
TUNING GENETIC PROGRAMMING

PERFORMANCE VIA BLOATING

CONTROL AND A DYNAMIC

FITNESS FUNCTION APPROACH

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2013

By

Geng Li

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 13

1.1 Genetic Programming and Bloating 14

1.2 Objectives . 16

1.3 Contributions . 17

1.4 Thesis Overview . 18

2 Genetic Programming 20

2.1 Variable Length Representation 20

2.2 Genetic Programming Inputs . 22

2.3 Genetic Programming Workflow 24

2.3.1 Initial Population Generation 25

2.3.2 Fitness Evaluation . 28

2.3.2.1 Fitness Value . 28

2.3.2.2 Evaluation Performance 30

2.3.3 Parent Selection . 31

2.3.4 Breeding Operators . 35

2.4 Benchmark Problems . 38

2.4.1 Multiplexer . 39

2.4.2 Symbolic Regression . 39

2.4.3 Parity . 41

2

2.4.4 Artificial Ant . 41

3 Bloating Theory and Control Techniques 43

3.1 Theoretical Code Growth Models 43

3.1.1 Intron Theory and Defense against Crossover 44

3.1.2 Defense against Crossover Variations 46

3.2 Anti-Defense against Crossover Evidences 47

3.3 Other Models . 48

3.4 Bloating Control Techniques . 49

3.4.1 Modifications of Crossover 50

3.4.2 Modifications of Fitness Function 53

3.4.3 Modifications of Selection 55

3.4.4 Modifications of GP Flow 55

3.5 Conclusion . 57

4 Theoretical Analysis of Bloating Effects 58

4.1 Introduction . 58

4.2 Bottom-up Tree Evaluation . 59

4.2.1 Motivation . 59

4.2.2 Theoretical Performance Analysis 63

4.2.3 Experiments . 67

4.3 Estimating Activation Rate . 70

4.4 Experimenting with Activation Rate Estimation 73

4.5 Activation Rate and Fitness . 75

4.6 Activation Rate and Tree Size . 77

4.7 Activation Rate and Crossover . 81

4.7.1 Crossover Effects . 81

4.7.2 Semi-Intron Crossover . 85

4.8 Conclusion . 89

5 Removal Bias & Depth-Constraint Crossover 90

5.1 Introduction . 90

5.2 Background and Related Work . 91

5.3 A New Quantitative Model . 94

5.4 Depth Constraint Crossover . 98

5.5 Depth Difference Hypothesis . 109

3

5.6 Conclusion . 113

6 Norm-Referenced Fitness Evaluation 115

6.1 Introduction . 115

6.2 Motivation . 116

6.3 Internal Fitness Measure . 118

6.4 Norm-referenced Fitness . 122

6.4.1 Initial Experiments . 124

6.4.2 Analysis of Selection Intensity 126

6.5 Implicit Bias Theory . 127

6.5.1 Further Experiment in Even Parity 5 Domain 132

6.5.2 Experiment in Other Problem Domains 133

6.6 Partial Norm-referenced Fitness 139

6.7 Conclusion . 143

7 Conclusion and Further Work 146

7.1 Contributions . 147

7.2 Further works . 149

Bibliography 151

Word Count: 38,451

4

List of Tables

4.1 Top-down Full and Bottom-up Evaluation Performance (7000-trees) 68

4.2 Top-down and Bottom-up Evaluation Performance (7000-trees) . . 69

4.3 Theoretical Estimation of Activation Rate in Multiplexer11 74

4.4 Observed Activation Rates in 1500, 5000, 15000 Trees Experiments 74

4.5 Comparison between Observed and Estimated Activation Rate . . 75

4.6 Tree Depth and Tree Activation Rate 77

4.7 Crossover Effects Distribution . 83

4.8 Distribution of Constructive and Destructive Crossover based on

Definition 6 . 84

4.9 Distribution of Constructive and Destructive Crossover Grouped

by Crossover Point’s Activation Rate based on Definition 6 84

5.1 Removal Bias at Generation 49 using No Bloating Control Methods 95

5.2 Correlation between Amount of Removal Bias and Average Depth

of the Generation . 97

5.3 Removal Bias at Generation 49 with Depth-Limiting Method . . . 97

5.4 Correlation between Amount of Removal Bias and Average Depth

of the Generation In Experiment 2 98

5.5 Summary of Experiment Results Comparing Koza-Style Depth

Limiting Method and Depth Constraint Crossover 101

5.6 Removal Bias at Generation 49 with Depth Constraint Crossover . 104

5.7 Summary of Experiment Results Comparing Koza-Style Depth

Limiting Method and Depth Constraint Crossover combined with

Depth Limiting Method . 106

5.8 Summary of Experiment Results of Depth Constraint Crossover

with Real Number Threshold Parameter 𝜖 108

5.9 Summary of Experiment Results Comparing Depth Constraint Crossover

with Other Bloating Control Methods 112

5

6.1 Fitness Values of 4 Individuals in 𝑃 119

6.2 Best Fitness at Gen 50 in Even Parity 5 Problem 125

6.3 Number of GP Runs when Norm-referenced Fitness Function Per-

forms Better, Equal, or Worse Compared to the According Original

Fitness function with Same Initialization 125

6.4 Experiment Results for 10 Initializations Running 300 Generations 133

6.5 Best Fitness at Gen 50 in Artificial Ant Problem 135

6.6 Best Fitness at Gen 50 in Sextic Problem 137

6.7 OneMax Problem Performance for 𝑁 in 20, 50, 100, 150 and 200 . 139

6.8 Best Raw Fitness at Generation 50, 100, 200, 300 using Partial

Norm-referenced, Norm-referenced and Original Fitness Function . 142

6

List of Figures

2.1 An Example GP Tree and its Lisp S-expression 21

4.1 Viewing test case inputs as permutation in Multiplexer 11 problem 60

4.2 Size of Individual as Depth Increases based on Node Distribution

Function 𝑓1(𝑑) and 𝑓2(𝑑) . 79

4.3 Number of Nodes needs to be Evaluated as Depth Increases based

on Node Distribution Function 𝑓1(𝑑) and 𝑓2(𝑑) 80

4.4 Number of Nodes needs to be Evaluated as Depth Increases based

on Node Distribution Function 𝑓1(𝑑) and 𝑓2(𝑑) (Depth up to 50) . 80

4.5 Average Fitness Changes for 𝜖 from 0 to 2048 in Steps of 10 . . . 87

4.6 Average Tree Depth Changes for 𝜖 from 0 to 2048 in Steps of 10 . 87

