100 research outputs found

    Performance of ECG-based seizure detection algorithms strongly depends on training and test conditions

    Get PDF
    Objective To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings. Methods Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG. All seizure types were analyzed. Feature extraction and machine-learning techniques were applied to develop seizure detection algorithms. Performance was expressed as sensitivity, precision, F1_{1} score, and false positives per 24 hours. Results The algorithms were developed in group 1 (35 PwE, 33 seizures) and achieved best results (F1_{1} score 56%, sensitivity 67%, precision 45%, false positives 0.7/24 hours) when ECG features alone were used, with no improvement by including accelerometry and electrodermal activity. In group 2 (97 PwE, 255 seizures), this ECG-based algorithm largely achieved the same performance (F1_{1} score 51%, sensitivity 39%, precision 73%, false positives 0.4/24 hours). In group 3 (30 PwE, 51 seizures), the same ECG-based algorithm failed to meet up with the performance in groups 1 and 2 (F1_{1} score 27%, sensitivity 31%, precision 23%, false positives 1.2/24 hours). ECG-based algorithms were also separately trained on data of groups 2 and 3 and tested on the data of the other groups, yielding maximal F1 scores between 8% and 26%. Significance Our results suggest that algorithms based on ECG features alone can provide clinically meaningful performance for automatic detection of all seizure types. Our study also underscores that the circumstances under which such algorithms were developed, and the selection of the training and test data sets need to be considered and limit the application of such systems to unseen patient groups behaving in different conditions

    Towards developing a reliable medical device for automated epileptic seizure detection in the ICU

    Get PDF
    Abstract. Epilepsy is a prevalent neurological disorder that affects millions of people globally, and its diagnosis typically involves laborious manual inspection of electroencephalography (EEG) data. Automated detection of epileptic seizures in EEG signals could potentially improve diagnostic accuracy and reduce diagnosis time, but there should be special attention to the number of false alarms to reduce unnecessary treatments and costs. This research presents a study on the use of machine learning techniques for EEG seizure detection with the aim of investigating the effectiveness of different algorithms in terms of high sensitivity and low false alarm rates for feature extraction, selection, pre-processing, classification, and post-processing in designing a medical device for detecting seizure activity in EEG data. The current state-of-the-art methods which are validated clinically using large amounts of data are introduced. The study focuses on finding potential machine learning methods, considering KNN, SVM, decision trees and, Random forests, and compares their performance on the task of seizure detection using features introduced in the literature. Also using ensemble methods namely, bootstrapping and majority voting techniques we achieved a sensitivity of 0.80 and FAR/h of 2.10, accuracy of 97.1% and specificity of 98.2%. Overall, the findings of this study can be useful for developing more accurate and efficient algorithms for EEG seizure detection medical device, which can contribute to the early diagnosis and treatment of epilepsy in the intensive care unit for critically ill patients

    A Self-Learning Methodology for Epileptic Seizure Detection with Minimally Supervised Edge Labeling

    Get PDF
    Epilepsy is one of the most common neurological disorders and affects over 65 million people worldwide. Despite the continuing advances in anti-epileptic treatments, one third of the epilepsy patients live with drug resistant seizures. Besides, the mortality rate among epileptic patients is 2 – 3 times higher than in the matching group of the general population. Wearable devices offer a promising solution for the detection of seizures in real time so as to alert family and caregivers to provide immediate assistance to the patient. However, in order for the detection system to be reliable, a considerable amount of labeled data is needed to train it. Labeling epilepsy data is a costly and time-consuming process that requires manual inspection and annotation of electroencephalogram (EEG) recordings by medical experts. In this paper, we present a self-learning methodology for epileptic seizure detection without medical supervision. We propose a minimally-supervised algorithm for automatic labeling of seizures in order to generate personalized training data. We demonstrate that the median deviation of the labels from the ground truth is only 10.1 seconds or, equivalently, less than 1% of the signal length. Moreover, we show that training a real-time detection algorithm with data labeled by our algorithm produces a degradation of less than 2.5% in comparison to training it with data labeled by medical experts. We evaluated our methodology on a wearable platform and achieved a lifetime of 2.59 days on a single battery charge

    A Comparison of Energy-Efficient Seizure Detectors for Implantable Neurostimulation Devices

