90 research outputs found

    WCDMA Mobility Troubleshooting Studies and Enhancements

    Get PDF
    Mobiliteetti on yksi WCDMA-teknologian menestyksen avaintekijöistä. Saumattoman liikkuvuuden ylläpitämiseksi radioresurssien hallinnan algoritmit ovat tärkeässä roolissa verkon hallinnassa. Yhdessä pääsyvalvonnan, kuormavalvonnan, pakettiskedulerin, resurssimanagerin ja tehovalvonnan kanssa kanavanvaihtoalgoritmit vastaavat laadukkaan, katkeamattoman yhteyden ylläpidosta. Nämä algoritmit on toteutettu radioverkko-ohjaimen (RNC) ohjelmistossa. Ohjelmiston elinkaaren aikana ohjelmiston eri osissa kohdataan erilaisia haasteita. Ohjelmiston lisäksi ongelmia voi löytyä myös radioverkon suunnittelusta, verkkolaitteistosta tai päätelaitteista. Kaikkien näiden ongelmien analysointiin vaaditaan kokeneita R&D-insinöörejä, eikä ongelmien varsinaisen aiheuttajan löytäminen usein ole yksinkertaista. Tämän takia erilaiset vianetsintätyökalut ovat ohjelmistokehityksessä ensisijaisen tärkeitä. Tämä diplomityö analysoi jo käytössä olevia vianetsintämenetelmiä NSN-WCDMA-Control Plane-Handover Algorithm -ryhmässä sekä esittää erilaisia paranneltuja ratkaisuja näihin menetelmiin. Tämän diplomityön tuloksena muutamia paranneltuja ratkaisuja toteutettiin ja muutamia muita ratkaisumalleja analysoitiin. Vianetsintätyökalujen sekä -menetelmien kehitys jatkuu tarkastellussa ohjelmistokehitysryhmässä myös tämän diplomityön valmistumisen jälkeen.Mobility is the key success area in WCDMA technology. To maintain seamless mobility, Radio Resource Management algorithms are essential in network management. Together with Admission Control, Load Control, Packet Scheduler, Resource Manager and Power Control algorithms, Handover Control algorithms are responsible for high quality seamless communication. These algorithms take place in the Radio Network Controller software. In software life-cycle there can be challenges related with different software program blocks. Other than software problems there can also be radio network planning problems, hardware problems and user-equipment related problems. Those issues have to be analyzed by experienced R&D engineers. Usually it is not straightforward to investigate what is the root cause. Because of this reason troubleshooting tools play a vital role in software development. This thesis analyzes the existing troubleshooting solutions in NSN-WCDMA-Control Plane-Handover Algorithm team and proposes enhanced solutions for those needs. As a result of this thesis, some of the enhanced solutions are implemented and analyses for the other solutions are provided. Development of troubleshooting tools and methodology will continue in the software development team after the completion of this thesis

    Performance Analysis of Handover Measurements and Layer 3 Filtering for UTRAN LTE

    Get PDF

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    LTE-3G Inter-Operability Study

    Get PDF
    In this thesis the author have studied and measured how LTE Release 8 interworks with previous legacy 3G networks in real environmental conditions. At present, LTE technology is deployed based on service hotspots that cover small geographical areas. It is expected that full scale deployment of LTE network will take a considerable time, which also means the mobile users have to primarily depend on legacy 3G and 2G networks for years to come. Therefore, it is important to study the interworking mechanisms between LTE and legacy networks in order to provide seamless mobility and uninterrupted user services in primarily available LTE hotspots. In order to perform this study, field measurements have been carried out in DNA commercial network in outdoor and indoor environments. Initially, cell selection and reselection criteria for inter-RAT mobility in idle condition is mathematically checked and verified. Then, channel conditions are studied and analyzed based on radio parameters like RSRP, RSCP, RSRQ, Ec/No, SNR and CQI when inter-RAT handover is performed. After that, an inter-RAT handover test from LTE towards 3G is studied with the help of signalling message. Next, the impact of inter-RAT handover on KPIs like MAC DL throughput, handover success rate, RTT, handover latency and user plane delay are studied and analyzed. Finally, performance of inter-RAT handover in outdoor and indoor measurement environment is compared based on KPI measurements. From this study, it is found that inter-RAT mobility from LTE towards 3G network is working in both idle and connected modes with 100 percent handover success rate, however, the user experienced network latency around 4 seconds in average. The user experienced degradation in throughput because of decreasing link quality. The user data service interruption is roughly for 3-4 seconds and the RTT value for 32 bytes of data is observed to be around 300 ms in average during handover. It is also found that the impact of inter-RAT handover in indoor environment is higher than outdoor environment based on KPIs results

