNTM Flutter_lemma 0.67 -5.39

148 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

had the third best average scores for both MP and TLO. WNTM was also the model
that performed consistently with medium-sized and large corpora (Jenkinsci_lemma
and Flutter_lemma) for both MP and TLO. The same consistency was observed in
GPU-PDMM with Flutter_lemma. We did not find a consistent performance of our
metrics with the small corpus (Android_lemma), i.e. when MP was high for a model
dealing with the small corpus, its correspondent TLO was low.

6.5.3.4 Participants Feedback on Intrusion Tasks

Only three participants responded our open-ended question for general feedback. Partic-
ipant IT.13 suggested “I think this research should be done using keywords from other
languages besides dart”. This means that participant IT.13 understood that most of
the word intrusion tasks were about dart (a programming language for web and mobile
client development).

The other two participants acknowledged how their experience and familiarity with
the technologies discussed in our corpora influenced their responses. IT.09 acknowledged
that “The tasks to identify the odd words were difficult for me, because from my
perspective, I could always connect all of them together in a context. My guess is that
this happens because I work with CI CD pipelines, review PRs, develop scripts and
new android features (using Java and Kotlin) and coordinate meetings with squads in
a daily basis in my work, so all these subjects are very familiar to me, and they can
always be connected. (...)”. This indicates that this participant could potentially always
find a connection between words in clusters if no specific context of the appearance of
words is provided (we discuss this further in Section 6.6.5). IT.17 mentioned “I’m not
updated about some tools of Continuous Integration and Infrastructure tools”. On the
other hand, according to the background questions, IT.17 used Jenkins more often than
the other technologies (occasionally developed Android apps, and had heard about but
did not use Flutter; see Table 6.5).

6.5.4 Topic Naming

We asked eight participants, who were not involved in the word and topic intrusion
tasks, to name the topics with their own words (see details in Section 6.4.5.2). The
description of these participants (identified as “TN<.number>”) is shown in Table 6.7
(the categories regarding familiarity with technologies and purpose of using instant
messaging are described in Section 6.4.5.3). The results of the topic naming tasks are
available online9.

6.5 RESULTS 149

Table 6.7 Description of Participants of Topic Naming

Partici-
pant

Sub-
survey

Experience
(in years)

Level of
training Familiarity with technologies* Use of instant messaging

Android Jenkins Flutter Purpose* Frequency

TN.01 3 3 Honors 2 4 2 1, 3, 6, 7
Always (e.g., it is
part of my daily
work)

TN.02 1 5 Higher edu-
cation 3 2 2 1, 2, 3, 6

Always (e.g., it is
part of my daily
work)

TN.03 1 6 Higher edu-
cation 2 2 2 2, 3, 6

Always (e.g., it is
part of my daily
work)

TN.04 4 6 Higher edu-
cation 3 4 2 6

Always (e.g., it is
part of my daily
work)

TN.05 2 15 PhD 3 4 2 1, 3, 5, 6
Sometimes (e.g.,
several times per
week)

TN.06 6 3 Higher edu-
cation 2 2 2 6

Always (e.g., it is
part of my daily
work)

TN.07 5 3 Masters 2 2 1 1-7
Always (e.g., it is
part of my daily
work)

TN.08 2 6 Post-
graduate 3 2 2 1, 6

Always (e.g., it is
part of my daily
work)

*see the detailed categories in Section 6.4.5.3

6.5.4.1 Number of Topics Named and Average Ratio of Names per Topic

Table 6.8 shows how many topics tnamed (out of ten) were named and the average ratio
of names per topic aratio by combination of model and corpus.

• Regarding tnamed, we found that each combination of model and corpus had a high
number of topics named by at least one participant. The combinations of model
and corpus with lower tnamed were WNTM & Flutter_lemma and GPU_PDMM
& Android_lemma (7 topics named out of 10 topics). The combination with the
highest tnamed were DMM & Jenkinsci_lemma and DMM & Flutter_lemma (10
topics named out of 10 topics).

• For aratio, we found that the combinations of model and corpus DMM & Flut-
ter_lemma (aratio = 0.70), GPU_PDMM & Jenkinsci_lemma (aratio = 0.65),
GPU_PDMM & Flutter_lemma (aratio = 0.65) and DMM & Jenkinsci_lemma
(aratio = 0.60) had more topics named (with two or more names) than the
other combinations of model and corpus. The worst performing combinations
of model and corpus for aratio were BTM & Jenkinsci_lemma, GPU_PDMM &
Android_lemma and WNTM & Android_lemma (aratio = 0.35).

• Considering both tnamed and aratio, we found that DMM & Flutter_lemma
(tnamed = 10 and aratio = 0.70), GPU_PDMM & Jenkinsci_lemma, GPU_PDMM
& Flutter_lemma (both with tnamed = 10 and aratio = 0.65) and DMM &
Jenkinsci_lemma (tnamed = 10 and aratio = 0.60) were the best performing
combinations of model and corpus. GPU_PDMM & Android_lemma (tnamed = 7
and aratio = 0.35) was the worst performing combination of model and corpus. We
also found that WNTM & Jenkinsci_lemma had “conflicting” scores (tnamed = 9
and aratio = 0.43). This means that most of its topics were named, but few of

150 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

these topics were named by two or more participants.

Table 6.8 Topic Naming by Model and Corpus

Topic model Corpus tnamed
1 aratio

2

BTM Android_lemma 8 0.38
BTM Jenkinsci_lemma 8 0.35
BTM Flutter_lemma 9 0.53

DMM Android_lemma 9 0.55
DMM Jenkinsci_lemma 10 0.60
DMM Flutter_lemma 10 0.70

GPU_PDMM Android_lemma 7 0.35
GPU_PDMM Jenkinsci_lemma 10 0.65
GPU_PDMM Flutter_lemma 10 0.65

WNTM Android_lemma 8 0.35
WNTM Jenkinsci_lemma 9 0.43
WNTM Flutter_lemma 7 0.43
1. Number of topics named (out of 10) by corpus
2. Average ratio of names assigned to a topic

6.5.4.2 Compatibility between Names Assigned to Topics

As mentioned in Section 6.4.5.2, we analyzed the semantic compatibility of the names
assigned by participants for each combination of model and corpus. Compatible names
are highlighted in gray in Tables D.1, D.2, D.3 and D.4 in Appendix D.3. Regarding
each topic model we found the following:

• BTM: In general, we found few compatible names among the topics generated
with BTM (see Table D.1 in Appendix D.3). Topics of BTM & Jenkinsci_lemma
had only three topics named by at least two participants and none of these names
were compatible. Regarding BTM & Flutter_lemma, only one topic presented
compatible names from the eight topics named. BTM & Android_lemma had
three compatible names (out of three topics named). On the other hand, few
topics of this combination of model and corpus were named by more than one
participant.

• DMM: The topics generated with DMM had more compatible names than the
other models (see Table D.2 in Appendix D.3). DMM & Android_lemma had
three topics with compatible names (out of eight topics named), while DMM
& Jenkinsci_lemma had four topics with compatible names (out of eight topics
named) and DMM & Flutter_lemma had six topics with compatible names (out
of nine topics named).

• GPU_PDMM: We also found few compatible names to the topics generated with
GPU_PDMM (see Table D.3 in Appendix D.3). GPU_PDMM & Android_lemma

6.5 RESULTS 151

had one topic with compatible names (out of five topics named), GPU_PDMM
& Jenkinsci_lemma had three topics with compatible names (out of eight topics
named) and GPU_PDMM & Flutter_lemma had three topics with compatible
names (out of ten topics named). We found that, unlike the other combinations
of model and corpus, one participant (TN.04) could not name any of the topics
generated with GPU_PDMM & Android_lemma, even though that participant
had developed Android apps a few times, according to the experience. The
same participant provided just one or two names to the topics generated with
GPU_PDMM & Jenkinsci_lemma and GPU_PDMM & Flutter_lemma. We
considered this an exceptional case because the other three participants (TN.05,
TN.07 and TN.08), who also analyzed topics from GPU_PDMM, provided names
for more than two topics across the corpora.

• WNTM: Few topics generated with WNTM had compatible names (see Table D.4
in Appendix D.3). Similar to BTM & Jenkinsci_lemma, topics of WNTM &
Jenkinsci_lemma had five topics named by at least two participants and none
of these names were compatible. WNTM & Flutter_lemma and WNTM &
Android_lemma had two topics with compatible names out of four or five topics
named.

6.5.4.3 Corpus Size and Topic Naming

By comparing our corpora, tnamed and aratio, we found that topics generated with
Android_lemma (our smallest corpus) were more difficult to name in comparison
to the topics from other corpora. Considering that in general our largest corpus
Flutter_lemma had more topics named, the size of the corpus may have some influence
on how comprehensible the topics are. This means that participants of our study
were able to make more associations between the words in topics when topics were
generated with larger corpora. Regarding compatibility, we found that the topics
generated with our medium-sized corpus Jenkinsci_lemma had fewer compatible names
in comparison to the names assigned to topics from other corpora. For example, there
were no compatible names in the topics from BTM & Jenkinsci_lemma and WNTM &
Jenkinsci_lemma. On the other hand, most of the participants (five out of eight) were
not very familiar with Jenkins Continuous Integration (see details about participants in
Table 6.7) and this might have influenced how they named topics.

6.5.4.4 Best Performing Models based on Topic Naming

We found that the combinations of model and corpus DMM & Flutter_lemma (10
topics named, 0.7 average ratio of names per topic and 6 topics with compatible names)
and DMM & Jenkinsci_lemma (10 topics named, 0.6 average ratio of names per topic

152 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

and 4 topics with compatible names) were the best performers in terms of tnamed, aratio

and compatibility of names. The combinations of model and corpus GPU_PDMM &
Flutter_lemma (10 topics named, 0.65 average ratio of names per topic and 3 topics
with compatible names) and GPU_PDMM & Jenkinsci_lemma (10 topics named, 0.65
average ratio of names per topic and 3 topics with compatible names) also performed
well. We conclude that DMM and GPU_PDMM generated more understandable topics
to humans than the other models. Therefore, these were the best performing models in
the topic naming task.

6.5.4.5 Participant Feedback on Naming Topics

Two participants mentioned in our final open-ended question that they were not so
familiar with Flutter, which may have influenced their responses. TN.01 mentioned
“Maybe it didn’t help that I haven’t used flutter or built a native android app but
that was really hard”, while TN.08 acknowledge that “I could recognize some stuff
about java/flutter but since I have never studied or worked with them it was a little
bit harder for me to recognize patterns among the words”. The topics generated with
Flutter_lemma were the most named topics across all models. In terms of compatibility,
topic04 of DMM & Flutter_lemma and topic01 of WNTM & Flutter_lemma were the
topics that received four compatible names (one name per participant), as shown in
Tables D.2 and D.4 in Appendix D.3.

6.5.5 Overall Model Performance

6.5.5.1 Comparison of Short Text Topic Models

Table 6.9 shows an overview of the performance of all combinations of models and
corpora. In Table 6.9 we also highlight the highest scores for each topic model. The
range of values for each of our metrics are described in Sections 6.4.4, 6.4.5 and 6.4.5.2.

By comparing the averages of each metric across models, we found that:

• BTM: This model had a consistent performance in the topic naming task as
the third best performing model in relation to the other models. However, the
performance of BTM with the topic coherence metrics varied for each metric
(e.g., the worst score was cnpmi: -0.07, and the best score was uMass: -1.97). In
relation to the intrusion tasks, BTM was the worst performing model with the
word intrusion tasks (MP : 0.4).

• DMM: This model had a consistent performance across topic coherence metrics
(ca: 0.16, cp: -0.06, cnpmi: -0.06 and uMass: -2.20) and it was the best performing
model in the topic naming tasks (tnamed: 10, aratio: 0.62 and four topics with
compatible names).

6.5 RESULTS 153

Table 6.9 Scores for each Model and Corpus

Topic Coherence Metrics Intrusion Tasks Topic Naming
Topic
model Corpus ca cp cnpmi uMass MP T LO tnamed aratio

Compatible
Names

BTM Android_lemma 0.14 -0.01 -0.06 -0.22 0.17 -14.24 8 0.38 3
BTM Jenkinsci_lemma 0.13 -0.18 -0.10 -2.62 0.43 -11.55 8 0.35 0
BTM Flutter_lemma 0.21 -0.13 -0.05 -3.08 0.60 -16.50 9 0.53 1

BTM Average 0.16 -0.11 -0.07 -1.97 0.40 -14.10 8 0.42 1

DMM Android_lemma 0.10 -0.09 -0.06 -0.39 0.27 -19.22 9 0.55 3
DMM Jenkinsci_lemma 0.15 0.01 -0.08 -3.04 0.67 -30.43 10 0.60 4
DMM Flutter_lemma 0.23 -0.10 -0.05 -3.18 0.80 -36.92 10 0.70 6

DMM Average 0.16 -0.06 -0.06 -2.20 0.58 -28.86 10 0.62 4

GPU_
PDMM Android_lemma 0.14 -0.07 -0.07 -0.48 0.17 -9.05 7 0.35 1

GPU_
PDMM Jenkinsci_lemma 0.16 0.07 -0.03 -3.24 0.67 -11.47 10 0.65 3

GPU_
PDMM Flutter_lemma 0.24 -0.06 -0.03 -3.52 0.70 -5.82 10 0.65 3

GPU_PDMM Average 0.18 -0.02 -0.04 -2.41 0.51 -8.78 9 0.55 2

WNTM Android_lemma 0.11 -0.05 -0.03 -0.25 0.33 -22.42 8 0.35 2
WNTM Jenkinsci_lemma 0.12 -0.21 -0.09 -2.90 0.67 -5.82 9 0.43 0
WNTM Flutter_lemma 0.22 -0.14 -0.05 -3.07 0.67 -5.39 7 0.43 2

WNTM Average 0.15 -0.13 -0.06 -2.07 0.56 -11.21 8 0.40 1

• GPU_PDMM: This model had a consistent performance in the topic naming task
as the second best performing model in relation to the other models. However,
it showed the best performance (e.g., cp: -0.02, cnpmi: -0.04) and the worst
performance (e.g., ca: 0.18 and uMass: -2.41) with the topic coherence metrics.

• WNTM: This model performed well with the intrusion tasks (MP : 0.56 and TLO:
-11.21) by having the second best scores for these metrics.

In general, we found that some of the average scores for each metric by model
(highlighted rows in Table 6.9) did not differ much. These metrics are: ca, cnpmi, MP ,
tnamed, and aratio. For example, regarding the topic coherence metrics, we found that
ca had similar scores across models (BTM: 0.16, DMM: 0.16, GPU_PDMM: 0.18, and
WNTM: 0.15). On the other hand, scores varied more with the metrics: cp, uMass and
TLO. For example, DMM got the lowest score for TLO in comparison to the other
models (DMM: -28.68, BTM: -14.10, GPU_PDMM: -8.78 and WNTM: -11.21). The
best score for cp was GPU_PDMM: -0.02 and the worst score was WNTM: -0.13. We
discuss implications of these findings in Section 6.6.

6.5.5.2 Correlation between Metrics

Table 6.10 shows the correlations between our four topic coherence metrics (ca, cp, cnpmi

and uMass) and the human assessment metrics RTI (word intrusion tasks) and RN

(topic naming tasks), see details about RTI and RN in Section 6.4.6. In Table 6.10 we
highlight in gray the highest (greater than or equal to 0.7) and the lowest (lower than
0) coefficients.20 The highest correlation (considering both Pearson and Spearman) in
our study was between RTI and RN for the combination of BTM & Android_lemma

20https://www.andrews.edu/~calkins/math/edrm611/edrm05.htm

https://www.andrews.edu/~calkins/math/edrm611/edrm05.htm

154 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

(0.82 and 0.79). The highest correlation between a topic coherence metric and a human
assessment score was uMass x RTI (0.75 and 0.72) for DMM & Flutter_lemma, and cp

x RTI (0.75 for Spearman). Considering each model, we found the following:

• BTM: This model presented the highest and the lowest correlation coefficients
across models. The highest correlations for BTM were found in RTI x RN (0.82
and 0.79) and ca x RTI (0.71 for Pearson). The lowest correlations were found in
cnpmi x RN (-0.77 and -0.82) and uMass x RTI (-0.71 and -0.69). Both highest
and lowest correlations were related to Android_lemma. This means that when
dealing with a small corpus, coherence based on ca aligns with the results of the
word intrusion tasks, and that two human assessments (word intrusion tasks and
topic naming) correlate with each other.

• DMM: The highest correlation for DMM was uMass x RTI (0.75 and 0.72) with
Flutter_lemma. The lowest correlations for DMM also referred to uMass x RTI

(Android_lemma: -0.53 for Pearson, Jenkinsci_lemma: -0.61 and -0.70). This
means that uMass aligned with word intrusion tasks when topics were generated
with our large corpus, but did not align when topics were generated with our
smaller corpora.

• GPU_PDMM: For this model we did not find a high or a low correlation between
coherence metrics and human assessment. The highest correlation was between
human assessments (RTI x RN : 0.51 and 0.50) with Flutter_lemma, our largest
corpus in number of documents and vocabulary size. The lowest correlation was
between ca x RTI (-0.70) considering the Spearman coefficient.

• WNTM: This model had two high correlations: ca x RN (0.73 for Pearson) and
cnpmi x RTI (0.73 for Pearson), both related to Jenkinsci_lemma. This means
that ca aligned with topic naming, while cnpmi aligned with the results of the
word intrusion tasks. On the other hand, the lowest correlation was ca x RTI

(-0.73 for Pearson) for Android_lemma. This shows that there was no alignment
between ca and the word intrusion tasks when the topics were generated with
our smallest corpus. Considering the Spearman coefficients, we did not find any
relevant high or low correlation between our metrics.

In summary, there is no consistent correlation between the scores of our coherence
metrics and the scores of our human assessment strategies across models or across
corpora. For example, if we consider the corpus Android_lemma, the correlation
between ca x RTI was very high for some models (e.g., BTM) and very low for others
(e.g., WNTM).

6.5 RESULTS 155

Table 6.10 Correlation between Metrics at Topic Level

Pearson Coefficient Spearman Coefficient

Correlation Android_
lemma

Jenkinsci_
lemma

Flutter_
lemma

Android_
lemma

Jenkinsci_
lemma

Flutter_
lemma

BTM
ca x RTI 0.71 -0.14 -0.47 0.50 -0.06 -0.47
cp x RTI -0.05 -0.03 0.69 0.01 -0.31 0.75
cnpmi x RTI -0.67 -0.48 0.28 -0.69 -0.51 0.59
uMass X RTI -0.71 0.50 0.22 -0.69 0.58 0.30
ca x RN 0.54 0.20 0.07 0.36 0.30 0.08
cp x RN -0.13 -0.34 0.44 -0.13 -0.24 0.49
cnpmi x RN -0.77 -0.06 0.10 -0.82 -0.02 0.23
uMass X RN -0.40 -0.32 -0.12 -0.48 -0.41 -0.04
RTI x RN 0.82 0.07 0.22 0.79 0.10 0.22

DMM
ca x RTI 0.04 0.24 -0.08 0.32 0.47 -0.08
cp x RTI 0.44 -0.07 -0.13 0.56 0.14 -0.19
cnpmi x RTI 0.32 -0.47 0.17 0.41 -0.36 0.19
uMass X RTI -0.53 -0.61 0.75 -0.19 -0.70 0.72
ca x RN 0.08 -0.20 0.32 -0.02 -0.10 0.41
cp x RN 0.25 0.11 0.44 0.27 0.04 0.11
cnpmi x RN 0.13 0.37 -0.21 0.27 0.39 -0.29
uMass X RN -0.02 0.21 -0.26 -0.06 0.33 -0.16
RTI x RN 0.35 -0.24 -0.17 0.32 -0.24 -0.15

GPU_PDMM
ca x RTI -0.54 0.39 0.28 -0.70 0.39 0.26
cp x RTI 0.05 0.52 0.24 -0.09 0.62 0.05
cnpmi x RTI 0.02 0.42 -0.05 0.01 0.39 -0.03
uMass X RTI -0.40 0.15 0.32 -0.42 -0.05 0.22
ca x RN 0.13 -0.28 0.21 0.09 -0.32 0.28
cp x RN -0.24 0.19 0.31 -0.22 0.14 0.30
cnpmi x RN -0.32 0.14 0.24 -0.28 -0.02 0.28
uMass X RN -0.28 0.05 -0.38 -0.22 -0.01 -0.47
RTI x RN -0.11 0.10 0.51 -0.17 0.21 0.50

WNTM
ca x RTI -0.73 0.31 0.24 -0.58 0.49 0.10
cp x RTI -0.15 0.55 -0.28 -0.09 0.53 -0.36
cnpmi x RTI 0.15 0.73 -0.26 0.18 0.52 -0.41
uMass X RTI 0.15 -0.23 -0.32 0.13 -0.16 -0.21
ca x RN 0.49 0.73 -0.01 0.56 0.57 0.13
cp x RN 0.35 -0.18 0.50 0.49 -0.01 0.44
cnpmi x RN 0.41 -0.09 0.14 0.36 -0.26 0.33
uMass X RN -0.21 0.03 0.18 -0.04 -0.05 0.28
RTI x RN -0.28 0.08 0.22 -0.28 0.07 0.04
RTI - ratio of true intruders per topic
RN - ratio of names per topic

156 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

6.6 DISCUSSION

6.6.1 Summary of Findings

As described in Section 6.2, short text topic models can be divided into three types:
Dirichlet multinomial mixture-based, Global word co-occurrences-based and Self-aggregation-
based [Qiang et al. 2022]. For our study, we selected topic models based on Dirichlet
multinomial mixture (DMM and GPU_PDMM) and based on Global word co-occurrences
(BTM and WNTM). Below we discuss the performance of our models by type of short
text topic model (see the scores of our metrics in Table 6.9):

• Dirichlet multinomial mixture

– DMM: This model achieved high scores for topic naming (tnamed: 10, aratio:
0.62 and four topics with compatible names), and the highest score for word
intrusion (MP : 0.58). This means that topics generated with DMM were
more semantically meaningful to the participants of our study than the topics
generated with other models.

– GPU_PDMM: This model had the highest scores for some topic coherence
scores (cp: -0.02, cnpmi: -0.04) and some of the highest scores for intrusion
tasks (MP : 0.51, TLO: -8.78). This means that this model generated
distinct and descriptive topics in comparison to generic English texts (e.g.,
Wikipedia files), rather than domain-specific texts. GPU_PDMM also had
some of the highest scores for topic naming (aratio: 0.55), which indicates
that some of the topics were understandable enough for our participants.

• Global word co-occurrences

– BTM: This model had the highest score for topic coherence metric uMass

(-1.97). This means that this model can generate topics that are internally
consistent. However, the topics generated with BTM were less comprehensible
to humans (considering the intrusion tasks and topic naming) in comparison
to the other models.

– WNTM: This model had one of the highest scores for the topic coherence
metric ca (0.15) and uMass (-2.07). Based on the coherence metric with the
smallest sliding window1 (of size 5, see details in Section 6.4.4), this model
generates distinct and descriptive topics in comparison to generic English
texts (e.g., Wikipedia files) and, like BTM, can generate topics that are
internally consistent. WNTM did not perform well in the topic naming
tasks because few participants were able to name topics and some of the
topics named were not compatible (aratio: 0.4 and one topic with compatible
names).

6.6 DISCUSSION 157

In the context of our study, we found that short text topic models based on Dirichlet
multinomial mixture generated topics that are more meaningful to humans while models
based on Global word co-occurrences generate topics that are more internally coherent.
Regarding the corpora size (in number of messages and in vocabulary size), we found
that models based on Global word co-occurrences such as WNTM, performed well when
dealing with our small corpus, while models based on Dirichlet multinomial mixture
such as GPU_PDMM, performed well with our medium-sized and large corpora (see
details in Section 6.5.5).

Considering the correlation between our topic coherence metrics and human as-
sessment (RTI and RN), we found the highest and the lowest correlation scores in
the models based on Global word co-occurrences. BTM had the lowest and the highest
correlation scores with our small corpus. WNTM had the highest correlation score
with our medium-sized corpus and the lowest score with our small corpus. This means
that there is both alignment and misalignment between our scores. The alignment was
between ca and RTI, and between ca and RN , as these metrics had the highest correla-
tion scores. The misalignment was mostly related to the small corpus (Android_lemma)
when correlating uMass and ca to RTI, and cnpmi to RN , which highlights the need for
a sufficiently large corpus. Therefore, we cannot suggest that topic coherence metrics
were compatible enough with human assessments of topic quality.

With the results of our study, we did not find a single best performing model to
be used with developer instant messaging communication because no model constantly
presented high scores for topic coherence metrics, intrusion tasks and topic naming.
However, we found that the performance of models depend on the corpora used. For
example, GPU_PDMM dealt better with larger corpora and BTM with smaller corpora.
We also found that models with a low performance in intrinsic metrics can generate
meaningful topics according to human judgment (e.g., DMM).

We believe that we could not identify one best performing model because we tried
to cover different aspects of topic quality. With the topic coherence metrics we evaluate
the extrinsic qualities (comparison to word pairs of generic English files) and intrinsic
qualities (comparison between word pairs from the corpus used to infer topics) as
described in Section 6.4.4. With intrusion tasks, we evaluate how well the inferred topics
match human concepts (MP) and how well a topic model assigns topics to documents
(TLO) as described in Section 6.4.5. In comparison to the other strategies for topic
quality, topic naming was an open-ended task focused on evaluating how comprehensible
the topics were, so participants would be able to create a name to summarize their
concept.

158 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

6.6.2 Practical Use of Topic Models

To demonstrate the practical use of short text topic models, we selected one of our four
models (GPU_PDMM) and applied it to the messages of 87 public Gitter chat rooms
used in Chapter 4. The goal was to check how the topics generated automatically with
our selected model relate to the themes identified manually by Costa Silva et al. [2022]
(see Chapter 4). Table D.4 in Appendix D shows the topics generated for each chat room
as well as the themes identified for each chat room (as per Chapter 4). Furthermore, in
this table we also include the run time for each data set (i.e. chat room) which shows
that the run time of the topic model increases with the size of the data set.

We selected GPU_PDMM for this exercise as 59 of these 87 chat rooms had
more than a thousand messages and this model performed well with medium-sized
and large corpora based on topic coherence metrics and intrusion tasks (see details in
Section 6.6.1). We used the same data pre-processing steps, as described in Section 6.4.2.
As before, we used lemmatization instead of stemming for step 6 of the pre-processing.
We used the default parameters of this model (as suggested by Li et al. [2017]). We
modeled three topics from each chat room because we noticed that the participants of
our topic naming tasks assigned the same name to more than two topics from the same
combination of model and corpus. This indicated that subjects discussed in chat rooms
could be represented by fewer than ten topics.

In comparison to the themes described in Chapter 4 [Costa Silva et al. 2022], we
found the following:

• Themes cannot directly be assigned as names to the topics. For example, chat
room “piskvorky/gensim”21 is about the theme SD5.1.2.1 [Machine learning]
Libraries, while their generated topics refer to “document vectorizing” (topic01:
model word vector document doc work file vec topic list), “development in python”
(topic02: text python time test find small add version import size), and “training
model” (topic03: gensim corpus train training code good issue similarity large
fasttext). This means that themes represent broader subjects discussed in chat
rooms while topics represent a detailed perspective of what is discussed in a chat
room.

• Topics improve the understanding of the theme identified in some chat rooms. For
example, the chat rooms “FreeCodeCamp/Contributors”,22 “FreeCodeCamp/testable-
projects-fcc”,23 “ga4gh/server”,24 “Hotel-Reservation-Project/requirements”25 are
related to the theme PD2.1 Coding which describes experiences and advice on

21https://gitter.im/RaRe-Technologies/gensim
22https://gitter.im/FreeCodeCamp/Contributors
23https://gitter.im/FreeCodeCamp/testable-projects-fcc
24https://gitter.im/ga4gh/server
25https://gitter.im/Hotel-Reservation-Project/requirements

https://gitter.im/RaRe-Technologies/gensim
https://gitter.im/FreeCodeCamp/Contributors
https://gitter.im/FreeCodeCamp/testable-projects-fcc
https://gitter.im/ga4gh/server
https://gitter.im/Hotel-Reservation-Project/requirements

6.6 DISCUSSION 159

coding practices. However, when this theme is not combined with a second theme,
it is more difficult to describe what specific knowledge is discussed regarding
coding practices. With the generated topics, we can identify, for example, that
chat room “ga4gh/server”24 is about coding practices associated to source code
repository management (topic01: file server work error git issue version master
branch case), records of server calls (topic02: reference set vcf support access
vcfs callset referenceset store variant), and exception treatment (topic03: call test
sequence add python module exception schema thing graph). Therefore, topics
can complement themes.

• There are similarities between topics across all chat rooms. We found, for example,
that some topics were related to “errors” in different contexts. For example, topics
discussed in chat rooms “facebook/flow”,26 “FreeCodeCamp/Contributors”22 and
“gitlabhq/gitlabhq”27 described errors regarding, respectively: method/class use
(topic01: function error object work property prop class issue import flowtype),
package management (topic01: issue npm error challenge test code merge guide
time freecodecamp) and project tracking (topic03: project issue error create user
push branch problem merge request). This could be an indicator that topics
(based on words in messages) capture problems developers face, while themes
(identified by considering the broader context of a chat room) also capture that
contextual information beyond problems.

