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Abstract—The ability to localize visual objects that are associ-
ated with an audio source and at the same time to separate the
audio signal is a cornerstone in audio-visual signal processing ap-
plications. However, available methods mainly focus on localizing
only the visual objects, without audio separation abilities. Besides,
these methods often rely on either laborious pre-processing steps
to segment video frames into semantic regions, or additional
supervisions to guide their localization. In this paper, we aim
to address the problem of visual source localization and audio
separation in an unsupervised manner, and also avoid all pre-
processing or post-processing steps. To this end, we formulate
this problem into a minimization of nuclear norms and `1-
norms, by exploiting the low-rank property of the background
visual and audio information as well as the sparse property of
the foreground correlated components between the audio and
visual modalities. In particular, we devise a novel structured
matrix decomposition method that decomposes each modality
data matrix as a superposition of three terms: 1) a low-rank
matrix capturing the background information, 2) a sparse matrix
capturing the correlated components among the two modalities
and hence uncovering the sound source in visual modality and the
associated sound in audio modality, and 3) a third sparse matrix
accounting for uncorrelated components such as distracting
objects in visual modality and irrelevant sound in audio modality.
The generality of the proposed method is demonstrated by
applying it onto three applications, namely 1) visual localization
of sound source 2) visually-assisted audio separation and 3) active
speaker detection. Experimental results indicate the effectiveness
of the proposed method on these application domains.

Index Terms—Audiovisual localization, Audio separation,
Multi-modal analysis, Low-rank, Sparsity.

I. INTRODUCTION

CROSS modal analysis has recently received increasing
attention from the signal processing and computer vision

communities, enabling the development of a wide range of
applications such as automatic speech recognition [1], multi-
modal speaker diarization [23] [24], audio-visual scene analy-
sis [20] and audio-visual object tracking [25] [26], to name but
a few. In these tasks, the fusion of audio and visual modalities
is crucial, providing information which is unaccessible when
unimodal data are analyzed independently.

In this paper, we investigate the problem of blind audio-
visual localization and separation in real-world settings. The
goal is to localize visual objects (by means of detecting
pixels) associated with an audio signal and simultaneously
separate the audio signal from irrelevant audio components
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and noise. The videos are captured in real-world conditions
(with distracting motions and noise, e.g. pedestrians in the
street), using only one camera and one microphone (i.e.,
without microphone arrays and multiple cameras to provide
additional spatial information). Clearly, the task mentioned
above is intrinsically difficult, which justifies the fact that the
vast majority of the related methods mainly focus on either
sound-producing object localization (without audio separation)
[3], [5], [6], [7], [8], [21] or audio separation (without object
localization) [10], [32], [33], [34], [35]. Only two methods,
namely [2] and [4], have been proposed for joint audio-visual
localization and separation.

Distinct from previous methods we propose a novel method
for unsupervised audio-visual source localization and sepa-
ration, using a robust matrix decomposition [9], [16], [31],
[36]. Our decomposition is based on two intrinsic properties
of audio-visual data: 1) low-rank property of the background
visual and audio information 2) sparse property of the fore-
ground components. That is, we assume that the background of
the video lies in a low dimensional subspace while the moving
foreground objects can be taken as relatively sparse within
the image sequence. Similarly, a time-frequency distribution
(e.g., spectrogram) of the audio signal is assumed to be a
superposition of low-rank and sparse parts, corresponding to
spectrogram of the background and the foreground audio. Such
assumptions are common in low-rank and sparse models, and
are indeed reasonable for most realistic videos, with successful
applications in robust face recognition [41], image alignment
[31], background subtraction [42], turbulence detection [43]
and monaural audio separation [10].

Concretely, in this paper we seek to express visual (i.e.,
simple pixel intensities) and audio (i.e., the magnitude of the
spectrogram) modalities as a sum of three terms: 1) a low-rank
matrix capturing the uncorrelated background components
(background image, background sound and noise), 2) a sparse
matrix accounting for the correlated foreground component
(the sound source in visual modality or the associated sound
in audio modality), and 3) a sparse matrix modeling the uncor-
related foreground component (distracting moving objects or
other sound). An overview of the proposed method is depicted
in Figure 1. The proposed method is coined as Coupled Low-
rank and Sparse (CLS) matrix decomposition.

This paper makes three main contributions, summarized as
below:

1) A novel method for audio-visual localization and sepa-
ration is developed by employing simple representations
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Fig. 1. Overview of the proposed audiovisual localization and separation method, in which the ’STFT’ represents the Short-term Fourier transform and
’ISTFT’ is the inverse STFT. Matrix V contains the vectorized video frames in its columns while A represents the magnitude of the spectrogram, obtained
by applying the short-term Fourier transform to the audio signal. The proposed method decomposes V and A as superposition of low-rank and sparse parts,
where the low-rank matrix Bv captures the background uncorrelated visual information in video, the low-rank matrix Ba captures the background audio
distraction, while the sparse matrices Pv and Pa capture the correlation among visual and acoustic modalities, revealing the location of pixels associated
with the sound-producing visual object as well as its associated spectrogram. Two sparse matrices Ov and Oa represent the uncorrelated moving objects and
irrelevant audio signals in visual and acoustic modalities, respectively.

of audio and video modalities. That is spectrogram and
pixel intensities, respectively.

2) The heart of the proposed method is a novel cou-
pled structured matrix factorization and its algorithmic
framework that facilitates finding correlated components
across modalities, while at the same time accounts for
background noise and irrelevant motions/sounds.

3) A new manually annotated dataset, named as Sound of
Pixels (SOP) dataset, is introduced for the task under
study. The SOP dataset consists of 20 challenging videos
(5465 frames in total) captured in the wild. This is
the first publicly available1 dataset for the task with
annotations, which enable quantitative evaluations.

To thoroughly evaluate the performance of the method, a
series of experiments have been conducted in three different
applications, namely 1) visual localization of sound source
2) visually-assisted audio separation and 3) active speaker
detection. The experimental results indicate the effectiveness
of the proposed approach.

The remainder of this paper is organized as follows. Section
II reviews the related work. In Section III the proposed CLS
method is detailed. The SOP dataset is introduced in Section
IV along with the experimental results. Section V concludes
the paper.

1https://ibug.doc.ic.ac.uk/resources/SOP/

II. RELATED WORK

In this section, an overview of methods designed for simul-
taneous audio-visual localization and separation as well as the
simpler tasks of audio-visual localization and audio separation,
is provided.