    Get PDF
    INTRODUCTION: About 30% of epilepsy patients are resistant to treatment with antiepileptic drugs, and only a minority of these are surgical candidates. A recent therapeutic approach is the application of electrical stimulation in the early phases of a seizure to interrupt its spread across the brain. To accomplish this, energy-efficient seizure detectors are required that are able to detect a seizure in its early stages. METHODS: Three patient-specific, energy-efficient seizure detectors are proposed in this study: (i) random forest (RF); (ii) long short-term memory (LSTM) recurrent neural network (RNN); and (iii) convolutional neural network (CNN). Performance evaluation was based on EEG data (n = 40 patients) derived from a selected set of surface EEG electrodes, which mimic the electrode layout of an implantable neurostimulation system. As for the RF input, 16 features in the time- and frequency-domains were selected. Raw EEG data were used for both CNN and RNN. Energy consumption was estimated by a platform-independent model based on the number of arithmetic operations (AOs) and memory accesses (MAs). To validate the estimated energy consumption, the RNN classifier was implemented on an ultra-low-power microcontroller. RESULTS: The RNN seizure detector achieved a slightly better level of performance, with a median area under the precision-recall curve score of 0.49, compared to 0.47 for CNN and 0.46 for RF. In terms of energy consumption, RF was the most efficient algorithm, with a total of 67k AOs and 67k MAs per classification. This was followed by CNN (488k AOs and 963k MAs) and RNN (772k AOs and 978k MAs), whereby MAs contributed more to total energy consumption. Measurements derived from the hardware implementation of the RNN algorithm demonstrated a significant correlation between estimations and actual measurements. DISCUSSION: All three proposed seizure detection algorithms were shown to be suitable for application in implantable devices. The applied methodology for a platform-independent energy estimation was proven to be accurate by way of hardware implementation of the RNN algorithm. These findings show that seizure detection can be achieved using just a few channels with limited spatial distribution. The methodology proposed in this study can therefore be applied when designing new models for responsive neurostimulation

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    Data reduction algorithms to enable long-term monitoring from low-power miniaturised wireless EEG systems

    No full text
    Objectives: The weight and volume of battery-powered wireless electroencephalography (EEG) systems are dominated by the batteries. Battery dimensions are in turn determined by the required energy capacity, which is derived from the system power consumption and required monitoring time. Data reduction may be carried out to reduce the amount of data transmitted and thus proportionally reduce the power consumption of the wireless transmitter, which dominates system power consumption. This thesis presents two new data selection algorithms that, in addition to achieving data reduction, also select EEG containing epileptic seizures and spikes that are important in diagnosis. Methods: The algorithms analyse short EEG sections, during monitoring, to determine the presence of candidate seizures or spikes. Phase information from different frequency components of the signal are used to detect spikes. For seizure detection, frequencies below 10 Hz are investigated for a relative increase in frequency and/or amplitude. Significant attention has also been given to metrics in order to accurately evaluate the performance of these algorithms for practical use in the proposed system. Additionally, signal processing techniques to emphasize seizures within the EEG and techniques to correct for broad-level amplitude variation in the EEG have been investigated. Results: The spike detection algorithm detected 80% of spikes whilst achieving 50% data reduction, when tested on 992 spikes from 105 hours of 10-channel scalp EEG data obtained from 25 adults. The seizure detection algorithm identified 94% of seizures selecting 80% of their duration for transmission and achieving 79% data reduction. It was tested on 34 seizures with a total duration of 4158 s in a database of over 168 hours of 16-channel scalp EEG obtained from 21 adults. These algorithms show great potential for longer monitoring times from miniaturised wireless EEG systems that would improve electroclinical diagnosis of patients

    An Energy-Efficient Spiking CNN Implementation for Cross-Patient Epileptic Seizure Detection

    Get PDF
    This research aims to develop a data-driven computationally efficient strategy for automatic cross-patient seizure detection using spatio temporal features learned from multichannel electroencephalogram (EEG) time-series data. In this approach, we utilize an algorithm that seeks to capture spectral, temporal, and spatial information in order to achieve high generalization. This algorithm's initial step is to convert EEG signals into a series of temporal and multi-spectral pictures. The produced images are then sent into a convolutional neural network (CNN) as inputs. Our convolutional neural network as a deep learning method learns a general spatially irreducible representation of a seizure to improves sensitivity, specificity, and accuracy results comparable to the state-of-the-art results. In this work, in order to avoid the inherent high computational cost of CNNs while benefiting from their superior classification performance, a neuromorphic computing strategy for seizure prediction called spiking CNN is developed from the traditional CNN method, which is motivated by the energy-efficient spiking neural networks (SNNs) of the human brain
    • …
    corecore