    Solunvaihdon suorituskyvyn arviointi 450 MHz ja 2600 MHz LTE-verkkojen välillä

    Get PDF
    This thesis evaluates handover performance between two different LTE frequency bands, band 31 and band 38, which are operated on 450 MHz and 2600 MHz frequencies, respectively. Mobile network operators are deploying multiple LTE frequency bands within same geographical areas in order to meet demand created by continuously growing mobile data usage. This creates additional challenges to network design, performance optimization and mobility management. Studied bands 31 and 38 differ on their propagation characteristics, as well as on their specified transmission capabilities. Bands also utilize different duplex methods, Frequency Division Duplex and Time Division Duplex. Performance evaluation was conducted in order to allow efficient usage of both bands. Evaluation is based on information obtained from 3GPP specifications and laboratory measurements conducted with commercially available equipment. Current handover parameters of the studied network have been optimized for 450 MHz cells only, and utilize mostly default configurations introduced by device manufacturer. This configuration is evaluated and more suitable handover strategy is proposed. The proposed strategy is then compared with the default strategy through measurements conducted in laboratory environment. Conducted measurements confirm that with proper handover parameter optimization, 2600 MHz frequency band can be prioritized over less capable 450 MHz band, which is likely to improve user perceived service quality. By utilizing collected results, associated network operator could improve offered services and gain savings in network equipment costs.Tässä diplomityössä tutkitaan solunvaihdon suorituskykyä kahden LTE-taajuuskaistan, 31 ja 38, välillä. Taajuuskaistaa 31 operoidaan 450 MHz taajuudella ja taajuuskaistaa 38 2600 MHz taajuudella. Vastatakseen jatkuvaan mobiilidatan käytön kasvuun, verkko-operaattorit ottavat käyttöön useita LTE-taajuuksia saman maantieteellisen alueen sisällä. Tämä luo ylimääräisiä haasteita verkkosuunniteluun, verkon suorituskyvyn optimointiin ja mobiliteetin hallintaan. Tutkitut taajuuskaistat eroavat niin etenemis- kuin tiedonsiirtokyvyiltään. Lisäksi taajuuskaistat käyttävät erilaisia duplex-muotoja. Suorituskyvyn arvioinnin tarkoitus on mahdollistaa molempien taajuuskaistojen tehokas käyttö. Suorituskyvyn arviointi perustuu 3GPP:n spesifikaatioihin ja kaupallisella laitteistolla suoritettuihin laboratoriomittauksiin. Nykyisin käytössä olevat verkkoparametrit on optimoitu vain 450 MHz solujen käyttöön, jonka lisäksi suuri osa verkon konfiguraatioista hyödyntää valmistan käyttämiä oletusarvoja. Työssä verkon konfiguraatiolla suoritetaan arviointi, jonka perusteella esitetään suositeltu solunvaihdon strategia. Suositeltua strategiaa verrataan oletus-strategiaan laboratoriomittausten avulla. Mittaustulokset näyttävät toteen, että oikeanlaisilla solunvaihdon parametreilla 2600 MHz taajuuskaistaa voidaan priorisoida heikomman 450 MHz taajuuskaistan yli. Monissa tilanteissa tämä parantaa käyttäjien verkosta saamaa palvelukokemusta. Hyödyntämällä tämän työn tuottamia tuloksia, verkko-operaattori voi parantaa tarjoamaansa palvelua ja saavuttaa säästöjä laitehankinnoissa