Audio-visual localization and separation methods. As al-
ready mentioned, there are only two methods proposed for
simultaneous audio-visual localization and separation [2], [4].
Both methods extract visual features from regions of images,
and employ several correlation measures. Concretely, Barzelay
et al. [4] represents the visual and audio signals as onsets,
and use the coincidence between audio and visual onsets to
find the correlated audio-visual components. In [2], audio and
video modalities are first decomposed into basic structures
using redundant representations, and then their synchrony is
quantified and used for audio-visual association. However, the
localization results of these methods are not precise while
quantitative evaluation is absent. Besides that, they are de-
signed to work with recordings captured in controlled settings
and thus cannot deal with noise information in challeng-
ing real-world settings (e.g., distracting movements in visual
modality and environmental noise in audio modality). Our
preliminary work [36] also attempts to solve the problem of
simultaneous audio-visual localization and separation, but it
decomposes each modality into only two terms (either low-
rank background or sparse correlated component) and does
not consider any uncorrelated information. It can be viewed
as a special case (simplified version) of the proposed method
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here, and is not able to handle noise information in real-world
conditions.

Audio-visual localization methods. Several multimodal sig-
nal processing methods focusing only on the localization of
the sound-producing visual objects (without audio separation),
have been proposed [3], [5], [6], [7], [8], [21]. These methods
can be categorized in two categories based on the type of
visual features employed: 1) pixel-level localization [3] [5] [6]
[21], which directly use pixel values as visual features, and 2)
object-level localization [7] [8], which extract visual features
from regions of images. In pixel-level approaches, Kdiron et
al. [3] use Sparse Canonical Correlation Analysis (SCCA) to
find the correlation between the audio and video modalities
and output correlated pixels as the result of localization.
Casanovas et al. [5] used non-linear diffusion to capture the
pixels whose motion is most consistent with changes of audio
energy. A major drawback of pixel-level approaches is that the
localization result is just sporadic pixels and carries little high-
level semantic meaning. In object-level approaches, Izadinia
et al. [7] extract visual features (velocity and acceleration) for
each visual object, and then use CCA to identify the audio-
associated visual object. In [8], Li et al. proposed a region
tracking algorithm to extract visual features, where it consists
of two segmentation processes and two clustering processes.
After the extraction of visual features, a nonlinear correlation
measure (namely, the Winner-take-all hash) is implemented to
search the most correlated visual object. The major drawback
of object-level approaches is that they use hand-crafted visual
features which require a laborious extraction process and it is
sensitive to the change of parameters during the extraction.

Audio separation methods. Existing works for audio sep-
aration fall into two categories according to the number of
microphones they used: 1) multi-channel audio separation
with multiple microphones [27] ∼ [29], [38] ∼ [40] and 2)
monaural audio separation with one microphone [10], [32] ∼
[35]. In the multi-channel audio separation, these microphones
provide additional information for separation and hence pro-
duce better results. It is clear that more information makes the
separation task easier, and then integrating visual information
into this audio separation task becomes a promising idea. So
circular microphone arrays and camera arrays are used to
collect as much information as possible. On the other hand,
works on monaural audio separation deal with a more difficult
problem, with audio information from only one microphone.
These works can be either supervised or unsupervised. The
supervised systems tend to use deep neural networks [32]
[33] or non-negative matrix factorization with pre-trained
dictionaries [34] [35], while unsupervised monaural audio
separation methods often use low-rank and sparse models [10].

In the surge of deep learning era, there are methods [44],
[45], [46] attempting to learn a common embedding between
visual and audio modalities using deep neural networks. The
common embedding learning is a more general task than
sound-source localization and separation. The main difference
between these methods and ours is, they require huge amount
of data for training (self-supervised), while the proposed
method does not rely on any training data and is conducted in
a completely unsupervised manner.

Distinct from existing methodologies mentioned above, the
proposed method in Section III can simultaneously localize
the sound-producing object and separate its produced audio
signal in real-life scenarios. Unlike [2] [4] that are limited to
controlled settings, our method works well in the presence of
distracting motions, environmental noise and sometimes other
sounds. Unlike [7] [8] that use hand-crafted visual features
which require a laborious extraction process and are sensitive
to the change of parameters during extraction, we use simple
pixel values for visual representation and spectrogram for
audio representation, which leads to stable results. Unlike [44]
[45] [46] which rely on huge amount of data for training, our
method is unsupervised and does not require any training data.

III. PROPOSED METHODOLOGY

In this section the proposed CLS method along its solver
is developed. To begin with, consider V ∈ RI1×T and
A ∈ RI2×T representing the visual and audio modalities
respectively, where T is the number of frames in the video.
Each column of V contains the vectorized image pixels at one
frame, so I1 is the number of pixels. As for the audio, we first
transform the signal into spectrogram using the parameterized
Short-term Fourier Transform (STFT), where the parameters
of the STFT are chosen in order to make the dimensionality
of spectrogram matrix having the same number as the video
frames. Then we get the matrix A by keeping only the
magnitude of spectrogram. So each column of A stands for the
magnitude of spectrogram corresponding to one video frame,
and I2 is the dimensionality of the magnitude vector. It is
worth mentioning that the visual frame and audio frame should
be synchronized beforehand.

Let us now define the notions used. Throughout the pa-
per, matrices (vectors) are denoted by uppercase (lowercase)
boldface letters, e.g. X, (x). I denotes the identity matrix of
compatible dimensions. 0 is the zero matrix. The ith column
of matrix X is denotes as xi, and the entry of X at position
(i, j) is denoted by xij . For the set of real numbers, the
symbol R is used. Regarding matrix norms, ‖X‖∗ denotes
the nuclear norm and it is defined as the sum of its singular
values; the matrix `1-norm is denoted by ‖X‖1

.
=
∑
i

∑
j |xij |,

where | · | represents the absolute value operator. ‖X‖F
.
=√∑

i

∑
j x

2
ij =

√
tr(XTX) is the Frobenius norm, where

tr(·) denotes the trace of matrices.

A. Model Formulation

In order to localize the visual object that produces sound
and separate its associated audio signal, we seek to decompose
each matrix into three terms:

V = Bv + Pv + Ov

A = Ba + Pa + Oa,
(1)

where Bv ∈ RI1×T , and Ba ∈ RI2×T are the low-rank
components, capturing the information about background im-
ages and background sounds respectively. Pv ∈ RI1×T ,
and Pa ∈ RI2×T are sparse matrices accounting for the
foreground sound source in images and the correlated part of
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sounds respectively. The Ov ∈ RI1×T and Oa ∈ RI2×T are
sparse matrices accounting for uncorrelated moving objects
and irrelevant sounds.

To ensure that Pv and Pa are maximally correlated they are
further decomposed as follow:

Pv = Dv · C
Pa = Da · C,

(2)

where matrices Dv ∈ RI1×K , Da ∈ RI2×K and C ∈ RK×T .
The matrix C represents a common (shared) low-dimensional
subspace between the matrices Pv and Pa, while the matri-
ces Dv and Da map the low-dimensional subspace to high-
dimensional pixel domain or spectrogram domain. In analogy
to the multi-modal dictionary learning [11], this underlying
subspace, represented by C, can be seen as a new feature repre-
sentation, and its shared property enforces a latent relationship
between Pv and Pa. The latent relationship herein says that
both Pv and Pa can be represented in a common feature space,
where the correlation between audio and visual modalities is
maximized. The parameter K (the number of rows in matrix
C) denotes the number of correlated components kept in the
correlation between the visual and audio modalities.

In order to perfectly disentangle the sparse correlated com-
ponents Pv , Pa and the sparse uncorrelated components Ov ,
Oa, we establish a mutual orthogonality between C and Ov ,
Oa, respectively. That is to say, both Ov and Oa should be
orthogonal to the shared low-dimensional subspace C. The
mutual orthogonality enforces Ov , Oa to capture the individual
and unique information in either visual or audio modality,
which is intrinsically different from the correlated information
in Pv , Pa. Then the orthogonal constraints are formulated as:

C ·Ov
T = 0

C ·Oa
T = 0

(3)

A natural estimator accounting for the low rank of the Bv ,
Ba components is to minimize their ranks. For the sparsity
of the Pv , Pa, Ov , Oa, it is straightforward to minimize the
number of non-zero entries, which can be measured by the
`0-norm [12]. Nevertheless, due to the discrete nature of the
rank and the `0-norm, their minimizations are NP hard [13],
[14] and thus intractable. Then, we use the nuclear norm ‖.‖∗
and the `1-norm to serve as convex surrogation of the rank
and `0-norm respectively. Therefore, the objective function of
our novel algorithm can be defined as following:

F (V) = ‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1 + λ2‖Pa‖1
+ λ3‖Ov‖1 + λ4‖Oa‖1,

(4)

where the unknown matrices are collected in the set V .
=

{Bv,Ba,Pv,Pa,Ov,Oa}, and λ1, λ2, λ3, λ4 are positive pa-
rameters to balance the significance of minimizing the sparsity
compared to the minimization of ranks. In other words, for
a larger value of λ, the optimal solution tends to obtain a
sparser matrix and a less low-rank (higher rank) matrix, while
a smaller λ works the other way around.

The slowness principle in Slow Feature Analysis (SFA)
[47] enables us to obtain a smoother solution for the shared
coding matrix C. Since objects in the world are persistent and

their appearance change with time in a continuous fashion,
the shared coding matrix C that represents the correlation
between two modalities should also change in a continuous
way. Moreover, the videos that we are working on are short
(average at 10 seconds), and then their accumulated temporal
change of C will be small. Therefore we can confine the
temporal change of the matrix C and enforce its temporal
closeness. To achieve this, a temporal Laplacian regularization
function G(C) is adopted from [15] and defined as following:

G(C) =
1

2

n∑
i=1

n∑
j=1

wij‖ci − cj‖22 = tr(C · L · CT ),

where ci is the i-th column in the shared coding matrix C,
and L is a temporal Laplacian matrix. The intuition behind the
temporal Laplacian function is that, the temporal closeness of
C is measured by the difference between its columns, where
each column represents the correlated subspace in one frame.
In detail, we define L = D̂−W, D̂ii =

∑n
j=1 wij , and W is

the weight matrix that captures the sequential relationships in
data. Let s denote the number of sequential neighbours, the
element in W is calculated as:

wij =


1, if |i− j| ≤ s

2

0, if |i− j| > s
2

With the temporal regularization function G(C), the objective
function of our algorithm in (4) becomes as:

F (V) = ‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1 + λ2‖Pa‖1
+ λ3‖Ov‖1 + λ4‖Oa‖1 + λ5 tr(C · L · CT )

(5)

Where the λ5 is a positive parameter to indicate the signifi-
cance of the temporal regularization function G(C). Therefore,
we formalize the complete constrained optimization problem
as following:

minimize
V′

‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1 + λ2‖Pa‖1

+ λ3‖Ov‖1 + λ4‖Oa‖1 + λ5 tr(C · L · CT )

s.t. V = Bv + DvC + Ov, A = Ba + DaC + Oa

Pv = Dv · C, Pa = Da · C
C ·Ov

T = 0, C ·Oa
T = 0

(6)

Where the set of unknown primary variables in V ′ .
=

{Bv,Ba,Pv,Pa,Dv,Da,Ov,Oa,C}, all of λ is the positive
regularization parameter to balance the significance of mini-
mization, and the L is a predefined Laplacian matrix used to
confine the temporal change of C.

B. Optimization Algorithm

To solve the optimization problem (6), we developed an
algorithm based on the Alternating Direction Method of Mul-
tipliers (ADMM) [30]. In particular, the inexact augmented
Lagrange multipliers (ALM) method is employed [48]. The
method is a simple but powerful variant of ADMM that is
suitable for large-scale optimization problems. It breaks a large
global optimization problem into smaller pieces by iteratively
solving for one variable with others fixed.
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To this end, by incorporating all the constraints in (6), the
augmented Lagrangian function is as follows:

L(V ′,M) = ‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1 + λ2‖Pa‖1+

λ3‖Ov‖1 + λ4‖Oa‖1 + λ5 tr(C · L · CT )+

〈Y,V− Bv − DvC−Ov〉+
µ

2
‖V− Bv − DvC−Ov‖2F +

〈Z,A− Ba − DaC−Oa〉+
µ

2
‖A− Ba − DaC−Oa‖2F +

〈G,Dv · C− Pv〉+
µ

2
‖Dv · C− Pv‖2F +

〈F,Da · C− Pa〉+
µ

2
‖Da · C− Pa‖2F +

µ

2
(‖C ·Ov

T ‖2F + ‖C ·Oa
T ‖2F ),

(7)
where M .

= {Y,Z,G,F} gathers the Lagrange multipliers
associated with the first four constraints in (6). µ > 0 is a
positive penalty parameter.

The inexact ALM method minimizes the L(V ′,M) with
respect to each variable in an alternating fashion and then
the Lagrange multipliers get updated at each iteration. The
complete procedure is summarized in Algorithm 1. Detailed
derivation of the Algorithms is provided in Appendix A in the
Supplementary Material.

