2,957 research outputs found

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Speaker Re-identification with Speaker Dependent Speech Enhancement

    Get PDF
    While the use of deep neural networks has significantly boosted speaker recognition performance, it is still challenging to separate speakers in poor acoustic environments. Here speech enhancement methods have traditionally allowed improved performance. The recent works have shown that adapting speech enhancement can lead to further gains. This paper introduces a novel approach that cascades speech enhancement and speaker recognition. In the first step, a speaker embedding vector is generated , which is used in the second step to enhance the speech quality and re-identify the speakers. Models are trained in an integrated framework with joint optimisation. The proposed approach is evaluated using the Voxceleb1 dataset, which aims to assess speaker recognition in real world situations. In addition three types of noise at different signal-noise-ratios were added for this work. The obtained results show that the proposed approach using speaker dependent speech enhancement can yield better speaker recognition and speech enhancement performances than two baselines in various noise conditions.Comment: Acceptted for presentation at Interspeech202

    Blind audio-visual localization and separation via low-rank and sparsity

    Get PDF
    The ability to localize visual objects that are associated with an audio source and at the same time to separate the audio signal is a cornerstone in audio-visual signal-processing applications. However, available methods mainly focus on localizing only the visual objects, without audio separation abilities. Besides that, these methods often rely on either laborious preprocessing steps to segment video frames into semantic regions, or additional supervisions to guide their localization. In this paper, we aim to address the problem of visual source localization and audio separation in an unsupervised manner and avoid all preprocessing or post-processing steps. To this end, we devise a novel structured matrix decomposition method that decomposes the data matrix of each modality as a superposition of three terms: 1) a low-rank matrix capturing the background information; 2) a sparse matrix capturing the correlated components among the two modalities and, hence, uncovering the sound source in visual modality and the associated sound in audio modality; and 3) a third sparse matrix accounting for uncorrelated components, such as distracting objects in visual modality and irrelevant sound in audio modality. The generality of the proposed method is demonstrated by applying it onto three applications, namely: 1) visual localization of a sound source; 2) visually assisted audio separation; and 3) active speaker detection. Experimental results indicate the effectiveness of the proposed method on these application domains

    Attention-based Audio-Visual Fusion for Robust Automatic Speech Recognition

    Full text link
    Automatic speech recognition can potentially benefit from the lip motion patterns, complementing acoustic speech to improve the overall recognition performance, particularly in noise. In this paper we propose an audio-visual fusion strategy that goes beyond simple feature concatenation and learns to automatically align the two modalities, leading to enhanced representations which increase the recognition accuracy in both clean and noisy conditions. We test our strategy on the TCD-TIMIT and LRS2 datasets, designed for large vocabulary continuous speech recognition, applying three types of noise at different power ratios. We also exploit state of the art Sequence-to-Sequence architectures, showing that our method can be easily integrated. Results show relative improvements from 7% up to 30% on TCD-TIMIT over the acoustic modality alone, depending on the acoustic noise level. We anticipate that the fusion strategy can easily generalise to many other multimodal tasks which involve correlated modalities. Code available online on GitHub: https://github.com/georgesterpu/Sigmedia-AVSRComment: In ICMI'18, October 16-20, 2018, Boulder, CO, USA. Equation (2) corrected on this versio
    • …
    corecore