By relating topics and themes, we briefly checked if our selection of models, based
on our evaluation of short text topic models, would generate meaningful topics to be
related to our themes. In summary, GPU_PDMM generated distinct topics (considering
that we modeled three topics rather than ten) that, in comparison to themes identified
in Chapter 4 [Costa Silva et al. 2022], describe the discussions of chat rooms in more
detail, complementing (rather than contradicting) their main themes.

6.6.3 Comparison to Related Work

Chatterjee et al. [2019] identified topics in messages from Slack chat rooms by inputting
the entire conversation of a chat room (e.g., ≈ 1,000 messages) as a document to
LDA, and evaluated the quality of its output by manually checking if the topics were
understandable. Unlike the study of Chatterjee et al. [2019], we considered each message
of a chat room as a document to our topic models. We believe that by modeling topics
from the messages of a single chat room, more specific subjects of discussion can be
identified.

Similarly to the study of Guzman et al. [2017], we used the short text topic model
BTM. Guzman et al. [2017] modeled topics from tweets of app end users while we we

26https://gitter.im/facebook/flow
27https://gitter.im/gitlabhq/gitlabhq

https://gitter.im/facebook/flow
https://gitter.im/gitlabhq/gitlabhq

160 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

modeled topics from messages of developer discussions. In comparison to our results
for the word intrusion tasks with BTM, Guzman et al. [2017] got higher scores than
ours, except for the topics generated by a smaller corpus (tweets about the Dropbox
app) with 2,435 tweets (MP : 0.30). In our study, BTM had higher scores for word
intrusion tasks with topics generated from our largest corpus (see Section 6.5.3), while
in the study of Guzman et al. [2017] the medium-sized corpus (tweets related to the
Slack app) had the highest score (MP : 0.70).

As described in Section 6.2, Qiang et al. [2022] experimented with short text topic
models using different sizes of documents (e.g., tweets and Stack Overflow posts),
but they did not model topics using instant messages. The authors evaluated the
performance of these models using three metrics for topic quality: topic coherence
(PMI [Newman et al. 2009]; we used the normalized version of PMI, cnpmi [Bouma 2009]),
classification (accuracy of how labels assigned by humans matched pre-assigned labels)
and clustering (purity and normalized mutual information - NMI28). Unlike our study,
the authors assessed the quality of their topics using measures that required participants
to assign predefined labels to their topics to determine accuracy, purity and NMI. As we
aimed at assessing our topics with manual topic naming, a task that requires assigning
open-ended names to topics, we did not measure the performance of our models based
on predefined labels. As described in Section 6.4.4, we used NPMI (cnpmi) as one of
our coherence metrics while Qiang et al. [2022] used PMI. By comparing the scores
of these metrics, we found that our scores (BTM: -0.07, DMM: -0.06, GPU_PDMM:
-0.04 and WNTM: -0.06, see details in Section 6.5.5) and the scores obtained by Qiang
et al. [2022] (between 1.1 and 1.2 for all models) followed similar trends, even though
the actual values differed. For PMI, the higher the score the better, and for NPMI, the
closest to 0, the better.

Regarding the overall performance of intrinsic metrics, we found that cnpmi had
some of the highest scores with our combinations of models and corpus (which was
also found by Röder et al. [2015]) and ca had similar scores between three models
(BTM, DMM and WNTM). However, when considering the alignment between human
judgments and topic coherence metrics, in our study ca had the highest and the lowest
correlations with human judgments (with RTI and RN which are based on intrusion
tasks and topic naming). The results of other studies, on the other hand, indicated that
cnpmi aligned the most with human judgments based on 3-point Likert scales [Aletras
and Stevenson 2013, Lau et al. 2014, Röder et al. 2015]. We argue that intrusion tasks
are more accurate as a human assessment of topic quality since these tasks require
participants to actively engage with topics to identify coherent topics based on altered
word clusters (i.e. topics) and the relationship between topics and documents. Coherence
based on Likert scales gives insights on the passive understanding of topics by humans.
Additionally, related studies that correlated coherence metrics and human-based scores

28https://towardsdatascience.com/evaluation-metrics-for-clustering-models-5dde821dd6cd

https://towardsdatascience.com/evaluation-metrics-for-clustering-models-5dde821dd6cd

6.6 DISCUSSION 161

applied topic modeling to longer texts (e.g., articles from the New York Times and the
English Wikipedia [Lau et al. 2014]) using LDA rather than short text topic models.
Considering our low correlation scores, we cannot conclude that topic coherence metrics
and human assessments are equivalent when measuring the quality of a short text model.

6.6.4 Implications

The goal of this study was to understand how short text topic models perform with chat
messages from developer instant messaging communication. We selected four short text
topic models (from the study of Qiang et al. [2022]), used developer instant messages as
documents and checked the quality of the resulted topics based on three strategies for
measuring topic quality: (1) topic coherence metrics, (2) topic coherence based on word
and topic intrusion tasks (3) and topic naming by experts. Based on our findings we
formulated a set of recommendations to help researchers and practitioners as follows:

1. Using both Topic Coherence Metrics and Intrusion Tasks: Researchers and practi-
tioners may consider using both topic coherence metrics and intrusion tasks when
applying short text topic models to developer instant messaging communication
since we did not find alignment between their scores. However, depending on
the goal of the topic modeling and resources available for recruiting humans,
researchers and practitioners may use one topic coherence metric or one type
of intrusion tasks (word or topic). In this case, researchers and practitioners
may select topic coherence metrics or intrusion tasks based on the results of the
combination of model and corpus most similar to their own models and corpora.

2. Using Topic Naming as a Measure for Topic Quality: Researchers and practitioners
can use topic naming as a strategy for measuring topic quality like we did in
our study. Topics were considered coherent if humans were able to name them,
and these names described how comprehensible and distinct the generated topics
were. The advantage of this strategy is that, depending on the goal, the names
assigned can be organized and used as tags to label the documents used in the
topic modeling (i.e. chat messages) or to link documents to other content (e.g.,
chat messages to source code). The disadvantages of using topic naming as a
quality measure are the subjective nature of naming and the effort required to
recruit participants. Therefore, researchers and practitioners may also consider
limitations on recruiting human evaluators and the goal of their topic modeling
before using this strategy.

3. Selecting Short Text Topic Models: Researchers and practitioners may use our
study as a guide to select short text topic models to be applied to text like chat
messages (e.g., based on the results of our topic naming tasks). Our study can
also be used as a reference for researchers and practitioners when applying short

162 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

text topic models, considering that we described our experiences with different
models applied to different sizes of corpora and using different strategies for topic
quality.

4. Pre-processing Instant Messages: Researchers and practitioners may consider
additional steps or a customized data pre-processing to clean chat messages.
With our study, we found that chat messages may require additional cleaning
steps beyond stop word removal, normalization, etc. For example, developers’
conversations may have short code snippets and jargon-specific terms that can be
kept or removed, depending on the goal of the topic modeling. In our study, we
had to customize a stop words list to remove some internet-related acronyms such
as “idk” and “lol” and expressions such as “hahahhaha”. Additionally, unlike other
textual data (e.g., from web pages or papers), we observed that chat messages
contain emoticons, such as “:P”, typos and, sometimes, non-English characters.

5. Selecting Stemming or Lemmatizing: Researchers and practitioners may select
either stemming or lemmatizing depending on how their topics are going to be
used (e.g., to be evaluated by humans or to link source code and issue reports).
In comparison to stemming which normalizes a word into its morphological root,
lemmatization captures the base form of words, leading to a larger corpora (e.g.,
in vocabulary size, see Section 6.4.2). Based on coherence metrics we found that,
even though our lemmatized corpora had a larger vocabulary, their resulting topics
were not more coherent than the topics generated with our stemmed corpora (see
Figure 6.5). For the human assessment of topics, we selected the results of our
lemmatized corpora because it generated topics with more readable words (e.g.,
“message” rather than “messag”).

6.6.5 Threats to Validity

We analyzed the limitations and threats to the validity of our study in terms of internal
and external validity and regarding repeatability as suggested by Kitchenham et al.
[2002] and Sjoberg et al. [2007]. We also checked the alignment of our study with the
ACM Empirical Standards for empirical research using its generic checklist.29

Internal validity: We acknowledge that our selection of short text topic models,
data pre-processing steps and topic coherence metrics influenced the findings of our
study. For example, we selected four of the eight short text topic models from Qiang
et al. [2022]. Even though we made a conscious decision on what short text topic
models to study (see details in Section 6.4.3), future studies may explore additional
topic models. On the other hand, our results could mean that new short text topic
models, in particular for developer communication, may need to be developed.

29https://github.com/acmsigsoft/EmpiricalStandards

https://github.com/acmsigsoft/EmpiricalStandards

6.6 DISCUSSION 163

Regarding the parameters setting for the topic models (e.g., α and β or the number
of topics), we acknowledge that by using the default values of each model, we may not
get optimized results. We could have grid-searched (e.g., by using Grid-SearchCV from
Scikit-learn30) or optimized values for parameters as suggested by Agrawal et al. [2018].
Instead, we set the parameters as suggested by the authors who proposed the topic
models, so we could check how these models perform with instant messaging considering
their original setting.

For word and topic intrusion tasks, we followed the guidelines of Chang et al. [2009]
and only provided one document for topic intrusion tasks. Chang et al. [2009] argued
that humans are good at extrapolating from limited data and that participants should
interpret topics based on little additional information. For example, Chang et al. [2009]
only used the title and the first couple of sentences of their documents in their tasks.
Providing more information was not recommended by any previous studies and may
have biased the results.

For the topic naming, we did not calculate agreement between the names assigned by
participants (e.g., using Cohen’s Kappa measure [ScienceDirect Topics 2008]) because we
did not use predefined categories. Agreement measures are used to calculate agreement
between two or more assessments using categorical data rather than open-ended names.
Instead, we checked which and how many topics were named for each combination of
model and corpus. We also analyzed the semantic compatibility of these names by
topic. Regarding the evaluation of compatibility, we acknowledge that this is subjective
and biased based on our own experiences with software development (with Android
apps, Jenkins Continuous Integration and Flutter development kit). However, checking
semantic compatibility of names was done by multiple researchers as mentioned in
Section 6.4.5.2.

Regarding the experience of participants for the intrusion tasks and topic naming,
we recruited experienced developers in general rather than developers with specific
experiences, for example, with Android app development. We acknowledge that the
results of human assessments of topic models were influenced by the professional
experiences of participants. On the one hand, involving developers with general software
development expertise gave us potentially less biased names in comparison to having
only participants with specific expertise about the subjects discussed in the analyzed
conversations. On the other hand, developers with specific experiences may have
led to better results (higher MP and TLO scores for the intrusion tasks and more
named topics). Regarding the number of participants, we acknowledge that as our data
sets referred to domain-specific content (i.e. developers’ professional conversations).
Therefore, we recruited few experts rather than a large number of non-experts or junior
professionals. Additionally, we involved more than two participants in the evaluation of

30https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

164 6 SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

topics as suggested in the literature [Shull et al. 2008].
Regarding the reliability of human assessments, we acknowledge that responses

could have been influenced by circumstances of participants’ daily routines. For example,
if participants performed our tasks during a work break, their responses might have
been rushed as they had little time. On the other hand, as we provided an incentive for
participating in our study, respondents may have felt more “obliged” to perform tasks
carefully. We also checked time stamps of submissions and no suspicious behavior was
detected (e.g., participants completing the tasks in less than five minutes).

External validity: Our results are not fully generalizable since we experimented
with only three diverse data sets (in terms of size and subjects, such as Android app
development, Jenkins Continuous Integration and Flutter development kit) and four
carefully chosen short text topic models. Since we provided an in-depth analysis of
generated topics involving human experts (with three data sets and four short text topic
models, we analyzed 24 scores of topic coherence metrics and we asked participants to
evaluate 240 intrusion tasks and to name 120 topics), we had to limit the number of
chat rooms also for practical reasons. We describe how we selected our data sets in
Section 6.4.1 and our short text topic models in Section 6.4.3.

Repeatability: Our study can be repeated by other researchers and practitioners
considering that the tools and data sets that we used are available online (see details in
Section 6.4). On the other hand, the results may not be completely replicated because
topic models do not generally generate the same topics in every processing [Blei et al.
2003b, Griffiths and Steyvers 2004]. Additionally, the selection of participants for the
human assessment of topics impacts the results.

6.7 CONCLUSION

In this chapter we analyzed how four short text topic models [Qiang et al. 2022] performed
with developer instant messaging communication. We used the messages of three Gitter
chat rooms of different sizes. After pre-processing messages of these chat rooms
(experimenting with two types of text normalization: stemming and lemmatization) and
inferring topics, we calculated four topic coherence metrics [Röder et al. 2015] for each
of our models. We also performed two human assessments of topics: topic coherence
based on intrusion tasks [Chang et al. 2009] and topic naming [Hindle et al. 2015]. By
using intrusion tasks and topic naming, we aimed at evaluating how understandable,
meaningful and interpretable the topics generated with models were.

Our results indicate that the performance of short text topic models applied to
developer discussions is not consistent when assessing topics based on the different
measures for topic quality. For example, WNTM & Android_stem had high scores with
all topic coherence metrics, but low scores with the human assessments as shown in
Section 6.5.2 and discussed in Section 6.6. Regarding topic naming, most models had

6.7 CONCLUSION 165

at least one name assigned per topic and when more names were assigned to a topic
(we had four experts naming each topic), these names were not always semantically
compatible.

Referring to our list of contributions in Section 6.1, we conclude the following:

• We evaluated the quality of short text topic models applied to software developer
instant communication based on four established topic coherence metrics [Röder
et al. 2015]. The model that presented the highest scores for two of our metrics
(cp and cnpmi) was GPU_PDMM (see details in Section 6.5.1). We could not
determine whether the topics generated with stemmed corpora were more coherent
than the topics generated with lemmatized corpora. For example, the average
scores for cnpmi and uMass were similar across these corpora, as described in
Section 6.5.2.

• To understand how comprehensible topics are for humans (the “users” of the
topics), we evaluated the quality of short text topic models based on intrusion
tasks (word and topic) [Chang et al. 2009] and topic naming [Hindle et al. 2015].
With the intrusion tasks, we found that GPU_PDMM and WNTM performed
well for both intrusion tasks in comparison to the other models. For the topic
naming, we found that most models had at least one topic named by at least one
participant. DMM generated the most comprehensible topics for your participants,
i.e. was the model with the highest average ratio of names per topic (0.62) and
the highest number of topics with compatible names (four out of ten topics), as
described in Section 6.5.4.

• To understand whether human assessment can be replaced by automatically
calculated coherence scores and if theoretical coherence aligns with human compre-
hension of topics, we compared topic coherence metrics and human assessments.
We found that, in the context of our study, the topic coherence metrics and
human assessment did not align. As discussed in Section 6.5.5, we could not find
a consistent correlation between a coherence metric and a human assessment score
across models or across corpora.

This chapter presented the last study of this thesis. In the following chapter
(Chapter 7), we summarize the findings of our research, discuss its limitations and
future work.

Chapter 7

CONCLUSIONS

In this chapter we conclude this thesis by summarizing the findings and contributions
of each of our research questions. We also discuss limitations and future work.

7.1 SUMMARY OF FINDINGS

We summarize the findings of this thesis based on the results of each of our research
questions:

1. Is there reusable knowledge in developer instant messaging communi-
cation? What is this knowledge?

RQ1 What instant messaging tools can be a source of reusable
knowledge?
Based on instant messaging tool’s popularity, openness, administration,
interaction features, interoperability and API we compared four instant
messaging tools with public chat rooms. These tools were Slack, Gitter,
Spectrum and Microsoft Teams. To address RQ2, we selected Gitter as a
potential source of reusable knowledge for further analysis. Gitter focuses
more on software developers communication than the other tools, and its data
is less restrictive for collection, analysis and use (see details in Chapter 3).

RQ2 What themes represent the main discussions of developers in
chat rooms?
In the context of our study, we found that the main themes representing
chat rooms in developer instant messaging communication are mostly about
software development technologies and practices. For example, popular
themes in chat rooms are web development, coding and build automation. In
comparison to developer information needs (as suggested by Xia et al. [2017a]
and Barua et al. [2014]), we found that our themes refers to programming- and
testing-related information needs. With this, we confirmed that our selection
of public Gitter chat rooms had reusable knowledge which is characterized

7.1 SUMMARY OF FINDINGS 167

with our map of themes (see details in Chapter 4). Additionally, in comparison
to other communication channels, such as Stack Overflow, discussions in
Gitter chat rooms are not only topic-related but also project-related.

2. How can we identify reusable knowledge in developer instant messaging
communication?

RQ3 How has topic modeling been applied in software engineering
research?
We analyzed 111 software engineering-related studies that applied topic
modeling. These papers were published in the last twelve years (2009-2020)
in ten highly ranked software engineering venues (five conferences and five
journals). By analyzing topic modeling techniques, data inputs, data pre-
processing, and how topics were named, we identified characteristics and
limitations in the use of topic models that were considered in RQ4 (see details
in Chapter 5).

– RQ3.1 Which topic modeling techniques have been used and
for what purpose? We found that LDA and LDA-based techniques
are the most frequently used topic modeling techniques and that most
studies are exploratory studies or proposed approaches to support bug
handling.

– RQ3.2 What are the inputs into topic modeling? Most of the
studies analyzed used LDA “as is” and without adapting values of
hyperparameters (α and β). Additionally, most studies modeled topics
from source code using methods as documents.

– RQ3.3 How is data pre-processed for topic modeling? Some data
pre-processing steps depend on the type of textual data used while other
steps are commonly used in natural language processing techniques such
as removing stop words and stemming.

– RQ3.4 How are generated topics named? When naming topics,
most studies adopted manual approaches for topic naming such as
deducting names, or labeling topics with pre-defined names, based on
the meaning of frequent words in a topic.

RQ4 How do short text topic models perform with discussions of
developers?
To model topics from individual messages of developer instant messaging
communication, we found (with RQ3) that we should use topic modeling
techniques for short text topic models. Therefore, we experimented with
four techniques (BTM, DMM, GPU_PDMM and WNTM) and the messages
of three chat rooms (selected in RQ1 and RQ2). In a comparison of the

168 7 CONCLUSIONS

quality of topic models based on topic coherence metrics, intrusion tasks
and topic naming, we found that short text topic models based on Dirichlet
multinomial mixture generated more meaningful topics to humans while
models based on Global word co-occurrences generate topics that are more
internally coherent. We could not identify a technique that best performed
with developer chat messages based on our three strategies for topic quality,
but we provided recommendations on the use of these techniques (see details
in Chapter 6).

7.2 CONTRIBUTIONS

Considering the findings of our research questions, the contributions of this thesis are:

• RQ1. Framework to compare instant messaging tools: By analyzing
instant messaging tools (see details in Chapter 3), we identified evaluation criteria
(also found in the literature) to compare instant messaging tools considering
aspects like the popularity of the tool, its features, the types of interactions and
its interoperability. This framework offers a structured evaluation scheme for
researchers and practitioners to assess the suitability of an instant messaging tool
for their own use.

• RQ2. Map of themes discussed by developers in chat rooms: Our
resulting map of themes (see details in Chapter 4) provide insights about the
characteristics of the main themes discussed by developers in the context of our
selection of chat rooms. Based on this map, researchers and practitioners can get
insights about the knowledge available in chat rooms, and use our themes as labels
to train automated techniques to identify reusable knowledge or for augmenting
software documentation (e.g., creating a code book).

• RQ3. Literature survey on topic modeling: We found that LDA is popular
in software engineering research that identifies topics in text because, as an
unsupervised technique, it does not require previous training (see details in
Chapter 5). However, one of our findings was that LDA generates more distinct
topics (i.e. topics with less sparsity), with long documents (e.g., the entire
conversation of a chat room) rather than short documents (e.g., an individual
message). This study can provide insights and references to researchers and
practitioners to make the best use of topic modeling, considering the experiences
from previous software engineering-related studies.

• RQ4. Recommendations on the use of short text topic models with
developer chat messages: By evaluating the performance of short text topic
models (see details in Chapter 6) using different strategies for topic quality, we

7.3 LIMITATIONS 169

found that the performance of topic models applied to developer chat messages is
not consistent based on our three measures (topic coherence metrics, intrusion
tasks and topic naming). This means that some models had high scores with topic
coherence metrics but low scores with human-based metrics (intrusion tasks and
topic naming). Therefore, this study provides recommendations on selecting topic
models, data pre-processing steps and measures for topic quality to researchers
and practitioners.

Finally, considering that there are relevant software engineering knowledge for
reuse in instant messaging communication, practitioners may consider applying our
resulted themes and topics as golden labels to train data mining-based applications. For
example, practitioners can build or augment software documentation (e.g., by creating
a FAQ [Henß et al. 2012]) to support the resolution of known problems or struggles with
particular technologies. Furthermore, practitioners may use our findings to decide which
instant messaging tools they may use in their work and for what type of knowledge
these tools may be a useful source.

7.3 LIMITATIONS

Each of our research questions had their specific limitations and threats to validity
discussed in their specific chapters (see the structure of this thesis in Section 1.5). In
this section, we discuss limitations regarding the types of study used in each part of
this thesis and limitations regarding the approaches we used to analyze and identify
reusable knowledge in developer instant messaging communication.

1. Is there reusable knowledge in developer instant messaging communi-
cation? What is this knowledge?

For the first part of this thesis, we performed a Field Study which involved an
exploratory case study (RQ1) and a reflexive thematic analysis (RQ2). Due to
the nature of field studies, we did not aim for statistical generalizability, since we
mostly used qualitative data.

RQ1: Even though our comparison framework was useful for the selection of
Gitter for further analysis (RQ2 and RQ4), it may need to be adapted for future
comparisons (e.g., including new tools with additional characteristics). As our
criteria were considering the features of the four chat rooms we analyzed (Slack,
Gitter, Spectrum and Microsoft Teams), new features may not be covered (e.g.,
voice-only chat rooms).

RQ2: By using reflexive thematic analysis, we were able to identify the main
themes discussed in selected chat rooms and check that instant messaging communi-
cation is a source of reusable knowledge, especially regarding software development.

170 7 CONCLUSIONS

However, thematic analysis has some limitations as a method to identify relevant
knowledge in large amounts of text. As a manual approach, it demands more time
for data analysis; and it may require data triangulation to confirm findings.

Regarding the summarization technique used with this thematic analysis, we
identified repetitive content in some summaries even though our summaries have
reached quality scores within limits reported in literature [Khatri et al. 2018,
Paulus et al. 2018]. We used BART, an abstractive summarization technique,
which generates summaries with words and sentences that differ from the original
text sentences, unlike extractive techniques [El-Kassas et al. 2021]. As a Seq2Seq
type of abstractive summary, BART may generate repetitions and inaccurate
information when it is used with noisy text, such as chat messages.

2. How can we identify reusable knowledge in developer instant messaging
communication?

For the second part of this thesis, we performed a Sample Study which involved
a literature survey (RQ3) and software repository mining (RQ4). Due to the
nature of sample studies, our data collection was not interactive, which means
that once the data was dumped from Gitter and from literature databases, we
did not updated this data. Similarly, the human assessment of topics in RQ4 was
not interactive either, i.e. we could not ask participants to clarify their responses
during data analysis.

RQ3: The literature survey helped us to understand how topic modeling tech-
niques could be used in our research (RQ4). For example, it allowed us to check
that, even though LDA is a popular model to identify topics, it has sparsity
problems (i.e. model generates less meaningful topics) when dealing with short
text documents. We were also able to identify data pre-processing steps for chat
messages and approaches for topic naming. On the other hand, we found few
studies about short text topic models. We may have found few studies because
there are few software engineering studies using short text topic models, or we
could have used specific keywords (e.g., “short text”) to search the literature.

RQ4: By comparing the performance of our selection of short text topic models
(BTM, DMM, GPU_PDMM and WNTM), we found that each model performed
differently for each strategy for topic quality depending on the data set used
(small – Android, medium-sized – Jenkinsci and large – Flutter). We found that
using more than one metric for each strategy for quality topic gave us multiple
perspectives about the performance of models; however, it was difficult to compare
the models based on the three strategies. For example, GPU_PDMM had high
scores in two strategies for topic quality (mainly related to the topics generated
from medium-sized and large corpora), but this model did not have high scores for
all three strategies. Therefore, we could not select the best model to be applied to

7.4 FUTURE WORK 171

developer instant messaging communication. It would have been easier to compare
the performance of models and decide on the best performer if we had used fewer
metrics or fewer strategies for topic quality.

7.4 FUTURE WORK

In this thesis we analyzed the knowledge within developer instant messaging communi-
cation and topic modeling as one approach to identify this knowledge. To expand this
research and make the identified knowledge available outside of these communities of
developers for reuse, future work could explore various directions:

• Identify the structure of each conversation thread within the messages of chat
rooms (e.g., questions asked and related answers). Future work can disentangle
discussions similarly to Chatterjee et al. [2020, 2021], Ehsan et al. [2021]. Based
on the types of questions asked (e.g., such as the types of question used by Beyer
et al. [2019], Shi et al. [2021]), we can classify the conversation threads into types
of conversations (e.g., such as the types of conversation used by Chatterjee et al.
[2019]) to understand and describe how the knowledge is shared and built.

• Analyze the messages of chat rooms in more detail and beyond abstractive
summarization to identify more concrete topics discussed within the themes of
Gitter chat rooms. By using the short text topic model selected in Chapter 6 (see
Section 6.6.2), future research can further compare topics and themes to analyze
their alignment. This will also expand our map of themes (e.g., by incorporating
the topics generated) towards a more detailed framework to describe the knowledge
discussed in developer instant messaging communication, following systematic
taxonomy development methods [Usman et al. 2017]. This framework could help
researchers and practitioners understand what knowledge is available in chat
rooms for reuse.

• Characterize the users that engage in these chat rooms. Future work can analyze
how many newcomers to software development are in these chat rooms in compar-
ison to experts, and how users’ backgrounds may influence the relevance of the
knowledge shared. Similarly to the study of Shi et al. [2021], further work can
also investigate the interaction pattern of these users to help us to characterize
the behavior of communities of developers within instant messaging tools.

• Develop a interface to present reusable knowledge to developers outside of our
selection of Gitter chat rooms. To make knowledge in instant communication
truly reusable, we need ways to create a summary of the messages (or conversation
threads) associated with the topic/themes identified in this thesis. The user of
such interface would be able to extract these summaries by selecting a topic/theme

172 7 CONCLUSIONS

of interest. This may also require linking these summaries to related chat rooms
in case our user wants to check the messages in context or to join the discussions.

Regarding our comparison framework to compare instant messaging tools (RQ1),
future work can expand the framework and identify additional criteria. For that,
researchers could follow a design science approach to integrate practical problems
relevant to developers and knowledge questions investigated by researchers to support
developers.

For our reflexive thematic analysis (RQ2), future work can expand our map of
themes by identifying new themes in other Gitter chat rooms or in another selection of
chat rooms (e.g., Slack or Microsoft Teams chat rooms). Further studies can also relate
our themes to other standardized knowledge in software engineering (rather than the
SWEBOK [Bourque and Fairley 2014]) or other developer knowledge needs. Researchers
can also use our themes as labels to automated techniques for data mining, such as
automated classification of instant messaging conversations.

For our literature review on topic modeling studies (RQ3), future work can inves-
tigate other characteristics of the use of topic modeling in software engineering. For
example, which topic modeling tools or libraries (e.g., Mallet) were used; the context of
a specific supported software engineering task; or compare topic modeling techniques to
other text mining techniques, such as clustering and summarization (e.g., sentence or
document embeddings). Furthermore, further studies can reflect on other fields or uses
of topic modeling to contrast how topic modeling is applied in software engineering.
Finally, future work can investigate how papers evaluate the performance of their topic
modeling techniques, how papers evaluate the the quality of the generated topics, and
how exactly word clusters were used when topics were not named.

Regarding experimenting with short text topic modeling (RQ4), future work can
expand our experiments by using other short text topic models (e.g., models analyzed
by Qiang et al. [2022] that we did not use, such as Self-aggregation-based models) or
techniques proposed by other studies (e.g., Twitter-LDA by Zhao et al. [2011]).

Appendix A

INTRODUCTION

A.1 STUDY APPROVAL FOR RQ4

174 A INTRODUCTION

University of Canterbury Private Bag 4800, Christchurch 8140, New Zealand. www.canterbury.ac.nz

F E S

HUMAN RESEARCH ETHICS COMMITTEE

Secretary, Rebecca Robinson
Telephone: +64 03 369 4588, Extn 94588
Email: human-ethics@canterbury.ac.nz

Ref: HEC 2021/76/LR-PS

17 January 2022

Camila Mariane Costa Silva

Computer Science and Software Engineering

UNIVERSITY OF CANTERBURY

Dear Camila

Thank you for submitting your low risk application to the Human Research Ethics Committee for

the research proposal titled “Evaluation of Short Text Topic Models Applied to Software Developer

Discussions”.

I am pleased to advise that this application has been reviewed and approved.

Please note that this approval is subject to the incorporation of the amendments you have provided

in your email of 6th January 2022.

With best wishes for your project.

Yours sincerely

Dr Dean Sutherland

Chair, Human Research Ethics Committee

Figure A.1 Human Ethics Committee Approval

A.1 STUDY APPROVAL FOR RQ4 175

University of Canterbury Private Bag 4800, Christchurch 8140, New Zealand. www.canterbury.ac.nz

F E S

HUMAN RESEARCH ETHICS COMMITTEE

Secretary, Rebecca Robinson
Telephone: +64 03 369 4588, Extn 94588
Email: human-ethics@canterbury.ac.nz

Ref: HEC 2021/76/LR-PS Amendment 1

25 February 2022

Camila Mariane Costa Silva

Computer Science and Software Engineering

UNIVERSITY OF CANTERBURY

Dear Camila

Thank you for your request for an amendment to your research proposal “Evaluation of Short

Text Topic Models Applied to Software Developer Discussions” as outlined in your email

dated 22nd February 2022.

I am pleased to advise that this request has been considered and approved by the Human

Research Ethics Committee.

Yours sincerely

Dr Dean Sutherland

Chair, Human Research Ethics Committee

Figure A.2 Amending - Human Ethics Committee Approval

Appendix B

THEMES IN DEVELOPER INSTANT MESSAGING
COMMUNICATION

B.1 DESCRIPTION OF THEMES

Table B.1 Description of Themes under SQ - Software Quality*

SQ1 Code quality

Third-level Fourth-level Description Example

- -

Experiences and advice
on solving issues related
to the use of tools for as-
suring source code qual-
ity

“Adds static typing to JavaScript to
improve developer productivity and
code quality.” [Chat room: https:
//gitter.im/facebook/flow]

SQ2 Software testing

Third-level Fourth-level Description Example

- -

Experiences, advice and
issue solving related to
the use of tools and
frameworks for software
testing

“A flexible lightweight multi-
language test report tool with
the possibility to add steps, at-
tachments, parameters and so on.”
[Chat room: https://gitter.im/
allure-framework/allure-core]

*Since first-level theme SQ has only second-level themes but no third- and fourth-level themes,
the description refers to the second-level themes SQ1 and SQ2

https://gitter.im/facebook/flow
https://gitter.im/facebook/flow
https://gitter.im/allure-framework/allure-core
https://gitter.im/allure-framework/allure-core

B.1 DESCRIPTION OF THEMES 177

Table B.2 Description of Themes under SA - Software Architecture

SA1 Technologies
Content related to technologies

Third-level Fourth-level Description Example

Blockchain -

Experiences, issues and
advice related to the use
and development of solu-
tions for Blockchain

Part of the memo (chat room
has no description): Go Ethereum
is an implementation of the pro-
tocol Ethereum for blockchains
[Chat room: https://gitter.im/
ethereum/go-ethereum]

Cloud com-
puting -

Experiences, issues and
advice related to the use
and development of solu-
tions for Cloud comput-
ing

“Configuration library for JVM
languages”. Issues related to
the configurations of Lightbend,
a platform for Cloud computing
[Chat room: https://gitter.im/
lightbend/config]

SA2 Design
Content related to software architecture design (frameworks, practices, requirements, plans)

Third-level Fourth-level Description Example

Patterns -
Experiences and advice
in principles and prac-
tices for design patterns

“A collection of samples to discuss
and showcase different archi-
tectural tools and patterns for
Android apps” [Chat room: https:
//gitter.im/googlesamples/
android-architecture]

Style

Service-
oriented
architecture
(SoA)

Experiences and advice
related to a library for
implementing Service-
oriented Architecture
style

“Tactician integration with
the Bernard queueing li-
brary” [Chat room: https:
//gitter.im/thephpleague/
tactician-bernard]

SoA - Contain-
ers

Experiences and advice
regarding the use of tools
for containers

“RxJS powered state management
for Angular applications, inspired
by Redux” [Chat room: https://
gitter.im/ngrx/store]

SoA - Mi-
croservices

Experiences and advice
regarding the use of mi-
croservices

“Seneca.js (http://senecajs.
org/) NodeSchool workshop”. Part
of the memo: How to use, hints
and problems related to Seneca
that is a microservices toolkit for
Node.js - http://senecajs.org/
[Chat room: https://gitter.im/
senecajs/seneca-in-practice]

Tactics Security

Experiences and advice
related to software au-
thentication issues, such
as security protocols

“Welcome. Ask away! Unless oth-
erwise specified we assume you’re
using the latest 5.x version of Spring
Security” [Chat room: https:
//gitter.im/spring-projects/
spring-security]

https://gitter.im/ethereum/go-ethereum
https://gitter.im/ethereum/go-ethereum
https://gitter.im/lightbend/config
https://gitter.im/lightbend/config
https://gitter.im/googlesamples/android-architecture
https://gitter.im/googlesamples/android-architecture
https://gitter.im/googlesamples/android-architecture
https://gitter.im/thephpleague/tactician-bernard
https://gitter.im/thephpleague/tactician-bernard
https://gitter.im/thephpleague/tactician-bernard
https://gitter.im/ngrx/store
https://gitter.im/ngrx/store
http://senecajs.org/
http://senecajs.org/
http://senecajs.org/
https://gitter.im/senecajs/seneca-in-practice
https://gitter.im/senecajs/seneca-in-practice
https://gitter.im/spring-projects/spring-security
https://gitter.im/spring-projects/spring-security
https://gitter.im/spring-projects/spring-security

178 B THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table B.3 Description of Themes under SD - Software Development

SD1 Resources
Content related to technologies to support software development processes

Third-level Fourth-level Description Example

Application
programming
interface

-

Experiences and issues re-
garding the use of appli-
cation programming in-
terfaces provided by a
software solution (not
about documenting or de-
veloping APIs)

“Discussion for developers using
Mixer’s API” [Chat room: https:
//gitter.im/Mixer/developers]

Management Configuration

Experiences, issues and
advice related to man-
aging software configura-
tions

“A gradle release plugin”. This
plugin provids a Maven-like release
process for projects using Gradle
[Chat room: https://gitter.im/
researchgate/gradle-release]

Release
Feedback on the releases
of new versions of a soft-
ware

“Channel for release announcements
and feedback” [Chat room: https:
//gitter.im/rchain/Releases]

Integrated de-
velopment en-
vironment

-

Experiences, issues and
advice related to the
use of integrated develop-
ment environments

“Ganache v7 is out! Read
more about it here: https:
//trufflesuite.com/blog/
introducing-ganache-7/”. Part
of the memo: Truffle is a de-
velopment environment, testing
framework and asset pipeline for
blockchains using the Ethereum Vir-
tual Machine [Chat room: https:
//gitter.im/ConsenSys/truffle]

Reverse engi-
neering -

Experiences, issues and
advice related to the use
of a tool for reverse engi-
neering

“A tool for reverse engineering
Android apk files” [Chat room:
https://gitter.im/iBotPeaches/
Apktool]

Version con-
trol -

Experiences, issues and
advice related to the use
of a version control re-
sources

“Version Control on your Server.
Visit https://gitlab.com/
gitlab-org/gitlab-ce for more
information” [Chat room: https:
//gitter.im/gitlabhq/gitlabhq]

https://gitter.im/Mixer/developers
https://gitter.im/Mixer/developers
https://gitter.im/researchgate/gradle-release
https://gitter.im/researchgate/gradle-release
https://gitter.im/rchain/Releases
https://gitter.im/rchain/Releases
https://trufflesuite.com/blog/introducing-ganache-7/
https://trufflesuite.com/blog/introducing-ganache-7/
https://trufflesuite.com/blog/introducing-ganache-7/
https://gitter.im/ConsenSys/truffle
https://gitter.im/ConsenSys/truffle
https://gitter.im/iBotPeaches/Apktool
https://gitter.im/iBotPeaches/Apktool
https://gitlab.com/gitlab-org/gitlab-ce
https://gitlab.com/gitlab-org/gitlab-ce
https://gitter.im/gitlabhq/gitlabhq
https://gitter.im/gitlabhq/gitlabhq

B.1 DESCRIPTION OF THEMES 179

Table B.3 Description of Themes under SD - Software Development (continued)

SD2 Software deployment
Content related to activities or technologies that make a software available for use

Third-level Fourth-level Description Example

- -

Experiences, issues and
advice related to the use
of solutions for software
deployment

“Fully automated version manage-
ment and package publishing”. Part
of the memo: Semantic-release
automates the whole package
release workflow including: deter-
mining the next version number,
generating the release notes and
publishing the package” (Git-
book.io) [Chat room: https:
//gitter.im/semantic-release/
semantic-release]

Continuous
integration

-

Experiences and issues re-
lated to the implementa-
tion of resources for con-
tinuous integration

“Jenkins Configuration-as-Code
plugin”. Part of the memo:
Jenkins is open source au-
tomation server. [Chat room:
https://gitter.im/jenkinsci/
configuration-as-code-plugin]

Build automa-
tion

Experiences, issues and
advice related to the use
of build automation plat-
forms

“For questions please post on Stack
Overflow and use the ’webpack’
tag (http://stackoverflow.com/
tags/webpack).” [Chat room:
https://gitter.im/webpack/
webpack]

Distributed
software -

Experiences, issues and
advice related to solu-
tions for distributed soft-
ware

“This channel is available for all
Akka enthusiasts—newbies as well
as gurus—for the exchange of knowl-
edge and the coordination of efforts
around Akka; it is a community ef-
fort and resource and not backed
by Typesafe. For more structured
discussions please refer to the akka-
user mailing list. Instead of a long
Code of Conduct we rely upon com-
mon sense: be kind and respectful
to those who are already here and
to those who come after you, ha-
rassment of any kind will not be
tolerated; in case of trouble con-
tact akka.official. Please also note
that this is not an official Akka sup-
port channel, for commercial sup-
port please contact Typesafe or visit
Typesafe.com. Source: http://
bit.ly/akka-gitter” [Chat room:
https://gitter.im/akka/akka]

https://gitter.im/semantic-release/semantic-release
https://gitter.im/semantic-release/semantic-release
https://gitter.im/semantic-release/semantic-release
https://gitter.im/jenkinsci/configuration-as-code-plugin
https://gitter.im/jenkinsci/configuration-as-code-plugin
http://stackoverflow.com/tags/webpack
http://stackoverflow.com/tags/webpack
https://gitter.im/webpack/webpack
https://gitter.im/webpack/webpack
http://bit.ly/akka-gitter
http://bit.ly/akka-gitter
https://gitter.im/akka/akka

180 B THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table B.3 Description of Themes under SD - Software Development (continued)

SD3 Software documentation

Third-level Fourth-level Description Example

- -
Discussions about the
documentation of a soft-
ware

“Reference and documen-
tation for Perfect” [Chat
room: https://gitter.im/
PerfectlySoft/PerfectDocs]

SD4 Software maintenance

Third-level Fourth-level Description Example

- -

Experiences, issues that
appear during the main-
tenance of a particular
software

Part of the memo (chat room has
no description): Babel is a Python
library that provides an integrated
collection of utilities that assist with
internationalizing and localizing
Python applications in particular
web-based applications (https:
//github.com/python-babel/
babel) [Chat room: https:
//gitter.im/python-babel/
babel/maintenance-corner]

SD5 Types of development
Content related to activities or technologies for the development of different software applications

Third-level Fourth-level Description Example

Data intensive
systems

Big data

Experiences, issues and
advice related to the use
of solutions for develop-
ing big data applications

“Talk to Vespa (http://vespa.ai)
developers and users”. Vespa is
a text search engine for big data
[Chat room: https://gitter.im/
vespa-engine/Lobby]

Machine learn-
ing [Libraries]

Experiences, issues and
advice related to the use
of libraries for machine
learning

“scikit-learn: machine learning in
Python. Please feel free to ask
specific questions about scikit-learn.
Please try to keep the discussion
focused on scikit-learn usage and
immediately related open source
projects from the Python ecosystem”
[Chat room: https://gitter.im/
scikit-learn/scikit-learn]

Machine learn-
ing [Research]

Experiences, issues and
advice related to the im-
plementation of research
projects applying ma-
chine learning

“Home of biologically-constrained
machine intelligence research and
technology.” [Chat room: https:
//gitter.im/numenta/public]

Machine learn-
ing [Systems]

Experiences, issues and
advice related to machine
learning-based systems

“Ruby Neural Evolution
of Augmenting Topologies
(NEAT).” [Chat room: https:
//gitter.im/flajann2/rubyneat]

Games -
Experiences, issues and
advice related to game
development

“Help us test the develop branch
for the MonoGame 3.7 release!”
[Chat room: https://gitter.im/
MonoGame/MonoGame]

https://gitter.im/PerfectlySoft/PerfectDocs
https://gitter.im/PerfectlySoft/PerfectDocs
https://github.com/python-babel/babel
https://github.com/python-babel/babel
https://github.com/python-babel/babel
https://gitter.im/python-babel/babel/maintenance-corner
https://gitter.im/python-babel/babel/maintenance-corner
https://gitter.im/python-babel/babel/maintenance-corner
http://vespa.ai
https://gitter.im/vespa-engine/Lobby
https://gitter.im/vespa-engine/Lobby
https://gitter.im/scikit-learn/scikit-learn
https://gitter.im/scikit-learn/scikit-learn
https://gitter.im/numenta/public
https://gitter.im/numenta/public
https://gitter.im/flajann2/rubyneat
https://gitter.im/flajann2/rubyneat
https://gitter.im/MonoGame/MonoGame
https://gitter.im/MonoGame/MonoGame

B.1 DESCRIPTION OF THEMES 181

Table B.3 Description of Themes under SD - Software Development (continued)

Mobile devel-
opment -

Experiences, issues and
advice related to the de-
velopment of mobile ap-
plications

“The most popular HTML, CSS,
and JavaScript framework for de-
veloping responsive, mobile first
projects on the web.” [Chat
room: https://gitter.im/twbs/
bootstrap]

Web develop-
ment -

Experiences, issues and
advice related to web de-
velopment

“A JavaScript utility library
delivering consistency, mod-
ularity, performance & ex-
tras.” [Chat room: https:
//gitter.im/lodash/lodash]

Multi-
platform
development

-

Experiences, issues and
advice related to the use
of a multi-platform devel-
opment framework

“Flutter makes it easy and fast to
build beautiful apps for mobile and
beyond.” [Chat room: https://
gitter.im/flutter/flutter]

SD6 Front-end

Third-level Fourth-level Description Example

- -
Experiences, issues and
advice related to front-
end development

“Vaadin has a high quality com-
ponent set for building mobile
and desktop web applications in
modern browsers” [Chat room:
https://gitter.im/vaadin/
web-components]

Graphical
user interface -

Experiences, issues and
advice related to the use
of resources for the devel-
opment of graphical user
interfaces

“A collection of CSS3 powered hover
effects to be applied to links, but-
tons, logos, SVG, featured images
and so on. Easily apply to your own
elements, modify or just use for in-
spiration. Available in CSS, Sass,
and LESS.” [Chat room: https:
//gitter.im/IanLunn/Hover]

SD7 Back-end

Third-level Fourth-level Description Example

- -
Experiences, issues and
advice related to back-
end development

“shapeless: Generic programming
for Scala | Latest stable release
2.3.3 | Code of conduct https:
//www.scala-lang.org/conduct/”
[Chat room: https://gitter.im/
milessabin/shapeless]

https://gitter.im/twbs/bootstrap
https://gitter.im/twbs/bootstrap
https://gitter.im/lodash/lodash
https://gitter.im/lodash/lodash
https://gitter.im/flutter/flutter
https://gitter.im/flutter/flutter
https://gitter.im/vaadin/web-components
https://gitter.im/vaadin/web-components
https://gitter.im/IanLunn/Hover
https://gitter.im/IanLunn/Hover
https://www.scala-lang.org/conduct/
https://www.scala-lang.org/conduct/
https://gitter.im/milessabin/shapeless
https://gitter.im/milessabin/shapeless

182 B THEMES IN DEVELOPER INSTANT MESSAGING COMMUNICATION

Table B.4 Description of Themes under PD - Professional Development

PD1 Announcements
Content related to advertisements

Third-level Fourth-level Description Example

Jobs - Job advertisements and
job application tips

“Everything you need to kick
ass on your coding interview”
[Chat room: https://gitter.im/
andreis/interview]

Workshops -

Advertisement of soft-
ware development-
related workshops and
developers professional
networking

“Ep53 on CSS in large web apps
with Chris Lienert on 6 Jan 2018,
Saturday 11am. Join the live stream
at https://live.webuild.sg/. All
live episodes are released later for
download. Subscribe to all the
episodes via RSS (https://live.
webuild.sg/feed.xml) or iTunes
(https://itunes.apple.com/
us/podcast/we-build-sg-live/
id713804010)” [Chat room: https:
//gitter.im/webuildsg/live]

PD2 Training
Content related to learning activities or experiences exchange between developers

Third-level Fourth-level Description Example

Coding - Experiences and advice
on coding practices

“A general chat for developers.
Don’t ask to ask, just ask.”
[Chat room: https://gitter.im/
gitterHQ/developers]

Testing - Experiences and advice
on testing practices

“Python dev and test discussions.
Not just pytest, but it’s a com-
mon topic.” [Chat room: https:
//gitter.im/TestAndCode/Lobby]

https://gitter.im/andreis/interview
https://gitter.im/andreis/interview
https://live.webuild.sg/
https://live.webuild.sg/feed.xml
https://live.webuild.sg/feed.xml
https://itunes.apple.com/us/podcast/we-build-sg-live/id713804010
https://itunes.apple.com/us/podcast/we-build-sg-live/id713804010
https://itunes.apple.com/us/podcast/we-build-sg-live/id713804010
https://gitter.im/webuildsg/live
https://gitter.im/webuildsg/live
https://gitter.im/gitterHQ/developers
https://gitter.im/gitterHQ/developers
https://gitter.im/TestAndCode/Lobby
https://gitter.im/TestAndCode/Lobby

Appendix C

TOPIC MODELING IN SOFTWARE ENGINEERING
RESEARCH

C.1 PAPERS REVIEWED

Year Venue Title Reference

2010 ICSE Software Traceability with Topic Modeling
[Asuncion
et al. 2010]

2017 ICSE
An Unsupervised Approach for Discovering Relevant Tuto-
rial Fragments for APIs

[Jiang et al.
2017]

2013 ICSE
How to Effectively Use Topic Models for Software Engineer-
ing Tasks? An Approach Based on Genetic Algorithms

[Panichella
et al. 2013]

2013 ICSE
Analysis of User Comments: An Approach for Software
Requirements Evolution

[Galvis Car-
reno and
Winbladh
2012]

2014 ICSE
AR-miner: Mining Informative Reviews for Developers from
Mobile App Marketplace

[Chen et al.
2014]

2012 ICSE
Semi-automatically extracting FAQs to improve accessibility
of software development knowledge

[Henß et al.
2012]

2019 MSR
Exploratory Study of Slack Q&A Chats as a Mining Source
for Software Engineering Tools

[Chatterjee
et al. 2019]

2014 MSR Mining Questions Asked by Web Developers
[Bajaj et al.
2014]

2016 MSR
Topic Modeling of NASA Space System Problem Reports:
Research in Practice

[Layman et al.
2016]

2013 MSR Using citation influence to predict software defects
[Hu and Wong
2013]

2013 MSR Bug report assignee recommendation using activity profiles
[Naguib et al.
2013]

2018 MSR Feature Location Using Crowd-Based Screencasts
[Moslehi et al.
2018]

2016 MSR On Mining Crowd-Based Speech Documentation
[Moslehi et al.
2016]

2015 MSR The App Sampling Problem for App Store Mining
[Martin et al.
2015]

184 C TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Year Venue Title Reference

2009 MSR Mining search topics from a code search engine usage log
[Bajracharya
and Lopes
2009]

2012 ASE
Duplicate Bug Report Detection with a Combination of
Information Retrieval and Topic Modeling

[Nguyen et al.
2012]

2011 ASE
A Topic-based Approach for Narrowing the Search Space
of Buggy Files from a Bug Report

[Nguyen et al.
2011]

2019 FSE
Going Big: A Large-scale Study on What Big Data Devel-
opers Ask

[Bagherzadeh
and
Khatchadourian
2019]

2017 FSE
Bayesian Specification Learning for Finding API Usage
Errors

[Murali et al.
2017]

2018 ESEM
What Do Concurrency Developers Ask About?: A Large-
scale Study Using Stack Overflow

[Ahmed and
Bagherzadeh
2018]

2017 TSE
Improving Automated Bug Triaging with Specialized Topic
Model

[Xia et al.
2017b]

2014 TSE
Methodbook: Recommending move method refactorings via
relational topic models

[Bavota et al.
2014b]

2018 TSE
Predicting Future Developer Behavior in the IDE Using
Topic Models

[Damevski
et al. 2018]

2013 EMSE
Integrating information retrieval, execution and link analysis
algorithms to improve feature location in software

[Dit et al.
2013]

2013 EMSE
Automated topic naming: supporting cross-project analysis
of software maintenance activities

[Hindle et al.
2013]

2017 EMSE What do developers search for on the web?
[Xia et al.
2017a]

2013 EMSE How do open source communities blog?
[Pagano and
Maalej 2013]

2014 EMSE How changes affect software entropy: an empirical study
[Canfora et al.
2014]

2019 EMSE
Towards prioritizing user-related issue reports of mobile
applications

[Noei et al.
2019]

2019 EMSE
CAPS: a supervised technique for classifying Stack Overflow
posts concerning API issues

[Ahasanuzzaman
et al. 2020]

2019 EMSE
Studying the consistency of star ratings and reviews of
popular free hybrid Android and iOS apps

[Hu et al.
2019]

2015 EMSE Do topics make sense to managers and developers?
[Hindle et al.
2015]

2017 EMSE
Predicting the delay of issues with due dates in software
projects

[Choetkiertikul
et al. 2017]

2017 EMSE
The structure and dynamics of knowledge network in
domain-specific Q&A sites: a case study of stack overflow

[Ye et al. 2017]

2012 EMSE Analyzing and mining a code search engine usage log
[Bajracharya
and Lopes
2012]

C.1 PAPERS REVIEWED 185

Year Venue Title Reference
2018 EMSE Studying software logging using topic models [Li et al. 2018]

2014 EMSE Static test case prioritization using topic models
[Thomas et al.
2014]

2017 EMSE
Will this localization tool be effective for this bug? Miti-
gating the impact of unreliability of information retrieval
based bug localization tools

[Le et al. 2017]

2016 EMSE
Analyzing and automatically labelling the types of user
issues that are raised in mobile app reviews

[McIlroy et al.
2016]

2014 EMSE
What are developers talking about? An analysis of topics
and trends in Stack Overflow

[Barua et al.
2014]

2018 EMSE App store mining is not enough for app improvement
[Nayebi et al.
2018]

2016 EMSE
What are mobile developers asking about? A large scale
study using stack overflow

[Rosen and
Shihab 2016]

2018 EMSE
Fusing multi-abstraction vector space models for concern
localization

[Zhang et al.
2018]

2014 TOSEM
Improving Software Modularization via Automated Analysis
of Latent Topics and Dependencies

[Bavota et al.
2014a]

2019 TOSEM Recommending New Features from Mobile App Descriptions
[Jiang et al.
2019]

2016 IST
Combining lexical and structural information to reconstruct
software layers

[Belle et al.
2016]

2017 IST
Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Overflow
using topic analysis

[Zou et al.
2017]

2015 IST
MSR4SM: Using topic models to effectively mining software
repositories for software maintenance tasks

[Sun et al.
2015]

2019 IST
Log mining to re-construct system behavior: An exploratory
study on a large telescope system

[Pettinato
et al. 2019]

2017 IST
Characterizing malicious Android apps by mining topic-
specific data flow signatures

[Yang et al.
2017]

2019 IST
Automatic recall of software lessons learned for software
project managers

[Abdellatif
et al. 2019]

2010 IST Bug localization using latent Dirichlet allocation
[Lukins et al.
2010]

2019 IST
Bootstrapping cookbooks for APIs from crowd knowledge
on Stack Overflow

[Souza et al.
2019]

2017 IST
Domain-aware Mashup service clustering based on LDA
topic model from multiple data sources

[Cao et al.
2017]

2018 IST
The impact of IR-based classifier configuration on the per-
formance and the effort of method-level bug localization

[Tantithamthavorn
et al. 2018]

2016 IST
A component recommender for bug reports using Discrimi-
native Probability Latent Semantic Analysis

[Yan et al.
2016b]

2015 IST
Automated classification of software change messages by
semi-supervised Latent Dirichlet Allocation

[Fu et al. 2015]

2017 JSS Mining domain knowledge from app descriptions
[Liu et al.
2017]

186 C TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Year Venue Title Reference

2016 JSS
Towards more accurate severity prediction and fixer recom-
mendation of software bugs

[Zhang et al.
2016]

2019 JSS
Not all bugs are the same: Understanding, characterizing,
and classifying bug types

[Catolino et al.
2019]

2017 JSS
Enhancing developer recommendation with supplementary
information via mining historical commits

[Sun et al.
2017]

2019 JSS
Modeling stack overflow tags and topics as a hierarchy of
concepts

[Chen et al.
2019]

2017 JSS
An exploratory study on the usage of common interface
elements in android applications

[Taba et al.
2017]

2017 JSS Topic-based software defect explanation
[Chen et al.
2017]

2019 JSS Co-change patterns: A large scale empirical study
[Silva et al.
2019]

2018 JSS
Efficient cloud service discovery approach based on LDA
topic modeling

[Nabli et al.
2018]

2018 JSS
Lascad: Language-agnostic software categorization and sim-
ilar application detection

[Altarawy
et al. 2018]

2016 JSS
Automatically classifying software changes via discrimina-
tive topic model: Supporting multi-category and cross-
project

[Yan et al.
2016a]

2013 TOSEM
Concept location using formal concept analysis and infor-
mation retrieval

[Poshyvanyk
et al. 2012]

2020 EMSE
A feature location approach for mapping application features
extracted from crowd-based screencasts to source code

[Moslehi et al.
2020]

2020 EMSE
Security analysis of permission re-delegation vulnerabilities
in Android apps

[Demissie et al.
2020]

2020 EMSE
What do Programmers Discuss about Deep Learning Frame-
works

[Han et al.
2020]

2020 IST
A fine-grained requirement traceability evolutionary algo-
rithm: Kromaia a commercial video game case study

[Blasco et al.
2020]

2020 IST
Detecting Java software similarities by using different clus-
tering techniques

[Capiluppi
et al. 2020]

2019 ICSE
Investigating The Impact Of Multiple Dependency Struc-
tures On Software Defects

[Cui et al.
2019]

2020 ICSE
Taming Behavioral Backward Incompatibilities Via Cross-
Project Testing And Analysis

[Chen et al.
2020]

2020
ESEC
FSE

Real-time incident prediction for online service systems
[Zhao et al.
2020]

2016
ESEC
FSE

Causal impact analysis for app releases in google play
[Martin et al.
2016]

2016 ESEM
How Are Discussions Associated with Bug Reworking? An
Empirical Study on Open Source Projects

[Zhao et al.
2016]

2011 MSR Security versus performance bugs: a case study on Firefox
[Zaman et al.
2011]

2014
ESEC
FSE

A large scale study of programming languages and code
quality in github

[Ray et al.
2014]

C.1 PAPERS REVIEWED 187

Year Venue Title Reference

2018 ESEM
Automatic topic classification of test cases using text mining
at an Android smartphone vendor

[Shimagaki
et al. 2018]

2017 ICSE
Can Latent Topics In Source Code Predict Missing Archi-
tectural Tactics?

[Gopalakrishnan
et al. 2017]

2020 MSR
Challenges in Chatbot Development: A Study of Stack
Overflow Posts

[Abdellatif
et al. 2020]

2020 ESEM
Challenges in Docker Development: A Large-scale Study
Using Stack Overflow

[Haque and
Ali Babar
2020]

2014 ICSE Checking App Behavior Against App Descriptions
[Gorla et al.
2014]

2014 MSR
How does a typical tutorial for mobile development look
like?

[Tiarks and
Maalej 2014]

2020 MSR
On the Relationship between User Churn and Software
Issues

[El Zarif et al.
2020]

2018 ICSE
Online App Review Analysis For Identifying Emerging Is-
sues

[Gao et al.
2018]

2017 ICSE
Recommending and Localizing Change Requests For Mobile
Apps Based On User Reviews

[Palomba et al.
2017]

2015 MSR
Recommending posts concerning API issues in developer
Q&A sites

[Wang et al.
2015]

2018
ESEC
FSE

Winning the app production rally
[Noei et al.
2018]

2015 EMSE
An empirical study on the importance of source code entities
for requirements traceability

[Ali et al.
2015]

2009 EMSE
An information retrieval process to aid in the analysis of
code clones

[Tairas and
Gray 2009]

2018 EMSE
Are tweets useful in the bug fixing process? An empirical
study on Firefox and Chrome

[Mezouar et al.
2018]

2014 EMSE
Labeling source code with information retrieval methods:
An empirical study

[De Lucia et al.
2014]

2013 TSE
The impact of classifier configuration and classifier combi-
nation on bug localization

[Thomas et al.
2013]

2016 ICSE Autofolding for source code summarization
[Fowkes et al.
2016]

2015 JSS Enabling improved IR-based feature location
[Binkley et al.
2015]

2014 EMSE Configuring latent Dirichlet allocation based feature location
[Biggers et al.
2014]

2018 EMSE
Studying the consistency of star ratings and the complaints
in 1 & 2-star user reviews for top free cross-platform Android
and iOS apps

[Hu et al.
2018]

2016 EMSE
A contextual approach towards more accurate duplicate
bug report detection and ranking

[Hindle et al.
2016]

2016
ESEC
FSE

A large-scale empirical comparison of static and dynamic
test case prioritization techniques

[Luo et al.
2016]

188 C TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Year Venue Title Reference

2016 IST
EXAF: A search engine for sample applications of object-
oriented framework-provided concepts

[Noei and Hey-
darnoori 2016]

2018 IST
Fragment retrieval on models for model maintenance: Ap-
plying a multi-objective perspective to an industrial case
study

[Pérez et al.
2018]

2018 ESEM
Improving problem identification via automated log cluster-
ing using dimensionality reduction

[Rosenberg
and Moonen
2018]

2011 MSR
Retrieval from software libraries for bug localization: a
comparative study of generic and composite text models

[Rao and Kak
2011]

2016 IST
The effect of automatic concern mapping strategies on con-
ceptual cohesion measurement

[Silva et al.
2016]

2020 MSR Traceability Support for Multi-Lingual Software Projects
[Liu et al.
2020]

2009 EMSE
Using information retrieval based coupling measures for
impact analysis

[Poshyvanyk
et al. 2009]

2011 EMSE
Using structural and textual information to capture feature
coupling in object-oriented software

[Revelle et al.
2011]

C.2 METRICS USED IN COMPARATIVE STUDIES

The column “Context-specific” indicates if the metric was proposed or adapted to a
specific context (“Yes”) or is a standard NLP metric (“No”).

Metric Definition
Context-
specific

Used in

A measure
Measures difference between two popula-
tions [Vargha and Delaney 2000]

No
[Thomas et al.
2014]

Adjusted mu-
tual information
(AMI)

Compare two sets of clusters of a clustering
technique, e.g., to compare gold standard la-
beled clusters and the clusters discovered by
a technique

No
[Rosenberg
and Moonen
2018]

Anomaly score

Defining program behavior as a statistical dis-
tribution, this metric represents the distance
between the distribution of expected behav-
ior and the actual program behavior [Murali
et al. 2017]

Yes
[Murali et al.
2017]

Area Under the
Curve (AUC)

Evaluates performance of a scoring classifier
using the Receiver Operating Characteristic
curve (ROC) which plots recall (true positive
rate) against the fraction of false positives out
of the negatives (false positive rate) [Kakas
et al. 2011]

No
[Fowkes et al.
2016]

C.2 METRICS USED IN COMPARATIVE STUDIES 189

Metric Definition
Context-
specific

Used in

Average overlap

Average overlap between labels generated
manually and labels automatically generated
by the tested topic models [De Lucia et al.
2014]

Yes
[De Lucia et al.
2014]

Average percent-
age of faults de-
tected (APFD)

Average percentage of faults detected by a
prioritized test suite [Rothermel et al. 2001]

Yes
[Thomas et al.
2014]

Completeness
Extent to which all members of a given gold
standard label set are assigned to the same
cluster [Rosenberg and Moonen 2018]

Yes
[Rosenberg
and Moonen
2018]

Homogeneity
Extent to which members of a proposed word
cluster come from the same gold standard
label set [Rosenberg and Moonen 2018]

Yes
[Rosenberg
and Moonen
2018]

Effectiveness
Number of methods that must be investigated
before the first method relevant to a feature
is located [Poshyvanyk et al. 2007]

Yes

[Biggers et al.
2014, Poshy-
vanyk et al.
2012]

Effort reduction

Ratio between created clusters and clustered
documents (log files) as a measure for the the
reduced effort by analyzing clusters of log files
rather than individual log files [Rosenberg and
Moonen 2018]

Yes
[Rosenberg
and Moonen
2018]

Precision

Fraction of documents retrieved that are rel-
evant to the user’s information need (total
number of documents retrieved that are rel-
evant divided by the total number of docu-
ments that are retrieved) [Zeugmann et al.
2011]

No

[Blasco et al.
2020, Cao
et al. 2017,
Demissie et al.
2020, Murali
et al. 2017,
Poshyvanyk
et al. 2012,
Silva et al.
2016, Zhang
et al. 2016]

Average Precision
Average precision value for a recalled
value [Zhang and Zhang 2009]

No
[Liu et al.
2020]

Mean Average
Precision (MAP)

Average of the aggregated average preci-
sion [Beitzel et al. 2009]

No

[Abdellatif
et al. 2019,
Rao and Kak
2011]

Maximum possi-
ble precision gain
(MPG)

Precision of the best possible scenarios (e.g.,
in a tree of concepts, the user should navigate
the shortest path between the root and the
node with the relevant concept) that might
be obtained with a technique [Poshyvanyk
et al. 2012]

Yes
[Poshyvanyk
et al. 2012]

190 C TOPIC MODELING IN SOFTWARE ENGINEERING RESEARCH

Metric Definition
Context-
specific

Used in

Recall

Fraction of relevant documents that are suc-
cessfully retrieved (total number of docu-
ments retrieved that are relevant divided by
the total number of relevant documents in
the corpus) [Zeugmann et al. 2011]

No

[Blasco et al.
2020, Cao
et al. 2017,
Demissie et al.
2020, Murali
et al. 2017,
Poshyvanyk
et al. 2012,
Silva et al.
2016, Zhang
et al. 2016]

Recall @k
Fraction of relevant documents that are suc-
cessfully retrieved in top k results [Yan et al.
2016b]

No
[Yan et al.
2016b]

F-measure
Weighted harmonic mean of precision and
recall [Brank et al. 2011]

No

[Blasco et al.
2020, Cao
et al. 2017,
Silva et al.
2016, Zhang
et al. 2016]

Mann-Whitney-
Wilcoxon test

Non-parametric test of the null hypothesis
that, for randomly selected values X and Y

from two populations, the probability of X

being greater than Y is equal to the proba-
bility of Y being greater than X [Mann and
Whitney 1947]

No
[Thomas et al.
2014]

Mean Reciprocal
Rank (MRR)

Reciprocal rank is calculated using precision
@k: given a rank k, precision @k is the preci-
sion calculated over the set of retrieved docu-
ments with a rank of k. Thus, MRR is the av-
erage of the reciprocal rank of a set of queries.
The set of queries refer to a list of documents
of interest that may be found in the ranked
list of retrieved documents) [Craswell 2009]

No
[Binkley et al.
2015, Zhang
et al. 2016]

Minimal browsing
area (MBA)

Shortest path between root node from a tree
of concepts and the node containing the rele-
vant results of a search in such tree [Poshy-
vanyk et al. 2012]

No
[Poshyvanyk
et al. 2012]

Hit ratio

When recommending software functionalities
(e.g., features for mobile apps), evaluates how
many functionalities can be successfully rec-
ommended based on a list of hit functionali-
ties [Hariri et al. 2013]

Yes
[Jiang et al.
2019]

Actual assignee
hit ratio

In the context of bug assignment to devel-
opers (referred as assignees), evaluates how
much the list of recommended assignees con-
tains the actual assignee [Naguib et al. 2013]

Yes
[Naguib et al.
2013]

C.2 METRICS USED IN COMPARATIVE STUDIES 191

Metric Definition
Context-
specific

Used in

Top-k hit

In the context of bug assignment to devel-
opers (referred as assignees), measures if the
ranked list of recommended assignees con-
tains any assignee who has performed either
assigning, reviewing, or resolving a bug re-
port [Naguib et al. 2013]

Yes
[Naguib et al.
2013]

Normalized
Discounted Cu-
mulative Gain
(NDCG)

Quality of Top-k Accuracy ranking [Croft
et al. 2010]

No
[Chen et al.
2014, Jiang
et al. 2019]

SCORE

Ranking-based metric that calculates the pro-
portion of bugs versus the proportion of the
code that must be examined for the localiza-
tion of the bugs [Jones and Harrold 2005]

Yes
[Rao and Kak
2011]

Perplexity

Measure of performance for statistical mod-
els of natural language, which indicates the
uncertainty in predicting a single word [Blei
et al. 2003b]

No
[Yan et al.
2016b]

Purity
Extent to which clusters (from a clustering
technique) contain a single label [Manning
et al. 2008]

No
[Cao et al.
2017]

Term Entropy

Measure of uncertainty associated with a ran-
dom variable [Shannon 1948]. Studies calcu-
lated entropy for distribution of terms in doc-
uments. A document with lower entropy indi-
cates that it has few dominant terms, while a
document with higher entropy presents more
dominant terms

No
[Cao et al.
2017, De Lu-
cia et al. 2014]

Top-k Accuracy

Percentage of bug reports in which at least
one relevant source code entity was returned
in the top k results (e.g., a top-10 accuracy
value of 0.15 indicates that for 15% of the bug
reports at least one relevant source code entity
was returned in the top 10 results) [Nguyen
et al. 2011]

No

[Abdellatif
et al.
2019, Tan-
tithamtha-
vorn et al.
2018, Thomas
et al. 2013,
Xia et al.
2017b]

Appendix D

SHORT TEXT TOPIC MODELS APPLIED TO
DEVELOPER MESSAGES

D.1 SUB-SURVEYS DISTRIBUTED - INTRUSION TASKS

In the following list of sub-surveys, we added the word cluster (i.e. topic) presented
as the first question for each combination of model and corpus.

1. Android_BTM: view contract presenter great content connect;

Android_DMM: return final autogenerate dao implementation data

2. Android_BTM: view contract presenter great content connect;

Android_GPU-PDMM: proguard work view live model data

3. Android_BTM: view contract presenter great content connect;

Android_WNTM: viewmodel reference dagger interactor interface library

4. Android_DMM: return final autogenerate dao implementation data;

Android_GPU-PDMM: proguard work view live model data

5. Android_DMM: return final autogenerate dao implementation data;

Android_WNTM: viewmodel reference dagger interactor interface library

6. Android_GPU-PDMM: proguard work view live model data;

Android_WNTM: viewmodel reference dagger interactor interface library

7. Jenkinsci_BTM: jenkins cause class error fail arg;

Jenkinsci_DMM: issue plugin release github work bomb

8. Jenkinsci_BTM: jenkins cause class error fail arg;

Jenkinsci_GPU-PDMM: info false plugin true error computer

9. Jenkinsci_BTM: jenkins cause class error fail arg;

Jenkinsci_WNTM: jenkin file casc config yaml age

D.2 SUB-SURVEYS DISTRIBUTED - TOPIC NAMING 193

10. Jenkinsci_DMM: issue plugin release github work bomb;

Jenkinsci_GPU-PDMM: info false plugin true error computer

11. Jenkinsci_DMM: issue plugin release github work bomb;

Jenkinsci_WNTM: jenkin file casc config yaml age

12. Jenkinsci_GPU-PDMM: info false plugin true error computer;

Jenkinsci_WNTM: jenkin file casc config yaml age

13. Flutter_BTM: eflutter asynchronous suspension error closure expectscontent;

Flutter_DMM: screen button app change flutter serivce

14. Flutter_BTM: eflutter asynchronous suspension error closure expectscontent;

Flutter_GPU-PDMM: iflutter child widget eflutter flutter againlet

15. Flutter_BTM: eflutter asynchronous suspension error closure expectscontent;

Flutter_WNTM: android flutter version device ios isactive

16. Flutter_DMM: screen button app change flutter serivce;

Flutter_GPU-PDMM: iflutter child widget eflutter flutter againlet

17. Flutter_DMM: screen button app change flutter serivce;

Flutter_WNTM: android flutter version device ios isactive

18. Flutter_GPU-PDMM: iflutter child widget eflutter flutter againlet;

Flutter_WNTM: android flutter version device ios isactive

D.2 SUB-SURVEYS DISTRIBUTED - TOPIC NAMING

In the following list of sub-surveys, we added the word cluster (i.e. topic) presented
as the first question for each combination of model and corpus.

1. Android_BTM: view contract presenter great content;

Jenkinsci_BTM: jenkins cause class error fail;

Flutter_BTM: eflutter asynchronous suspension error closure;

Android_WNTM: viewmodel reference dagger interactor interface;

Jenkinsci_WNTM: jenkin file casc config yaml;

Flutter_WNTM: android flutter version device ios

194 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

2. Android_DMM: return final autogenerate dao implementation;

Jenkinsci_DMM: issue plugin release github work;

Flutter_DMM: screen button app change flutter;

Android_GPU-PDMM: proguard work view live model;

Jenkinsci_GPU-PDMM: info false plugin true error;

Flutter_GPU-PDMM: iflutter child widget eflutter flutter

3. Android_BTM: view contract presenter great content;

Jenkinsci_BTM: jenkins cause class error fail;

Flutter_BTM: eflutter asynchronous suspension error closure;

Android_DMM: return final autogenerate dao implementation;

Jenkinsci_DMM: issue plugin release github work;

Flutter_DMM: screen button app change flutter

4. Android_WNTM: viewmodel reference dagger interactor interface;

Jenkinsci_WNTM: jenkin file casc config yaml;

Flutter_WNTM: android flutter version device ios;

Android_GPU-PDMM: proguard work view live model;

Jenkinsci_GPU-PDMM: info false plugin true error;

Flutter_GPU-PDMM: iflutter child widget eflutter flutter

5. Android_BTM: view contract presenter great content;

Jenkinsci_BTM: jenkins cause class error fail;

Flutter_BTM: eflutter asynchronous suspension error closure;

Android_GPU-PDMM: proguard work view live model;

Jenkinsci_GPU-PDMM: info false plugin true error;

Flutter_GPU-PDMM: iflutter child widget eflutter flutter

6. Android_WNTM: viewmodel reference dagger interactor interface;

Jenkinsci_WNTM: jenkin file casc config yaml;

Flutter_WNTM: android flutter version device ios;

Android_DMM: return final autogenerate dao implementation;

Jenkinsci_DMM: issue plugin release github work;

Flutter_DMM: screen button app change flutter

D.3 TOPICS NAMED BY PARTICIPANT

D.3 TOPICS NAMED BY PARTICIPANT 195

Table D.1 Topic Naming for BTM

ID of participants Number
of namesTN.01 TN.02 TN.03 TN.07

Android_lemma

topic01 - model view presen-
ter pattern - - 1

topic02 - issue tracker - - 1

topic03 model view presen-
ter front end ViewModel log 4

topic04 software artefacts devops DevOps application 4

topic05 - dependency injec-
tion

Dependency injec-
tion - 2

topic06 - - - Communication
tool 1

topic07 - - - Backend monitor-
ing 1

topic08 - - - - 0
topic09 - android - - 1
topic10 - - - - 0

Jenkinsci_lemma

topic01 - devops - - 1
topic02 - - Jenkins - 1

topic03 ci/cd tools devops - application de-
ployement 3

topic04 - devops - - 1
topic05 - - - - 0

topic06 build configuration
stuff devops - application de-

ployement 3

topic07 - issue tracker - - 1
topic08 - devops Linux setup 3
topic09 - - - variable 1
topic10 - - - - 0

Flutter_lemma

topic01 - asynchronous pro-
gramming - Promise 2

topic02 - mobile develop-
ment

Mobile Develop-
ment mobile application 3

topic03 javascript/frontend
concepts - Framework - 2

topic04 - mobile develop-
ment

Mobile Develop-
ment mobile application 3

topic05 - flutter language - - 1

topic06 language keywords object-oriented
programming method signature function output 4

topic07 - compilation Build Project - 2
topic08 - - Repository coding language 2

topic09 - multiplatform
development Repository - 2

topic10 - - - - 0

196 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Table D.2 Topic Naming for DMM

ID of participants Number
of namesTN.01 TN.05 TN.06 TN.08

Android_lemma

topic01 programming lan-
guage constructs programming - - 2

topic02 - devops repository code versioning 3
topic03 - open source - - 1

topic04 - Object notation web development software architec-
ture pattern 3

topic05 - Web web development conference 3
topic06 - - - - 0

topic07 - Continuous Integra-
tion debug elastic beanstalk

environment 3

topic08 - Data requirements project definition proof of concept 3

topic09 - Dependency injec-
tion - dependecy injection 2

topic10 - Design pattern web pages - 2

Jenkinsci_lemma

topic01 repository Continuous integra-
tion - code versioning 3

topic02 secret management Information Secu-
rity - security 3

topic03 -
CI/CD (Continuous
Integration/Continu-
ous Deployment)

- pipelines 2

topic04 continuous integra-
tion

software develop-
ment compilation unit testing 4

topic05 - Planning - devops 2

topic06 build systems Infrastructure-as-
Code - infra as code 3

topic07 Jenkins Workload Automa-
tion - automatization 3

topic08 - Configuration as
Code - - 1

topic09 - CI/CD - ci/cd 2
topic10 - Java Development - - 1

Flutter_lemma

topic01 user interface App development - mobile app interface 3

topic02 - App development development cross platform mo-
bile framwork 3

topic03 app development Mobile app develop-
ment - cross platform devel-

opment 3

topic04 app development Mobile app develop-
ment mobile mobile developer 4

topic05 - graphical interface
development - mobile app 2

topic06 user interface con-
cepts

Single-child layout
widgets (Flutter) screen elements - 3

topic07 - App development mobile mobile development 3

topic08 programming lan-
guage keywords source code reserved words asynchronous devel-

opment 4

topic09 - Flutter - - 1

topic10 programming lan-
guage concepts

Single-child layout
widgets (Flutter) - - 2

D.3 TOPICS NAMED BY PARTICIPANT 197

Table D.3 Topic Naming for GPU_PDMM

ID of participants Number
of namesTN.04 TN.05 TN.07 TN.08

Android_lemma

topic01 - App optimizer - - 1
topic02 - - - - 0

topic03 - Mobile app devel-
opment - responsive develop-

ment 2

topic04 - Dependency injec-
tion database - 2

topic05 - Architecture com-
ponent

backend monitor-
ing angular 3

topic06 - - - - 0
topic07 - - - - 0

topic08 - Software develop-
ment - angular framework 2

topic09 - Web development - - 1

topic10 - Continuous inte-
gration monitoring ci/cd 3

Jenkinsci_lemma

topic01 - Configuration as
Code - - 1

topic02 - Information Secu-
rity

backend manage-
ment security 3

topic03 - Planning time organization happy hour 3
topic04 - CI/CD deployement ci/cd 3

topic05 docker Configuration as
Code setup configuration file 4

topic06 - Open source devel-
opment CI/CD code versioning 3

topic07 - CI/CD upgrade pipelines 3
topic08 - source code issue error handling 3

topic09 - Configuration as
Code - - 1

topic10 - Configuration as
Code

backend manage-
ment - 2

Flutter_lemma

topic01 - Flutter flutter language - 2

topic02 - Single-child layout
widgets - css 2

topic03 - App development programming lan-
guage

cross platform
build 3

topic04 mobile develop-
ment

Mobile App devel-
opment mobile application cross platform

development 4

topic05 - App development - authentication 2

topic06 - App development programming lan-
guage - 2

topic07 - source code function - 2

topic08 - software develop-
ment bug unit testing 3

topic09 - graphical interface
development oriented object - 2

topic10 github Open source devel-
opment bug to fix github 4

198 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Table D.4 Topic Naming for WNTM

ID of participants Number
of namesTN.02 TN.03 TN.04 TN.06

Android_lemma

topic01 server side develop-
ment - - - 1

topic02 issue tracker - - repository 2
topic03 issue tracker - - - 1

topic04 - Model-view-
viewmodel - web development 2

topic05 blog - - web development 2
topic06 - - - - 0
topic07 debugging - deploy debug 3
topic08 - - - project definition 1
topic09 - - - - 0
topic10 web development - - web pages 2

Jenkinsci_lemma

topic01 devops - continuous integra-
tion configuration files 3

topic02 version control Git/Github package commands 4
topic03 devops - cloud - 2
topic04 - - - authorization 1
topic05 devops - - - 1
topic06 - - - support 1
topic07 devops - - build error 2
topic08 - - - - 0

topic09 devops - - continuous integra-
tion 2

topic10 task management - - - 0

Flutter_lemma

topic01 android develop-
ment

Mobile Develop-
ment

mobile develop-
ment

mobile develop-
ment 4

topic02 front end develop-
ment - - - 1

topic03 mobile develop-
ment - - - 1

topic04 multiplatform
development Repository - mobile develop-

ment 3

topic05 - - - - 0
topic06 compilation Build Project - compilation error 3
topic07 unit testing - - - 1
topic08 - - - - 0

topic09 asynchronous pro-
gramming Data Type javascript reserved words 4

topic10 - - - - 0

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 199

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH
GPU_PDMM

The number of documents, as shown in column “Number of docs used”, refers to the
total number of messages (not pre-processed) inputted to the topic model.

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

akka/akka

actor
message
stream val
source cre-
ate cluster
node flow
error

akka work
question
thing good
issue java
find write
idea

case re-
quest http
code type
test scala
file class
response

SD1.1 Appli-
cation pro-
gramming in-
terface; SD2.2
Distributed
software

70,802 46,703,377

R4stl1n/ al-
lianceauth

file error
work user
group
server up-
date issue
change
discord

thing
stuff run
character
database
wait guess
pull git
write

api set
python
corp al-
liance key
celery seat
member
task

SA2.2.1 Secu-
rity

96,275 30,064,089

allure-
framework/allure-
core

allure
report
generate
plugin
version de-
pendency
folder
jenkin
build info

file error
add java
testng xml
method
class fea-
ture public

test work
issue step
create fail
project
case prob-
lem find

SQ2 Software
testing

14,869 6,433,334

amethyst/engine

work type
thing time
good pass
code add
stuff crate

system
amethyst
game event
engine user
rust thread
pretty in-
put

asset com-
ponent
entity file
trait load
transform
datum for-
mat config

SD5.2 Games 22,282 9,907,578

googlesamples/
android-
architecture

sample
work code
github ar-
chitecture
android
readme
annotation
metric read

view frag-
ment
activity
presen-
ter bind
viewmodel
service
dagger
reference
contract

build pro-
guard log
return
error ap-
plication
length
timeout
connection
app

SD5.3 Mobile
development;
SA2.1 Patterns

122 60,345

200 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

iBotPeaches/ Apk-
tool

apk app
work error
android
decompile
recompile
string de-
bug default

resource
source
build find
install ap-
plication
project
framework
question
check

apktool
file decode
folder
smali
change
class
java aapt
method

SD5.3 Mobile
development;
SD1.4 Reverse
engineering

884 516,606

davidguttman/
node-browserify

browserify
file require
bundle in-
clude build
load option
external
app

work npm
code node
err folder
install
react fine
webpack

module var
function er-
ror library
find stream
readable
datum
project

SD5.4 Web
development

183 150,083

BVLC/caffe

caffe model
work
python
problem
set net
build code
create

layer image
train test
loss datum
training
network
gpu input

error file
check ver-
sion install
fail find
compile
import
module

[Machine learn-
ing] SD5.1.2.3
Systems

4,295 2,907,668

ConsenSys/smart-
contract-best-
practices

contract
uint ad-
dress
return test
error call
smart web
deploy

truffle
token
network
transaction
question
geth node
good build
user

function
public gas
solidity
ether send
case ac-
count issue
string

SA2.1 Pat-
terns; SA1.2
Blockchain

1,611 1,115,336

ConsenSys/truffle

truffle
contract
test func-
tion work
address re-
turn issue
file version

call code
time create
build thing
question
find start
add

error de-
ploy web
network
transac-
tion gas
account
testrpc
migration
run

SD1.3 Inte-
grated develop-
ment environ-
ment; SA1.2
Blockchain

62,678 39,559,460

cypress-io/cypress

cypress
test work
file error
command
run request
fail open

issue time
app click
problem
wait thing
question
start user

element
code func-
tion call
return url
find add
write re-
sponse

SQ2 Software
testing

82,216 50,062,293

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 201

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

DefinitelyTyped/
DefinitelyTyped

type error
import test
package
project
npm issue
version
object

export
module
interface
function
string class
declare
question
pull re-
quest

file defini-
tion typing
work type-
script dts
library
write ref-
erence
update

SD4 Software
maintenance

1,612 959,474

Elsevier Core Engi-
neering/replicator

scale repli-
cator
nomad
cluster
run debug
instance er-
ror worker
pool

job work
group de-
ployment
time up-
date start
system
drain week

node config
asg meta
log consul
client key
configura-
tion issue

SA1.1 Cloud
computing

1,249 574,257

expressjs/express

route re-
quest error
var work
user code
function
middleware
return

server
node api
good cre-
ate client
time thing
project
write

express
app file
question
set res
module
start path
static

SD5.4 Web
development

18,864 11,172,529

facebook/flow

function er-
ror object
work prop-
erty prop
class issue
import
flowtype

type flow
code com-
ponent
generic
var void
pass test
argument

string re-
turn file
number
export foo
definition
declare
state const

SQ1 Code
quality; SD5.4
Web develop-
ment

1,741 1,201,689

FreeCodeCamp/
HelpBackEnd

work file
code er-
ror app
npm user
project err
server

sparkle
send point
brownie
heroku test
git push
command
script

var func-
tion return
url call
datum find
data read
callback

SD7 Back-end;
PD2.1 Coding

122,406 55,284,138

FreeCodeCamp/
Contributors

issue npm
error chal-
lenge test
code merge
guide time
freecode-
camp

sparkle
point send
brownie
link good
open
project
question
people

work file
fcc branch
add git
commit
update
thing pull

PD2.1 Coding 34,835 21,598,934

FreeCodeCamp/
DataScience

data
sparkle
work
project
point
good send
science
brownie fcc

datum
time code
find ques-
tion link
interesting
interested
problem
analysis

people
learn thing
python
learning lot
check read
room bit

[Machine learn-
ing] SD5.1.2.1
Libraries; [Ma-
chine learning]
SD5.1.2.3 Sys-
tems

15,102 11,516,537

202 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

FreeCodeCamp/
testable-projects-
fcc

travis
work build
puppeteer
repo stuart
tracey git
docker
issue

test project
fail locally
pass good
server
problem
beta per-
sonal

link cdn
correct
code code-
pen late
create ver-
sion step
update

PD2.1 Coding 210 108,186

flutter/flutter

widget
child error
build re-
turn class
call list
add image

flutter app
android
file create
plugin ios
version
project
package

work code
dart issue
time thing
good ques-
tion find
start

SD5.5 Multi-
platform
development

182,853 94,161,158

BinaryMuse/
fluxxor

flux com-
ponent
dispatch
fluxxor call
state work
datum
react event

function
thing var
code ren-
der route
return
method
create issue

store ac-
tion view
change
update
user case
api async
handle

SA2.1 Pat-
terns; SD5.4
Web develop-
ment

2,707 1,939,810

ga4gh/server

file server
work error
git issue
version
master
branch
case

reference
set vcf sup-
port access
vcfs callset
reference-
set store
variant

call test
sequence
add python
module
exception
schema
thing
graph

PD2.1 Cod-
ing; SD1.1
Application
programming
interface

221 124,162

piskvorky/gensim

model
word
vector doc-
ument doc
work file
vec topic
list

text
python
time test
find small
add version
import size

gensim cor-
pus train
training
code good
issue simi-
larity large
fasttext

[Machine learn-
ing] SD5.1.2.1
Libraries

1,743 1,299,295

gitlabhq/gitlabhq

work run-
ner build
docker file
job set
image fail
test

gitlab
server git
repo install
run version
repository
update
host

project
issue er-
ror create
user push
branch
problem
merge re-
quest

SD4 Software
maintenance;
SD1.5 Version
control

17,338 11,972,905

gitterHQ/ develop-
ers

code work
question
error learn
file good
project
problem
app

web devel-
oper return
git var
api build
number
day install

function
create
html add
website
css write
change call
class

PD2.1 Coding 41,983 20,673,712

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 203

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

ethereum/go-
ethereum

geth block
node trans-
action
sync start
account
address
network
gas

contract
error code
call web
function
file ques-
tion return
change

work
ethereum
issue test
client thing
version
good build
update

SA1.2
Blockchain

129,848 62,131,972

gushphp/gush

git jira
readme
username
clone
oauth she-
bang gitter
browser
osx

work
bin gush
github php
user exe-
cute skype
vagrant
website

gush good
branch
push in-
vitation
remote
fetch gush-
phar nice
job

SQ2 Soft-
ware testing;
SA2.3.1.2 Con-
tainers

113 37,339

hopelessoptimism/
data-engineering-
101

tool distri-
bution pin-
ball luigi
datum
request
create
material
workflow
cool

file
libpython
repository
csr folder
filename ar-
rays github
repo excel

case tho
framework
solution
workshop
great pan-
das forked
time thing

SD5.1.1 Big
data; PD1.2
Workshops

29 27,107

Hotel-Reservation-
Project/requirements

diagram
dfd ect png
sdp srs
good acd
function
chatter

project
card credit
create class
require-
ment need
info invalid
point

scenario
case room
customer
employee
work call
team lead
specific

PD2.1 Coding 65 53,746

IanLunn/Hover

click color
plugin css
animations
bootstrap
pseudo for-
mat online
app

img image
integrate
awesome
element css
twitter fol-
lower lunn
bootstrap

class
button
hovercss
underline
drop stay
work send
future
check

SD6.1 Graph-
ical user in-
terface; SD5.4
Web develop-
ment

50 27,808

iluwatar/java-
design-patterns

pattern
issue work
class good
design
create java
add imple-
ment

project
code file er-
ror maven
build
github web-
site change
commit

implementation
object re-
quest pull
return
builder
point
service
interface
case

SA2.1 Patterns 1,330 727,057

204 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

intercooler-
js/Lobby

work re-
quest
event form
jquery but-
ton trigger
code server
add

element
html div
thing at-
tribute
target ajax
url link
click

intercooler
response
function er-
ror return
header
problem
post stuff
set

SD5.4 Web
development

2,288 1,005,375

andreis/interview

python
great lan-
guage cse
undergrad
backend
build on-
line project
complete

interview
question
code ex-
perience
google
practice
level an-
swer crack
career

link big
feel check
start good
free com-
pany find
peer

PD1.1 Jobs 96 56,326

jenkinsci/
configuration-
as-code-plugin

plugin
work jcasc
issue cre-
dential
test release
configure
export info

jenkin file
yaml casc
config time
set find
thing prob-
lem

jenkins
config-
uration
job error
code secret
docker
script build
pipeline

SD4 Software
maintenance;
SD2.1 Continu-
ous integration

9,408 5,412,646

katalon-
studio/Lobby

test kat-
alon error
case work
issue file
script fail
version

import
code time
request
record
mobile
response
question
solution
string

object ele-
ment click
variable
project set
create text
problem
step

SQ2 Software
testing

15,471 7,628,400

kriasoft/universal-
router

route path
router ac-
tion return
work child
await func-
tion pass

component
react error
render
server
client
async app
user con-
trolpanel

import
universal-
router code
url history
default
query lay-
out export
match

SD5.4 Web
development

1,031 705,315

laravel/laravel

nan work
user error
file request
table code
create
problem

laravel
php app
good thing
project
api start
composer
version

return
function
model pub-
lic query
array da-
tum test
message
null

SD5.4 Web
development

88,799 41,060,571

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 205

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

lightbend/config

issue code
test set
override
object
hocon type-
safe default
string

config file
load appli-
cationconf
configura-
tion refer-
enceconf
classpath
resolve
property
variable

work li-
brary java
path case
key scala
env value
api

SA1.1 Cloud
computing;
SD3 Software
documentation;
SD4 Software
maintenance

1,797 1,084,784

locomotivecms/
engine

work loco-
motive site
content
gem issue
version
create code
rail

wagon
engine
error add
push time
set deploy
change
problem

file liquid
image tag
cache asset
block back-
office url
link

SD5.4 Web
development

6,950 2,819,717

lodash/lodash

object ar-
ray work
key map
code value
question
find call

lodash
method
true chain
import
filter thing
false add
build

function
return var
result arr
foo type
javascript
bar sort

SD5.4 Web
development

9,184 4,153,954

ManageIQ/ man-
ageiq

work test
error issue
gem file
start good
fail man-
ageiq

thing time
change
code merge
stuff day
think type
commit

ruby
method
call worker
require
block case
class table
load

SA1.1 Cloud
computing

75,738 29,598,842

ManageIQ/ man-
ageiq/ui

work is-
sue test
code thing
change
time merge
good cre-
ate

add button
provider
call
method
set list case
controller
user

error file
install
require
include ren-
der place
message
info screen

SD6.1 Graph-
ical user in-
terface; SA1.1
Cloud comput-
ing

35,997 23,097,735

google/material-
design-lite

mdl work
material
design
div code
project
css build
support

component
thing good
time stuff
people
start lot
menu pro-
vide

issue add
element file
button test
grid user
error input

SD6.1 Graphi-
cal user inter-
face

7,518 6,584,520

Mixer/developers

work chan-
nel user
chat api
error inter-
active send
request
button

code oauth
issue app
server web-
socket find
url json
response

beam
thing stuff
question
java good
python add
bit node

SD5.2 Games;
SD1.1 Ap-
plication
programming
interface

46,128 34,409,240

206 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

mochajs/mocha

mocha
function
file work
error code
return fail
require
promise

test call
run
browser
problem
testing
assertion
start suite
add

reporter
npm thing
time check
import
expect out-
put object
app

SQ2 Software
testing

12,121 12,953,626

MonoGame/
MonoGame

monogame
work game
project
build code
support
platform
version
good

file content
pipeline
texture
call ren-
der draw
shader load
type

issue thing
time stuff
xna lot
change
class bit
point

SD5.2 Games 45,507 33,307,789

Microsoft/mwt-ds

error azure
change
location
feature list
datum cre-
ate custom
interface

code api
access
provide
random
type explo-
ration base
resource
return

service
work de-
cision
reward
learning
time online
thing client
library

[Machine learn-
ing] SD5.1.2.3
Systems; SD3
Software docu-
mentation

137 119,152

valor-software/ng2-
bootstrap

bootstrap
work
modal
component
import an-
gular npm
problem
module
code

issue tem-
plate select
update
version
chart table
change
beta set

error div
button find
class direc-
tive public
moment
modaldirec-
tive func-
tion

SD6.1 Graphi-
cal user inter-
face

2,451 1,996,994

ngrx/store

state ac-
tion store
reducer
component
type ex-
port error
function
call

work app
ngrx thing
angular
time good
route prob-
lem redux

return
change
code issue
map idea
list form
saga read

SA2.3.1.2 Con-
tainers

44,329 42,679,362

lnug/london-node-
jobs

nodejs
people
interested
hire devel-
oper team
senior
email dev
experience

node react
london talk
graphql
good chal-
lenge thing
industry
shop

work lnug
tonight
chat engi-
neer job
feel free
post link

PD1.1 Jobs 79 85,478

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 207

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

numenta/public

nupic htm
work time
thing good
code pre-
diction
problem
file

learn ver-
sion build
start algo-
rithm test
learning
current
system
issue

input col-
umn model
layer da-
tum cell
sdr bit
brain un-
derstand

[Machine learn-
ing] SD5.1.2.2
Research;
PD2.1 Coding

21,494 15,552,519

pattern-lab/node

work issue
version
node gulp
lab npm
project
time good

patternlab
error
engine
template
mustache
change test
start code
atom

pattern
file build
include plu-
gin create
add json
problem
folder

SA2.1 Patterns 5,797 5,414,976

uttesh/pdfngreport

error
file pdf
stylesheet
config-
urable xml
debug xslt
change
maven

report gen-
erate add
xslvalueof
fail prob-
lem work
null release
chart

issue slash
provide
sample
work path
system
code fine
step

SQ2 Software
testing

44 35,917

PerfectlySoft/ Per-
fectDocs

doc work
mysql
awesome
good sqlite
issue jira
httprequest
document

quickstart
change
server
readme
add link
pull up-
stream
update
sense

thing jira
time error
file start
info good
edit night

SD5.4 Web
development;
SD3 Software
documentation

240 87,274

python-
babel/babel/
maintenance-
corner

eth testing
mainnet
real market
reminder
request day
bca fed

send ac-
count keth
ether test
kovan
address
github long
support

hour re-
quested
send add
adb cad
eec edd bef
dbe

SD5.4 Web
development;
SD6.1 Graph-
ical user in-
terface; SD4
Software main-
tenance

136,163 68,954,942

rchain/Releases

github
docker file
lefthand
compiler
sdk project
helloworl-
drho layer
algorithm

release
con devel-
opment
commit
rchain
month
channel
write pro
number

node code
contract
filename
update
rosette
terminal
pasting
layer com-
piler

SA1.2
Blockchain;
SD1.2.2 Re-
lease

42 28,944

208 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

reactioncommerce/
architecture

work me-
teor test
snapshot
implement
open com-
ponent
time ques-
tion admin

product
catalog
collection
order pub-
lish thing
add pack-
age good
storefront

reaction
graphql
shop cre-
ate api
store client
mutation
provide
current

SA2.1 Patterns 140 150,425

reactor/reactor

flux thread
work error
request call
code mono
test block

return
subscribe
public
context
java void
null throw
object class

case re-
actor
operator
stream
issue time
event thing
reactive
publisher

SD5.4 Web
development

38,024 35,642,328

reactjs/redux

component
react redux
work app
render
code error
question
type

state ac-
tion store
reducer
call prop
datum
pass object
change

return
function
import
dispatch
user export
route div
class de-
fault

SD5.4 Web
development

16,740 20,207,600

researchgate/gradle-
release

version plu-
gin build
project
task file
work fail
subproject
property

release gra-
dle commit
tag snap-
shot create
set false
buildgradle
command

git jenkin
push re-
mote error
branch ori-
gin master
android
credential

SD2 Software
deployment;
SD1.2.1 Con-
figuration

576 358,250

robocomp/ robo-
comp

robocomp
start work
installation
install find
osg instal
ubuntu
problem

error fail
file com-
ponent
rcmanager
target
command
recipe di-
rectory rci

gsoc
project
property
year inter-
ested gitter
warning
deprecated
student
kharagpur

SD4 Software
maintenance

177 118,047

flajann2/rubyneat

rewrite
alive
reuse out-
put kind
hook fast
rubyneat
plan rust

capture
mind log
lame ruby
code alive
reuse
output
interest

format
bandwidth
mind
rubyneat
move
rubyneatde
site static
simply
work

[Machine learn-
ing] SD5.1.2.3
Systems

10 15,344

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 209

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

jdubray/sam-
architecture

action
model view
pattern
function
code pro-
posal tla
problem
representa-
tion

state re-
dux nap
reducer
semantic
sagas call
update
thunk ren-
der

sam work
time under-
stand logic
point case
keep api
application

SA2.1 Patterns 556 612,236

scikit-learn/ scikit-
learn

work is-
sue test
good time
scikitlearn
model fea-
ture datum
set

code learn
file clus-
ter case
import
method
sample list
label

python
question
sklearn
thing bit
release
comment
regression
idea people

[Machine learn-
ing] SD5.1.2.1
Libraries

10,186 8,399,034

semantic-release/
semantic-release

release
semanti-
crelease
plugin
version
semantic
npm com-
mit git
publish tag

repo build
pack-
agejson
package
gitlab up-
date script
thing
travis doc

work is-
sue create
github
change set
project add
token test

SD2 Software
deployment;
SD1.2.2 Re-
lease

4,868 4,290,050

senecajs/ seneca-
in-practice

seneca
system
msg flow
senecas
guide great
convert
running
refer

service
issue mi-
croservice
user server
find object
run status
doc

error var
fuge plugin
exercice
oisin nev-
ermind
overwrite
cmd esh

SA2.3.1.1 Mi-
croservices;
PD2.1 Coding

76 44,794

milessabin/ shape-
less

type im-
plicit case
def class
hlist val
string hnil
object

work
shapeless
thing com-
pile code
time test
good idea
create

scala prob-
lem find
method
compiler is-
sue macro
question
add bit

SD7 Back-end 42,131 45,538,426

simpleinvoices/
simpleinvoices

php server
apache de-
bug online
ubuntu
github ver-
sion work
code

fork code
share
accept
invoice de-
bug github
repo user
commit

start glad
test devel-
opment
support
community
bunch
thing day
late

SD5.4 Web
development

20 17,230

210 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

snipe/snipe-it

asset user
error file
snipeit php
issue check
install ldap

work time
table code
script
start app
support
migration
exist

add thing
good
model
people
company
request
system
stuff search

SD5.4 Web
development

72,178 51,350,210

sourcejs/Source

spec file
npm work
source
style issue
update
thing in-
stall

code but-
ton html
css release
template
include
example
error class-
button

sourcejs
plugin
project
compo-
nent folder
create
setup user
question
middleware

SD6.1 Graphi-
cal user inter-
face

732 591,275

spring-
cloud/spring-
cloud-security

token
server
work user
resource
client au-
thorization
access is-
sue code

request
app header
application
add bean
bearer pub-
lic return
endpoint

oauth
spring zuul
security
authentica-
tion boot
cloud ses-
sion debug
microser-
vice

SA2.2.1 Se-
curity; SD2.2
Distributed
software

1,728 1,526,533

spring-
projects/spring-
security

spring secu-
rity request
oauth work
authen-
tication
filter server
client issue

token pub-
lic return
access class
exception
throw void
config-
uration
protect

user login
session
set app
application
problem
authen-
ticate
implement
redirect

SA2.2.1 Secu-
rity

7,945 9,404,721

spring-
projects/spring-
security-oauth

token
client user
request ac-
cess public
code re-
turn create
jwt

oauth
authen-
tication
endpoint
session
redirect
application
question
test im-
plement
config

server
spring
work se-
curity
resource
login app
authoriza-
tion boot
problem

SA2.2.1 Secu-
rity

5,708 6,282,094

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 211

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

sorintlab/stolon

keeper
error info
master
cmd-
keepergo
database
file start
stolon-
keeper fail

cluster
sentinel
etcd issue
standby
backup
consul
change
check pod

stolon
work proxy
stolonctl
node
problem
command
connection
provide
wale

SA1.1 Cloud
computing

2,428 4,308,365

survivejs/ mainte-
nance

good book
chapter
work site
cool time
idea thing
bit

code pack-
age pretty
npm doc
push style
github case
error

issue
project
mrm prob-
lem tool
understand
solve open
big task

SD3 Software
documentation;
SD4 Software
maintenance

1,749 946,092

thephpleague/
tactician-bernard

receiver in-
terface bus
command
consumer
register
bernard
router
middleware
message

command
bit version
getname
samebus-
receiver
queued-
command
multiple
queue
wrapping
method

command
middleware
bernard
overhead
wrapper
interface
increase
absolutely
aware com-
plex

SA2.3.1
Service-
oriented ar-
chitecture

54 24,011

TestAndCode/
Lobby

test pod-
cast chris
nejame
kyle
magocs
fixture
formartha
dima spi-
vak

code work
matt
python
rasband
function
thing call
case def

pytest
brian
okken
file test-
ing good
moore lot
start idea

PD2.2 Testing;
PD2.1 Coding

5,500 8,879,475

twbs/bootstrap

div work
code css
image link
html add
width prob-
lem

bootstrap
good
project
question
website
create file
learn site
start

div class
button
element
row col-
umn nav
size form
container

SD6.1 Graph-
ical user in-
terface; SD5.3
Mobile devel-
opment

17,296 12,502,524

angular-ui/ui-
router

work
uirouter
angular
error route
app mod-
ule import
parent
issue

resolve
return
function
controller
code
promise
true add
type ques-
tion

state tran-
sition
compo-
nent url
view hook
param
parameter
load call

SD5.4 Web
development

9,241 8,621,207

212 D SHORT TEXT TOPIC MODELS APPLIED TO DEVELOPER MESSAGES

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

username-
availability-
checker/Lobby

problem
test check
project
work gsoc
merge fail
issue time

request
medium
website
error
facebook
profile
status code
return im-
port

version
ios safari
iphone
chrome
browser
find feel
bug file

SA2.2.1 Secu-
rity

351 129,861

vaadin/web-
components

work
vaadin
component
polymer
vaadingrid
style tem-
plate issue
add version

grid row
column
item set
change
import
property
angular
support

element
event file
dom call
function er-
ror release
api module

SD5.4 Web
development;
SD6 Front-end

5,739 6,507,977

vespa-
engine/Lobby

vespa field
node at-
tribute
cluster
default
search
work
content
application

query doc-
ument
rank type
set tensor
case add
feature
expression

support
question
issue build
create
memory
api file
user state

SD6.1 Graphi-
cal user inter-
face

1,335 1,951,495

webpack/webpack

webpack
file module
loader er-
ror build
import con-
fig bundle
plugin

code issue
problem
project
question
thing func-
tion find
time react

work re-
quire load
server
change de-
pendency
dev jquery
browser
fine

SD2.1.1 Build
automation;
SQ1 Code
quality

109,604 103,735,806

webpack/docs

webpack
issue doc
work code
good site
content
point link

github
webpack-
docs sokra
update
wiki push
commit
comment
webpack-
newdocs
jhnns

plugin
loader file
build error
module
script npm
app import

SD2.1.1 Build
automation;
SD3 Software
documentation

938 811,667

webuildsg/live

question
good morn-
ing hear
nice people
live time
wave work

web scala
app git-
ter code
podcast
application
iot website
calendar

year power
security
thing singa-
pore long
issue day
computer
podcast

SD6.1 Graphi-
cal user inter-
face; PD1.2
Workshops

2,432 823,085

D.4 TOPICS (10-WORD CLUSTERS) GENERATED WITH GPU_PDMM 213

Chat Room Topic01 Topic02 Topic03 Themes
Number
of docs
used*

Processing
Time (mil-
liseconds)

CocoaPods/
Xcodeproj

build
set error
project is-
sue import
bundle as-
set install
file

configure
pod exe-
cutable
xcode
jenkin lipo
keychain
framework
binary
firebase

app ios
keychain
xcode lipo
splash
firebase
directory
binary
configure

SD5.4 Web
development

15 21,065

robbyrussell/oh-
my-zsh

theme
ohmyzsh
plugin zsh
zshrc file
issue prob-
lem bash
export

work com-
mand
script code
function
font type
find shell
start

git prompt
ssh current
column
time fine
version
pull config

SD1.2.1 Con-
figuration

308 191,356

*before data pre-processing

REFERENCES

Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in
Chatbot Development: A Study of Stack Overflow Posts. In: Proceedings of the
17th International Conference on Mining Software Repositories, IEEE/ACM, Seoul,
vol 12, pp 174–185, DOI 10.1145/3379597.3387472

Abdellatif TM, Capretz LF, Ho D (2019) Automatic recall of software lessons learned
for software project managers. Information and Software Technology 115:44–57,
DOI 10.1016/j.infsof.2019.07.006

Aggarwal CC, Zhai C (2012) Mining text data. Springer, New York, DOI 10.1007/
978-1-4614-3223-4

Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? And how
to fix it using search-based software engineering. Information and Software Tech-
nology 98(January 2017):74–88, DOI 10.1016/j.infsof.2018.02.005

Agresti WW (2000) Knowledge Management. Advances in Computers 53:171–283,
DOI 10.1016/S0065-2458(00)80006-6, URL https://www.sciencedirect.com/
science/article/pii/S0065245800800066?via%3Dihub

Ahasanuzzaman M, Asaduzzaman M, Roy CK, Schneider KA (2020) CAPS: a super-
vised technique for classifying Stack Overflow posts concerning API issues. Empiri-
cal Software Engineering 25(2):1493–1532, DOI 10.1007/s10664-019-09743-4, URL
http://link.springer.com/10.1007/s10664-019-09743-4

Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about?: A
large-scale study using Stack Overflow. In: Proceedings of the International Sym-
posium on Empirical Software Engineering and Measurement, ACM, Oulu, pp
1–10, DOI 10.1145/3239235.3239524

Albrecht CC (2003) A comparison of distributed groupware implementation envi-
ronments. In: Proceedings of the 36th Annual Hawaii International Conference
on System Sciences, IEEE, Big Island, pp 1–9, DOI 10.1109/HICSS.2003.1173780,
URL http://ieeexplore.ieee.org/document/1173780/

Aletras N, Stevenson M (2013) Evaluating Topic Coherence Using Distributional
Semantics. In: Proceedings of the 10th International Conference on Computational
Semantics, Association for Computational Linguistics, Potsdam, pp 13–22

Ali N, Sharafi Z, Guéhéneuc YG, Antoniol G (2015) An empirical study on the im-
portance of source code entities for requirements traceability. Empirical Software
Engineering 20(2):442–478, DOI 10.1007/s10664-014-9315-y

https://www.sciencedirect.com/science/article/pii/S0065245800800066?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0065245800800066?via%3Dihub
http://link.springer.com/10.1007/s10664-019-09743-4
http://ieeexplore.ieee.org/document/1173780/

REFERENCES 215

Alipour A, Hindle A, Stroulia E (2013) A contextual approach towards more accu-
rate duplicate bug report detection. In: IEEE International Working Conference on
Mining Software Repositories, pp 183–192, DOI 10.1109/MSR.2013.6624026

Alkadhi R, Johanssen JO, Guzman E, Bruegge B (2017a) REACT: An Approach
for Capturing Rationale in Chat Messages. International Symposium on Empirical
Software Engineering and Measurement 2017-Novem:175–180, DOI 10.1109/ESEM.
2017.26

Alkadhi R, Lata T, Guzmany E, Bruegge B (2017b) Rationale in Development Chat
Messages: An Exploratory Study. In: Proceedings of the International Working
Conference on Mining Software Repositories, vol 0, pp 436–446, DOI 10.1109/MSR.
2017.43

Allahyari M, Pouriyeh S, Assefi M, Safaei S, D E, B J, Kochut K (2017) Text Sum-
marization Techniques: A Brief Survey. International Journal of Advanced Com-
puter Science and Applications 8(10):397–405, DOI 10.14569/IJACSA.2017.081052,
URL https://arxiv.org/abs/1707.02268v3http://thesai.org/Publications/
ViewPaper?Volume=8&Issue=10&Code=ijacsa&SerialNo=52

Altarawy D, Shahin H, Mohammed A, Meng N (2018) LASCAD: Language-agnostic
software categorization and similar application detection. Journal of Systems and
Software 142:21–34, DOI 10.1016/j.jss.2018.04.018

Aniche M, Treude C, Steinmacher I, Wiese I, Pinto G, Storey MA, Gerosa MA
(2018) How Modern News Aggregators Help Development Communities Shape
and Share Knowledge. In: Proceedings of the 40th International Conference on
Software Engineering, ACM, Gothenburg, pp 1–12, DOI 10.1145/3180155.3180180,
URL https://doi.org/10.1145/3180155.3180180

Antonino PO, Morgenstern A, Kuhn T (2016) Embedded-Software Architects: It’s
Not only about the Software. IEEE Software 33(6):56–62, DOI 10.1109/MS.2016.
142

ARC ARC (2012) Excellence in Research for Australia (ERA). URL https://www.
arc.gov.au/excellence-research-australiahttp://www.arc.gov.au/pdf/
era12/ERAFactsheet_Jan2012_1.pdf

Asuncion HU, Asuncion AU, Taylor RN (2010) Software Traceability with Topic
Modeling. In: Proceedings of the International Conference on Software Engineer-
ing, IEEE/ACM, Cape Town, pp 95–104

Bagherzadeh M, Khatchadourian R (2019) Going big: a large-scale study on what
big data developers ask. In: Proceedings of the 27th Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ACM, Tallinn, pp 432–442, DOI 10.1145/3338906.3338939

Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web develop-
ers. In: Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, ACM, Hyderabad, pp 112–121, DOI 10.1145/2597073.2597083

https://arxiv.org/abs/1707.02268v3 http://thesai.org/Publications/ViewPaper?Volume=8&Issue=10&Code=ijacsa&SerialNo=52
https://arxiv.org/abs/1707.02268v3 http://thesai.org/Publications/ViewPaper?Volume=8&Issue=10&Code=ijacsa&SerialNo=52
https://doi.org/10.1145/3180155.3180180
https://www.arc.gov.au/excellence-research-australia http://www.arc.gov.au/pdf/era12/ERA Factsheet_Jan 2012_1.pdf
https://www.arc.gov.au/excellence-research-australia http://www.arc.gov.au/pdf/era12/ERA Factsheet_Jan 2012_1.pdf
https://www.arc.gov.au/excellence-research-australia http://www.arc.gov.au/pdf/era12/ERA Factsheet_Jan 2012_1.pdf

216 REFERENCES

Bajracharya S, Lopes C (2009) Mining search topics from a code search engine usage
log. In: Proceedings of the 6th International Working Conference on Mining Soft-
ware Repositories, IEEE, Vancouver, pp 111–120, DOI 10.1109/MSR.2009.5069489

Bajracharya SK, Lopes CV (2012) Analyzing and mining a code search engine usage
log. Empirical Software Engineering 17:424–466, DOI 10.1007/s10664-010-9144-6

Baltes S, Diehl S (2018) Towards a Theory of Software Development Expertise. In:
Proceedings of the 2018 26th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
Lake Buena Vista, pp 1–14, DOI 10.1145/3236024.3236061, URL https://doi.
org/10.1145/3236024.3236061

Baltes S, Ralph P (2022) Sampling in software engineering research: a critical re-
view and guidelines. Empirical Software Engineering 27(4):94, DOI 10.1007/
s10664-021-10072-8, URL http://arxiv.org/abs/2002.07764https://link.
springer.com/10.1007/s10664-021-10072-8

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? An
analysis of topics and trends in Stack Overflow. Empirical Software Engineering
19(3):619–654, DOI 10.1007/s10664-012-9231-y

Bass L, Clements P, Kazman R (2003) Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional, Boston

Bavota G, Gethers M, Oliveto R, Poshyvanyk D, Lucia ADE (2014a) Improving
Software Modularization via Automated Analysis of Latent. ACM Transactions on
Software Engineering and Methodology 23(1):1–33, DOI http://dx.doi.org/10.1145/
2559935

Bavota G, Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2014b) Methodbook:
Recommending move method refactorings via relational topic models. IEEE Trans-
actions on Software Engineering 40(7):671–694, DOI 10.1109/TSE.2013.60

Beitzel SM, Jensen EC, Frieder O (2009) MAP. In: Encyclopedia of
Database Systems, Springer US, Boston, MA, pp 1691–1692, DOI 10.1007/
978-0-387-39940-9{_}492, URL http://link.springer.com/10.1007/
978-0-387-39940-9_492

Belle AB, Boussaidi GE, Kpodjedo S (2016) Combining lexical and structural in-
formation to reconstruct software layers. Information and Software Technology
74:1–16, DOI 10.1016/j.infsof.2016.01.008

Beyer S, Macho C, Di Penta M, Pinzger M (2019) What kind of questions do devel-
opers ask on Stack Overflow? A comparison of automated approaches to classify
posts into question categories. Empirical Software Engineering 25(3):2258–2301,
DOI 10.1007/s10664-019-09758-x

Bhatia S, Lau JH, Baldwin T (2018) Topic Intrusion for Automatic Topic Model
Evaluation. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Brussels, pp 844–
849, DOI 10.18653/v1/D18-1098, URL http://aclweb.org/anthology/D18-1098

https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1145/3236024.3236061
http://arxiv.org/abs/2002.07764 https://link.springer.com/10.1007/s10664-021-10072-8
http://arxiv.org/abs/2002.07764 https://link.springer.com/10.1007/s10664-021-10072-8
http://link.springer.com/10.1007/978-0-387-39940-9_492
http://link.springer.com/10.1007/978-0-387-39940-9_492
http://aclweb.org/anthology/D18-1098

REFERENCES 217

Bi T, Liang P, Tang A, Yang C (2018) A systematic mapping study on text analysis
techniques in software architecture. Journal of Systems and Software 144:533–558,
DOI 10.1016/j.jss.2018.07.055

Biggers LR, Bocovich C, Capshaw R, Eddy BP, Etzkorn LH, Kraft NA (2014) Con-
figuring latent Dirichlet allocation based feature location. Empirical Software Engi-
neering 19(3):465–500, DOI 10.1007/s10664-012-9224-x

Binkley D, Lawrie D, Uehlinger C, Heinz D (2015) Enabling improved IR-based
feature location. Journal of Systems and Software 101:30–42, DOI 10.1016/j.jss.
2014.11.013

Blasco D, Cetina C, Pastor O (2020) A fine-grained requirement traceability evolu-
tionary algorithm: Kromaia, a commercial video game case study. Information and
Software Technology 119:1–12, DOI 10.1016/j.infsof.2019.106235

Blei DM, Jordan MI, Griffiths TL, Tenenbaum JB (2003a) Hierarchical topic models
and the nested chinese restaurant process. In: Proceedings of the 16th Interna-
tional Conference on Neural Information Processing Systems, Neural Information
Processing Systems Foundation, Vancouver, pp 17–24

Blei DM, Ng AY, Jordan MI (2003b) Latent Dirichlet Allocation. Journal of Machine
Learning Research 3:993–1022, DOI 10.1162/jmlr.2003.3.4-5.993

Bouma G (2009) Normalized (Pointwise) Mutual Information in Collocation Ex-
traction. In: Proceedings of the Biennial German Society for Computational Lin-
guistics Conference, German Society for Computational Linguistics & Language
Technology, Potsdam, pp 31–40

Bourque P, Fairley R (2014) Guide to the Software Engineering Body of Knowledge.
Tech. rep., IEEE Computer Society, Washington D.C., URL www.swebok.org

Boyatzis RE (1998) Transforming qualitative information: thematic analysis and
code development. Sage Publications, Thousand Oaks