4.7 Average Tree Size Changes for 𝜖 from 0 to 2048 in Steps of 10 . . 88

5.1 Example of a General Crossover 92

5.2 Amount of Removal Bias over Generations without Bloating Control 96

5.3 Amount of Removal Bias over Generations with Depth-Limiting

Method . 98

5.4 Size of Run Changes over 50 Generations for Depth Constraint

Crossover and Koza-style Depth Limiting 102

5.5 Size of Run Changes over 50 Generations for Depth Constraint

Crossover combined with Depth Limiting and Koza-style Depth

Limiting . 105

6.1 The Selection Intensity of Tournament Selection for the Original

Fitness Function and Norm-referenced Fitness Functions with Dif-

ferent 𝜆 Settings . 127

6.2 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 for a GP Run in Even Parity 5 Problem using Original

Fitness Function . 129

7

6.3 Comparison of Best Fitness of Generation Changes over Genera-

tions Between Original Fitness Function and Norm-referenced Fit-

ness Functions with Different 𝜆 Settings 132

6.4 Best Fitness by Generation for Norm-referenced and Original Fit-

ness Function in Multiplexer 11 Problem 134

6.5 Average Population Fitness Change over Generations for Norm-

referenced and Original Fitness Function in OneMax Problem . . 138

8

Abstract

Inspired by Darwin’s natural selection, genetic programming is an evolutionary

computation technique which searches for computer programs best solving an

optimization problem. The ability of GP to perform structural optimization at

the same time of parameter optimization makes it uniquely suitable to solve

more complex optimization problems, in which the structure of the solution is

not known a priori. But, as GP is applied to increasingly difficult problems, the

efficiency of the algorithm has been severely limited by bloating. Previous studies

of bloating suggest that bloating can be resolved either directly by delaying the

growth in depth and size, or indirectly by making GP to find optimal solutions

faster. This thesis explores both options in order to improve the scalability and

the capacity of GP algorithm. It tackles the former by firstly systematically ana-

lyzing the effect of bloating using a mathematical tool developed called activation

rate. It then proposes depth difference hypothesis as a new cause of bloating and

investigates depth constraint crossover as a new bloating control method, which

is able to give very competitive control over bloating without affecting the explo-

ration of fitter individuals. This thesis explores the second option by developing

norm-referenced fitness function, which dynamically determines the individual’s

fitness based on not only how well it performs, but also the population’s aver-

age performance as well. It is shown both theoretically and empirically that,

norm-referenced fitness is able to significantly improve GP performance over the

standard GP setup.

9

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses

11

Acknowledgements

Writing this last part of my PhD thesis fills my mind with gratitude, and fond

memories of the first night I arrived in Manchester back in 2004, when I started

my undergraduate study. The past 8 years have scripted the most wonderful

experience of my life, the finale being my PhD.

First I would like to express my deep sense of gratitude to Dr Xiao-Jun Zeng

for his able supervision, strong encouragement, constant availability and effective

guidance. The discussions have always been constructive, pleasant and fruitful,

and I owe him a lot for giving me plenty of freedom throughout my PhD study.

It was truly a pleasure and honour for me to be able to work with him for 5 years,

and my best wishes are always with him and his family.

I am deeply indebted to my best friend Dongdong Li for his constant financial

support throughout my PhD study. Without his support, this PhD work would

not have been possible. My warmest wishes to him and his wife Youran Huang.

I would also like to thank my friends Mingyang Zhao, Shihai Wang, Yun Yang,

Ruofei He, Naikuo Yang and Xinkai Wang for all the valuable discussions we had,

and more importantly, for making my life in Manchester more enjoyable.

Special thanks to my colleagues in UBS, especially to Joseph Rosario Bastine

Joseph, Valvit Kurti, and Kieron Wall, for their understanding and unstinted

support during my thesis-writing period. Also, special thanks to Soundharya

Pradha, for her support during my thesis revision time.

Last, but definitely not the least. To my parents, my thankfulness cannot

be expressed enough. For always being there, for their everlasting patience and

encouragement, for inspiring me, for their thoughts of wisdom, and for pushing

me farther than I thought I could go. Xie Xie. I only wish they could realize

that I am now old enough to not worry about anymore.

12

Chapter 1

Introduction

Artificial Intelligence is a branch of computer science which aims to study and

design “intelligent agents”. Intelligent agent is defined as a system that per-

ceives its environment and takes actions which maximize its chances of success

[RN02]. Given this definition, a large share of Artificial Intelligence problems

can be resolved in theory by intelligently searching through all possible solutions.

In another word, many different problems in Artificial Intelligence can be con-

verted into searching of optimal solution within problem space. For example,

logical deduction can be viewed as searching for a path from premises to con-

clusions. