17,511 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel

    Full text link
    This paper describes the design, implementation and testing of a suite of algorithms to enable depth constrained autonomous bathymetric (underwater topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth and a bounding polygon, the ASV will find and follow the intersection of the bounding polygon and the depth contour as modeled online with a Gaussian Process (GP). This intersection, once mapped, will then be used as a boundary within which a path will be planned for coverage to build a map of the Bathymetry. Methods for sequential updates to GP's are described allowing online fitting, prediction and hyper-parameter optimisation on a small embedded PC. New algorithms are introduced for the partitioning of convex polygons to allow efficient path planning for coverage. These algorithms are tested both in simulation and in the field with a small twin hull differential thrust vessel built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field Robotic

    Development of a stochastic computational fluid dynamics approach for offshore wind farms

    Get PDF
    In this paper, a method for stochastic analysis of an offshore wind farm using computational fluid dynamics (CFD) is proposed. An existing offshore wind farm is modelled using a steady-state CFD solver at several deterministic input ranges and an approximation model is trained on the CFD results. The approximation model is then used in a Monte-Carlo analysis to build joint probability distributions for values of interest within the wind farm. The results are compared with real measurements obtained from the existing wind farm to quantify the accuracy of the predictions. It is shown that this method works well for the relatively simple problem considered in this study and has potential to be used in more complex situations where an existing analytical method is either insufficient or unable to make a good prediction

    Time series forecasting for dynamic environments: The DyFor Genetic Program model

    Get PDF
    Copyright © 2007 IEEESeveral studies have applied genetic programming (GP) to the task of forecasting with favorable results. However, these studies, like those applying other techniques, have assumed a static environment, making them unsuitable for many real-world time series which are generated by varying processes. This study investigates the development of a new ldquodynamicrdquo GP model that is specifically tailored for forecasting in nonstatic environments. This dynamic forecasting genetic program (DyFor GP) model incorporates features that allow it to adapt to changing environments automatically as well as retain knowledge learned from previously encountered environments. The DyFor GP model is tested for forecasting efficacy on both simulated and actual time series including the U.S. Gross Domestic Product and Consumer Price Index Inflation. Results show that the performance of the DyFor GP model improves upon that of benchmark models for all experiments. These findings highlight the DyFor GP's potential as an adaptive, nonlinear model for real-world forecasting applications and suggest further investigations.Neal Wagner, Zbigniew Michalewicz, Moutaz Khouja, and Rob Roy McGrego

    The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13

    Get PDF
    We describe here the New Zealand kauri (Agathis australis) Younger Dryas (YD) research project, which aims to undertake Δ14C analysis of ~140 decadal floating wood samples spanning the time interval ~13.1–11.7 kyr cal BP. We report 14C intercomparison measurements being undertaken by the carbon dating laboratories at University of Waikato (Wk), University of California at Irvine (UCI), and University of Oxford (OxA). The Wk, UCI, and OxA laboratories show very good agreement with an interlaboratory comparison of 12 successive decadal kauri samples (average offsets from consensus values of –7 to +4 14C yr). A University of Waikato/University of Heidelberg (HD) intercomparison involving measurement of the YD-age Swiss larch tree Ollon505, shows a HD/Wk offset of ~10–20 14C yr (HD younger), and strong evidence that the positioning of the Ollon505 series is incorrect, with a recommendation that the 14C analyses be removed from the IntCal calibration database

    Automated design of boolean satisfiability solvers employing evolutionary computation

    Get PDF
    Modern society gives rise to complex problems which sometimes lend themselves to being transformed into Boolean satisfiability (SAT) decision problems; this thesis presents an example from the program understanding domain. Current conflict-driven clause learning (CDCL) SAT solvers employ all-purpose heuristics for making decisions when finding truth assignments for arbitrary logical expressions called SAT instances. The instances derived from a particular problem class exhibit a unique underlying structure which impacts a solver\u27s effectiveness. Thus, tailoring the solver heuristics to a particular problem class can significantly enhance the solver\u27s performance; however, manual specialization is very labor intensive. Automated development may apply hyper-heuristics to search program space by utilizing problem-derived building blocks. This thesis demonstrates the potential for genetic programming (GP) powered hyper-heuristic driven automated design of algorithms to create tailored CDCL solvers, in this case through custom variable scoring and learnt clause scoring heuristics, with significantly better performance on targeted classes of SAT problem instances. As the run-time of GP is often dominated by fitness evaluation, evaluating multiple offspring in parallel typically reduces the time incurred by fitness evaluation proportional to the number of parallel processing units. The naive synchronous approach requires an entire generation to be evaluated before progressing to the next generation; as such, heterogeneity in the evaluation times will degrade the performance gain, as parallel processing units will have to idle until the longest evaluation has completed. This thesis shows empirical evidence justifying the employment of an asynchronous parallel model for GP powered hyper-heuristics applied to SAT solver space, rather than the generational synchronous alternative, for gaining speed-ups in evolution time. Additionally, this thesis explores the use of a multi-objective GP to reveal the trade-off surface between multiple CDCL attributes --Abstract, page iii

    Autonomous Evolutionary Algorithm

    Get PDF
    corecore