Brank J, Mladenić D, Grobelnik M, Liu H, Mladenić D, Flach PA, Garriga
GC, Toivonen H, Toivonen H (2011) F 1-Measure. In: Encyclopedia of Ma-
chine Learning, Springer US, pp 397–397, DOI 10.1007/978-0-387-30164-8{_
}298, URL https://link.springer.com/referenceworkentry/10.1007/
978-0-387-30164-8_298

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualitative Re-
search in Psychology 3(2):77–101, DOI 10.1017/CBO9781107415324.004

Braun V, Clarke V (2019) Reflecting on reflexive thematic analysis. Qualitative Re-
search in Sport, Exercise and Health 11(4):589–597, DOI 10.1080/2159676X.2019.
1628806, URL https://www.tandfonline.com/action/journalInformation?
journalCode=rqrs21

Braun V, Clarke V (2021a) One size fits all? What counts as quality practice in (re-
flexive) thematic analysis? Qualitative Research in Psychology 18(3):328–352,
DOI 10.1080/14780887.2020.1769238, URL https://www.tandfonline.com/
action/journalInformation?journalCode=uqrp20https://www.tandfonline.
com/doi/full/10.1080/14780887.2020.1769238

www.swebok.org
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_298
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_298
https://www.tandfonline.com/action/journalInformation?journalCode=rqrs21
https://www.tandfonline.com/action/journalInformation?journalCode=rqrs21
https://www.tandfonline.com/action/journalInformation?journalCode=uqrp20 https://www.tandfonline.com/doi/full/10.1080/14780887.2020.1769238
https://www.tandfonline.com/action/journalInformation?journalCode=uqrp20 https://www.tandfonline.com/doi/full/10.1080/14780887.2020.1769238
https://www.tandfonline.com/action/journalInformation?journalCode=uqrp20 https://www.tandfonline.com/doi/full/10.1080/14780887.2020.1769238

218 REFERENCES

Braun V, Clarke V (2021b) To saturate or not to saturate? Questioning data
saturation as a useful concept for thematic analysis and sample-size ratio-
nales. Qualitative Research in Sport, Exercise and Health 13(2):201–216, DOI
10.1080/2159676X.2019.1704846, URL https://www.tandfonline.com/action/
journalInformation?journalCode=rqrs21https://www.tandfonline.com/doi/
full/10.1080/2159676X.2019.1704846

Braun V, Clarke V, Hayfield N, Terry G (2019) Answers to frequently asked ques-
tions about thematic analysis. Tech. rep., The University of Auckland, Auckland

Canfora G, Cerulo L, Cimitile M, Di Penta M (2014) How changes affect software
entropy: An empirical study. Empirical Software Engineering 19:1–38, DOI 10.
1007/s10664-012-9214-z

Cao B, Frank Liu X, Liu J, Tang M (2017) Domain-aware Mashup service clustering
based on LDA topic model from multiple data sources. Information and Software
Technology 90:40–54, DOI 10.1016/j.infsof.2017.05.001

Capiluppi A, Di Ruscio D, Di Rocco J, Nguyen PT, Ajienka N (2020) Detecting
Java software similarities by using different clustering techniques. Information
and Software Technology 122(106279):1–18, DOI 10.1016/j.infsof.2020.106279,
URL https://doi.org/10.1016/j.infsof.2020.106279https://linkinghub.
elsevier.com/retrieve/pii/S095058492030029X

Catolino G, Palomba F, Zaidman A, Ferrucci F (2019) Not all bugs are the same:
Understanding, characterizing, and classifying bug types. Journal of Systems and
Software 152:165–181, DOI 10.1016/j.jss.2019.03.002

Chang J, Blei DM (2009) Relational Topic Models for Document Networks. In: Pro-
ceedings of the 12th International Conference on Artificial Intelligence and Statis-
tics, Society for Artificial Intelligence and Statistics, Clearwater Beach, pp 81–88

Chang J, Blei DM (2010) Hierarchical Relational Models for Document networks.
The Annals of Applied Statistics 4(1):124–150, DOI 10.1214/09-AOAS309

Chang J, Boyd-Graber J, Gerrish S, Wang C, Blei DM (2009) Reading tea leaves:
How humans interpret topic models. In: Proceedings of the 2009 Conference Ad-
vances in Neural Information, Neural Information Processing Systems Foundation,
Vancouver, pp 288–296

Chatterjee P, Nishi MA, Damevski K, Augustine V, Pollock L, Kraft NA (2017)
What information about code snippets is available in different software-related
documents? An exploratory study. In: Proceedings of the 24th International Con-
ference on Software Analysis, Evolution, and Reengineering, IEEE, Klagenfurt, pp
382–386, DOI 10.1109/SANER.2017.7884638

Chatterjee P, Damevski K, Pollock L (2019) Exploratory Study of Slack Q&A Chats
as a Mining Source for Software Engineering Tools. In: Proceedings of the 16th
International Conference on Mining Software Repositories, IEEE, Montreal, pp
1–12

https://www.tandfonline.com/action/journalInformation?journalCode=rqrs21 https://www.tandfonline.com/doi/full/10.1080/2159676X.2019.1704846
https://www.tandfonline.com/action/journalInformation?journalCode=rqrs21 https://www.tandfonline.com/doi/full/10.1080/2159676X.2019.1704846
https://www.tandfonline.com/action/journalInformation?journalCode=rqrs21 https://www.tandfonline.com/doi/full/10.1080/2159676X.2019.1704846
https://doi.org/10.1016/j.infsof.2020.106279 https://linkinghub.elsevier.com/retrieve/pii/S095058492030029X
https://doi.org/10.1016/j.infsof.2020.106279 https://linkinghub.elsevier.com/retrieve/pii/S095058492030029X

REFERENCES 219

Chatterjee P, Damevski K, Kraft NA, Pollock L (2020) Software-related Slack Chats
with Disentangled Conversations. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories, IEEE/ACM, Seoul, pp 588–592, DOI
10.1145/3379597.3387493, URL https://doi.org/10.1145/3379597.3387493

Chatterjee P, Damevski K, Kraft NA, Pollock L (2021) Automatically Identifying
the Quality of Developer Chats for Post Hoc Use. ACM Transactions on Software
Engineering and Methodology 30(4):1–28, DOI 10.1145/3450503, URL https:
//dl.acm.org/doi/10.1145/3450503

Chen H, Coogle J, Damevski K (2019) Modeling stack overflow tags and topics as a
hierarchy of concepts. Journal of Systems and Software 156:283–299, DOI 10.1016/
j.jss.2019.07.033

Chen L, Hassan F, Wang X, Zhang L (2020) Taming Behavioral Backward Incom-
patibilities via Cross-Project Testing and Analysis. In: Proceedings of the 42nd
International Conference on Software Engineering, IEEE/ACM, Seoul, pp 112–
124, DOI 10.1145/3377811.3380436, URL https://doi.org/10.1145/3377811.
3380436

Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) AR-miner: Mining informative
reviews for developers from mobile app marketplace. In: Proceedings of the In-
ternational Conference on Software Engineering, IEEE/ACM, Hyderabad, 1, pp
767–778, DOI 10.1145/2568225.2568263

Chen TH, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects
using topic models. In: Proceedings of the International Working Conference on
Mining Software Repositories, IEEE, Zurich, pp 189–198, DOI 10.1109/MSR.2012.
6224280

Chen TH, Thomas SW, Hassan AE (2016) A survey on the use of topic models when
mining software repositories. Empirical Software Engineering 21(5):1843–1919,
DOI 10.1007/s10664-015-9402-8

Chen TH, Shang W, Nagappan M, Hassan AE, Thomas SW (2017) Topic-based
software defect explanation. Journal of Systems and Software 129:79–106, DOI
10.1016/j.jss.2016.05.015

Choetkiertikul M, Dam HK, Tran T, Ghose A (2017) Predicting the delay of issues
with due dates in software projects. Empirical Software Engineering 22:1223–1263,
DOI 10.1007/s10664-016-9496-7

Clarke V, Braun V (2019) Guidelines for reviewers and editors evaluating the-
matic analysis manuscripts. Tech. rep., The University of Auckland, Auck-
land, URL https://cdn.auckland.ac.nz/assets/psych/about/our-https:
//cdn.auckland.ac.nz/assets/psych/about/our-research/documents/
TAwebsiteupdate10.8.17reviewchecklist.pdf

Costa Silva C, Gilson F, Galster M (2019) Comparison Framework for Team-Based
Communication Channels. In: Franch X, Männistö T, Martínez-Fernández S
(eds) Lecture Notes in Computer Science, vol 11915, Springer, Barcelona, chap
PROFES 201, pp 315–322, DOI 10.1007/978-3-030-35333-9{_}22, URL http:
//link.springer.com/10.1007/978-3-030-35333-9_22

https://doi.org/10.1145/3379597.3387493
https://dl.acm.org/doi/10.1145/3450503
https://dl.acm.org/doi/10.1145/3450503
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3377811.3380436
https://cdn.auckland.ac.nz/assets/psych/about/our- https://cdn.auckland.ac.nz/assets/psych/about/our- research/documents/TA website update 10.8.17 review checklist.pdf
https://cdn.auckland.ac.nz/assets/psych/about/our- https://cdn.auckland.ac.nz/assets/psych/about/our- research/documents/TA website update 10.8.17 review checklist.pdf
https://cdn.auckland.ac.nz/assets/psych/about/our- https://cdn.auckland.ac.nz/assets/psych/about/our- research/documents/TA website update 10.8.17 review checklist.pdf
http://link.springer.com/10.1007/978-3-030-35333-9_22
http://link.springer.com/10.1007/978-3-030-35333-9_22

220 REFERENCES

Costa Silva C, Galster M, Gilson F (2022) A qualitative analysis of themes in in-
stant messaging communication of software developers. Journal of Systems and
Software 192:111397, DOI 10.1016/j.jss.2022.111397, URL https://doi.org/10.
1016/j.jss.2022.111397https://linkinghub.elsevier.com/retrieve/pii/
S0164121222001133

Craswell N (2009) Mean Reciprocal Rank. In: Encyclopedia of Database Systems,
Springer US, pp 1703–1703, DOI 10.1007/978-0-387-39940-9{_}488, URL https:
//link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_488

Croft WB, Metzler D, Strohman T (2010) Search engines: Information retrieval in
practice. Addison-Wesley Reading

Cui D, Liu T, Cai Y, Zheng Q, Feng Q, Jin W, Guo J, Qu Y (2019) Investigating the
Impact of Multiple Dependency Structures on Software Defects. In: Proceeding of
the 41st International Conference on Software Engineering, IEEE/ACM, Montreal,
pp 584–595, DOI 10.1109/ICSE.2019.00069

Damevski K, Chen H, Shepherd DC, Kraft NA, Pollock L (2018) Predicting future
developer behavior in the IDE using topic models. IEEE Transactions on Software
Engineering 44(11):1100–1111, DOI 10.1109/TSE.2017.2748134

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling
source code with information retrieval methods: An empirical study. Empirical
Software Engineering 19(5):1383–1420, DOI 10.1007/s10664-013-9285-5

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) In-
dexing by latent semantic analysis. Journal of the American Society for In-
formation Science 41(6):391–407, DOI 10.1002/(SICI)1097-4571(199009)
41:6<391::AID-ASI1>3.0.CO;2-9, URL papers2://publication/uuid/
BA23C102-A2EA-4493-AEA4-2B85C3BD3FA1https://onlinelibrary.wiley.com/
doi/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9

Demissie BF, Ceccato M, Shar LK (2020) Security analysis of permission re-
delegation vulnerabilities in Android apps. Empirical Software Engineering
25:5084–5136, DOI 10.1007/s10664-020-09879-8, URL https://doi.org/10.1007/
s10664-020-09879-8

Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences.
In: Proceedings of the 24th International Conference on Machine Learning, ACM,
Corvallis, pp 233–240, DOI 10.1145/1273496.1273526

Dit B, Revelle M, Poshyvanyk D (2013) Integrating information retrieval, execution
and link analysis algorithms to improve feature location in software. Empirical
Software Engineering 18(2):277–309, DOI 10.1007/s10664-011-9194-4

Dittrich Y, Giuffrida R (2011) Exploring the Role of Instant Messaging in a Global
Software Development Project. In: Proceedings of the Sixth International Con-
ference on Global Software Engineering, IEEE, Helsinki, pp 103–112, DOI
10.1109/ICGSE.2011.21, URL http://ieeexplore.ieee.org/document/6063155/

https://doi.org/10.1016/j.jss.2022.111397 https://linkinghub.elsevier.com/retrieve/pii/S0164121222001133
https://doi.org/10.1016/j.jss.2022.111397 https://linkinghub.elsevier.com/retrieve/pii/S0164121222001133
https://doi.org/10.1016/j.jss.2022.111397 https://linkinghub.elsevier.com/retrieve/pii/S0164121222001133
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_488
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_488
papers2://publication/uuid/BA23C102-A2EA-4493-AEA4-2B85C3BD3FA1 https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
papers2://publication/uuid/BA23C102-A2EA-4493-AEA4-2B85C3BD3FA1 https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
papers2://publication/uuid/BA23C102-A2EA-4493-AEA4-2B85C3BD3FA1 https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/10.1007/s10664-020-09879-8
https://doi.org/10.1007/s10664-020-09879-8
http://ieeexplore.ieee.org/document/6063155/

REFERENCES 221

Ehsan O, Hassan S, Mezouar ME, Zou Y (2021) An Empirical Study of Developer
Discussions in the Gitter Platform. ACM Transactions on Software Engineering
and Methodology 30(1):1–39, DOI 10.1145/3412378, URL https://dl.acm.org/
doi/10.1145/3412378

El-Kassas WS, Salama CR, Rafea AA, Mohamed HK (2021) Automatic text summa-
rization: A comprehensive survey. Expert Systems with Applications 165:113679,
DOI 10.1016/j.eswa.2020.113679, URL https://linkinghub.elsevier.com/
retrieve/pii/S0957417420305030

El Zarif O, Da Costa DA, Hassan S, Zou Y (2020) On the Relationship between User
Churn and Software Issues. In: Proceedings of the 17th International Conference
on Mining Software Repositories, ACM, New York, pp 339–349, DOI 10.1145/
3379597.3387456, URL https://dl.acm.org/doi/10.1145/3379597.3387456

Elmezouar M, Alencar da Costa D, German D, Zou Y (2021) Exploring the Use of
Chatrooms by Developers: An Empirical Study on Slack and Gitter. IEEE Trans-
actions on Software Engineering pp 1–1, DOI 10.1109/TSE.2021.3109617, URL
https://goo.gl/forms/oX4UqWUDRcykBP372https://ieeexplore.ieee.org/
document/9528018/

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) Knowledge Discovery in From Data
Mining to Databases. AI Magazine 17(3):37–54

Ford D, Lustig K, Banks J, Parnin C (2018) "We Don’t Do That Here": How Collab-
orative Editing with Mentors Improves Engagement in Social Q&A Communities.
In: Proceedings of the 2018 Conference on Human Factors in Computing Systems,
ACM, New York, pp 1–12, DOI 10.1145/3173574.3174182, URL https://doi.org/
10.1145/3173574.3174182https://dl.acm.org/doi/10.1145/3173574.3174182

Forsgren E, Byström K (2018) Multiple social media in the workplace: Contradic-
tions and congruencies. Information Systems Journal 28(3):442–464, DOI 10.1111/
isj.12156, URL https://onlinelibrary.wiley.com/doi/10.1111/isj.12156

Fowkes J, Chanthirasegaran P, Ranca R, Allamanis M, Lapata M, Sutton C (2016)
Autofolding for source code summarization. Proceedings of the International Con-
ference on Software Engineering 43(12):649–652, DOI 10.1145/2889160.2889171

Fu Y, Yan M, Zhang X, Xu L, Yang D, Kymer JD (2015) Automated classification of
software change messages by semi-supervised Latent Dirichlet Allocation. Informa-
tion and Software Technology 57:369–377, DOI 10.1016/j.infsof.2014.05.017

Galvis Carreno LV, Winbladh K (2012) Analysis of User Comments: An Approach
for Software Requirements Evolution. In: Proceedings of the International Confer-
ence on Software Engineering, IEEE/ACM, San Francisco, pp 582–591

Gao C, Zeng J, Lyu MR, King I (2018) Online app review analysis for identifying
emerging issues. In: Proceedings of the 40th International Conference on Software
Engineering, IEEE/ACM, Gothenburg, pp 48–58, DOI 10.1145/3180155.3180218,
URL https://doi.org/10.1145/3180155.3180218

GitLab (2020) Terms - GitLab. URL https://about.gitlab.com/terms/

https://dl.acm.org/doi/10.1145/3412378
https://dl.acm.org/doi/10.1145/3412378
https://linkinghub.elsevier.com/retrieve/pii/S0957417420305030
https://linkinghub.elsevier.com/retrieve/pii/S0957417420305030
https://dl.acm.org/doi/10.1145/3379597.3387456
https://goo.gl/forms/oX4UqWUDRcykBP372 https://ieeexplore.ieee.org/document/9528018/
https://goo.gl/forms/oX4UqWUDRcykBP372 https://ieeexplore.ieee.org/document/9528018/
https://doi.org/10.1145/3173574.3174182 https://dl.acm.org/doi/10.1145/3173574.3174182
https://doi.org/10.1145/3173574.3174182 https://dl.acm.org/doi/10.1145/3173574.3174182
https://onlinelibrary.wiley.com/doi/10.1111/isj.12156
https://doi.org/10.1145/3180155.3180218
https://about.gitlab.com/terms/

222 REFERENCES

Giuffrida R, Dittrich Y (2013) Empirical studies on the use of social software in
global software development - a systematic mapping study. Information and Soft-
ware Technology 55(7):1143–1164, DOI 10.1016/j.infsof.2013.01.004

Gopalakrishnan R, Sharma P, Mirakhorli M, Galster M (2017) Can Latent Topics in
Source Code Predict Missing Architectural Tactics? In: Proceedings of the 39th
International Conference on Software Engineering, IEEE/ACM, pp 15–26, DOI
10.1109/ICSE.2017.10, URL http://ghtorrent.org/

Gorla A, Tavecchia I, Gross F, Zeller A (2014) Checking App Behavior Against App
Descriptions. In: Proceedings of the International Conference on Software Engi-
neering, IEEE/ACM, Hyderabad, pp 1025–1035, DOI 10.1145/2568225.2568276,
URL http://dx.doi.org/10.1145/2568225.2568276

Griffiths TL, Steyvers M (2004) Finding scientific topics. In: Proceedings of the Na-
tional Academy of Sciences, Neural Information Processing Systems Foundation,
Irvine, vol 101, pp 5228–5235, DOI 10.1073/pnas.0307752101

Groff T, Jones T (2012) Introducing KM. In: Introduction to Knowledge Man-
agement: KM in Business, Routledge, pp 1–10, URL https://ebookcentral.
proquest.com/lib/canterbury/detail.action?docID=296815

Gupta S, Gupta SK (2019) Abstractive summarization: An overview of the
state of the art. Expert Systems with Applications 121:49–65, DOI 10.1016/j.
eswa.2018.12.011, URL https://linkinghub.elsevier.com/retrieve/pii/
S0957417418307735

Guzman E, Ibrahim M, Glinz M (2017) A Little Bird Told Me: Mining Tweets for
Requirements and Software Evolution. In: Proceedings of the 25th International
Requirements Engineering Conference, IEEE, Lisbon, pp 11–20, DOI 10.1109/RE.
2017.88, URL http://ieeexplore.ieee.org/document/8048886/

Haghighi A, Vanderwende L (2009) Exploring content models for multi-document
summarization. In: Proceedings of Human Language Technologies: The Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics, Morristown, pp 1–9, DOI
10.3115/1620754.1620807, URL http://www-nlpir.nist.gov/projects/duc/
data.htmlhttp://portal.acm.org/citation.cfm?doid=1620754.1620807

Han J, Shihab E, Wan Z, Deng S, Xia X (2020) What do Programmers Discuss
about Deep Learning Frameworks. Empirical Software Engineering 25:2694–
2747, DOI 10.1007/s10664-020-09819-6, URL https://doi.org/10.1007/
s10664-020-09819-6

Haque MU, Ali Babar M (2020) Challenges in Docker Development: A Large-scale
Study Using Stack Overflow. In: Proceedings of the 14th International Symposium
on Empirical Software Engineering and Measurement, IEEE/ACM, Bari, pp 1–
11, DOI 10.1145/3382494.3410693, URL https://doi.org/10.1145/3382494.
3410693

Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013)
Supporting domain analysis through mining and recommending features from

http://ghtorrent.org/
http://dx.doi.org/10.1145/2568225.2568276
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=296815
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=296815
https://linkinghub.elsevier.com/retrieve/pii/S0957417418307735
https://linkinghub.elsevier.com/retrieve/pii/S0957417418307735
http://ieeexplore.ieee.org/document/8048886/
http://www-nlpir.nist.gov/projects/duc/data.html http://portal.acm.org/citation.cfm?doid=1620754.1620807
http://www-nlpir.nist.gov/projects/duc/data.html http://portal.acm.org/citation.cfm?doid=1620754.1620807
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1145/3382494.3410693

REFERENCES 223

online product listings. IEEE Transactions on Software Engineering 39(12):1736–
1752, DOI 10.1109/TSE.2013.39

Henß S, Monperrus M, Mezini M (2012) Semi-automatically extracting FAQs to
improve accessibility of software development knowledge. In: Proceedings of the
International Conference on Software Engineering, IEEE/ACM, Zurich, pp 793–
803, DOI 10.1109/ICSE.2012.6227139

Hevner AR, March ST, Park J, Ram S (2004) Design Science in Information Systems
Research. MIS Quarterly 28(1):75–105, DOI 10.2307/25148625, URL http://dblp.
uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04

Hindle A, Godfrey MW, Ernst NA, Mylopoulos J (2011) Automated topic naming to
support cross-project analysis of software maintenance activities. In: Proceedings
of the 33rd International Conference on Software Engineering, ACM, Waikiki, pp
163–172

Hindle A, Ernst NA, Godfrey MW, Mylopoulos J (2013) Automated topic naming:
Supporting cross-project analysis of software maintenance activities. Empirical
Software Engineering 18(6):1125–1155, DOI 10.1007/s10664-012-9209-9

Hindle A, Bird C, Zimmermann T, Nagappan N (2015) Do topics make sense to
managers and developers? Empirical Software Engineering 20:479–515, DOI 10.
1007/s10664-014-9312-1

Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more accu-
rate duplicate bug report detection and ranking. Empirical Software Engineering
21(2):368–410, DOI 10.1007/s10664-015-9387-3

Hoffman M, Blei D, Bach F (2010) Online learning for latent dirichlet alloca-
tion. In: Proceedings of the Neural Information Processing Systems Conference,
Neural Information Processing Systems Foundation, Vancouver, pp 1–9, DOI
10.5555/2997189.2997285, URL https://papers.nips.cc/paper/2010/hash/
71f6278d140af599e06ad9bf1ba03cb0-Abstract.html

Hofmann T (1999) Probabilistic Latent Semantic Indexing. In: Proceedings of the
22nd Annual International Conference on Research and Development in Informa-
tion Retrieval, ACM, Berkeley, pp 50–57

Hu H, Bezemer CP, Hassan AE (2018) Studying the consistency of star ratings
and the complaints in 1 & 2-star user reviews for top free cross-platform An-
droid and iOS apps. Empirical Software Engineering 23(6):3442–3475, DOI
10.1007/s10664-018-9604-y, URL https://doi.org/10.1007/s10664-018-9604-y

Hu H, Wang S, Bezemer CP, Hassan AE (2019) Studying the consistency of star rat-
ings and reviews of popular free hybrid Android and iOS apps. Empirical Software
Engineering 24:7–32, DOI 10.1007/s10664-018-9617-6

Hu W, Wong K (2013) Using citation influence to predict software defects. In: Pro-
ceedings of the International Working Conference on Mining Software Repositories,
IEEE, San Francisco, pp 419–428, DOI 10.1109/MSR.2013.6624058

http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
https://papers.nips.cc/paper/2010/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://papers.nips.cc/paper/2010/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://doi.org/10.1007/s10664-018-9604-y

224 REFERENCES

Jiang H, Zhang J, Ren Z, Zhang T (2017) An Unsupervised Approach for Discov-
ering Relevant Tutorial Fragments for APIs. In: Proceedings of the 39th Interna-
tional Conference on Software Engineering, IEEE/ACM, Buenos Aires, pp 38–48,
DOI 10.1109/ICSE.2017.12

Jiang H, Zhang J, Li X, Ren Z, Lo D, Wu X, Luo Z (2019) Recommending New Fea-
tures from Mobile App Descriptions. ACM Transactions on Software Engineering
and Methodology 28(4):1–29, DOI 10.1145/3344158, URL https://dl.acm.org/
doi/10.1145/3344158

Jo Y, Oh A (2011) Aspect and sentiment unification model for online review analysis.
In: Proceedings of the fourth ACM international conference on Web search and
data mining, ACM, New York, pp 815–824, DOI 10.1145/1935826

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th International Conference on
Automated Software Engineering, IEEE/ACM, New York, New York, USA, pp
273–282, DOI 10.1145/1101908.1101949, URL http://portal.acm.org/citation.
cfm?doid=1101908.1101949

Kakas AC, Cohn D, Dasgupta S, Barto AG, Carpenter GA, Grossberg S, Webb GI,
Dorigo M, Birattari M, Toivonen H, Timmis J, Branke J, Toivonen H, Strehl AL,
Drummond C, Coates A, Abbeel P, Ng AY, Zheng F, Webb GI, Tadepalli P (2011)
Area Under Curve. In: Encyclopedia of Machine Learning, Springer US, pp 40–
40, DOI 10.1007/978-0-387-30164-8{_}28, URL https://link.springer.com/
referenceworkentry/10.1007/978-0-387-30164-8_28

Khatri C, Singh G, Parikh N (2018) Abstractive and Extractive Text Summarization
using Document Context Vector and Recurrent Neural Networks. In: Proceedings
of the 24th Conference on Knowledge Discovery and Data Mining - Deep Learning
Day, ACM, London, pp 1–10, URL https://arxiv.org/abs/1807.08000v2http:
//arxiv.org/abs/1807.08000

Kitchenham BA (2004) Procedures for performing systematic reviews. Keele, UK,
Keele University 33(TR/SE-0401):28, DOI 10.1.1.122.3308

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K,
Rosenberg J (2002) Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering 28(8):721–734, DOI
10.1109/TSE.2002.1027796

Klein HK, Myers MD (1999) A Set of Principles for Conducting and Evaluating
Interpretive Field Studies in Information Systems. MIS Quarterly 23(1):67–93

Komi-Sirviö S, Mäntyniemi A, Seppänen V (2002) Toward a practical solution for
capturing knowledge for software projects. IEEE Software 19(3):60–62, DOI 10.
1109/MS.2002.1003457

Korstjens I, Moser A (2018) Series: Practical guidance to qualitative research. Part 4:
Trustworthiness and publishing. European Journal of General Practice 24(1):120–
124, DOI 10.1080/13814788.2017.1375092

https://dl.acm.org/doi/10.1145/3344158
https://dl.acm.org/doi/10.1145/3344158
http://portal.acm.org/citation.cfm?doid=1101908.1101949
http://portal.acm.org/citation.cfm?doid=1101908.1101949
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_28
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_28
https://arxiv.org/abs/1807.08000v2 http://arxiv.org/abs/1807.08000
https://arxiv.org/abs/1807.08000v2 http://arxiv.org/abs/1807.08000

REFERENCES 225

Kotlarsky J, van Fenema PC, Willcocks LP (2008) Developing a knowledge-based
perspective on coordination: The case of global software projects. Informa-
tion & Management 45(2):96–108, DOI 10.1016/j.im.2008.01.001, URL https:
//linkinghub.elsevier.com/retrieve/pii/S0378720608000037

Kruchten P (2008) The Biological Half-Life of Software Engineering Ideas. IEEE
Software 25(5):10–11, DOI 10.1109/MS.2008.127, URL http://ieeexplore.ieee.
org/document/4602666/

Kumar I, Singh SP, Shivam (2022) Machine learning in bioinformatics. In:
Bioinformatics, Elsevier, chap Unsupervis, pp 443–456, DOI 10.1016/
B978-0-323-89775-4.00020-1, URL https://linkinghub.elsevier.com/
retrieve/pii/B9780323897754000201

Lardinois F (2019) Microsoft says Teams now has 13M daily active users. URL
https://tcrn.ch/3a1MG6t

Lau JH, Newman D, Baldwin T (2014) Machine Reading Tea Leaves: Automatically
Evaluating Topic Coherence and Topic Model Quality. In: Proceedings ofthe 14th
Conference ofthe European Chapter ofthe Association for Computational Linguis-
tics, Association for Computational Linguistics, Gothenburg, pp 530–539

Layman L, Nikora AP, Meek J, Menzies T (2016) Topic modeling of NASA space
system problem reports research in practice. In: Proceedings of the 13th Working
Conference on Mining Software Repositories, ACM, Austin, pp 303–314, DOI
10.1145/2901739.2901760

Le TDB, Thung F, Lo D (2017) Will this localization tool be effective for this
bug? Mitigating the impact of unreliability of information retrieval based bug
localization tools. Empirical Software Engineering 22:2237–2279, DOI 10.1007/
s10664-016-9484-y

Leach RJ (2016) Introduction to Software Engineering, 2nd edn. CRC Press LLC,
URL https://ebookcentral.proquest.com/lib/canterbury/detail.action?
docID=4711469&query=Software+Engineering

van der Lee C, Gatt A, van Miltenburg E, Krahmer E (2021) Human evaluation
of automatically generated text: Current trends and best practice guidelines.
Computer Speech & Language 67:101151, DOI 10.1016/j.csl.2020.101151, URL
https://linkinghub.elsevier.com/retrieve/pii/S088523082030084X

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755):788–791

Li C, Duan Y, Wang H, Zhang Z, Sun A, Ma Z (2017) Enhancing topic modeling for
short texts with auxiliary word embeddings. ACM Transactions on Information
Systems 36(2):30, DOI 10.1145/3091108

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging us-
ing topic models. Empirical Software Engineering 23:2655–2694, DOI 10.1007/
s10664-018-9595-8

https://linkinghub.elsevier.com/retrieve/pii/S0378720608000037
https://linkinghub.elsevier.com/retrieve/pii/S0378720608000037
http://ieeexplore.ieee.org/document/4602666/
http://ieeexplore.ieee.org/document/4602666/
https://linkinghub.elsevier.com/retrieve/pii/B9780323897754000201
https://linkinghub.elsevier.com/retrieve/pii/B9780323897754000201
https://tcrn.ch/3a1MG6t
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=4711469&query=Software+Engineering
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=4711469&query=Software+Engineering
https://linkinghub.elsevier.com/retrieve/pii/S088523082030084X

226 REFERENCES

Lian X, Liu W, Zhang L (2020) Assisting engineers extracting requirements on
components from domain documents. Information and Software Technology
118:106196, DOI 10.1016/j.infsof.2019.106196, URL https://linkinghub.
elsevier.com/retrieve/pii/S0950584919302034

Lin B, Zagalsky A, Storey MA, Serebrenik A (2016) Why Developers Are Slacking
Off: Understanding How Software Teams Use Slack. In: Proceedings of the 19th
Conference on Computer Supported Cooperative Work and Social Computing
Companion, ACM, San Francisco, pp 333–336, DOI 10.1145/2818052.2869117,
URL http://dl.acm.org/citation.cfm?doid=2818052.2869117

Lin CY (2004) ROUGE: A Package for Automatic Evaluation of Summaries. In:
Proceedings of the Workshop on Text Summarization Branches Out, Association
for Computational Linguistics, Barcelona, pp 1–8

Lin T, Tian W, Mei Q, Cheng H (2014) The dual-sparse topic model: Mining focused
topics and focused terms in short text. In: Proceedings of the 23rd International
Conference on World Wide Web, ACM, Seoul, pp 539–549, DOI 10.1145/2566486.
2567980

Liu Y, Liu L, Liu H, Wang X, Yang H (2017) Mining domain knowledge from app
descriptions. Journal of Systems and Software 133:126–144, DOI 10.1016/j.jss.2017.
08.024

Liu Y, Lin J, Cleland-Huang J (2020) Traceability Support for Multi-Lingual Soft-
ware Projects. In: Proceedings of the 17th International Conference on Mining
Software Repositories, ACM, Seoul, pp 443–454, DOI 10.1145/3379597.3387440,
URL https://doi.org/10.1145/3379597.3387440

Lukins SK, Kraft NA, Etzkorn LH (2010) Bug localization using latent Dirichlet
allocation. Information and Software Technology 52:972–990, DOI 10.1016/j.infsof.
2010.04.002

Lund Research Ltd (2018a) Pearson Product-Moment Correlation.
URL https://statistics.laerd.com/statistical-guides/
pearson-correlation-coefficient-statistical-guide.php

Lund Research Ltd (2018b) Spearman’s Rank-Order Correlation.
URL https://statistics.laerd.com/statistical-guides/
spearmans-rank-order-correlation-statistical-guide.php

Luo Q, Moran K, Poshyvanyk D (2016) A Large-Scale Empirical Comparison of
Static and Dynamic Test Case Prioritization Techniques. In: Proceedings of the
24th International Symposium on Foundations of Software Engineering, ACM,
Seattle, pp 559–570, DOI 10.1145/2950290.2950344, URL http://dx.doi.org/10.
1145/2950290.2950344

Mahmoud A, Bradshaw G (2017) Semantic topic models for source code analysis.
Empirical Software Engineering 22(4):1965–2000, DOI 10.1007/s10664-016-9473-1

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. The Annals of Mathematical Statistics

https://linkinghub.elsevier.com/retrieve/pii/S0950584919302034
https://linkinghub.elsevier.com/retrieve/pii/S0950584919302034
http://dl.acm.org/citation.cfm?doid=2818052.2869117
https://doi.org/10.1145/3379597.3387440
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
http://dx.doi.org/10.1145/2950290.2950344
http://dx.doi.org/10.1145/2950290.2950344

REFERENCES 227

18(1):50–60, DOI 10.1214/aoms/1177730491, URL http://projecteuclid.org/
euclid.aoms/1177730491

Manning CD, Raghavan P, Schütze H (2008) Evaluation of Clustering. In: In-
troduction to Information Retrieval, Cambridge University Press, chap 16,
DOI 10.33899/csmj.2008.163987, URL https://nlp.stanford.edu/IR-book/
html/htmledition/evaluation-of-clustering-1.htmlhttp://nlp.
stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.
htmlwhereisthesetofclustersan

Mantyla MV, Claes M, Farooq U (2018) Measuring LDA topic stability from clusters
of replicated runs. In: International Symposium on Empirical Software Engineering
and Measurement, ACM, Oulu, pp 1–5, DOI 10.1145/3239235.3267435

Markus LM (2001) Toward a theory of knowledge reuse: Types of knowledge reuse
situations and factors in reuse success. Journal of Management Information Sys-
tems 18(1):57–93, DOI 10.1080/07421222.2001.11045671

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015) The app sampling prob-
lem for app store mining. In: Proceedings of the 12th International Working
Conference on Mining Software Repositories, IEEE, Florence, pp 123–133, DOI
10.1109/MSR.2015.19

Martin W, Sarro F, Harman M (2016) Causal Impact Analysis for App Releases in
Google Play. In: Proceedings of the 24th International Symposium on Foundations
of Software Engineering, ACM, Seattle, pp 435–446, DOI 10.1145/2950290.2950320,
URL http://dx.doi.org/10.1145/2950290.2950320

Matney L (2019) Slack now has more than 10 million daily ac-
tive users. URL https://techcrunch.com/2019/01/29/
slack-now-has-more-than-10-million-daily-active-users/

McIlroy S, Ali N, Khalid H, E Hassan A (2016) Analyzing and automatically la-
belling the types of user issues that are raised in mobile app reviews. Empirical
Software Engineering 21:1067–1106, DOI 10.1007/s10664-015-9375-7

Mehrotra R, Sanner S, Buntine W, Xie L (2013) Improving LDA Topic Models for
Microblogs via Tweet Pooling and Automatic Labeling. In: Proceedings of the 36th
International Conference on Research and Development in Information Retrieval,
ACM, Dublin, p 889–892

Mezouar ME, Zhang F, Zou Y (2018) Are tweets useful in the bug fixing process?
An empirical study on Firefox and Chrome. Empirical Software Engineering
23(3):1704–1742, DOI 10.1007/s10664-017-9559-4, URL https://doi.org/10.
1007/s10664-017-9559-4

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed Represen-
tations of Words and Phrases and their Compositionality. In: Proceedings of the
Annual Conference on Neural Information Processing Systems, Neural Information
Processing Systems Foundation, Lake Tahoe, pp 1–9, URL https://papers.nips.
cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.html where is the set of clusters an
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.html where is the set of clusters an
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.html where is the set of clusters an
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.html where is the set of clusters an
http://dx.doi.org/10.1145/2950290.2950320
https://techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-users/
https://techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-users/
https://doi.org/10.1007/s10664-017-9559-4
https://doi.org/10.1007/s10664-017-9559-4
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

228 REFERENCES

Mimno D, Wallach HM, Talley E, Leenders M, Mccallum A (2011) Optimizing Se-
mantic Coherence in Topic Models. In: Proceedings ofthe 2011 Conference on Em-
pirical Methods in Natural Language Processing, Association for Computational
Linguistics, Edinburgh, pp 262–272, DOI 10.5555/2145432.2145462

Miner G, Elder J, Fast A, Hill T, Nisbet R, Delen D (2012) Practical Text Mining
and Statistical Analysis for Non-structured Text Data Applications. Elsevier Sci-
ence & Technology, Waltham, DOI https://doi.org/10.1016/C2010-0-66188-8

Moslehi P, Adams B, Rilling J (2016) On mining crowd-based speech documentation.
In: Proceedings of the 13th Working Conference on Mining Software Repositories,
ACM, Austin, pp 259–268, DOI 10.1145/2901739.2901771

Moslehi P, Adams B, Rilling J (2018) Feature location using crowd-based screencasts.
In: Proceedings of the 15th International Conference on Mining Software Reposito-
ries, ACM, New York, pp 192–202, DOI 10.1145/3196398.3196439

Moslehi P, Adams B, Rilling J (2020) A feature location approach for mapping ap-
plication features extracted from crowd-based screencasts to source code. Empir-
ical Software Engineering 25:4873–4926, DOI 10.1007/s10664-020-09874-z, URL
https://doi.org/10.1007/s10664-020-09874-z

Murali V, Chaudhuri S, Jermaine C (2017) Bayesian specification learning for finding
API usage errors. In: Proceedings of the Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
Paderborn, pp 151–162, DOI 10.1145/3106237.3106284

Murphy B, Talukdar PP, Mitchell T (2012) Learning effective and interpretable se-
mantic models using non-negative sparse embedding. In: Proceedings of the 24th
International Conference on Computational Linguistics, COLING, Mumbai, pp
1933–1950

Nabli H, Ben Djemaa R, Ben Amor IA (2018) Efficient cloud service discovery ap-
proach based on LDA topic modeling. Journal of Systems and Software 146:233–
248, DOI 10.1016/j.jss.2018.09.069

Naguib H, Narayan N, Brügge B, Helal D (2013) Bug report assignee recommen-
dation using activity profiles. In: Proceedings of the International Working Con-
ference on Mining Software Repositories, IEEE, San Francisco, pp 22–30, DOI
10.1109/MSR.2013.6623999

Nayebi M, Cho H, Ruhe G (2018) App store mining is not enough for app im-
provement. Empirical Software Engineering 23:2764–2794, DOI 10.1007/
s10664-018-9601-1

Newman D, Karimi S, Cavedon L (2009) External evaluation of topic models. In:
Proceedings of the Fourteenth Australasian Document Computing Symposium,
HCSNet, Sydney, pp 11–18

Newman D, Lau JH, Grieser K, Baldwin T (2010) Automatic Evaluation of Topic Co-
herence. In: Proceedings of the Annual Conference of the North American Chapter
of the ACL, ACL, Los Angeles, pp 100–108, DOI 10.5555/1857999.1858011

https://doi.org/10.1007/s10664-020-09874-z

REFERENCES 229

Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based
approach for narrowing the search space of buggy files from a bug report. In: Pro-
ceedings of the 26th International Conference on Automated Software Engineering,
IEEE/ACM, Lawrence, pp 263–272, DOI 10.1109/ASE.2011.6100062

Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C (2012) Duplicate bug report
detection with a combination of information retrieval and topic modeling. In: Pro-
ceedings of the 27th International Conference on Automated Software Engineering,
IEEE/ACM, Essen, pp 70–79, DOI 10.1145/2351676.2351687

Nguyen H, Hovy D (2019) Hey Siri. Ok Google. Alexa: A topic modeling of user
reviews for smart speakers. In: Proceedings of the 5th Workshop on Noisy User-
generated Text, Association for Computational Linguistics, Hong Kong, pp 76–83,
DOI 10.18653/v1/d19-5510

Nguyen VA, Boyd-Graber J, Resnik P, Chang J, Graber JB (2014) Learning a Con-
cept Hierarchy from Multi-labeled Documents. In: Proceedings of the Neural In-
formation Processing Systems Conference, Neural Information Processing Systems
Foundation, Montreal, pp 1–9

Niinimäki T, Lassenius C (2008) Experiences of instant messaging in global software
development projects: A multiple case study. In: Proceedings of the 3rd Inter-
national Conference Global Software Engineering, IEEE, Bangalore, pp 55–64,
DOI 10.1109/ICGSE.2008.27

Noei E, Heydarnoori A (2016) EXAF: A search engine for sample applications of
object-oriented framework-provided concepts. Information and Software Technol-
ogy 75:135–147, DOI 10.1016/j.infsof.2016.03.007, URL http://dx.doi.org/10.
1016/j.infsof.2016.03.007

Noei E, Da Costa DA, Zou Y (2018) Winning the app production rally. In: Pro-
ceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
Lake Buena Vista, pp 283–294, DOI 10.1145/3236024.3236044, URL https:
//doi.org/10.1145/3236024.3236044

Noei E, Zhang F, Wang S, Zou Y (2019) Towards prioritizing user-related issue re-
ports of mobile applications. Empirical Software Engineering 24:1964–1996, DOI
10.1007/s10664-019-09684-y

Nonaka I, Takeuchi H (1995) The knowledge-creating company : how Japanese
companies create the dynamics of innovation. Oxford University Press, URL
https://books.google.co.nz/books?id=B-qxrPaU1-MC&printsec=frontcover&
hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Pagano D, Maalej W (2013) How do open source communities blog? Empirical Soft-
ware Engineering 18(6):1090–1124, DOI 10.1007/s10664-012-9211-2

Palomba F, Salza P, Ciurumelea A, Panichella S, Gall H, Ferrucci F, De Lucia A
(2017) Recommending and Localizing Change Requests for Mobile Apps Based on
User Reviews. In: Proceedings of the 39th International Conference on Software
Engineering, IEEE/ACM, Buenos Aires, pp 106–117, DOI 10.1109/ICSE.2017.18

http://dx.doi.org/10.1016/j.infsof.2016.03.007
http://dx.doi.org/10.1016/j.infsof.2016.03.007
https://doi.org/10.1145/3236024.3236044
https://doi.org/10.1145/3236024.3236044
https://books.google.co.nz/books?id=B-qxrPaU1-MC&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.co.nz/books?id=B-qxrPaU1-MC&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

230 REFERENCES

Panichella A, Dit B, Oliveto R, Di Penta M, Poshynanyk D, De Lucia A (2013)
How to effectively use topic models for software engineering tasks? An ap-
proach based on Genetic Algorithms. In: Proceedings of the International Con-
ference on Software Engineering, IEEE/ACM, San Francisco, pp 522–531, DOI
10.1109/ICSE.2013.6606598

Parra E, Ellis A, Haiduc S (2020) GitterCom - A Dataset of Open Source Developer
Communications in Gitter. In: Proceedings of the 17th International Conference
on Mining Software Repositories, ACM, New York, pp 563–567, DOI 10.1145/
3379597.3387494, URL https://doi.org/10.1145/3379597.3387494https://dl.
acm.org/doi/10.1145/3379597.3387494

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Information
Needs in Contemporary Code Review. In: Proceedings of the ACM on Human-
Computer Interaction, ACM, New York, pp 1–27, DOI 10.1145/3274404, URL
https://doi.org/10.5281/zenodo.1405894].https://dl.acm.org/doi/10.
1145/3274404

Paulus R, Xiong C, Socher R (2018) A Deep Reinforced Model for Abstractive Sum-
marization. In: Proceedings of the 6th International Conference on Learning Rep-
resentations, International Society of the Learning Sciences, Vancouver, pp 1–12,
URL http://arxiv.org/abs/1705.04304

Pérez F, Lapeña R, Font J, Cetina C (2018) Fragment retrieval on models for model
maintenance: Applying a multi-objective perspective to an industrial case study.
Information and Software Technology 103:188–201, DOI 10.1016/j.infsof.2018.06.
017, URL https://doi.org/10.1016/j.infsof.2018.06.017

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology 64(1):1–18, DOI 10.1016/j.infsof.2015.03.007

Pettinato M, Gil JP, Galeas P, Russo B (2019) Log mining to re-construct system
behavior: An exploratory study on a large telescope system. Information and Soft-
ware Technology 114:121–136, DOI 10.1016/j.infsof.2019.06.011

Philipson S, Kjellström E (2020) When objects are talking: How tacit knowing be-
comes explicit knowledge. Journal of Small Business Strategy 30(1):68–82, URL
https://libjournals.mtsu.edu/index.php/jsbs/article/view/1666

Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V (2007) Fea-
ture location using probabilistic ranking of methods based on execution sce-
narios and information retrieval. IEEE Transactions on Software Engineering
33(6):420–431, DOI 10.1109/TSE.2007.1016, URL https://www.researchgate.
net/publication/3189749

Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T (2009) Using information retrieval
based coupling measures for impact analysis. Empirical Software Engineering
14(1):5–32, DOI 10.1007/s10664-008-9088-2, URL http://www.mozilla.org/

Poshyvanyk D, Gethers M, Marcus A (2012) Concept location using formal concept
analysis and information retrieval. ACM Transactions on Software Engineering and

https://doi.org/10.1145/3379597.3387494 https://dl.acm.org/doi/10.1145/3379597.3387494
https://doi.org/10.1145/3379597.3387494 https://dl.acm.org/doi/10.1145/3379597.3387494
https://doi.org/10.5281/zenodo.1405894]. https://dl.acm.org/doi/10.1145/3274404
https://doi.org/10.5281/zenodo.1405894]. https://dl.acm.org/doi/10.1145/3274404
http://arxiv.org/abs/1705.04304
https://doi.org/10.1016/j.infsof.2018.06.017
https://libjournals.mtsu.edu/index.php/jsbs/article/view/1666
https://www.researchgate.net/publication/3189749
https://www.researchgate.net/publication/3189749
http://www.mozilla.org/

REFERENCES 231

Methodology 21(4):1–34, DOI 10.1145/2377656.2377660, URL https://dl.acm.
org/doi/10.1145/2377656.2377660

Poursabzi-Sangdeh F, Goldstein DG, Hofman JM, Vaughan JW, Wallach H (2021)
Manipulating and Measuring Model Interpretability. In: Proceedings of the
Conference on Human Factors in Computing Systems, ACM, Yokohama, DOI
10.1145/3411764.3445315, URL https://doi.org/10.1145/3411764.3445315

Qiang J, Qian Z, Li Y, Yuan Y, Wu X (2022) Short Text Topic Modeling Tech-
niques, Applications, and Performance: A Survey. IEEE Transactions on Knowl-
edge and Data Engineering 34(3):1427–1445, DOI 10.1109/TKDE.2020.2992485,
URL https://ieeexplore.ieee.org/document/9086136/

Rabiser R, Guinea S, Vierhauser M, Baresi L, Grünbacher P (2017) A compari-
son framework for runtime monitoring approaches. Journal of Systems and Soft-
ware 125:309–321, DOI 10.1016/j.jss.2016.12.034, URL https://doi.org/10.
1016/j.jss.2016.12.034https://linkinghub.elsevier.com/retrieve/pii/
S0164121216302618

Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled LDA: A supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, ACL/AFNLP,
Singapore, pp 248–256, DOI 10.5555/1699510.1699543

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: A com-
parative study of generic and composite text models. In: Proceedings of the In-
ternational Conference on Software Engineering, IEEE/ACM, Waikiki, pp 43–52,
DOI 10.1145/1985441.1985451

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming
languages and code quality in GitHub. In: Proceedings of the Symposium on the
Foundations of Software Engineering, pp 155–165, DOI 10.1145/2635868.2635922,
URL http://dx.doi.org/10.1145/2635868.2635922

Revelle M, Gethers M, Poshyvanyk D (2011) Using structural and textual informa-
tion to capture feature coupling in object-oriented software. Empirical Software
Engineering 16(6):773–811, DOI 10.1007/s10664-011-9159-7

Rieger C, Majchrzak TA (2019) Towards the definitive evaluation framework for
cross-platform app development approaches. Journal of Systems and Software
153:175–199, DOI 10.1016/J.JSS.2019.04.001

Robillard PN (1999) The role of knowledge in software development. Communica-
tions of the ACM 42(1):87–92, DOI 10.1145/291469.291476

Röder M, Both A, Hinneburg A (2015) Exploring the Space of Topic Coherence
Measures. In: Proceedings of the Eighth ACM International Conference on
Web Search and Data Mining - WSDM ’15, ACM, Shanghai, pp 399–408, DOI
10.1145/2684822.2685324

Rosen C, Shihab E (2016) What are mobile developers asking about? A large scale
study using Stack Overflow. Empirical Software Engineering 21:1192–1223, DOI
10.1007/s10664-015-9379-3

https://dl.acm.org/doi/10.1145/2377656.2377660
https://dl.acm.org/doi/10.1145/2377656.2377660
https://doi.org/10.1145/3411764.3445315
https://ieeexplore.ieee.org/document/9086136/
https://doi.org/10.1016/j.jss.2016.12.034 https://linkinghub.elsevier.com/retrieve/pii/S0164121216302618
https://doi.org/10.1016/j.jss.2016.12.034 https://linkinghub.elsevier.com/retrieve/pii/S0164121216302618
https://doi.org/10.1016/j.jss.2016.12.034 https://linkinghub.elsevier.com/retrieve/pii/S0164121216302618
http://dx.doi.org/10.1145/2635868.2635922

232 REFERENCES

Rosenberg CM, Moonen L (2018) Improving problem identification via automated
log clustering using dimensionality reduction. In: Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, ACM, Oulu, pp
1–10, DOI 10.1145/3239235.3239248, URL https://doi.org/10.1145/3239235.
3239248

Rothermel G, Untcn RH, Chu C, Harrold MJ (2001) Prioritizing test cases for re-
gression testing. IEEE Transactions on Software Engineering 27(10):929–948, DOI
10.1109/32.962562

Runeson P, Höst M, Rainer A, Regnell B (2012a) Case Study Research in Software
Engineering: guidelines and examples. John Wiley & Sons, Hoboken, DOI 10.1002/
9781118181034

Runeson P, Höst M, Rainer A, Regnell B (2012b) Design of the Case Study. In: Case
Study Research in Software Engineering: guidelines and examples, John Wiley &
Sons, Hoboken, chap 3, pp 23–45, DOI 10.1002/9781118181034.ch3

Rus I, Lindvall M, Sinha SS (2002) Knowledge management in software engineering:
A State of the Art Report. Tech. rep., DoD Data & Analysis Center for Software
(DACS), DOI 10.1109/MS.2002.1003450

Sahar H, Hindle A, Bezemer CP (2021) How are issue reports discussed in Git-
ter chat rooms? Journal of Systems and Software 172:110852, DOI 10.1016/j.
jss.2020.110852, URL https://doi.org/10.1016/j.jss.2020.110852https:
//linkinghub.elsevier.com/retrieve/pii/S0164121220302429

Salton G, Wong A, Yang CS (1975) A Vector Space Model for Automatic Indexing.
Communications of the ACM 18(11):613–620, DOI 10.1145/361219.361220

Savage T, Dit B, Gethers M, Poshyvanyk D (2010) TopicXP: Exploring topics in
source code using Latent Dirichlet Allocation. In: Proceedings of the International
Conference on Software Maintenance, IEEE, Timisoara, DOI 10.1109/ICSM.2010.
5609654

Schluter N (2017) The limits of automatic summarisation according to ROUGE.
In: Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, Association for Computational Linguistics,
Stroudsburg, pp 41–45, DOI 10.18653/v1/E17-2007, URL http://aclweb.org/
anthology/E17-2007

ScienceDirect Topics (2008) Kappa Statistics - an overview. URL https://www.
sciencedirect.com/topics/medicine-and-dentistry/kappa-statistics

Shannon CE (1948) A Mathematical Theory of Communication. Bell System Techni-
cal Journal 27(3):379–423, DOI 10.1002/j.1538-7305.1948.tb01338.x

Sharrat M, Usoro A (2003) Understanding Knowledge-Sharing in Online Communi-
ties of Practice. Electronic Journal of Knowledge Management 1(2):187–196, DOI
10.1007/s40299-014-0200-7, URL http://www.getcited.org/pub/103398151%
5Cnhttp://www.ejkm.com/volume-1/volume1-issue-2/issue2-art18.htm

https://doi.org/10.1145/3239235.3239248
https://doi.org/10.1145/3239235.3239248
https://doi.org/10.1016/j.jss.2020.110852 https://linkinghub.elsevier.com/retrieve/pii/S0164121220302429
https://doi.org/10.1016/j.jss.2020.110852 https://linkinghub.elsevier.com/retrieve/pii/S0164121220302429
http://aclweb.org/anthology/E17-2007
http://aclweb.org/anthology/E17-2007
https://www.sciencedirect.com/topics/medicine-and-dentistry/kappa-statistics
https://www.sciencedirect.com/topics/medicine-and-dentistry/kappa-statistics
http://www.getcited.org/pub/103398151%5Cnhttp://www.ejkm.com/volume-1/volume1-issue-2/issue2-art18.htm
http://www.getcited.org/pub/103398151%5Cnhttp://www.ejkm.com/volume-1/volume1-issue-2/issue2-art18.htm

REFERENCES 233

Shi L, Chen X, Yang Y, Jiang H, Jiang Z, Niu N, Wang Q (2021) A first look at
developers’ live chat on Gitter. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ACM, New York, NY, USA, pp 391–403, DOI 10.1145/
3468264.3468562, URL https://2021.esec-fse.org/details/fse-2021-papers/
31/A-First-Look-at-Developers-Live-Chat-on-Gitterhttps://dl.acm.org/
doi/10.1145/3468264.3468562

Shimagaki J, Kamei Y, Ubayashi N, Hindle A (2018) Automatic Topic Classification
of Test Cases Using Text Mining at an Android Smartphone Vendor. In: Proceed-
ings of the 12th International Symposium on Empirical Software Engineering and
Measurement, IEEE/ACM, Oulu, pp 1–10, DOI 10.1145/3239235.3268927, URL
https://doi.org/10.1145/3239235.3268927

Shrikanth NC, Nichols W, Fahid FM, Menzies T (2021) Assessing practi-
tioner beliefs about software engineering. Empirical Software Engineering
26(73):1–32, DOI 10.1007/s10664-021-09957-5, URL https://doi.org/
10.1007/s10664-021-09957-5https://link.springer.com/10.1007/
s10664-021-09957-5

Shull F, Singer J, Sjøberg DIK (eds) (2008) Guide to Advanced Empirical Software
Engineering. Springer, London, DOI 10.1007/978-1-84800-044-5, URL http://
link.springer.com/10.1007/978-1-84800-044-5

Silva B, Sant’anna C, Rocha N, Chavez C (2016) The effect of automatic concern
mapping strategies on conceptual cohesion measurement. Information and Software
Technology 75:56–70, DOI 10.1016/j.infsof.2016.03.006, URL http://dx.doi.org/
10.1016/j.infsof.2016.03.006

Silva CC, Galster M, Gilson F (2021) Topic modeling in software engi-
neering research. Empirical Software Engineering 26(6):120, DOI 10.
1007/s10664-021-10026-0, URL https://link.springer.com/article/
10.1007/s10664-021-10026-0https://link.springer.com/10.1007/
s10664-021-10026-0

Silva LL, Valente MT, Maia MA (2019) Co-change patterns: A large scale empirical
study. Journal of Systems and Software 152:196–214, DOI 10.1016/j.jss.2019.03.014

Sjoberg DIK, Dyba T, Jorgensen M (2007) The Future of Empirical Methods in
Software Engineering Research. In: Proceedings of the Future of Software En-
gineering, IEEE, Minneapolis, pp 358–378, DOI 10.1109/FOSE.2007.30, URL
http://ieeexplore.ieee.org/document/4221632/

Slack (2022) Features | Slack. URL https://slack.com/features

Slofile (2020) Slofile - Discover Slack communities. URL https://slofile.com/

Slofile (2021) How It Works. URL https://slofile.com/how-it-works

Soliman M, Galster M, Salama AR, Riebisch M (2016) Architectural knowledge for
technology decisions in developer communities: An exploratory study with Stack
Overflow. In: Proceedings of the 13th Working Conference on Software Architec-
ture, IEEE, Venice, pp 128–133, DOI 10.1109/WICSA.2016.13

https://2021.esec-fse.org/details/fse-2021-papers/31/A-First-Look-at-Developers-Live-Chat-on-Gitter https://dl.acm.org/doi/10.1145/3468264.3468562
https://2021.esec-fse.org/details/fse-2021-papers/31/A-First-Look-at-Developers-Live-Chat-on-Gitter https://dl.acm.org/doi/10.1145/3468264.3468562
https://2021.esec-fse.org/details/fse-2021-papers/31/A-First-Look-at-Developers-Live-Chat-on-Gitter https://dl.acm.org/doi/10.1145/3468264.3468562
https://doi.org/10.1145/3239235.3268927
https://doi.org/10.1007/s10664-021-09957-5 https://link.springer.com/10.1007/s10664-021-09957-5
https://doi.org/10.1007/s10664-021-09957-5 https://link.springer.com/10.1007/s10664-021-09957-5
https://doi.org/10.1007/s10664-021-09957-5 https://link.springer.com/10.1007/s10664-021-09957-5
http://link.springer.com/10.1007/978-1-84800-044-5
http://link.springer.com/10.1007/978-1-84800-044-5
http://dx.doi.org/10.1016/j.infsof.2016.03.006
http://dx.doi.org/10.1016/j.infsof.2016.03.006
https://link.springer.com/article/10.1007/s10664-021-10026-0 https://link.springer.com/10.1007/s10664-021-10026-0
https://link.springer.com/article/10.1007/s10664-021-10026-0 https://link.springer.com/10.1007/s10664-021-10026-0
https://link.springer.com/article/10.1007/s10664-021-10026-0 https://link.springer.com/10.1007/s10664-021-10026-0
http://ieeexplore.ieee.org/document/4221632/
https://slack.com/features
https://slofile.com/
https://slofile.com/how-it-works

