28 research outputs found

    Investigating Selection above a Multitouch Surface

    Get PDF
    Above-surface interaction is a new and exciting topic in the field of human-computer interaction (HCI). It focuses on the design and evaluation of systems that humans can operate by moving their hands in the space above or in front of interactive displays. While many technologies emerge that make such systems possible, much research is still needed to make this interaction as natural and effortless as possible. First this thesis presents a set of guidelines for designing above-surface interactions, a collection of widgets that were designed based on these guidelines, and a system that can approximate the height of hands above a diffused surface illumination (DSI) device without any additional sensors. Then the thesis focuses on interaction techniques for activating graphical widgets located in this above-surface space. Finally, it presents a pair of studies that were conducted to investigate item selection in the space above a multitouch surface. The first study was conducted to elicit a set of gestures for above-table widget activation from a group of users. Several gestures were proposed by the designers to be compared with the user-generated gestures. The follow-up study was conducted to evaluate and compare these gestures based on their performance. The findings of these studies showed that there was no clear agreement on what gestures should be used to select objects in mid-air, and that performance was better when using gestures that were chosen less frequently, but predicted to be better by the designers, as opposed to those most frequently suggested by participants

    tCAD: a 3D modeling application on a depth enhanced tabletop computer

    Get PDF
    Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.Universidade da Madeir

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Enhanced Virtuality: Increasing the Usability and Productivity of Virtual Environments

    Get PDF
    Mit stetig steigender Bildschirmauflösung, genauerem Tracking und fallenden Preisen stehen Virtual Reality (VR) Systeme kurz davor sich erfolgreich am Markt zu etablieren. Verschiedene Werkzeuge helfen Entwicklern bei der Erstellung komplexer Interaktionen mit mehreren Benutzern innerhalb adaptiver virtueller Umgebungen. Allerdings entstehen mit der Verbreitung der VR-Systeme auch zusätzliche Herausforderungen: Diverse Eingabegeräte mit ungewohnten Formen und Tastenlayouts verhindern eine intuitive Interaktion. Darüber hinaus zwingt der eingeschränkte Funktionsumfang bestehender Software die Nutzer dazu, auf herkömmliche PC- oder Touch-basierte Systeme zurückzugreifen. Außerdem birgt die Zusammenarbeit mit anderen Anwendern am gleichen Standort Herausforderungen hinsichtlich der Kalibrierung unterschiedlicher Trackingsysteme und der Kollisionsvermeidung. Beim entfernten Zusammenarbeiten wird die Interaktion durch Latenzzeiten und Verbindungsverluste zusätzlich beeinflusst. Schließlich haben die Benutzer unterschiedliche Anforderungen an die Visualisierung von Inhalten, z.B. Größe, Ausrichtung, Farbe oder Kontrast, innerhalb der virtuellen Welten. Eine strikte Nachbildung von realen Umgebungen in VR verschenkt Potential und wird es nicht ermöglichen, die individuellen Bedürfnisse der Benutzer zu berücksichtigen. Um diese Probleme anzugehen, werden in der vorliegenden Arbeit Lösungen in den Bereichen Eingabe, Zusammenarbeit und Erweiterung von virtuellen Welten und Benutzern vorgestellt, die darauf abzielen, die Benutzerfreundlichkeit und Produktivität von VR zu erhöhen. Zunächst werden PC-basierte Hardware und Software in die virtuelle Welt übertragen, um die Vertrautheit und den Funktionsumfang bestehender Anwendungen in VR zu erhalten. Virtuelle Stellvertreter von physischen Geräten, z.B. Tastatur und Tablet, und ein VR-Modus für Anwendungen ermöglichen es dem Benutzer reale Fähigkeiten in die virtuelle Welt zu übertragen. Des Weiteren wird ein Algorithmus vorgestellt, der die Kalibrierung mehrerer ko-lokaler VR-Geräte mit hoher Genauigkeit und geringen Hardwareanforderungen und geringem Aufwand ermöglicht. Da VR-Headsets die reale Umgebung der Benutzer ausblenden, wird die Relevanz einer Ganzkörper-Avatar-Visualisierung für die Kollisionsvermeidung und das entfernte Zusammenarbeiten nachgewiesen. Darüber hinaus werden personalisierte räumliche oder zeitliche Modifikationen vorgestellt, die es erlauben, die Benutzerfreundlichkeit, Arbeitsleistung und soziale Präsenz von Benutzern zu erhöhen. Diskrepanzen zwischen den virtuellen Welten, die durch persönliche Anpassungen entstehen, werden durch Methoden der Avatar-Umlenkung (engl. redirection) kompensiert. Abschließend werden einige der Methoden und Erkenntnisse in eine beispielhafte Anwendung integriert, um deren praktische Anwendbarkeit zu verdeutlichen. Die vorliegende Arbeit zeigt, dass virtuelle Umgebungen auf realen Fähigkeiten und Erfahrungen aufbauen können, um eine vertraute und einfache Interaktion und Zusammenarbeit von Benutzern zu gewährleisten. Darüber hinaus ermöglichen individuelle Erweiterungen des virtuellen Inhalts und der Avatare Einschränkungen der realen Welt zu überwinden und das Erlebnis von VR-Umgebungen zu steigern

    The tool space

    Get PDF
    Visions of futuristic desktop computer work spaces have often incorporated large interactive surfaces that either integrate into or replace the prevailing desk setup with displays, keyboard and mouse. Such visions often connote the distinct characteristics of direct touch interaction, e.g. by transforming the desktop into a large touch screen that allows interacting with content using one’s bare hands. However, the role of interactive surfaces for desktop computing may not be restricted to enabling direct interaction. Especially for prolonged interaction times, the separation of visual focus and manual input has proven to be ergonomic and is usually supported by vertical monitors and separate – hence indirect – input devices placed on the horizontal desktop. If we want to maintain this ergonomically matured style of computing with the introduction of interactive desktop displays, the following question arises: How can and should this novel input and output modality affect prevailing interaction techniques. While touch input devices have been used for decades in desktop computing as track pads or graphic tablets, the dynamic rendering of content and increasing physical dimensions of novel interactive surfaces open up new design opportunities for direct, indirect and hybrid touch input techniques. Informed design decisions require a careful consideration of the relationship between input sensing, visual display and applied interaction styles. Previous work in the context of desktop computing has focused on understanding the dual-surface setup as a holistic unit that supports direct touch input and allows the seamless transfer of objects across horizontal and vertical surfaces. In contrast, this thesis assumes separate spaces for input (horizontal input space) and output (vertical display space) and contributes to the understanding of how interactive surfaces can enrich indirect input for complex tasks, such as 3D modeling or audio editing. The contribution of this thesis is threefold: First, we present a set of case studies on user interface design for dual-surface computer workspaces. These case studies cover several application areas such as gaming, music production and analysis or collaborative visual layout and comprise formative evaluations. On the one hand, these case studies highlight the conflict that arises when the direct touch interaction paradigm is applied to dual-surface workspaces. On the other hand, they indicate how the deliberate avoidance of established input devices (i.e. mouse and keyboard) leads to novel design ideas for indirect touch-based input. Second, we introduce our concept of the tool space as an interaction model for dual-surface workspaces, which is derived from a theoretical argument and the previous case studies. The tool space dynamically renders task-specific input areas that enable spatial command activation and increase input bandwidth through leveraging multi-touch and two-handed input. We further present evaluations of two concept implementations in the domains 3D modeling and audio editing which demonstrate the high degrees of control, precision and sense of directness that can be achieved with our tools. Third, we present experimental results that inform the design of the tool space input areas. In particular, we contribute a set of design recommendations regarding the understanding of two-handed indirect multi-touch input and the impact of input area form factors on spatial cognition and navigation performance.Zukunftsvisionen thematisieren zuweilen neuartige, auf großen interaktiven Oberflächen basierende Computerarbeitsplätze, wobei etablierte PC-Komponenten entweder ersetzt oder erweitert werden. Oft schwingt bei derartigen Konzepten die Idee von natürlicher oder direkter Toucheingabe mit, die es beispielsweise erlaubt mit den Fingern direkt auf virtuelle Objekte auf einem großen Touchscreen zuzugreifen. Die Eingabe auf interaktiven Oberflächen muss aber nicht auf direkte Interaktionstechniken beschränkt sein. Gerade bei längerer Benutzung ist aus ergonomischer Sicht eine Trennung von visuellem Fokus und manueller Eingabe von Vorteil, wie es zum Beispiel bei der Verwendung von Monitoren und den gängigen Eingabegeräten der Fall ist. Soll diese Art der Eingabe auch bei Computerarbeitsplätzen unterstützt werden, die auf interaktiven Oberflächen basieren, dann stellt sich folgende Frage: Wie wirken sich die neuen Ein- und Ausgabemodalitäten auf vorherrschende Interaktionstechniken aus? Toucheingabe kommt beim klassischen Desktop-Computing schon lange zur Anwendung: Im Gegensatz zu sogenannten Trackpads oder Grafiktabletts eröffnen neue interaktive Oberflächen durch ihre visuellen Darstellungsmöglichkeiten und ihre Größe neue Möglichkeiten für das Design von direkten, indirekten oder hybriden Eingabetechniken. Fundierte Designentscheidungen erfordern jedoch eine sorgfältige Auseinandersetzung mit Ein- und Ausgabetechnologien sowie adequaten Interaktionsstilen. Verwandte Forschungsarbeiten haben sich auf eine konzeptuelle Vereinheitlichung von Arbeitsbereichen konzentriert, die es beispielsweise erlaubt, digitale Objekte mit dem Finger zwischen horizontalen und vertikalen Arbeitsbereichen zu verschieben. Im Gegensatz dazu geht die vorliegende Arbeit von logisch und räumlich getrennten Bereichen aus: Die horizontale interaktive Oberfläche dient primär zur Eingabe, während die vertikale als Display fungiert. Insbesondere trägt diese Arbeit zu einem Verständnis bei, wie durch eine derartige Auffassung interaktiver Oberflächen komplexe Aufgaben, wie zum Beispiel 3D-Modellierung oder Audiobearbeitung auf neue und gewinnbringende Art und Weise unterstützt werden können. Der wissenschaftliche Beitrag der vorliegenden Arbeit lässt sich in drei Bereiche gliedern: Zunächst werden Fallstudien präsentiert, die anhand konkreter Anwendungen (z.B. Spiele, Musikproduktion, kollaboratives Layout) neuartige Nutzerschnittstellen für Computerarbeitsplätze explorieren und evaluieren, die horizontale und vertikale interaktive Oberflächen miteinander verbinden. Einerseits verdeutlichen diese Fallstudien verschiedene Konflikte, die bei der Anwendung von direkter Toucheingabe an solchen Computerarbeitsplätzen hervorgerufen werden. Andererseits zeigen sie auf, wie der bewusste Verzicht auf etablierte Eingabegeräte zu neuen Toucheingabe-Konzepten führen kann. In einem zweiten Schritt wird das Toolspace-Konzept als Interaktionsmodell für Computerarbeitsplätze vorgestellt, die auf einem Verbund aus horizontaler und vertikaler interaktiver Oberfläche bestehen. Dieses Modell ergibt sich aus den vorangegangenen Fallstudien und wird zusätzlich theoretisch motiviert. Der Toolspace stellt anwendungsspezifische und dynamische Eingabeflächen dar, die durch räumliche Aktivierung und die Unterstützung beidhändiger Multitouch-Eingabe die Eingabebandbreite erhöhen. Diese Idee wird anhand zweier Fallstudien illustriert und evaluiert, die zeigen, dass dadurch ein hohes Maß an Kontrolle und Genauigkeit erreicht sowie ein Gefühl von Direktheit vermittelt wird. Zuletzt werden Studienergebnisse vorgestellt, die Erkenntnisse zum Entwurf von Eingabeflächen im Tool Space liefern, insbesondere zu den Themen beidhändige indirekte Multitouch-Eingabe sowie zum Einfluss von Formfaktoren auf räumliche Kognition und Navigation

    Freeform 3D interactions in everyday environments

    Get PDF
    PhD ThesisPersonal computing is continuously moving away from traditional input using mouse and keyboard, as new input technologies emerge. Recently, natural user interfaces (NUI) have led to interactive systems that are inspired by our physical interactions in the real-world, and focus on enabling dexterous freehand input in 2D or 3D. Another recent trend is Augmented Reality (AR), which follows a similar goal to further reduce the gap between the real and the virtual, but predominately focuses on output, by overlaying virtual information onto a tracked real-world 3D scene. Whilst AR and NUI technologies have been developed for both immersive 3D output as well as seamless 3D input, these have mostly been looked at separately. NUI focuses on sensing the user and enabling new forms of input; AR traditionally focuses on capturing the environment around us and enabling new forms of output that are registered to the real world. The output of NUI systems is mainly presented on a 2D display, while the input technologies for AR experiences, such as data gloves and body-worn motion trackers are often uncomfortable and restricting when interacting in the real world. NUI and AR can be seen as very complimentary, and bringing these two fields together can lead to new user experiences that radically change the way we interact with our everyday environments. The aim of this thesis is to enable real-time, low latency, dexterous input and immersive output without heavily instrumenting the user. The main challenge is to retain and to meaningfully combine the positive qualities that are attributed to both NUI and AR systems. I review work in the intersecting research fields of AR and NUI, and explore freehand 3D interactions with varying degrees of expressiveness, directness and mobility in various physical settings. There a number of technical challenges that arise when designing a mixed NUI/AR system, which I will address is this work: What can we capture, and how? How do we represent the real in the virtual? And how do we physically couple input and output? This is achieved by designing new systems, algorithms, and user experiences that explore the combination of AR and NUI

    Effizienz und Ergonomie von Multitouch-Interaktion : Studien und Prototypen zur Bewertung und Optimierung zentraler Interaktionstechniken

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit Grundfragen der Effektivität, Effizienz und Zufriedenheit von Multitouch-Interaktionen. Mithilfe einer Multitouch-Steuerung für 3D-Animation konnte gezeigt werden, dass selbst unerfahrene Multitouch-Nutzer in der Lage sind, hoch komplexe Aufgaben koordiniert und effizient zu lösen. Ein neu entwickeltes Koordinationsmaß bestätigt, dass Nutzer den Vorteil eines Multitouch nutzen, indem sie koordiniert mehrere Finger gleichzeitig für 3D-Animationen in Echtzeit einsetzen. In drei weiteren Studien zu zentralen Multitouch-Interaktionstechniken konnte gezeigt werden, dass die Originalformulierung von Fitts’ Gesetz nicht ausreicht, um die Effizienz von Multitouch-Interaktionen adäquat zu bewerten und zu analysieren. Fitts’ Gesetz ist ein Modell zur Vorhersage und Analyse von Interaktionszeiten und beinhaltet ursprünglich nur die Distanz der Interaktionsbewegung und die Zielgröße. Diese Arbeit zeigt, dass Vorhersagen mit Fitts’ Gesetz bessere Ergebnisse liefern, wenn sie neben diesen beiden Faktoren auch Bewegungsrichtung, Startpunkt der Bewegung und Neigung des Multitouch-Display berücksichtigen. Die Ergebnisse dieser Arbeitliefern Anhaltspunkte, um effiziente und benutzerfreundliche Interaktionstechniken zu entwickeln. Zudem könnten sie eingesetzt werden, um Analysen von Intertaktionstechniken für Multitouch teilautomatisch durchzuführen.This thesis deals with fundamental questions of efficiency, effectiveness and satisfaction of multitouch interactions. Using a novel multitouch interface for 3D animation it could be shown that even inexperienced multitouch users are capable of solving highly complex tasks in a coordinated and efficient way. A newly developed measure for coordination confirms that users take advantage of multitouch by using several fingers simultaneously to create a 3D real-time animation. In three additional studies on central interaction techniques for multitouch it was shown that the original Fitts’ law is not sufficient to adequately describe and analyse the efficiency of multitouch interactions. Fitts’ law is a model for the prediction and analysis of interaction time which originally only takes into account the distance of interaction movements and the target size. This work shows that predictions based on Fitts’ law provide better results when, in addition to these two factors, the direction of the movement, the starting point and the tilt of the display are considered, as well. The present results provide approaches to developing efficient interaction techniques with high usability. Furthermore, they can be used to conduct a semi-automatic analysis of interaction techniques for multitouch

    Effizienz und Ergonomie von Multitouch-Interaktion : Studien und Prototypen zur Bewertung und Optimierung zentraler Interaktionstechniken

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit Grundfragen der Effektivität, Effizienz und Zufriedenheit von Multitouch-Interaktionen. Mithilfe einer Multitouch-Steuerung für 3D-Animation konnte gezeigt werden, dass selbst unerfahrene Multitouch-Nutzer in der Lage sind, hoch komplexe Aufgaben koordiniert und effizient zu lösen. Ein neu entwickeltes Koordinationsmaß bestätigt, dass Nutzer den Vorteil eines Multitouch nutzen, indem sie koordiniert mehrere Finger gleichzeitig für 3D-Animationen in Echtzeit einsetzen. In drei weiteren Studien zu zentralen Multitouch-Interaktionstechniken konnte gezeigt werden, dass die Originalformulierung von Fitts’ Gesetz nicht ausreicht, um die Effizienz von Multitouch-Interaktionen adäquat zu bewerten und zu analysieren. Fitts’ Gesetz ist ein Modell zur Vorhersage und Analyse von Interaktionszeiten und beinhaltet ursprünglich nur die Distanz der Interaktionsbewegung und die Zielgröße. Diese Arbeit zeigt, dass Vorhersagen mit Fitts’ Gesetz bessere Ergebnisse liefern, wenn sie neben diesen beiden Faktoren auch Bewegungsrichtung, Startpunkt der Bewegung und Neigung des Multitouch-Display berücksichtigen. Die Ergebnisse dieser Arbeitliefern Anhaltspunkte, um effiziente und benutzerfreundliche Interaktionstechniken zu entwickeln. Zudem könnten sie eingesetzt werden, um Analysen von Intertaktionstechniken für Multitouch teilautomatisch durchzuführen.This thesis deals with fundamental questions of efficiency, effectiveness and satisfaction of multitouch interactions. Using a novel multitouch interface for 3D animation it could be shown that even inexperienced multitouch users are capable of solving highly complex tasks in a coordinated and efficient way. A newly developed measure for coordination confirms that users take advantage of multitouch by using several fingers simultaneously to create a 3D real-time animation. In three additional studies on central interaction techniques for multitouch it was shown that the original Fitts’ law is not sufficient to adequately describe and analyse the efficiency of multitouch interactions. Fitts’ law is a model for the prediction and analysis of interaction time which originally only takes into account the distance of interaction movements and the target size. This work shows that predictions based on Fitts’ law provide better results when, in addition to these two factors, the direction of the movement, the starting point and the tilt of the display are considered, as well. The present results provide approaches to developing efficient interaction techniques with high usability. Furthermore, they can be used to conduct a semi-automatic analysis of interaction techniques for multitouch

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Interactive Visualization Lenses:: Natural Magic Lens Interaction for Graph Visualization

    Get PDF
    Information visualization is an important research field concerned with making sense and inferring knowledge from data collections. Graph visualizations are specific techniques for data representation relevant in diverse application domains among them biology, software-engineering, and business finance. These data visualizations benefit from the display space provided by novel interactive large display environments. However, these environments also cause new challenges and result in new requirements regarding the need for interaction beyond the desktop and according redesign of analysis tools. This thesis focuses on interactive magic lenses, specialized locally applied tools that temporarily manipulate the visualization. These may include magnification of focus regions but also more graph-specific functions such as pulling in neighboring nodes or locally reducing edge clutter. Up to now, these lenses have mostly been used as single-user, single-purpose tools operated by mouse and keyboard. This dissertation presents the extension of magic lenses both in terms of function as well as interaction for large vertical displays. In particular, this thesis contributes several natural interaction designs with magic lenses for the exploration of graph data in node-link visualizations using diverse interaction modalities. This development incorporates flexible switches between lens functions, adjustment of individual lens properties and function parameters, as well as the combination of lenses. It proposes interaction techniques for fluent multi-touch manipulation of lenses, controlling lenses using mobile devices in front of large displays, and a novel concept of body-controlled magic lenses. Functional extensions in addition to these interaction techniques convert the lenses to user-configurable, personal territories with use of alternative interaction styles. To create the foundation for this extension, the dissertation incorporates a comprehensive design space of magic lenses, their function, parameters, and interactions. Additionally, it provides a discussion on increased embodiment in tool and controller design, contributing insights into user position and movement in front of large vertical displays as a result of empirical investigations and evaluations.Informationsvisualisierung ist ein wichtiges Forschungsfeld, das das Analysieren von Daten unterstützt. Graph-Visualisierungen sind dabei eine spezielle Variante der Datenrepräsentation, deren Nutzen in vielerlei Anwendungsfällen zum Einsatz kommt, u.a. in der Biologie, Softwareentwicklung und Finanzwirtschaft. Diese Datendarstellungen profitieren besonders von großen Displays in neuen Displayumgebungen. Jedoch bringen diese Umgebungen auch neue Herausforderungen mit sich und stellen Anforderungen an Nutzerschnittstellen jenseits der traditionellen Ansätze, die dadurch auch Anpassungen von Analysewerkzeugen erfordern. Diese Dissertation befasst sich mit interaktiven „Magischen Linsen“, spezielle lokal-angewandte Werkzeuge, die temporär die Visualisierung zur Analyse manipulieren. Dabei existieren zum Beispiel Vergrößerungslinsen, aber auch Graph-spezifische Manipulationen, wie das Anziehen von Nachbarknoten oder das Reduzieren von Kantenüberlappungen im lokalen Bereich. Bisher wurden diese Linsen vor allem als Werkzeug für einzelne Nutzer mit sehr spezialisiertem Effekt eingesetzt und per Maus und Tastatur bedient. Die vorliegende Doktorarbeit präsentiert die Erweiterung dieser magischen Linsen, sowohl in Bezug auf die Funktionalität als auch für die Interaktion an großen, vertikalen Displays. Insbesondere trägt diese Dissertation dazu bei, die Exploration von Graphen mit magischen Linsen durch natürliche Interaktion mit unterschiedlichen Modalitäten zu unterstützen. Dabei werden flexible Änderungen der Linsenfunktion, Anpassungen von individuellen Linseneigenschaften und Funktionsparametern, sowie die Kombination unterschiedlicher Linsen ermöglicht. Es werden Interaktionstechniken für die natürliche Manipulation der Linsen durch Multitouch-Interaktion, sowie das Kontrollieren von Linsen durch Mobilgeräte vor einer Displaywand vorgestellt. Außerdem wurde ein neuartiges Konzept körpergesteuerter magischer Linsen entwickelt. Funktionale Erweiterungen in Kombination mit diesen Interaktionskonzepten machen die Linse zu einem vom Nutzer einstellbaren, persönlichen Arbeitsbereich, der zudem alternative Interaktionsstile erlaubt. Als Grundlage für diese Erweiterungen stellt die Dissertation eine umfangreiche analytische Kategorisierung bisheriger Forschungsarbeiten zu magischen Linsen vor, in der Funktionen, Parameter und Interaktion mit Linsen eingeordnet werden. Zusätzlich macht die Arbeit Vor- und Nachteile körpernaher Interaktion für Werkzeuge bzw. ihre Steuerung zum Thema und diskutiert dabei Nutzerposition und -bewegung an großen Displaywänden belegt durch empirische Nutzerstudien
    corecore