    A Unified Stochastic Model of Handover Measurement in Mobile Networks

    Get PDF
    International audienceHandover measurement is responsible for finding a handover target and directly decides the performance of mobility management. It is governed by a complex combination of parameters dealing with multi-cell scenarios and system dynamics. A network design has to offer an appropriate handover measurement procedure in such a multi-constraint problem. The present paper proposes a unified framework for the network analysis and optimization. The exposition focuses on the stochastic modeling and addresses its key probabilistic events namely (i) suitable handover target found, (ii) service failure, (iii) handover measurement triggering, and (iv) handover measurement withdrawal. We derive their closed-form expressions and provide a generalized setup for the analysis of handover measurement failure and target cell quality by the best signal quality and level crossing properties. Finally, we show its application and effectiveness in today's 3GPP-LTE cellular networks

    Service Continuity in 3GPP Mobile Networks

    Get PDF
    The mobile wireless communication network or cellular network landscape is changing gradually from homogeneous to heterogeneous. Future generation networks are envisioned to be a combination of diverse but complimentary access technologies, like GPRS, WCDMA/HSPA, LTE and WLAN. These technologies came up due to the need to increase capacity in cellular networks and recently driven by the proliferation of smart devices which require a lot of bandwidth. The traditional mechanisms to increase capacity in cellular networks have been to upgrade the networks by, e.g. adding small cells solutions or introducing new radio access technologies to regions requiring lots of capacity, but this has not eradicated the problem entirely. The integration of heterogeneous networks poses some challenges such as allocating resources efficiently and enabling seamless handovers between heterogeneous technologies. One issue which has become apparent recently with the proliferation of different link layer technologies is how service providers can offer a consistent service across heterogeneous networks. Service continuity between different radio access technologies systems is identified as one key research item.  The knowledge of the service offering in current and future networks, and supporting interworking technologies is paramount to understand how service continuity will be realized across different radio access technologies. We investigate the handover procedure and performance in current deployed 3GPP heterogeneous mobile networks (2G, 3G and 4G networks). We perform measurements in the field and the lab and measure the handover latency for User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) applications. The results show that intersystem handover latencies in and across 2G and 3G radio access technologies are too long and have an impact on real time packet switched (PS) real-time services. We also investigate the current proposed interworking and handover schemes in 2G, 3G and 4G networks and present their limitations. We further highlight some open issues that still need to be addressed in order to improve handover performance and provide service continuity across heterogeneous mobile wireless networks such as selection of optimal radio access technology and adaptation of multimedia transmission over heterogeneous technologies. We present the enhancements required to enable service continuity and provide a better quality of user experience. 

    LTE Handover performance evaluation based on power budget handover algorithm

    Get PDF
    LTE (Long Term Evolution) is a fourth generation cellular network technology that provides improved performance related to data rate, coverage and capacity compared to legacy cellular systems. In this context, one of the main goals of LTE is to provide fast and seamless handover from one cell to another to meet a strict delay requirement while simultaneously keeping network management simple. Hence, the decision to trigger a handover is a crucial component in the design process of handover, since the success and the efficiency, to a large extent, depends on the accuracy and timeliness of the decision. The design of an efficient and successful handover requires a careful selection of HO parameters and the optimal setting of these. The LTE standard supports two parameters to trigger the handover and select the target cell: hysteresis margin and Time-to-Trigger (TTT) The research topic of this thesis which is “LTE Handover Performance Evaluation Based on Power Budget Handover Algorithm”, focuses on different combinations or settings of HOM and TTT values to evaluate the handover performance based on Reference Signal Received Power (RSRP) measurement within certain deployment scenarios, such as different UE speeds, system loads and cell sizes. The Power Budget Handover Algorithm (PBHA) picks the best hysteresis and time-to-trigger combinations to evaluate the system performance in terms of number of handovers, signal-to-interference plus noise ratio (SINR), throughput, delay and packet lost for UE's which are about to perform the handover
    corecore