35,745 research outputs found

    Structure Sensitivity in Oxide Catalysis: First-Principles Kinetic Monte Carlo Simulations for CO Oxidation at RuO2_2(111)

    Get PDF
    We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO2_2. We compare the detailed insight into elementary processes, steady-state surface coverages and catalytic activity to equivalent published simulation data for the frequently studied RuO2_2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivity based on macroscopically observable turnover frequencies and allow to scrutinize the applicability of structure sensitivity classifications developed for metals to oxide catalysis.Comment: 15 pages, 5 figure

    Influence of reaction products on the selective oxidation of ethene

    Get PDF
    The kinetics of the selective oxidation of ethene in air over an industrial silver on ¿-alumina catalyst were studied. Special attention was paid to the influence of the reaction products on the reaction rates of epoxidation and complete combustion. Kinetic data were obtained in two different types of internal recycle reactor and in a cooled tubular reactor, and were fitted separately to several reaction rate expressions based on different kinetic models. A Langmuir-Hinshelwood mechanism, in which adsorbed ethene reacts with adsorbed molecular oxygen, was chosen as the best kinetic model. The reaction products compete for adsorption on the active sites and reduce the rates of both reactions. Carbon dioxide enhances the selectivity towards ethene oxide, whereas water has almost no influence on the selectivity. The fitting of the three individual data sets obtained in the three reactors results in accurate, but different, reaction rate expressions, whereas the fitting of the three data sets simultaneously results in less accurate reaction rate expressions. The systematic deviations found may be explained, to some extent, by differences in the operating regimes in each reactor. The main reason for the deviations is probably the different catalyst activities in the three reactors caused by poisoning. The effect of the addition of products to the feed on the behaviour of the cooled tubular reactor can be described reasonably well by a mathematical model in which the kinetic equations obtained in the laboratory reactors are incorporated. The results of these simulations are sensitive to the kinetics used

    CO Oxidation Catalysed by Pd-based Bimetallic Nanoalloys

    Full text link
    Density functional theory based global geometry optimization has been used to demonstrate the crucial influence of the geometry of the catalytic cluster on the energy barriers for the CO oxidation reaction over Pd-based bimetallic nanoalloys. We show that dramatic geometry change between the reaction intermediates can lead to very high energy barriers and thus be prohibitive for the whole process. This introduces challenges for both the design of new catalysts, and theoretical methods employed. On the theory side, a careful choice of geometric configurations of all reaction intermediates is crucial for an adequate description of a possible reaction path. From the point of view of the catalyst design, the cluster geometry can be controlled by adjusting the level of interaction between the cluster and the dopant metal, as well as between the adsorbate molecules and the catalyst cluster by mixing different metals in a single nanoalloy particle. We show that substitution of a Pd atom in the Pd5_{5} cluster with a single Ag atom to form Pd4_{4}Ag1_{1} leads to a potential improvement of the catalytic properties of the cluster for the CO oxidation reaction. On the other hand, a single Au atom does not enhance the properties of the catalyst, which is attributed to a weaker hybridization between the cluster's constituent metals and the adsorbate molecules. Such flexibility of properties of bimetallic nanoalloy clusters illustrates the possibility of fine-tuning, which might be used for design of novel efficient catalytic materials.Comment: 12 pages, 8 figure

    Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo simulations

    Get PDF
    The conceptual idea of degree of rate control (DRC) approaches is to identify the "rate limiting step" in a complex reaction network by evaluating how the overall rate of product formation changes when a small change is made in one of the kinetic parameters. We examine two definitions of this concept by applying it to first-principles kinetic Monte Carlo simulations of the CO oxidation at RuO2(110). Instead of studying experimental data we examine simulations, because in them we know the surface structure, reaction mechanism, the rate constants, the coverage of the surface and the turn-over frequency at steady state. We can test whether the insights provided by the DRC are in agreement with the results of the simulations thus avoiding the uncertainties inherent in a comparison with experiment. We find that the information provided by using the DRC is non-trivial: It could not have been obtained from the knowledge of the reaction mechanism and of the magnitude of the rate constants alone. For the simulations the DRC provides furthermore guidance as to which aspects of the reaction mechanism should be treated accurately and which can be studied by less accurate and more efficient methods. We therefore conclude that a sensitivity analysis based on the DRC is a useful tool for understanding the propagation of errors from the electronic structure calculations to the statistical simulations in first-principles kinetic Monte Carlo simulations.Comment: 27 pages including 5 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Chemical engineering design of CO oxidation catalysts

    Get PDF
    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture

    Ion and mixed conducting oxides as catalysts

    Get PDF
    This paper gives a survey of the catalytic properties of solid oxides which display oxygen ion or mixed (i.e. ionic + electronic) conductivity. Particular consideration is given to the oxidation-reduction reactions of gas phase components, but attention is also devoted to oxygen exchange between gas and oxide. An attempt has been made to relate and explain the observed phenomena such as catalytic activity and selectivity in terms of the electrical conducting properties of the oxides, which depend on their crystal and defect structures.\ud \ud In a number of cases possible applications of these materials in (electro)catalytic reactors, sensors, fuel cells, oxygen pumps, etc. are indicated
    • …
    corecore