16 research outputs found

    Effect of the strongest multpath component on indoor MIMO performance

    Full text link

    A Hybrid Decoupling Technique for Mutual Coupling Improvement of Polarization Diversity MIMO Antenna

    Get PDF
    This paper proposes the improvement analysis of the mutual coupling for a dual-polarized antenna array with the introduction of parasitic elements at low frequency. The 4x4 antenna array with 16 dipole antennas have a star configuration with slanted ± 45 0 dipole antennas and antenna spacing; D = λ/2. The parasitic elements are located in between the antenna array with the spacing of λ/4. In this study, the height of the parasitic element is varied with respect to the height of the dipole antenna. The analysis result shows that the maximum improvement of the mutual coupling can be achieved when the height of the parasitic element is half of the height of the dipole antenna with the existence of dual-polarized radiation pattern. A maximum improvement of 19 dB can be achieved to provide an antenna isolation of 37 dB with this hybrid decoupling technique

    MIMO Capacity Estimation at 2 GHz with a Ray Model in Urban Cellular Environment

    Get PDF
    MIMO technology promises a linear increase of capacity in function of the minimum antenna number at the transmitter and at the receiver. In order to test if these performances can be actually met in mobile communications, we propose here a study of MIMO (Multiple Input Multiple Output) capacity in urban cellular environment at 2 GHz with a help of an efficient ray propagation model. We have tested different types of base station antennas (vertically or ±45° polarized) and two different types of mobile. Capacity is found to significantly increase between SISO (Single Input Single Output) and MIMO systems, but less than usually expected. We show that return and coupling losses as low as 10% can also reduce significantly the capacity. On the other hand, we study the influence of the way to take into account received power level on the MIMO capacity estimation

    A new compact wideband MIMO antenna – the double-sided tapered self-grounded monopole array

    Get PDF
    We present a new compact wideband multiple input multiple output (MIMO) antenna—the double-sided 4-port arm-tapered self-grounded monopole array, briefly referred to as the butterfly antenna, in the communication. The antenna is very compact with low correlation between ports and high diversity gain. The genetic algorithm optimization scheme has been employed in the design. Simulation results have been verified against measurements. The measured reflection coefficients at all ports are below -7 dB over 0.5–9 GHz and below -4.5 dB over 0.4–0.5 GHz and 9–15 GHz. The measured correlation coefficients are below 0.4 over 0.4–15 GHz and lower than 0.1 in most of the frequency band. This new MIMO antenna is developed as a transmit antenna in reverberation chambers, and we believe that it will find more applications in other systems, such as micro base station antennas in wireless communication systems

    Evaluation of performance of mobile terminal antennas

    Get PDF
    Fast development of new mobile communications equipment results in demand for fast and reliable evaluation methods to estimate the performance of mobile terminals because the performance of antennas located on the terminals varies in different multipath propagation environments. Two methods presented in this thesis provide new possibilities in antenna design because, from now on, the performance of new antennas can be tested already before a prototype antenna is constructed by using existing radio channel libraries and simulated radiation patterns of the antennas. The performance can be estimated by calculating the mean effective gain (MEG) of the antenna using the elevation power distribution or by a plane wave -based method using sets of incident plane waves and the radiation pattern of an antenna. In addition to different propagation environments, the effects of the user on performance can be included in the evaluation. In this thesis, estimating the MEG of different antennas using the elevation power distribution and the power patterns of the antennas is shown to be an accurate and fast method by comparing the results with direct radio channel measurements. The mean difference between the methods is −0.18 dB with standard deviation of 0.19 dB. The usefulness of the evaluation method is demonstrated by evaluating the performance of several antennas located on mobile terminals. The antenna evaluation provided important and unique knowledge of the effect of both the environment and the user on performance. Because in calculating the radiation efficiency of the antenna we assume uniform incident field, the efficiency can result in a performance estimation that does not correspond to real usage situations. Therefore, including the environmental effects in the evaluation procedure is important, although the effect of the antenna is more important than the effect of the environment on MEG. It was noticed with calculated Gaussian-shaped beams that tilting or changing the beamwidth of a mobile terminal antenna has an effect of about 2 dB on MEG in multipath environments. Matching the polarization of the antenna to that of the environment can improve the performance more. A novel incident plane wave -based tool has been developed for evaluating the performance of antenna configurations designed for diversity and Multiple-Input Multiple-Output (MIMO) systems. In this thesis, the instantaneous joint contribution of incident field consisting of a number of extracted plane waves and the complex three-dimensional radiation pattern of the antenna is shown to be accurate and extremely fast way to estimate the diversity advantages of different antenna configurations in time-variable radio channels. The difference between the diversity gains achieved by the plane wave -based method and by the direct radio channel measurements is on average less than 0.9 dB. Moreover, the radio channel can be exactly the same for all antenna configurations under test. Furthermore, this thesis includes evaluation of the performance of different MIMO antenna configurations. The studied antenna configurations have been selected from the 16×64 MIMO channel measurement data. A novel way of using one omnidirectional reference antenna in a normalization procedure is shown to be reasonable especially in cases of antenna arrays consisting of directive elements. Three different propagation environments are used as evaluation platforms. The azimuth orientation of mobile terminal antennas may influence the performance of a MIMO antenna configuration significantly. In MIMO configurations compact dual-polarized receiving antennas provide capacity performance almost equal to the arrays employing single polarization.reviewe

