298 research outputs found

    Rapid Development of Medical Imaging Tools with Open-Source Libraries

    Get PDF
    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools

    Annotating Medical Image Data

    Get PDF

    Annotating Medical Image Data

    Full text link

    3D Slicer as a platform for the automatic segmentation of real-time MRI data

    Get PDF
    Recent accomplishments in the field of medical imaging methods lead to the invention of real-time magnetic resonance imaging (MRI), a method that allows the recording of movies of, for example, the pumping heart. With real-time MRI, new insights into the physiology of the human heart can be gained but the method comes with a challenge: Different from conventional MRI, real-time MRI produces many more images that physicians and researchers possibly cannot evaluate manually. An ongoing research project at the German Aerospace Center evaluates machine learning methods to allow the automatic segmentation of cardiac real-time MRI images. A part of that project is the development of a software solution that researchers and medical staff can use to access the features of the automatic segmentation. This work aims at the evaluation of available software tools and frameworks in order to find a suitable tool for the development of the mentioned software solution. To accomplish this, different tools and frameworks are compared in terms of their feature sets, extendability, development workflows and licence restrictions. The Medical Imaging Interaction Toolkit and 3D Slicer will be compared in more depth leading to the selection of 3D Slicer. To prove that 3D Slicer is suitable as a software framework for the real-time MRI software solution, an example extension is developed that implements one of the software requirements. It will be concluded that 3D Slicer can be used to both efficiently implement the requirement of the example extension and be used as the base software framework to implement the other software requirements that are not developed as part of this work

    Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm

    Get PDF
    Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) could significantly improve clinical workflow and assist patient management. We have previously developed a novel artificial intelligence framework based on a 2.5D convolutional neural network achieving excellent results equivalent to those achieved by an independent human annotator. Here, we provide the first publicly-available annotated imaging dataset of VS by releasing the data and annotations used in our prior work. This collection contains a labelled dataset of 484 MR images collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery at a single institution. Data includes all segmentations and contours used in treatment planning and details of the administered dose. Implementation of our automated segmentation algorithm uses MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data will facilitate the development and validation of automated segmentation frameworks for VS and may also be used to develop other multi-modal algorithmic models

    Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    Get PDF
    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40846-015-0097-5) contains supplementary material, which is available to authorized users

    Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline.

    Get PDF
    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges--management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu

    Segmentation of the Cerebrospinal Fluid from MRI Images for the Treatment of Disc Herniations

    Get PDF
    About 80 percent of people are affected at some point in their lives by lower back pain, which is one of the most common neurological diseases and reasons for long-term disability in the United States. The symptoms are primarily caused by overly heavy lifting and/or overstretching of the back, leading to a rupture and an outward bulge of an intervertebral disc, which puts pressure on and pinches the nerve fibers of the spine. The most common form is a lumbar disc herniation between the fourth and fifth lumbar vertebra and between the fifth lumbar vertebra and the sacrum. In recent years the diagnosis of lower back pain has improved, mainly due to enhanced imaging techniques and imaging quality, but the surgical therapy remains hazardous. Reasons for this include low visibility when accessing the lumbar area and the high risk of causing permanent damage when touching the nerve fibers. A new approach for increasing patient safety is the segmentation and visualization of the cerebrospinal fluid in the lower lumbar region of the vertebral column. For this purpose a new fully-automatic and a semi-automatic approach were developed for separating the cerebrospinal fluid from its surroundings on T2-weighted MRI scans of the lumbar vertebra. While the fully-automatic algorithm is realized by a model-based searching method and a volume-based segmentation, the semi-automatic algorithm requires a seed point and performs the segmentation on individual axial planes through a combination of a region-based segmentation algorithm and a thresholding filter. Both algorithms have been applied to four T2-weighted MRI datasets and are compared with a gold-standard segmentation. The segmentation overlap with the gold-standard was 78.7 percent for the fully-automatic algorithm and 93.1 percent for the semi-automatic algorithm. In the pathological region the fully-automatic algorithm obtained a similarity of 56.6 percent, compared to 87.8 percent for the semi-automatic algorithm
    • …
    corecore