10,288 research outputs found

    Feature Selection via Binary Simultaneous Perturbation Stochastic Approximation

    Full text link
    Feature selection (FS) has become an indispensable task in dealing with today's highly complex pattern recognition problems with massive number of features. In this study, we propose a new wrapper approach for FS based on binary simultaneous perturbation stochastic approximation (BSPSA). This pseudo-gradient descent stochastic algorithm starts with an initial feature vector and moves toward the optimal feature vector via successive iterations. In each iteration, the current feature vector's individual components are perturbed simultaneously by random offsets from a qualified probability distribution. We present computational experiments on datasets with numbers of features ranging from a few dozens to thousands using three widely-used classifiers as wrappers: nearest neighbor, decision tree, and linear support vector machine. We compare our methodology against the full set of features as well as a binary genetic algorithm and sequential FS methods using cross-validated classification error rate and AUC as the performance criteria. Our results indicate that features selected by BSPSA compare favorably to alternative methods in general and BSPSA can yield superior feature sets for datasets with tens of thousands of features by examining an extremely small fraction of the solution space. We are not aware of any other wrapper FS methods that are computationally feasible with good convergence properties for such large datasets.Comment: This is the Istanbul Sehir University Technical Report #SHR-ISE-2016.01. A short version of this report has been accepted for publication at Pattern Recognition Letter

    A Framework for Genetic Algorithms Based on Hadoop

    Full text link
    Genetic Algorithms (GAs) are powerful metaheuristic techniques mostly used in many real-world applications. The sequential execution of GAs requires considerable computational power both in time and resources. Nevertheless, GAs are naturally parallel and accessing a parallel platform such as Cloud is easy and cheap. Apache Hadoop is one of the common services that can be used for parallel applications. However, using Hadoop to develop a parallel version of GAs is not simple without facing its inner workings. Even though some sequential frameworks for GAs already exist, there is no framework supporting the development of GA applications that can be executed in parallel. In this paper is described a framework for parallel GAs on the Hadoop platform, following the paradigm of MapReduce. The main purpose of this framework is to allow the user to focus on the aspects of GA that are specific to the problem to be addressed, being sure that this task is going to be correctly executed on the Cloud with a good performance. The framework has been also exploited to develop an application for Feature Subset Selection problem. A preliminary analysis of the performance of the developed GA application has been performed using three datasets and shown very promising performance

    A comparison of crossover operators in neural network feature selection with multiobjective evolutionary algorithms

    Get PDF
    Genetic algorithms are often employed for neural network feature selection. The efficiency of the search for a good subset of features, depends on the capability of the recombination operator to construct building blocks which perform well, based on existing genetic material. In this paper, a commonality-based crossover operator is employed, in a multiobjective evolutionary setting. The operator has two main characteristics: first, it exploits the concept that common schemata are more likely to form useful building blocks; second, the offspring produced are similar to their parents in terms of the subset size they encode. The performance of the novel operator is compared against that of uniform, 1 and 2-point crossover, in feature selection with probabilistic neural networks

    A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images

    Get PDF
    A new suboptimal search strategy suitable for feature selection in very high-dimensional remote-sensing images (e.g. those acquired by hyperspectral sensors) is proposed. Each solution of the feature selection problem is represented as a binary string that indicates which features are selected and which are disregarded. In turn, each binary string corresponds to a point of a multidimensional binary space. Given a criterion function to evaluate the effectiveness of a selected solution, the proposed strategy is based on the search for constrained local extremes of such a function in the above-defined binary space. In particular, two different algorithms are presented that explore the space of solutions in different ways. These algorithms are compared with the classical sequential forward selection and sequential forward floating selection suboptimal techniques, using hyperspectral remote-sensing images (acquired by the AVIRIS sensor) as a data set. Experimental results point out the effectiveness of both algorithms, which can be regarded as valid alternatives to classical methods, as they allow interesting tradeoffs between the qualities of selected feature subsets and computational cost

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time
    • …
    corecore