    Latest Progress in MIMO Antennas Design

    Get PDF

    Design and Measurement-Based Evaluation of Multi-Antenna Mobile Terminals for LTE 3500 MHz Band

    Get PDF
    Design of multi-element antennas for small mobile terminals operating at higher frequencies remains challenging despite smaller antenna dimension and possibility of achieving electrically large separation between them. In this paper, the importance of the type of radiating elements operating at 3400-3600 MHz and their locations on the terminal chassis are highlighted. An isotropic radiation pattern that receives incoming signals from arbitrary directions is obtained by combining the radiation patterns of multiple antennas with localized chassis current distribution. Four multiport antennas configurations with two- and eight-element antennas are designed and evaluated experimentally in indoor propagation environments. Our proposed designs of multi-element antennas provide the highest MIMO channel capacity compared to their counterparts using antennas with less localized chassis current distribution, even in the presence of user's hand

    Methods and criteria for performance analysis of multiantenna systems in mobile communications

    Get PDF
    Multiple-input multiple-output (MIMO) technique is one of the most promising solutions for increasing reliability and spectral efficiency of the radio connection in future mobile communication systems. The performance potential of MIMO systems is well established from theoretical point of view. However, much effort is still needed in the experimental verification of those systems using realistic antennas and channels. It is widely accepted that the antenna properties are of significant importance regarding the performance of single-input single-output (SISO) systems. However, the effect of the antennas on MIMO systems has not been thoroughly studied. Due to the complexity of MIMO systems, evaluation of MIMO antennas becomes increasingly cumbersome and time-consuming process in comparison to simpler systems. In the first part of this work an advanced antenna evaluation technique called experimental plane-wave based method (EPWBM) is generalized and validated to cover MIMO systems. This work is the extension of the previous work where the method has been used in the analysis of SISO systems. The EPWBM is based on the measured or simulated complex 3-D radiation patterns of the antennas and measured directional radio channel data. The EPWBM simplifies antenna evaluation process in comparison to traditional means since the same channel library can be utilized in the evaluation of several antenna systems without performing the same measurements for each prototype antennas separately. It is verified that the EPWBM is sufficiently reliable in comparing the performance of prototype antennas. In the second part of the work new quality factors for MIMO system evaluation enclosing traditional systems as special cases have been developed. The MIMO channel correlation matrix is formulated so that it reveals the ability of MIMO antenna systems to transfer signal power from a transmitter to a receiver and to utilize parallel spatial channels. It is also verified that correct normalization of the channel matrices is of significant importance in the MIMO antenna evaluation. This approach gives comprehensive framework for MIMO antenna evaluation, which takes into account both realistic antenna and channel properties. In the last part of the work insight into the performance of different antennas in different signal propagation environments is given. The performance of the antennas depends on the signal-to-noise-ratio and on the outage probability level considered. Although MIMO systems are based on the utilization of parallel spatial channels, the capability of the system to transfer signal power plays a significant role especially with small MIMO systems. In the realistic dynamic channels the capacity variation is larger than in the ideal channels, which are based on the identically and independently distributed (iid) channel assumption. Large performance variations occur in the realistic channels with directive antennas, when antennas are rotated in the usage environment, whereas omnidirectional ones are more robust but are difficult to realize in practice. The largest differences between the antennas are found at the low outage probability levels due to different radiation properties of the antennas. The systems with the cross-polarized antennas have smaller eigenvalue dispersion and are more robust in performance for the variations of the channel than the systems with co-polarized antennas. On the other hand, the co-polarized antennas possess better capability to transfer signal power and are more robust in performance for the antenna array orientation. From practical point of view, the dual-polarized antennas seem to be the most feasible candidates to be used in MIMO antenna systems due to compact structure, and indoor seems to be the most suitable for MIMO applications due to typically scatter-rich channel.Multiple-input multiple-output (MIMO) tekniika on yksi lupaavimmista ratkaisuista lisätä radioyhteyden luotettavuutta ja spektritehokkuutta tulevaisuuden matkaviestinjärjestelmissä. MIMO järjestelmien suorituskykypotentiaali on teoreettisesti todistettu. Paljon työtä tarvitaan kuitenkin vielä kokeelliseen järjestelmätestaukseen käyttäen realistisia antenneja ja kanavia. On laajasti hyväksyttyä että antennien ominaisuudet ovat merkityksellisiä single-input single-output (SISO) järjestelmien suorituskyvyn kannalta. Antennien vaikutusta MIMO-järjestelmiin ei ole kuitenkaan perusteellisesti tutkittu. MIMO-järjestelmien lisääntyneestä monimutkaisuudesta johtuen, verrattuna yksinkertaisempiin järjestelmiin, MIMO antennien suorituskyvyn arviointi hankaloituu ja vie enemmän aikaa. Työn ensimmäisessä osassa uusi antennien arviointitekniikka nimeltään kokeellinen tasoaaltoihin perustuva menetelmä (EPWBM) on yleistetty käsittämään MIMO järjestelmät ja sen tarkkuus on arvioitu. Tämä työ on laajennus aikaisempaan työhön jossa menetelmää on käytetty SISO-järjestelmien arviointiin. EPWBM perustuu mitattuihin tai simuloituihin antennien kompleksisiin 3-D suuntakuvioihin ja mitattuun suuntatiedon sisältämään kanavadataan. EPWBM yksinkertaistaa antennin suorituskyvyn arviointia perinteisiin menetelmiin verrattuna, koska sama kanavamittausaineisto voidaan hyödyntää usamman antennisysteemin arvioinnissa tekemättä samoja mittauksia jokaiselle antenniprototyypille erikseen. On osoitettu että EPWBM on suhteellisen luotettava prototyyppiantennien suorituskyvyn vertailussa. Työn toisessa osassa on kehitetty uusia hyvyyslukuja MIMO-järjestelmien suorituskyvyn arviointiin sisältäen perinteiset järjestelmät erikoistapauksina. MIMO-kanavamatriisi esitetään siten että se paljastaa MIMO-antennijärjestelmien kyvyn siirtää signaalitehoa lähettimen ja vastaanottimen välillä ja hyödyntää rinnakkaisia kanavia. On myös todistettu että oikeanlainen kanavamatriisien normalisointi on erittäin merkittävää MIMO-antennivertailussa. Tämä lähestymistapa antaa kattavat puitteet MIMO-antennien suorituskyvyn arviointiin ottaen huomioon todelliset antennien ja kanavan ominaisuudet. Työn viimeisessä osassa annetaan käsitys erilaisten antennien suorituskyvystä erilaisissa signaalin etenemisympäristöissä. Antennien suorituskyky riippuu signaalikohinasuhteesta ja tarkasteltavan signaalin luotettavuustasosta. Vaikka MIMO-järjestelmät perustuvat rinnakkaisten kanavien hyödyntämiseen järjestelmän signaalitehon siirto-ominaisuudet ovat merkittäviä erityisesti pienillä MIMO järjestelmillä. Realistisissa dynaamisissa kanavissa kapasiteetinvaihtelu on suurempaa kuin ideaalisissa kanavissa jotka perustuvat oletukseen että signaalit ovat riippumattomasti ja identtisesti jakautuneita (iid). Suurta suorituskykyn vaihtelua esiintyy realistissa kanavissa suuntaavilla antenneilla, kun antenneja pyöritetään käyttöympäristössä, kun taas ympärisäteilevät antennit olisivat jäykempiä suorituskyvyn kannalta mutta käytännössä vaikeampia toteuttaa. Suuremmat erot antennien välillä on löydettävissä matalalta signaalin luotettavuustasolta johtuen antennien erilaisista säteilyominaisuuksista. Kaksipolarisaatioantennijärjestelmillä on pienempi ominaisarvohaje ja niiden suorituskyky on jäykempi kanavan vaihteluille kuin yksipolarisaatioantennijärjestelmä. Toisaalta yksipolarisaatioantenneilla on paremmat signaalitehon siirto-ominaisuudet ja suorituskyky vaihtelee vähemmän antennin katselusuunnan funktiona. Käytännön näkökulmasta katsoen kaksipolarisaatioantennit näyttävät olevan kaikkein toteuttamiskelpoisin vaihtoehto käytettäväksi MIMO-systeemeissä johtuen niiden kompaktista rakenteesta, ja sisätila näyttää olevan sopivin ympäristö MIMO-sovelluksiin johtuen tyypillisesti sirontarikkaasta kanavasta.reviewe

