150 research outputs found

    Automated Segmentation of Retinal Optical Coherence Tomography Images

    Get PDF
    Aim. Optical Coherence Tomography (OCT) is a fast and non-invasive medical imaging technique which helps in the investigation of each individual retinal layer structure. For early detection of retinal diseases and the study of their progression, segmentation of the OCT images into the distinct layers of the retina plays a crucial role. However, segmentation done by the clinicians manually is extremely tedious, time-consuming and variable with respect to the expertise level. Hence, there is an utmost necessity to develop an automated segmentation algorithm for retinal OCT images which is fast, accurate, and eases clinical decision making. Methods. Graph-theoretical methods have been implemented to develop an automated segmentation algorithm for spectral domain OCT (SD-OCT) images of the retina. As a pre-processing step, the best method for denoising the SD-OCT images prior to graph-based segmentation was determined by comparison between simple Gaussian filtering and an advanced wavelet-based denoising technique. A shortest-path based graph search technique was implemented to accurately delineate intra-retinal layer boundaries within the SD-OCT images. The results from the automated algorithm were also validated by comparison with manual segmentation done by an expert clinician using a specially designed graphical user interface (GUI). Results. The algorithm delineated seven intra-retinal boundaries thereby segmenting six layers of the retina along with computing their thicknesses. The thickness results from the automated algorithm when compared to normative layer thickness values from a published study showed no significant differences (p > 0.05) for all layers except layer 4 (p = 0.04). Furthermore, when a comparative analysis was done between the results from the automated segmentation algorithm and that from manual segmentation by an expert, the accuracy of the algorithm varied between 74.58% (layer 2) to 98.90% (layer 5). Additionally, the comparison of two different denoising techniques revealed that there was no significant impact of an advanced wavelet-based denoising technique over the use of simple Gaussian filtering on the accuracy of boundary detection by the graph-based algorithm. Conclusion. An automated graph-based algorithm was developed and implemented in this thesis for the segmentation of seven intra-retinal boundaries and six layers in SD-OCT images which is as good as manual segmentation by an expert clinician. This thesis also concludes on the note that simple Gaussian filters are sufficient to denoise the images in graph-based segmentation techniques and does not require an advanced denoising technique. This makes the complexity of implementation far more simple and efficient in terms of time and memory requirements

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort

    Automatic detection of drusen associated with age-related macular degeneration in optical coherence tomography: a graph-based approach

