22 research outputs found

    Personalized Pain Study Platform Using Evidence-Based Continuous Learning Tool

    Get PDF
    With the increased accessibility to mobile technologies, research utilizing mobile technologies in medical and public health area has also increased. The efficiency and effectiveness of healthcare services are also improved by introduction of mobile technologies. Effective pain treatment requires regular and continuous pain assessment of the patients. Mobile Health or mHealth has been an active interdisciplinary research area for more than a decade to research pain assessment through different software research tools. Different mHealth support systems are developed to assess pain level of patient using different techniques. Close attention to participant’s self- reported pain along with data mining based pain level detection could help the healthcare industry and researchers to deliver effective health services in pain treatment. Pain expression recognition can be a good way for data mining based approach though pain expression recognition itself may utilize different approach based on the research study scope. Most of the pain research tools are study or disease specific. Some of the tools are pain specific (lumber pain, cancer pain etc) and some are patient group specific (neonatal, adult, woman etc). This results in recurrent but potentially avoidable costs such as time, money, and workforce to develop similar service or software research tools for each research study. Based on the pain study research characteristics, it is possible to design and implement a customizable and extensible generic pain research tool. In this thesis, we have proposed, designed, and implemented a customizable personalized pain study platform tool following a micro service architecture. It has most of the common software research modules that are needed for a pain research study. These include real-time data collection, research participant management, role based access control, research data anonymization etc. This software research tool is also used to investigate pain level detection accuracy using evidence-based continuous learning from facial expression which yielded about 71% classification accuracy. This tool is also HIPAA compliant and platform independent which makes it device independent, privacy-aware, and security-aware

    The Composite Face Illusion

    Get PDF
    Few findings in cognitive science have proved as influential as the composite face effect. When the top half of one face is aligned with the bottom half of another, and presented upright, the resulting composite arrangement induces a compelling percept of a novel facial configuration. Findings obtained using composite face procedures have contributed significantly to our understanding of holistic face processing, the detrimental effects of face inversion, the development of face perception, and aberrant face perception in clinical populations. Composite paradigms continue to advance our knowledge of face perception, as exemplified by their recent use for investigating the perceptual mechanisms underlying dynamic face processing. However, the paradigm has been the subject of intense scrutiny, particularly over the last decade, and there is a growing sense that the composite face illusion, whilst easy to illustrate, is deceptively difficult to measure and interpret. In this review we provide a focussed overview of the existing composite face literature, and identify six priorities for future research. Addressing these gaps in our knowledge will aid the evaluation and refinement of theoretical accounts of the illusion

    Feature extraction and fusion techniques for patch-based face recognition

    Get PDF
    Face recognition is one of the most addressed pattern recognition problems in recent studies due to its importance in security applications and human computer interfaces. After decades of research in the face recognition problem, feasible technologies are becoming available. However, there is still room for improvement for challenging cases. As such, face recognition problem still attracts researchers from image processing, pattern recognition and computer vision disciplines. Although there exists other types of personal identification such as fingerprint recognition and retinal/iris scans, all these methods require the collaboration of the subject. However, face recognition differs from these systems as facial information can be acquired without collaboration or knowledge of the subject of interest. Feature extraction is a crucial issue in face recognition problem and the performance of the face recognition systems depend on the reliability of the features extracted. Previously, several dimensionality reduction methods were proposed for feature extraction in the face recognition problem. In this thesis, in addition to dimensionality reduction methods used previously for face recognition problem, we have implemented recently proposed dimensionality reduction methods on a patch-based face recognition system. Patch-based face recognition is a recent method which uses the idea of analyzing face images locally instead of using global representation, in order to reduce the effects of illumination changes and partial occlusions. Feature fusion and decision fusion are two distinct ways to make use of the extracted local features. Apart from the well-known decision fusion methods, a novel approach for calculating weights for the weighted sum rule is proposed in this thesis. On two separate databases, we have conducted both feature fusion and decision fusion experiments and presented recognition accuracies for different dimensionality reduction and normalization methods. Improvements in recognition accuracies are shown and superiority of decision fusion over feature fusion is advocated. Especially in the more challenging AR database, we obtain significantly better results using decision fusion as compared to conventional methods and feature fusion methods

    Toward an affect-sensitive multimodal human-computer interaction

    No full text
    The ability to recognize affective states of a person... This paper argues that next-generation human-computer interaction (HCI) designs need to include the essence of emotional intelligence -- the ability to recognize a user's affective states -- in order to become more human-like, more effective, and more efficient. Affective arousal modulates all nonverbal communicative cues (facial expressions, body movements, and vocal and physiological reactions). In a face-to-face interaction, humans detect and interpret those interactive signals of their communicator with little or no effort. Yet design and development of an automated system that accomplishes these tasks is rather difficult. This paper surveys the past work in solving these problems by a computer and provides a set of recommendations for developing the first part of an intelligent multimodal HCI -- an automatic personalized analyzer of a user's nonverbal affective feedback

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Evaluating the fairness of identification parades with measures of facial similarity

    Get PDF
    Bibliography: pages 239-248.This thesis addresses a practical problem. The problem concerns the evaluation of 'identification parades', or 'lineups', which are frequently used by police to secure evidence of identification. It is well recognised that this evidence is frequently unreliable, and has led on occasion to tragic miscarriages of justice. A review of South African law is conducted and reported in the thesis, and shows that the legal treatment of identification parades centres on the requirement that parades should be composed of people of similar appearance to the suspect. I argue that it is not possible, in practice, to assess whether this requirement has been met and that this is a significant failing. Psychological work on identification parades includes the development of measures of parade fairness, and the investigation of alternate lineup structures. Measures of parade fairness suggested in the literature are indirectly derived, though; and I argue that they fail to address the question of physical similarity. In addition, I develop ways of reasoning inferentially (statistically) with measures of parade fairness, and suggest a new measure of parade fairness. The absence of a direct measure of similarity constitutes the rationale for the empirical component of the thesis. I propose a measure of facial similarity, in which the similarity of two faces is defined as the Euclidean distance between them in a principal component space, or representational basis. (The space is determined by treating a set of digitized faces as numerical vectors, and by submitting these to principal component analysis). A similar definition is provided for 'facial distinctiveness', namely as the distance of a face from the origin or centroid of the space. The validity of the proposed similarity measure is investigated in several ways, in a total of seven studies, involving approximately 700 subjects. 350 frontal face images and 280 profile face images were collected for use as experimental materials, and as the source for the component space underlying the similarity measure. The weight of the evidence, particularly from a set of similarity rating tasks, suggests that the measure corresponds reasonably well to perceptions of facial similarity. Results from a mock witness experiment showed that it is also strongly, and monotonically related to standard measures of lineup fairness. Evidence from several investigations of the distinctiveness measure, on the other hand, showed that it does not appear to be related to perceptions of facial distinctiveness. An additional empirical investigation examined the relation between target-foil similarity and identification performance. Performance was greater for lineups of low similarity, both when the perpetrator was present, and when the perpetrator was absent. The consequences of this for the understanding of lineup construction and evaluation are discussed

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book
    corecore