    Multi-user Linear Precoding for Multi-polarized Massive MIMO System under Imperfect CSIT

    Get PDF
    The space limitation and the channel acquisition prevent Massive MIMO from being easily deployed in a practical setup. Motivated by current deployments of LTE-Advanced, the use of multi-polarized antennas can be an efficient solution to address the space constraint. Furthermore, the dual-structured precoding, in which a preprocessing based on the spatial correlation and a subsequent linear precoding based on the short-term channel state information at the transmitter (CSIT) are concatenated, can reduce the feedback overhead efficiently. By grouping and preprocessing spatially correlated mobile stations (MSs), the dimension of the precoding signal space is reduced and the corresponding short-term CSIT dimension is reduced. In this paper, to reduce the feedback overhead further, we propose a dual-structured multi-user linear precoding, in which the subgrouping method based on co-polarization is additionally applied to the spatially grouped MSs in the preprocessing stage. Furthermore, under imperfect CSIT, the proposed scheme is asymptotically analyzed based on random matrix theory. By investigating the behavior of the asymptotic performance, we also propose a new dual-structured precoding in which the precoding mode is switched between two dual-structured precoding strategies with 1) the preprocessing based only on the spatial correlation and 2) the preprocessing based on both the spatial correlation and polarization. Finally, we extend it to 3D dual-structured precoding.Comment: accepted to IEEE Transactions on Wireless Communication
    corecore