Let us define the operators used in the Algorithm 1.
The shrinkage operator Sτ (x) [9] is defined as Sτ (x) =
sgn(x)max(|x| − τ, 0), and extend it to every element in
matrices. The singular value thresholding (SVT) operator
Dτ (X) = USτ (Σ)V ∗ [17] and X = UΣV ∗ is any singular
value decomposition. For the Sylvester equation of C:

M := 2µ(DTv Dv + DTa Da)

N := 2λ5 L + µ(OT
v Ov + OT

a Oa)

K := −µDTv (V− Bv −Ov +
1

µ
Y + Pv −

1

µ
G)

− µDTa (A− Ba −Oa +
1

µ
Z + Pa −

1

µ
F)

C. Computational Complexity and Convergence

The dominant cost of each iteration in Algorithm 1 is the
computation of the thresholding operator when updating Bv
and Ba. Thus, the complexity of each iteration is O(max(I21 ·
T, I22 · T )). Regarding the convergence of Algorithm 1, there
is no established convergence proof of the inexact ALM to
local minima when employed to solve nonconvex problems
[30], [31]. A systematic convergence proof goes beyond the
scope of this paper, yet for proof of the weak convergence of
Algorithm 1 one can follow the approach in [12]. In practice,
the experiments in Section IV indicate the proposed algorithm
has stable convergence.

In detail, the convergence criterion is based on satisfying
the constraints of the optimization problem (6). In each

Algorithm 1 Inexact ALM solver for (6)
1: Input: Data: the visual matrix V and the audio matrix A.

Parameters: λ1, λ2, λ3, λ4, λ5 > 0. K: the number of rows
in matrix C. The Laplacian matrix L.

2: Initialize: Set the {Bv[0],Ba[0],Pv[0],Pa[0],Dv[0],Da[0],
Ov[0],Oa[0],C[0],Y[0],Z[0], G[0], F[0]} all to zero ma-
trices, and µ > 0, ρ > 0, θ > 0, t = 0

3: while not converged do

4: Bv[t+ 1]← D 1
µ

[V− Dv[t]C[t]−Ov[t] + 1
µY[t]]

5: Ba[t+ 1]← D 1
µ

[A− Da[t]C[t]−Oa[t] + 1
µZ[t]]

6: Pv[t+ 1]← Sλ1
µ

(Dv[t] · C[t] + 1
µG[t])

7: Pa[t+ 1]← Sλ2
µ

(Da[t] · C[t] + 1
µF[t])

8: Dv[t+1]← 1
2 (V−Bv[t+1]−Ov[t]+

1
µY[t]+Pv[t+1]

− 1
µG[t]) · C[t]T ·

(
C[t] · C[t]T

)−1
9: Da[t+1]← 1

2 (A−Ba[t+1]−Oa[t]+ 1
µZ[t]+Pa[t+1]

− 1
µF[t]) · C[t]T ·

(
C[t] · C[t]T

)−1
10: Ov[t+1]← Sλ3

µθ
{Ov[t]+

1
θ [V−Bv[t+1]−Dv[t+1]C[t]

+ 1
µY[t]−Ov[t](I + C[t]TC[t])]}

11: Oa[t+1]← Sλ4
µθ
{Oa[t]+ 1

θ [A−Ba[t+1]−Da[t+1]C[t]

+ 1
µZ[t]−Oa[t](I + C[t]TC[t])]}

12: C[t+ 1] ← solve the Sylvester equation:
MC[t+1]+ C[t+1]N + K = 0

13: Update Lagrange multipliers
14: Update µ by µ← min

(
ρ · µ, 1018

)
15: t← t+ 1

16: end while
17: Output: Background low-rank components {Bv,Ba},

sparse correlated components {Pv,Pa} and sparse uncor-
related components {Ov,Oa}

iteration, we monitor the errors of constraints and decide
whether to terminate the algorithm by comparing with a pre-
defined threshold δ. Since the orthogonal constraints have been
included during the inexact ALM process, we only consider
the first four constraints in (6). Then their corresponding error
terms (E1, E2, E3 and E4) at the end of iteration t are:

E1[t] = V− (Bv[t] + Dv[t]C[t] + Ov[t])

E2[t] = A− (Ba[t] + Da[t]C[t] + Oa[t])

E3[t] = Pv[t]− Dv[t] · C[t]

E4[t] = Pa[t]− Da[t] · C[t]

The error terms will be measured in ‖ · ‖F norm, and the
algorithm terminates only if all of them are no bigger than the
threshold δ:

max (‖E1[t]‖F , ‖E2[t]‖F , ‖E3[t]‖F , ‖E4[t]‖F ) ≤ δ
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IV. EXPERIMENTAL EVALUATION

This section provides a thorough experimental evaluation
of the proposed CLS method in practical applications. Some
of the experimental demonstrations can be found on our
website2. Three sets of experiments are conducted which are
summarized as follows:
• Visual localization of sound source. The performance of

the proposed method is first assessed in the task of sound
source localization, where test videos come from real-life
scenarios. Most videos contain more than one moving
objects, but only one of them (the sound source) is
producing sound. The audio modality contains the audio
signal associated with the moving object, environmental
noise and sometimes other sounds. The proposed method
produces two sparse matrices Pv and Pa, where Pv
indicates the location of the moving sound source and
Pa represents the associated audio signal. For the exper-
imental evaluation, we can only evaluate the localization
result for Pv although the audio separation process for
Pa is conducted at the same time with localization. The
reason is, there is no way to obtain the ground truth for
the associated audio signal as the real world audio is
mixed naturally. The localization results are compared
with those obtained by two state-of-the-art methods: one
[8] for the object-level approach and the other [21] for
the pixel-level approach.

• Visually-assisted audio separation. To evaluate the ca-
pability of the proposed method in audio separation, we
synthesize noisy audio signals by corrupting the original
audio with either white noise or background music, and
then keep the original audio as the ground truth for audio
separation. In this case, the synthetic noisy audio is used
for the audio modality and the visual modality remains
the same as the first set of experiments (visual localiza-
tion). After obtaining the sparse matrix Pa, we can now
evaluate the audio separation process. Specifically, the
result of audio separation is compared with the state-of-
the-art unsupervised monaural audio separation method
[10].

• Active speaker detection. To demonstrate the generality
of the proposed method, we exploit the result of visual
localization and use it for the task of speaker detection.
By calculating the energy distribution of localization
results, the active speaker is identified as the one with
the highest energy of pixels. The comparison is made
against the widely-used open-source toolbox LIUM [22],
which has demonstrated the state-of-the-art performance
for broadcast news diarization.

A. Dataset

The new dataset, referred as SOP, consists of 20 audio-
visual recordings of sound sources, such as talking faces or
music instruments. It contains 5465 frames in total and every
frame is manually annotated. Most audio-visual recordings
are videos from Youtube except for video V8, which is from

2https://sites.google.com/view/blindaudiovisual

[3]. Besides, video V7 was used in [7] [8], and V16 used
in [8]. Details of the video sequences are listed in Table
I. The SOP dataset is the first dataset for the task with
annotations, which enable quantitative evaluations. There are
bigger datasets [44] [46] used by deep neural networks, but
they do not contain related annotations. For the works [8]
[21] that contain quantitative evaluations, their methods are
evaluated on two ([21]) and six ([8]) videos respectively, which
justifies the importance of introducing the SOP dataset.

The videos in the dataset have average duration of 10
seconds, and they are all recorded by one camera and one
microphone. The audio signals are sampled at 16 kHz for V7,
V8, V16, and 44.1 kHz for the rest. The video frames contain
the sound-making object (sound source) and distracting objects
(e.g. pedestrian on the street), while the audio signals consist
of the sound produced by the sound source (human speech or
instrumental music), environmental noise and sometimes other
sounds. Ground truth of visual localization has been annotated
by annotators. The key principle is to annotate the significant
movement that triggers the sound.

In the first set of experiments (visual localization), the
proposed method is evaluated on all 20 videos in the dataset
and gets compared with state-of-the-art methods. In the second
set of experiments (audio separation), we use 12 videos (V1,
V4 ∼ V10, V15, V16, V18, V20) out of the 20, where their
audio signals are relatively clean and can be kept as the ground
truth for audio separation. In the third set of experiments
(active speaker detection), we created 10 additional videos
(V21 ∼ V30) from the SEWA database3. The original videos in
SEWA contain two person engaged in a dialogue. The dialogue
is to discuss one advertisement they watched together. We
merge two synchronous frames of the two speakers during
a dialogue into one frame, and use the proposed method
to find ’Who is speaking and When’ in the dialogue. The
annotation is provided by SEWA database, where annotators
watch through the videos and record the speaking time of each
person. The ten test videos are sampled at 50 frames/sec and
have 8000 frames in length. They are videos corresponding
to real-life scenarios where the dialogues contain frequently
changed turns of speaking, unexpected silence and simultane-
ous speech.

B. Quantitative Evaluation Criteria

1) Visual Localization Evaluation: Different evaluation cri-
teria may favor different localization approaches. The object-
level approach tends to produce one complete region with
well-defined boundary, while the pixel-level approach often
produces isolated pixels with concentrated energy. The F1

measure in [7] favours the object-level approaches, since it
measures the overlapping between the ground truth and the
detected region. The Lc criterion defined in [3] is more suitable
for pixel-level approaches since it provides the evaluation
from an energy perspective. To evaluate the visual localization
results more objectively, we combine the evaluation framework
in [7], [3] and report both the F1 and Lc criteria.

3https://db.sewaproject.eu/
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TABLE I
MAIN SPECIFICATIONS AND CONTENTS OF TEST VIDEO SEQUENCES

Index Resolution
H*W

Frame
rate fps

No. of
frames Video content Distracting objects Audio content Noise

V1 360*480 25.00 278 Playing harp - Harp sound -
V2 360*450 25.00 278 Playing piano in the crowd Pedestrians Piano sound Environment noise
V3 720*1280 25.00 363 Playing guitar in the street Pedestrians Guitar sound Environment noise
V4 720*1280 29.97 301 Playing xylophone - Xylophone sound -
V5 720*1280 25.00 310 Playing xylophone - Xylophone sound -
V6 720*1280 25.00 338 Playing guitar - Guitar sound -
V7 240*320 25.00 129 Playing violin - Violin sound -
V8 384*480 24.87 101 Playing keyboards Wooden horse Keyboards sound -
V9 720*1280 25.00 308 Playing keyboards - Keyboards sound -

V10 720*1280 29.97 300 Interviewing two soldiers Silent soldier One soldier’s speech -
V11 720*1280 23.98 240 Speaking - Speaking Environment noise
V12 288*512 29.97 300 Speaking - Speaking Environment noise
V13 360*640 29.97 301 Interviewing one rescuer Pedestrian Speech (interviewee) Speech (interviewer)
V14 720*1280 29.97 333 Playing guitar in the street Pedestrian Guitar sound Environment noise
V15 720*1280 25.00 263 Playing guitar - Guitar sound -
V16 360*640 23.97 156 Playing guitar - Guitar sound -
V17 720*1280 25.00 255 Playing piano in the street Cars Piano sound Environment noise
V18 360*480 25.00 323 Playing violin - Violin sound -
V19 720*1280 25.00 250 Playing cello in the street Pedestrians Cello sound Environment noise
V20 720*1280 25.00 338 Playing cello - Cello sound -

Firstly, we manually segmented the video images into the
two regions: one region Rt (ground truth) that contains the
sound source, and the remaining region Ru that is uncorrelated
to the audio signal. Then the precision and recall metrics are
computed as following [7]:

Precision =
(Rt ∩Rd)

Rd
; Recall =

(Rt ∩Rd)
Rt

;

Where intersection ∩ stands for overlapping, and Rd is the
region detected by the proposed method. The size of the
detected region Rd is controlled by a predefined threshold,
since only the pixels with bigger values than the predefined
threshold are considered as ’detected’. We set the threshold
to be 0.1 and compute the precision, recall for each frame.
The final criteria are averaged over all frames. F1 measure is
reported to show the overall performance. That is:

F1 = 2
Precision×Recall
Precision+Recall

Moreover, we define an Lc term similar with [3] to eval-
uate the localization results from an energy perspective. The
resulted image Wv can have a number of positive and negative
values. The energy of the pixels is defined as:

e(~x) = |Wv(~x)|2

where ~x is the pixel coordinate. A satisfactory localization
is obtained if most of the energy e(~x) is concentrated in the
region of the ground truth. The localization criterion is defined
as [3]:

Lc =

∑
~x∈Dc e(~x)∑
~x e(~x)

× Rt +Ru
Rt ∩Rd

Where Rt is the ground truth and Ru is the remaining uncorre-
lated region, so Rt+Ru represents the whole frame. Rd stands
for the region detected by the proposed method. Dc represents
the set of correctly detected pixels: Dc

.
= {~x : ~x ∈ Rt ∩Rd}.

So
∑
~x∈Dc e(~x) represents the sum of energy in the correctly

detected region Rt ∩ Rd, and
∑
~x e(~x) is the sum of energy

in the whole frame Rt +Ru.
Because of the accumulation of energy, the detected pixels

with negligible values make no difference to Lc. So the Lc
criterion mainly focus on the regions with the major energy
distribution. This property makes Lc well-suited to pixel-level
approaches and more robust to outliers in results.

2) Audio Separation Evaluation: Following the evaluation
framework in [10], [18], we examine the audio separation
results by BSS-EVAL metrics [19]. Specifically, the Source to
Distortion Ratio (SDR) is often used to represent the overall
performance of audio separation. We define the Normalized
SDR (NSDR), which only measures the improvement of the
SDR from the mixed noisy audio ŝ to the reconstructed
separated sound v̂ (namely Pa). That is [18]:

NSDR (v̂, v, ŝ) = SDR (v̂, v)− SDR (ŝ, v)

Where v̂ is the reconstructed audio signal, v is the original
sound, and ŝ is the mixture of the original sound and artificial
noises. In the second set of experiments (visually-assisted
audio separation), the artificial noises could be either white
noise or irrelevant background music.

3) Speaker Detection Evaluation: The diarization error rate
(DER) is the metric used to quantitatively measure the perfor-
mance: the smaller the DER value, the better the performance.
DER was introduced by the NIST-RT 4 as the fraction of
speaking time which is not attributed to the correct speaker,
or to none of them in case of a silent frame. To compute the
DER on speech segments, three error types have to be defined:
• Confusion error, when the output of the speaker label

does not match the ground truth.
• Miss error, when speech is present but the method fails

to detect the speech activity.
• False alarm error, when speech is incorrectly detected in

case of silence.

4www.itl.nist.gov/iad/mig/tests/rt/
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The DER contains the composition of the three error mea-
surements:

DER =
confusion + miss + false alarm

total speech time

C. Experimental Setup

Parameters fall into two categories: {µ, ρ, δ} to control the
iteration process of inexact ALM; {λ1, λ2, λ3, λ4, λ5,K} to
control the rank and sparsity of the output matrices. It is worth
mentioning that only the {λ1, λ2, λ3, λ4, λ5,K} are model
parameters of the proposed method, while {µ, ρ, δ} exist for
any ALM process. Details are summarized as following:
• Penalty parameter µ. The penalty parameter µ increases

in each iteration via the multiplicative update factor ρ >
1. It is common to initialize µ with a small value for
ALM, and we pick µ0 = 1.25

‖V‖2 consistent with [16]. To
avoid ill-conditioning, the algorithm requires an upper
bound for µ, in which we choose µmax = 1018.

• Multiplicative update factor ρ (Algorithm 1). The factor
1 < ρ < 2 can be viewed as a trade-off between the
precision and speed of the iteration process. In other
words, for ρ close to 1 the algorithm converges slowly but
precisely, while for ρ close to 2 it works the other way
around. Due to the high dimensionality and volume of the
datasets, we choose ρ = 1.5 to reduce the computational
load, as well as guarantee decent results in term of
precision.

• Convergence threshold δ. In general, a smaller value of
δ tends to produce more accurate results but takes more
iterations to converge. In our experiments, we choose δ =
10−5.

• Regularization parameters λ1, λ2, λ3, λ4, λ5. They are
used to balance the significance of minimization in the
objective function (6). Take λ1 as an example: a larger
value of λ1 tends to obtain a sparser matrix Pv , while a
smaller λ1 would obtain a denser one. In all experiments,
we set λ1 = 1, λ2 = 0.2, λ3 = 0.2, λ4 = 0.4 and
λ5 = 0.4. These values of λ are obtained by optimizing
the performance on V7, and then applied to all other
videos. To further investigate the robustness of each
parameters, we have conducted a sensitivity analysis in
Appendix B, where the performances of different values
of λs are plotted. The results of sensitivity analysis show
the stability of the proposed method, and there is a
large set of values where the proposed method achieves
comparable results.

• Rank parameter K. The K denotes the number of rows
in matrix C, which is the upper bound of the rank of
Bv,Ba. In our experiments, we use K = 50 for all videos.

D. Visual Localization of Sound Source

1) Comparison with Pixel-level Approach : The state-of-
the-art method in pixel level was proposed in [21]. It uses
sparse canonical correlation analysis (SCCA) to identify the
dynamic pixels which are most correlated to the audio signal.
To gain a fair comparison with this pixel-level approach, we

TABLE II
QUANTITATIVE COMPARISON FOR VISUAL LOCALIZATION OF SOUND

SOURCE, IN TERM OF THE Lc CRITERION. THE BEST PERFORMANCE IN
EACH ROW IS IN BOLD.

Index Pixel-level [21] Preliminary [36] Proposed method
V1 17.7147 25.0812 35.9697
V2 38.4121 18.9275 53.4280
V3 27.8205 24.4916 41.1083
V4 16.6262 25.9166 37.3420
V5 37.5824 23.7763 69.3898
V6 32.8769 18.7008 36.7466
V7 10.1565 21.5093 11.8834
V8 20.1201 24.2709 18.7321
V9 15.6017 24.3466 48.2306
V10 36.4695 16.2149 48.0794
V11 125.2610 17.8773 148.8214
V12 49.9097 21.4786 67.4180
V13 18.8748 16.3823 33.9825
V14 17.4748 47.4792 75.9254
V15 7.7405 4.0114 9.8328
V16 10.5244 12.9377 19.2947
V17 27.5647 10.2106 41.1681
V18 8.3142 5.6821 18.2406
V19 6.2431 8.1276 17.0999
V20 4.3793 6.0100 7.7506

report the Lc criterion which shows the energy distribution of
localization results.

Both the proposed method and the method in [21] were
tested and evaluated on all 20 videos in the SOP dataset.
The sample frames of localization results are shown in Fig.
2, as well as the manually labeled ground truth for a visual
comparison. As you can see, the proposed method has suc-
cessfully localized the sound sources in test videos. Thanks
to the sparsity of Pv , the localization results remain in one
or two concentrated areas, which automatically construct the
physical boundary of the sounding object. On the other hand,
although the method in [21] is able to find several pixels that
are most correlated to the audio signal, its localization result
is severely influenced by distracting moving objects (e.g. its
detection on pedestrians).

The quantitative evaluation for each algorithm is shown in
Table II. It is clear that the proposed method outperforms the
method [21] in terms of Lc for all but one video, which means
its energy distribution is more concentrated in the region of
ground truth. Besides, one may find that the value of Lc in
different videos varies a lot, and this is because the size of
the sound-producing region in videos is quite different, which
leads to different concentration level of energy distribution.

To further demonstrate the contribution of our paper, the
proposed method is compared with our preliminary work
[36]. The model in [36] is actually a special case of the
proposed method, where it decomposes each modality into
only two components (either low-rank background or sparse
correlated component) and does not consider any uncorrelated
information (e.g., distracting movements in visual modality
and noise in audio modality). By inspecting the Table II, it is
easy to see that the consideration of uncorrelated components
in the proposed method helps a lot and results in better
performances in almost all test videos.

2) Comparison with Object-level Approach: The object-
level approach usually first decomposes the video signals into
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Fig. 2. Sample frames of the localization results. The frame number is marked at the bottom of the sample frames. These groups of figures are for video
sequences V2, V8 and V19. Within each group, each row from top to bottom corresponds to the original video frames, the manually labeled ground truth,
results produced by the method [21] and by our algorithm (from the sparse component Pv). To facilitate the visual comparison, 5% of pixels with most energy
are plotted in white, while others remain in black.
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TABLE III
PARAMETERS INVESTIGATION OF LI’S METHOD [8]. THE THREE VIDEOS

HERE ARE THE ORIGINAL VIDEOS USED IN THEIR PAPER, WHICH ARE ALSO
IN OUR SOP DATASET. ’PARAMETER1’ IS THE NUMBER OF REMAINING

REGIONS AFTER ITS INTRA-FRAME CLUSTERING PROCESS. PARAMETER2’
IS A SIMILARITY THRESHOLD TO DECIDE WHETHER TO CREATE A NEW
REGION TRACKER DURING ITS INTER-FRAME CLUSTERING PROCESS.

Video name Parameter1 Parameter2 F1

Violin Yanni
(V7)

15 0.3 0.0287
15 0.25 0.0243
15 0.2 0.6074
15 0.15 0.0601
15 0.1 0.0601

Wooden Horse
(V8)

25 0.25 0.0103
25 0.2 0.0103
25 0.15 0.0103
25 0.1 0.0103
25 0.05 0.4357

Guitar Lessons
(V16)

20 0.3 0.1718
20 0.25 0.0648
20 0.2 0.0648
20 0.15 0.4541
20 0.1 0.0648

a number of video regions, and then performs correlation
analysis to identify one or two video regions which are most
correlated to the audio signal. The state-of-the-art method
in object level was proposed by Li et al. [8]. Their method
not only segments video frames into spatial regions, but also
applies a region tracking algorithm to record the temporal
evolution of one region.

As the result of Li’s segmentation and region tracking
algorithm, the video is decomposed in a number of region
trackers and each tracker represents the temporal evolution
of one region. The visual features (acceleration) are extracted
from these region trackers and used in their correlation analy-
sis. Although Li’s method produced good localization results
on their 6 test videos, it has two vital disadvantages which
greatly influence its localization results on other unseen videos.
The two disadvantages are also common in other object-level
approaches, so we conduct a detailed investigation here:

• ’Binary’ result. Since Li’s method keeps 15 region track-
ers as candidates and their correlation measure only picks
one tracker out of the 15, the localization task becomes a
binary problem. In other words, the algorithm can either
pick the ’right ’ region, or a completely uncorrelated one.

• Sensitivity to parameters. The 15 region trackers are
produced by two segmentation processes and two clus-
tering processes, in which each process is laborious
and determined by its own parameters (e.g. shape of
segmented regions, and the number of clusters). These
parameters play a crucial role in feature extraction and
consequently influence the localization results. A detailed
investigation about how these parameters influence the
localization results is given in Table III.

As shown in Table III, the optimal parameters for V7, V8,
V16 are [15, 0.2], [25, 0.05] and [20, 0.15], respectively.
Although their results under optimal parameters are reason-
ably good, the performances under suboptimal parameters
are unsatisfactory. Hence their localization results are very
sensitive to parameters. The reason is that the construction

TABLE IV
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD WITH LI’S

METHOD[8], IN TERMS OF THE F1 CRITERION. FOR LI’S METHOD, THE
PERFORMANCE IS REPORTED IN THREE COLUMNS AND EACH COLUMN

HAS DIFFERENT PARAMETER CONFIGURATIONS. IN THE FIRST COLUMN,
PARAMETERS ARE FOUND BY OPTIMIZING PERFORMANCE ON THE VIDEO

V7, I.E. [15, 0.2]. THE SECOND COLUMN IS FOR THE OPTIMAL
PARAMETERS OF V8 AND THE THIRD COLUMN IS FOR V16. FOR THE

PROPOSED METHOD, PARAMETERS ARE FOUND BY OPTIMIZING
PERFORMANCE ONLY ON THE VIDEO V7.

Index
Compared method [8] Proposed method

Parameters optimized on Parameters optimized on
V7 V8 V16 V7

V1 0.1129 0.1224 0.0748 0.4457
V2 0.0888 0.1550 0.0688 0.4598
V3 0.0367 0.0772 0.0891 0.4470
V4 0.0725 0.1575 0.1673 0.4857
V5 0.1699 0.0313 0.0207 0.4812
V6 0.3775 0.0 0.0 0.3158
V7 0.6074 0.0601 0.0601 0.3393
V8 0.0103 0.4357 0.0103 0.5219
V9 0.0549 0.0768 0.1645 0.3477

V10 0.0148 0.0225 0.0149 0.0758
V11 0.0013 0.0084 0.0182 0.1889
V12 0.0 0.0 0.0 0.1545
V13 0.0730 0.0872 0.0821 0.1172
V14 0.0246 0.0098 0.0017 0.2251
V15 0.0344 0.3783 0.4721 0.1837
V16 0.0648 0.0648 0.4541 0.3385
V17 0.0025 0.0 0.2021 0.2093
V18 0.3295 0.2237 0.2837 0.1391
V19 0.0793 0.1020 0.1699 0.2147
V20 0.1913 0.0970 0.1923 0.4311

of the 15 region trackers is sensitive to these parameters and
any suboptimal parameters will produce undesirable visual
features, which eventually undermines the localization results.
Moreover, these optimal parameters can be different for dif-
ferent videos and there is no principled way to find them.

To gain a fair comparison, we consider the parameter
sensitivity of different methods. For Li’s method, we take the
three sets of optimal parameters for V7, V8, V16 in Table
III, and apply them on other videos of our SOP dataset.
Each video was analyzed three times under the three sets of
parameters. For the proposed method, its parameters are found
by optimizing performance on V7, which is described in detail
at the Section IV-C. Then the found parameters are used for
all other videos.

The quantitative comparison for the proposed method and
Li’s method is shown in Table IV. As you can see, Li’s method
is quite sensitive to the parameters from the comparison of its
own three columns. It can achieve better results on 5 videos
(V6, V7, V15, V16 and V18) when the tested parameters are
desirable for its feature extraction. In contrast, our method
performs better on the remaining 15 videos and it produces
more stable localization results without relying on parameter
tuning.

It is worth mentioning that the localization results of the
proposed method in Tables II and IV are all obtained under
the same parameter configuration. Besides, one may find for
different videos the value of F1 in Table IV varies a lot, and
it is because some videos are more challenging than others.
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TABLE V
QUANTITATIVE COMPARISON FOR AUDIO SEPARATION IN TERMS OF THE
NSDR CRITERION. THE BEST PERFORMANCE IN EACH ROW IS IN BOLD.

Index State-of-the-art [10] Preliminary [36] Proposed method
V1 -1.0809 2.5542 4.3106
V4 -1.8427 0.4389 2.1210
V5 4.3240 4.1101 4.7042
V6 -0.6818 2.3165 3.1029
V7 -3.0257 5.8963 7.5347
V8 3.4864 8.8156 8.8810
V9 3.8541 0.7112 1.6892
V10 7.1564 0.4902 1.0707
V15 1.2723 0.8769 1.2661
V16 -2.8458 -1.2459 -0.5897
V18 7.0333 3.9239 4.0539
V20 -3.4429 -0.5301 0.2835

E. Visually-assisted Audio Separation

In this section we investigate the capability of the proposed
method in audio separation with the assistance of visual
information. The experiment is conducted on 12 videos (V1,
V4 ∼ V10, V15, V16, V18, V20), where their original audio
signals are relatively clean and can be kept as the ground truth
of audio separation. To synthesize noisy audio inputs, these
audio signals are corrupted by either white noise or irrelevant
background music, which are from the Audio Degradation
Toolbox [37]. The first 6 videos (V1, V4 ∼ V8) are corrupted
by white noise, while the other 6 (V9, V10, V15, V16, V18
and V20) corrupted by background music .

The corrupting noises and the original audio signal were
mixed at 0 dB Signal to Noise Ratio (SNR), i.e. they are at the
same energy level. In this scenario, the proposed method will
output an audio sparse component Pa that corresponds to the
separated audio signal. The samples of the audio separation
results are plotted in Fig. 3. As you can see, in the time-
frequency domain (spectrogram) the separated audio obtained
by the proposed method successfully captures the most promi-
nent part of the original audio signal. The comparison is
made against the state-of-the-art unsupervised monaural audio
separation method [10], which also performances reasonably
well.

To make the comparison more clear, the quantitative result
of the audio separation is shown in Table V, along with the
comparison to our preliminary work [36]. It is easy to see that
the proposed method is able to obtain decent separation results
and achieve competitive performance, outperforming [10] in
eight out of twelve videos (V1, V4, V5, V6, V7, V8, V16 and
V20).

F. Active speaker detection

The capability of the proposed method in speaker detection
is assessed on 10 videos (V21 ∼ V30). These videos are
created from the SEWA database and described in detail in
Section IV-A. Since the dialogues in videos contain only
two persons (sitting on the left and right side of images
respectively), we exploit the results of visual localization and
compare the magnitude of energy between the left and right
side of generated images. The active speaker is identified as
the one with the highest energy magnitude.

TABLE VI
QUANTITATIVE COMPARISON FOR ACTIVE SPEAKER DETECTION, IN

TERMS OF THE DER SCORES(%). THE BEST PERFORMANCE IN EACH ROW
IS IN BOLD.

Index LIUM [22] Preliminary [36] Proposed method
V21 33.89 41.87 32.81
V22 41.94 45.63 45.94
V23 54.72 56.25 47.19
V24 49.72 42.19 39.69
V25 51.11 40.63 25.31
V26 50.31 47.81 46.56
V27 59.37 52.19 49.06
V28 49.69 47.50 44.06
V29 35.94 25.94 23.75
V30 51.25 49.38 35.62

Average 47.79 44.94 38.99

The experimental comparison is made against the widely-
used toolbox LIUM [22]. LIUM uses acoustic features that
are composed of 13 mel-frequency cepstral coefficients. The
quantitative result of each method (LIUM [22], the proposed
method and our preliminary work [36] ) is shown in Table
VI. It is easy to see that the proposed method outperforms
the LIUM toolbox, with a smaller average score of DER,
for all but one video (V22). However, there is still space to
improve the performance, since both the LIUM toolbox and
the proposed method find difficult to detect silent frames and
simultaneous speech.

The purpose of the experiment is to demonstrate the de-
cent localization result of the proposed method, which can
be further used for speaker detection. Besides, the idea of
exploiting the visual localization to help the speaker detection
task could also be promising to improve the multi-modal
speaker detection in future.

V. CONCLUSION

In this paper, we proposed a low-rank and sparse model
to handle the audiovisual localization and separation problem,
with one additional application on active speaker detection.
The proposed CLS method is formalized as a constrained
optimization problem, and solved by applying inexact ALM
algorithm. Experiments are conducted on 30 videos to eval-
uate the capability of the proposed method, with comparison
against other state-of-the-art methods in the field. Specifically,
we conducted three set of experiments: (1) visual localization
of sound source, (2) visually-assisted audio separation, and (3)
active speaker detection. In these experiments, the proposed
method is able to correctly localize the sound source and
separate the associated audio with competitive performance,
and also successfully performs speaker detection.

Currently, the proposed method cannot be applied to handle
discrete audio signals, due to the lack of audio information
during the silent intervals. In addition, it cannot detect the
non-linear correlation between visual modality and audio
modality, due to the linear shared matrix C between the sparse
component Pv and Pa. So a kernel version of the proposed
method and its extension will be investigated in future.
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(a) Original audio (b) Audio + white noise (c) Separated audio (ours) (d) Separated audio ([10])

(e) Original audio (f) Audio + background music (g) Separated audio (ours) (h) Separated audio ([10])

Fig. 3. Audio separation results. The group of figures (a) ∼ (d) is for video sequence V8, and (e) ∼ (h) for V9. Within each group, the top row is the plain
plot of audio signals, while the second row is the spectrogram of audio. The comparison is made against the state-of-the-art unsupervised monaural audio
separation method [10].
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