234 REFERENCES

Soliman M, Galster M, Riebisch M (2017) Developing an Ontology for Architecture
Knowledge from Developer Communities. In: Proceedings of the International
Conference on Software Architecture, IEEE, Gothenburg, pp 89–92, DOI 10.1109/
ICSA.2017.31

Soliman M, Salama AR, Galster M, Zimmermann O, Riebisch M (2018) Improving
the Search for Architecture Knowledge in Online Developer Communities. In: Pro-
ceedings of the 15th International Conference on Software Architecture, IEEE,
Seattle, pp 186–195, DOI 10.1109/ICSA.2018.00028

Soliman M, Wiese M, Li Y, Riebisch M, Avgeriou P (2021) Exploring Web Search
Engines to Find Architectural Knowledge. In: Proceedings of the 18th Interna-
tional Conference on Software Architecture, IEEE, Stuttgart, pp 162–172, DOI 10.
1109/ICSA51549.2021.00023, URL https://visdom-project.github.io/website

Somasundaram K, Murphy GC (2012) Automatic categorization of bug reports using
latent Dirichlet allocation. In: Proceedings of the 5th India Software Engineering
Conference, ACM, vol 12, pp 125–130, DOI 10.1145/2134254.2134276

Souza LB, Campos EC, Madeiral F, Paixão K, Rocha AM, Maia MdA (2019) Boot-
strapping cookbooks for APIs from crowd knowledge on Stack Overflow. Informa-
tion and Software Technology 111(March 2018):37–49, DOI 10.1016/j.infsof.2019.
03.009

Squire M (2015) "Should We Move to Stack Overflow?" Measuring the Utility of
Social Media for Developer Support. In: Proceedings of the 37th International
Conference on Software Engineering, IEEE/ACM, vol 2, pp 219–228, DOI 10.1109/
ICSE.2015.150, URL http://ieeexplore.ieee.org/document/7202966/

Statista (2018) Slack total and paying user count 2018: Statistic. URL https://bit.
ly/34mdXyY

Steinmacher I, Treude C, Gerosa MA (2019) Let Me In: Guidelines for the Successful
Onboarding of Newcomers to Open Source Projects. IEEE Software 36(4):41–49,
DOI 10.1109/MS.2018.110162131

Stevens K, Kegelmeyer P, Andrzejewski D, Buttler D (2012) Exploring Topic Coher-
ence over many models and many topics. In: Proceedings of the Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, Association for Computational Linguistics, Jeju Island, pp
952–961

Steyvers M, Griffiths T (2007) Probabilistic Topic Models. In: Landauer T, McNa-
mara D, Dennis S, Kintsch W (eds) Latent Semantic Analysis: a Road to Meaning,
Laurence Erlbaum, Irvine, p 15

Stol KJ, Fitzgerald B (2018) The ABC of Software Engineering Research. ACM
Transactions on Software Engineering and Methodology 27(3):11–51, DOI 10.1145/
3241743, URL https://doi.org/10.1145/3241743

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering
research: a critical review and guidelines. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, IEEE/ACM, Austin, pp 120–131, DOI
10.1145/2884781.2884833

https://visdom-project.github.io/website
http://ieeexplore.ieee.org/document/7202966/
https://bit.ly/34mdXyY
https://bit.ly/34mdXyY
https://doi.org/10.1145/3241743

REFERENCES 235

Storey MA, Treude C, van Deursen A, Cheng LT (2010) The impact of social media
on software engineering practices and tools. In: Proceedings of the FSE/SDP work-
shop on Future of software engineering research, ACM, New York, p 359, DOI
10.1145/1882362.1882435, URL http://portal.acm.org/citation.cfm?doid=
1882362.1882435

Storey MA, Singer L, Cleary B, Figueira Filho F, Zagalsky A (2014) The
(R)Evolution of Social Media in Software Engineering. In: Proceedings of the
Conference on Future of Software Engineering, ACM, Hyderabad, pp 100–116,
DOI 10.1145/2593882.2593887, URL http://dl.acm.org/citation.cfm?doid=
2593882.2593887

Storey MA, Zagalsky A, Filho FF, Singer L, German DM (2017) How Social and
Communication Channels Shape and Challenge a Participatory Culture in Soft-
ware Development. IEEE Transactions on Software Engineering 43(2):185–204,
DOI 10.1109/TSE.2016.2584053

Subash KM, Kumar LP, Vadlamani SL, Chatterjee P, Baysal O (2022) DISCO: A
Dataset of Discord Chat Conversations for SoftwareEngineering Research. In:
Proceedings of the 19th International Conference on Mining Software Repos-
itories, ACM, New York, pp 227–231, DOI 10.1145/3524842.3528018, URL
https://dl.acm.org/doi/10.1145/3524842.3528018

Sulistya A, Prana GAA, Sharma A, Lo D, Treude C (2020) SIEVE: Helping de-
velopers sift wheat from chaff via cross-platform analysis. Empirical Software
Engineering 25(1):996–1030, DOI 10.1007/s10664-019-09775-w, URL https:
//doi.org/10.1007/s10664-019-09775-w

Sun P, Stolee KT (2016) Exploring crowd consistency in a mechanical turk survey.
In: Proceedings of the 3rd International Workshop on CrowdSourcing in Software
Engineering, ACM, New York, pp 8–14, DOI 10.1145/2897659.2897662, URL http:
//dl.acm.org/citation.cfm?doid=2897659.2897662

Sun X, Li B, Leung H, Li B, Li Y (2015) MSR4SM: Using topic models to effectively
mining software repositories for software maintenance tasks. Information and Soft-
ware Technology 66:1–12, DOI 10.1016/j.infsof.2015.05.003

Sun X, Yang H, Xia X, Li B (2017) Enhancing developer recommendation with sup-
plementary information via mining historical commits. Journal of Systems and
Software 134:355–368, DOI 10.1016/j.jss.2017.09.021

Taba SES, Keivanloo I, Zou Y, Wang S (2017) An exploratory study on the usage
of common interface elements in android applications. Journal of Systems and
Software 131:491–504, DOI 10.1016/j.jss.2016.07.010

Tairas R, Gray J (2009) An information retrieval process to aid in the analy-
sis of code clones. Empirical Software Engineering 14(1):33–56, DOI 10.1007/
s10664-008-9089-1, URL http://www.cis.uab.edu/tairasr/clones/literature

Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy set and cache-
based approach for bug triaging. In: Proceedings of the 19th ACM Symposium on
Foundations of Software Engineering, ACM, pp 365–375, DOI 10.1145/2025113.
2025163

http://portal.acm.org/citation.cfm?doid=1882362.1882435
http://portal.acm.org/citation.cfm?doid=1882362.1882435
http://dl.acm.org/citation.cfm?doid=2593882.2593887
http://dl.acm.org/citation.cfm?doid=2593882.2593887
https://dl.acm.org/doi/10.1145/3524842.3528018
https://doi.org/10.1007/s10664-019-09775-w
https://doi.org/10.1007/s10664-019-09775-w
http://dl.acm.org/citation.cfm?doid=2897659.2897662
http://dl.acm.org/citation.cfm?doid=2897659.2897662
http://www.cis.uab.edu/tairasr/clones/literature

236 REFERENCES

Tang J, Zhang M, Mei Q (2013) One Theme in All Views: Modeling Consensus Top-
ics in Multiple Contexts. In: Proceedings of the 19th International Conference on
Knowledge Discovery and Data Mining, ACM, New York, pp 5–13

Tantithamthavorn C, Lemma Abebe S, Hassan AE, Ihara A, Matsumoto K (2018)
The impact of IR-based classifier configuration on the performance and the ef-
fort of method-level bug localization. Information and Software Technology
102(June):160–174, DOI 10.1016/j.infsof.2018.06.001

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes.
Journal of the American Statistical Association 101(476):1566–1581, DOI
10.1198/016214506000000302

TheAcropolitan (2017) Sentence Length Has Declined 75% in the
Past 500 Years. URL https://medium.com/@theacropolitan/
sentence-length-has-declined-75-in-the-past-500-years-2e40f80f589f

Thomas SW, Nagappan M, Blostein D, Hassan AE (2013) The impact of classifier
configuration and classifier combination on bug localization. IEEE Transactions on
Software Engineering 39(10):1427–1443, DOI 10.1109/TSE.2013.27

Thomas SW, Hemmati H, Hassan AE, Blostein D (2014) Static test case priori-
tization using topic models. Empirical Software Engineering 19:182–212, DOI
10.1007/s10664-012-9219-7

Tiarks R, Maalej W (2014) How does a typical tutorial for mobile development
look like? In: Proceedings of the 11th Working Conference on Mining Software
Repositories, ACM, New York, pp 272–281, DOI 10.1145/2597073.2597106, URL
http://dx.doi.org/10.1145/2597073.2597106http://dl.acm.org/citation.
cfm?doid=2597073.2597106

Tofan D (2010) Tacit architectural knowledge. In: Proceedings of the Fourth Eu-
ropean Conference on Software Architecture, ACM, New York, p 9, DOI 10.
1145/1842752.1842756, URL https://doi.org/10.1145/1842752.1842756http:
//portal.acm.org/citation.cfm?doid=1842752.1842756

Treude C, Robillard MP (2016) Augmenting API Documentation with Insights from
Stack Overflow. In: Proceedings of the International Conference on Software Engi-
neering, ACM, Austin, pp 33–42, DOI 10.1145/2973839.2973847

Treude C, Wagner M (2019) Predicting Good Configurations for GitHub and Stack
Overflow Topic Models. In: Proceedings of the 16th International Conference on
Mining Software Repositories, IEEE, Montreal, pp 84–95, DOI 10.1109/MSR.2019.
00022

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer ques-
tions on the web? In: Proceedings of the 33rd International Conference on Soft-
ware Engineering, DOI 10.1145/1985793.1985907

Treude C, Robillard MP, Dagenais B (2015) Extracting development tasks to
navigate software documentation. IEEE Transactions on Software Engineering
41(6):565–581, DOI 10.1109/TSE.2014.2387172

https://medium.com/@theacropolitan/sentence-length-has-declined-75-in-the-past-500-years-2e40f80f589f
https://medium.com/@theacropolitan/sentence-length-has-declined-75-in-the-past-500-years-2e40f80f589f
http://dx.doi.org/10.1145/2597073.2597106 http://dl.acm.org/citation.cfm?doid=2597073.2597106
http://dx.doi.org/10.1145/2597073.2597106 http://dl.acm.org/citation.cfm?doid=2597073.2597106
https://doi.org/10.1145/1842752.1842756 http://portal.acm.org/citation.cfm?doid=1842752.1842756
https://doi.org/10.1145/1842752.1842756 http://portal.acm.org/citation.cfm?doid=1842752.1842756

REFERENCES 237

Turner T, Qvarfordt P, Biehl JT, Golovchinsky G, Back M (2010) Exploring the
workplace communication ecology. In: Proceedings of CHI 2010: User Characteris-
tics and Large-Scale Tracking, p 841, DOI 10.1145/1753326.1753449

Usman M, Britto R, Börstler J, Mendes E (2017) Taxonomies in software engineer-
ing: A Systematic mapping study and a revised taxonomy development method.
Information and Software Technology 85:43–59, DOI 10.1016/j.infsof.2017.01.006,
URL https://linkinghub.elsevier.com/retrieve/pii/S0950584917300472

Vargha A, Delaney HD (2000) A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. Journal of Educational and Be-
havioral Statistics 25(2):101–132, DOI 10.3102/10769986025002101

Wallach HM, Mimno D, McCallum A (2009) Rethinking LDA: Why priors matter.
In: Proceedings of the Conference on Advances in Neural Information Processing
Systems, Curran Associates Inc., Vancouver, pp 1973–1981, URL http://rexa.
info/

Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the International Conference on Knowledge Discovery
and Data Mining, ACM, New York, pp 448–456, DOI 10.1145/2020408.2020480

Wang W, Malik H, Godfrey MW (2015) Recommending Posts concerning API Issues
in Developer Q&A Sites. In: Proceedings of the 12th Working Conference on Min-
ing Software Repositories, IEEE, Firenze, pp 224–234, DOI 10.1109/MSR.2015.28,
URL http://stackoverflow.com/questions/5358219/http://ieeexplore.
ieee.org/document/7180082/

Wei X, Croft WB (2006) LDA-based document models for ad-hoc retrieval. In: Pro-
ceedings of the 29th Annual International Conference on Research and Develop-
ment in Information Retrieval, ACM, Seattle, pp 178–185, DOI 10.1145/1148170.
1148204

Weng J, Lim EP, Jiang J, He Q (2010) TwitterRank: Finding topic-sensitive influen-
tial twitterers. In: Proceedings of the 3rd International Conference on Web Search
and Data Mining, ACM, New York, pp 261–270, DOI 10.1145/1718487.1718520

Wenger EC, Synder WM (2000) Communities of Practice: The Orga-
nizational Frontier. Harvard Business Review 24(3):139–145, DOI
10.1177/0170840603024003909, URL https://hbr.org/2000/01/
communities-of-practice-the-organizational-frontierhttp://oss.sagepub.
com/cgi/doi/10.1177/0170840603024003909

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering
theories. Science of Computer Programming 101:136–152, DOI 10.1016/j.scico.2014.
11.013

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemo-
metrics and Intelligent Laboratory Systems 2(1-3):37–52, DOI 10.1016/
0169-7439(87)80084-9, URL https://linkinghub.elsevier.com/retrieve/pii/
0169743987800849

https://linkinghub.elsevier.com/retrieve/pii/S0950584917300472
http://rexa.info/
http://rexa.info/
http://stackoverflow.com/questions/5358219/ http://ieeexplore.ieee.org/document/7180082/
http://stackoverflow.com/questions/5358219/ http://ieeexplore.ieee.org/document/7180082/
https://hbr.org/2000/01/communities-of-practice-the-organizational-frontier http://oss.sagepub.com/cgi/doi/10.1177/0170840603024003909
https://hbr.org/2000/01/communities-of-practice-the-organizational-frontier http://oss.sagepub.com/cgi/doi/10.1177/0170840603024003909
https://hbr.org/2000/01/communities-of-practice-the-organizational-frontier http://oss.sagepub.com/cgi/doi/10.1177/0170840603024003909
https://linkinghub.elsevier.com/retrieve/pii/0169743987800849
https://linkinghub.elsevier.com/retrieve/pii/0169743987800849

238 REFERENCES

Wright L (2019) Microsoft Teams wins Enterprise Connect Best in Show
award and delivers new experiences for the intelligent workplace. URL
https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/
microsoft-teams-experiences-intelligent-workplace/

Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017a) What do developers
search for on the web? Empirical Software Engineering 22(6):3149–3185, DOI
10.1007/s10664-017-9514-4

Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN, Wang X (2017b) Improving Auto-
mated Bug Triaging with Specialized Topic Model. IEEE Transactions on Software
Engineering 43(3):272–297, DOI 10.1109/TSE.2016.2576454

Yan M, Fu Y, Zhang X, Yang D, Xu L, Kymer JD (2016a) Automatically classifying
software changes via discriminative topic model: Supporting multi-category and
cross-project. Journal of Systems and Software 113:296–308, DOI 10.1016/j.jss.
2015.12.019

Yan M, Zhang X, Yang D, Xu L, Kymer JD (2016b) A component recommender for
bug reports using Discriminative Probability Latent Semantic Analysis. Informa-
tion and Software Technology 73:37–51, DOI 10.1016/j.infsof.2016.01.005

Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In:
Proceedings of the 22nd International Conference on World Wide Web, ACM, Rio
de Janeiro, pp 1445–1455

Yang X, Lo D, Li L, Xia X, Bissyandé TF, Klein J (2017) Characterizing malicious
Android apps by mining topic-specific data flow signatures. Information and Soft-
ware Technology 90:27–39, DOI 10.1016/j.infsof.2017.04.007

Ye D, Xing Z, Kapre N (2017) The structure and dynamics of knowledge network
in domain-specific Q&A sites: a case study of stack overflow. Empirical Software
Engineering 22(1):375–406, DOI 10.1007/s10664-016-9430-z

Yin J, Wang J (2014) A Dirichlet Multinomial Mixture Model-based Approach for
Short Text Clustering. In: Proceeding of the 20th International Conference on
Knowledge Discovery and Data Mining, ACM, New York, pp 1–10, DOI 10.1145/
2623330.2623715

Zagalsky A, German DM, Storey MA, Teshima CG, Poo-Caamaño G (2016)
How the R community creates and curates knowledge: an extended study of
Stack Overflow and mailing lists. In: Proceedings of the 13th Working Confer-
ence on Mining Software Repositories, IEEE/ACM, Austin, pp 441–451, DOI
10.1007/s10664-017-9536-y

Zahedi M, Shahin M, Ali Babar M (2016) A systematic review of knowledge shar-
ing challenges and practices in global software development. International Jour-
nal of Information Management 36(6):995–1019, DOI 10.1016/j.ijinfomgt.2016.
06.007, URL http://dx.doi.org/10.1016/j.ijinfomgt.2016.06.007https:
//linkinghub.elsevier.com/retrieve/pii/S026840121630384X

https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-experiences-intelligent-workplace/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-experiences-intelligent-workplace/
http://dx.doi.org/10.1016/j.ijinfomgt.2016.06.007 https://linkinghub.elsevier.com/retrieve/pii/S026840121630384X
http://dx.doi.org/10.1016/j.ijinfomgt.2016.06.007 https://linkinghub.elsevier.com/retrieve/pii/S026840121630384X

REFERENCES 239

Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: A case
study on Firefox. In: Proceeding of the 8th Working Conference on Mining Soft-
ware Repositories, ACM, New York, pp 93–102, DOI 10.1145/1985441.1985457,
URL http://portal.acm.org/citation.cfm?doid=1985441.1985457

Zeugmann T, Poupart P, Kennedy J, Jin X, Han J, Saitta L, Sebag M, Pe-
ters J, Bagnell JA, Daelemans W, Webb GI, Ting KM, Ting KM, Webb GI,
Shirabad JS, Fürnkranz J, Hüllermeier E, Matwin S, Sakakibara Y, Flener P,
Schmid U, Procopiuc CM, Lachiche N, Fürnkranz J (2011) Precision and Re-
call. In: Encyclopedia of Machine Learning, Springer US, pp 781–781, DOI
10.1007/978-0-387-30164-8{_}652, URL https://link.springer.com/
referenceworkentry/10.1007/978-0-387-30164-8_652

Zhang E, Zhang Y (2009) Average Precision. In: Encyclopedia of Database Systems,
Springer US, pp 192–193, DOI 10.1007/978-0-387-39940-9{_}482, URL https:
//link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_482

Zhang S, Köbler F, Tremaine M, Milewski A (2010) Instant Messaging in Global
Software Teams. International Journal of e-Collaboration 6(3):43–63, DOI 10.4018/
jec.2010070103, URL https://services.igi-global.com/resolvedoi/resolve.
aspx?doi=10.4018/jec.2010070103

Zhang T, Chen J, Yang G, Lee B, Luo X (2016) Towards more accurate severity
prediction and fixer recommendation of software bugs. Journal of Systems and
Software 117:166–184, DOI 10.1016/j.jss.2016.02.034

Zhang Y, Lo D, Xia X, Scanniello G, Le TDB, Sun J (2018) Fusing multi-abstraction
vector space models for concern localization. Empirical Software Engineering
23:2279–2322, DOI 10.1007/s10664-017-9585-2

Zhao N, Chen J, Wang Z, Peng X, Wang G, Wu Y, Zhou F, Feng Z, Nie X, Zhang
W, Sui K, Pei D (2020) Real-time incident prediction for online service systems.
In: Proceedings of the 28th ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
vol 20, pp 315–326, DOI 10.1145/3368089.3409672, URL https://doi.org/10.
1145/3368089.3409672

Zhao WX, Jiang J, Weng J, He J, Lim EP, Yan H, Li X (2011) Comparing Twit-
ter and Traditional Media Using Topic Models. In: Lecture Notes in Computer
Science, vol 6611, Springer, Berlin, chap Advances i, pp 338–349, DOI 10.1007/
978-3-642-20161-5{_}34, URL https://doi.org/10.1007/978-3-642-20161-5_
34http://link.springer.com/10.1007/978-3-642-20161-5_34

Zhao Y, Zhanq F, Shlhab E, Zou Y, Hassan AE (2016) How Are Discussions Asso-
ciated with Bug Reworking? An Empirical Study on Open Source Projects. In:
Proceedings of the 10th International Symposium on Empirical Software Engineer-
ing and Measurement, IEEE/ACM, Ciudad Real, pp 1–10, DOI 10.1145/2961111.
2962591, URL http://dx.doi.org/10.1145/2961111.2962591

Zhu W, Zhang H, Hassan AE, Godfrey MW (2021) An empirical study of question
discussions on Stack Overflow, URL http://arxiv.org/abs/2109.13172

http://portal.acm.org/citation.cfm?doid=1985441.1985457
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_652
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_652
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_482
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_482
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jec.2010070103
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jec.2010070103
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1007/978-3-642-20161-5_34 http://link.springer.com/10.1007/978-3-642-20161-5_34
https://doi.org/10.1007/978-3-642-20161-5_34 http://link.springer.com/10.1007/978-3-642-20161-5_34
http://dx.doi.org/10.1145/2961111.2962591
http://arxiv.org/abs/2109.13172

240 REFERENCES

Zou J, Xu L, Yang M, Zhang X, Yang D (2017) Towards comprehending the non-
functional requirements through Developers’ eyes: An exploration of Stack Over-
flow using topic analysis. Information and Software Technology 84(1):19–32, DOI
10.1016/j.infsof.2016.12.003

Zuo Y, Zhao J, Xu K (2016) Word network topic model: a simple but general
solution for short and imbalanced texts. Knowledge and Information Systems
48(2):379–398, DOI 10.1007/s10115-015-0882-z

	Acknowledgments
	Abstract
	Contents
	1. Introduction
	1.1 Problem and Motivation
	1.2 Research Questions and Scope
	1.3 Research Method
	1.4 Thesis-related Publications
	1.5 Structure of Thesis

	2. Background and Related Work
	2.1 Reusable Knowledge
	2.2 Software Developer Communication
	2.3 Related Work
	2.3.1 Developer Communication as Knowledge Repository
	2.3.2 Developer Instant Messaging Communication

	2.4 Summary

	3. Comparison Framework for Team-Based Communication Channels
	3.1 Introduction
	3.2 Comparison Framework
	3.3 Case Study
	3.3.1 Popularity
	3.3.2 Openness
	3.3.3 Administration
	3.3.4 Interaction Features
	3.3.5 Interoperability
	3.3.6 API

	3.4 Discussion
	3.4.1 Summary of Findings
	3.4.2 Applicability of Framework
	3.4.3 Threats to Validity

	3.5 Conclusion

	4. Themes in Developer Instant Messaging Communication
	4.1 Introduction
	4.2 Research Method
	4.2.1 Data Sampling
	4.2.1.1 Context
	4.2.1.2 Units of Analysis
	4.2.1.3 Data Collection

	4.2.2 Data Analysis
	4.2.3 Applicability of Themes

	4.3 Results
	4.3.1 Characterizing Chat Rooms
	4.3.2 Overview of Themes
	4.3.2.1 Themes in Communities
	4.3.2.2 Similar Themes in Different Contexts

	4.3.3 Themes and the SWEBOK
	4.3.4 Themes and Developer Knowledge Needs
	4.3.4.1 Web Search Queries
	4.3.4.2 Stack Overflow

	4.3.5 Patterns and Insights from Themes
	4.3.5.1 Trends in Themes
	4.3.5.2 Popularity, Activity and Engagement of Themes

	4.3.6 Applicability of Themes in Slack Chat Rooms

	4.4 Discussion
	4.4.1 Comparison to Related Work
	4.4.2 Implications for Practitioners
	4.4.3 Implications for Researchers
	4.4.4 Limitations and Validity

	4.5 Conclusions

	5. Topic Modeling in Software Engineering Research
	5.1 Introduction
	5.2 Topic Modeling
	5.2.1 Data Input
	5.2.2 Modeling
	5.2.3 Output

	5.3 Related Work
	5.3.1 Literature Reviews
	5.3.2 Meta-studies

	5.4 Research Method
	5.4.1 Search Procedure
	5.4.2 Study Selection Criteria
	5.4.3 Data Extraction and Synthesis

	5.5 Results
	5.5.1 Overview
	5.5.2 RQ3.1: Topic Models Used
	5.5.2.1 Topic Modeling Techniques
	5.5.2.2 Supported Tasks
	5.5.2.3 Types of Contribution

	5.5.3 RQ3.2: Topic Model Inputs
	5.5.3.1 Types of Data
	5.5.3.2 Corpus Size
	5.5.3.3 Documents
	5.5.3.4 Model Parameters

	5.5.4 RQ3.3: Pre-processing Steps
	5.5.5 RQ3.4: Topic Naming

	5.6 Discussion
	5.6.1 RQ3.1: Topic Modeling Techniques
	5.6.1.1 Summary of Findings
	5.6.1.2 Comparative Studies

	5.6.2 RQ3.2: Inputs to Topic Models
	5.6.2.1 Summary of Findings
	5.6.2.2 Documents and Parameters
	5.6.2.3 Supported Tasks, Types of Data and Types of Contribution

	5.6.3 RQ3.3: Data Pre-processing
	5.6.3.1 Summary of Findings
	5.6.3.2 Pre-processing Different Types of Data

	5.6.4 RQ3.4: Assigning Names to Topics
	5.6.5 Implications
	5.6.6 Threats to Validity

	5.7 Conclusions

	6. Short Text Topic Models applied to Developer Messages
	6.1 Introduction
	6.2 Short Text Topic Modeling
	6.2.1 Overview
	6.2.2 Short Text Topic Models

	6.3 Topic Quality
	6.3.1 Intrusion Tasks
	6.3.2 Topic Naming
	6.3.3 Topic Coherence Metrics
	6.3.4 Comparing Measures for Topic Quality

	6.4 Research Method
	6.4.1 Selection of Data Sets
	6.4.2 Data Pre-processing
	6.4.3 Short Text Topic Modeling
	6.4.3.1 Selection of Models
	6.4.3.2 Parameter Setting and Execution of Models

	6.4.4 Topic Coherence Metrics
	6.4.5 Human Assessment
	6.4.5.1 Intrusion Tasks
	6.4.5.2 Topic Naming
	6.4.5.3 Participant Selection and Recruitment

	6.4.6 Comparison of Model Performance

	6.5 Results
	6.5.1 Topic Coherence Metrics
	6.5.2 Comparison of Stemmed and Lemmatized Corpora
	6.5.3 Word and Topic Intrusion
	6.5.3.1 Word Intrusion Tasks
	6.5.3.2 Topic Intrusion Tasks
	6.5.3.3 Best Performing Model based on Word versus Topic Intrusion
	6.5.3.4 Participants Feedback on Intrusion Tasks

	6.5.4 Topic Naming
	6.5.4.1 Number of Topics Named and Average Ratio of Names per Topic
	6.5.4.2 Compatibility between Names Assigned to Topics
	6.5.4.3 Corpus Size and Topic Naming
	6.5.4.4 Best Performing Models based on Topic Naming
	6.5.4.5 Participant Feedback on Naming Topics

	6.5.5 Overall Model Performance
	6.5.5.1 Comparison of Short Text Topic Models
	6.5.5.2 Correlation between Metrics

	6.6 Discussion
	6.6.1 Summary of Findings
	6.6.2 Practical Use of Topic Models
	6.6.3 Comparison to Related Work
	6.6.4 Implications
	6.6.5 Threats to Validity

	6.7 Conclusion

	7. Conclusions
	7.1 Summary of Findings
	7.2 Contributions
	7.3 Limitations
	7.4 Future work

	A. Introduction
	A.1 Study Approval for RQ4

	B. Themes in Developer Instant Messaging Communication
	B.1 Description of Themes

	C. Topic Modeling in Software Engineering Research
	C.1 Papers Reviewed
	C.2 Metrics Used in Comparative Studies

	D. Short Text Topic Models applied to Developer Messages
	D.1 Sub-surveys Distributed - Intrusion Tasks
	D.2 Sub-surveys Distributed - Topic Naming
	D.3 Topics Named by Participant
	D.4 Topics (10-word clusters) generated with GPU_PDMM

	References