    Get PDF
    Tese de Doutoramento em Líderes para Indústrias TecnológicasThe age-related macular degeneration (AMD) starts to manifest itself with the appearance of drusen. Progressively, the drusen increase in size and in number without causing alterations to vision. Nonetheless, their quantification is important because it correlates with the evolution of the disease to an advanced stage, which could lead to the loss of central vision. Manual quantification of drusen is impractical, since it is time-consuming and it requires specialized knowledge. Therefore, this work proposes a method for quantifying drusen automatically In this work, it is proposed a method for segmenting boundaries limiting drusen and another method for locating them through classification. The segmentation method is based on a multiple surface framework that is adapted for segmenting the limiting boundaries of drusen: the inner boundary of the retinal pigment epithelium + drusen complex (IRPEDC) and the Bruch’s membrane (BM). Several segmentation methods have been considerably successful in segmenting layers of healthy retinas in optical coherence tomography (OCT) images. These methods were successful because they incorporate prior information and regularization. However, these factors have the side-effect of hindering the segmentation in regions of altered morphology that often occur in diseased retinas. The proposed segmentation method takes into account the presence of lesion related with AMD, i.e., drusen and geographic atrophies (GAs). For that, it is proposed a segmentation scheme that excludes prior information and regularization that is only valid for healthy regions. Even with this segmentation scheme, the prior information and regularization can still cause the oversmoothing of some drusen. To address this problem, it is also proposed the integration of local shape priors in the form of a sparse high order potentials (SHOPs) into the multiple surface framework. Drusen are commonly detected by thresholding the distance among the boundaries that limit drusen. This approach misses drusen or portions of drusen with a height below the threshold. To improve the detection of drusen, Dufour et al. [1] proposed a classification method that detects drusen using textural information. In this work, the method of Dufour et al. [1] is extended by adding new features and performing multi-label classification, which allow the individual detection of drusen when these occur in clusters. Furthermore, local information is incorporated into the classification by combining the classifier with a hidden Markov model (HMM). Both the segmentation and detections methods were evaluated in a database of patients with intermediate AMD. The results suggest that both methods frequently perform better than some methods present in the literature. Furthermore, the results of these two methods form drusen delimitations that are closer to expert delimitations than two methods of the literature.A degenerescência macular relacionada com a idade (DMRI) começa a manifestar-se com o aparecimento de drusas. Progressivamente, as drusas aumentam em tamanho e em número sem causar alterações à visão. Porém, a sua quantificação é importante porque está correlacionada com a evolução da doença para um estado avançado, levar à perda de visão central. A quantificação manual de drusas é impraticável, já que é demorada e requer conhecimento especializado. Por isso, neste trabalho é proposto um método para segmentar drusas automaticamente. Neste trabalho, é proposto um método para segmentar as fronteiras que limitam as drusas e outro método para as localizar através de classificação. O método de segmentação é baseado numa ”framework” de múltiplas superfícies que é adaptada para segmentar as fronteiras que limitam as drusas: a fronteira interior do epitélio pigmentar + complexo de drusas e a membrana de Bruch. Vários métodos de segmentação foram consideravelmente bem-sucedidos a segmentar camadas de retinas saudáveis em imagens de tomografia de coerência ótica. Estes métodos foram bem-sucedidos porque incorporaram informação prévia e regularização. Contudo, estes fatores têm como efeito secundário dificultar a segmentação em regiões onde a morfologia da retina está alterada devido a doenças. O método de segmentação proposto toma em consideração a presença de lesões relacionadas com DMRI, .i.e., drusas e atrofia geográficas. Para isso, é proposto um esquema de segmentação que exclui informação prévia e regularização que são válidas apenas em regiões saudáveis da retina. Mesmo com este esquema de segmentação, a informação prévia e a regularização podem causar a suavização excessiva de algumas drusas. Para tentar resolver este problema, também é proposta a integração de informação prévia local sob a forma de potenciais esparsos de ordem elevada na ”framework” multi-superfície. As drusas são usalmente detetadas por ”thresholding” da distância entre as fronteiras que limitam as drusas. Esta abordagem falha drusas ou porções de drusas abaixo do ”threshold”. Para melhorar a deteção de drusas, Dufour et al. [1] propuseram um método de classificação que deteta drusas usando informação de texturas. Neste trabalho, o método de Dufour et al. [1] é estendido, adicionando novas características e realizando uma classificação com múltiplas classes, o que permite a deteção individual de drusas em aglomerados. Além disso, é incorporada informação local na classificação, combinando o classificador com um modelo oculto de Markov. Ambos os métodos de segmentação e deteção foram avaliados numa base de dados de pacientes com DMRI intermédia. Os resultados sugerem que ambos os métodos obtêm frequentemente melhores resultados que alguns métodos descritos na literatura. Para além disso, os resultados destes dois métodos formam delimitações de drusas que estão mais próximas das delimitações dos especialistas que dois métodos da literatura.This work was supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941. Furthermore, the Portuguese funding institution Fundação Calouste Gulbenkian has conceded me a Ph.D. grant for this work. For that, I wish to acknowledge this institution. Additionally, I want to thank one of its members, Teresa Burnay, for all her assistance with issues related with the grant, for believing that my work was worth supporting and for encouraging me to apply for the grant

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Dual modality optical coherence tomography : Technology development and biomedical applications

    Get PDF
    Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time. OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, interrogating additional tissue properties using OCT would improve the outcome of OCT’s clinical applications. In addition to morphological difference, pathological tissue such as cancer breast tissue usually possesses higher stiffness compared to the normal healthy tissue, which indicates a compelling reason for the specific combination of structural OCT imaging with stiffness assessment in the development of dual-modality OCT system for the characterization of the breast cancer diagnosis. This dissertation seeks to integrate the structural OCT imaging and the optical coherence elastography (OCE) for breast cancer tissue characterization. OCE is a functional extension of OCT. OCE measures the mechanical response (deformation, resonant frequency, elastic wave propagation) of biological tissues under external or internal mechanical stimulation and extracts the mechanical properties of tissue related to its pathological and physiological processes. Conventional OCE techniques (i.e., compression, surface acoustic wave, magnetomotive OCE) measure the strain field and the results of OCE measurement are different under different loading conditions. Inconsistency is observed between OCE characterization results from different measurement sessions. Therefore, a robust mechanical characterization is required for force/stress quantification. A quantitative optical coherence elastography (qOCE) that tracks both force and displacement is proposed and developed at NJIT. qOCE instrument is based on a fiber optic probe integrated with a Fabry-Perot force sensor and the miniature probe can be delivered to arbitrary locations within animal or human body. In this dissertation, the principle of qOCE technology is described. Experimental results are acquired to demonstrate the capability of qOCE in characterizing the elasticity of biological tissue. Moreover, a handheld optical instrument is developed to allow in vivo real-time OCE characterization based on an adaptive Doppler analysis algorithm to accurately track the motion of sample under compression. For the development of the dual modality OCT system, the structural OCT images exhibit additive and multiplicative noises that degrade the image quality. To suppress noise in OCT imaging, a noise adaptive wavelet thresholding (NAWT) algorithm is developed to remove the speckle noise in OCT images. NAWT algorithm characterizes the speckle noise in the wavelet domain adaptively and removes the speckle noise while preserving the sample structure. Furthermore, a novel denoising algorithm is also developed that adaptively eliminates the additive noise from the complex OCT using Doppler variation analysis

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field
    corecore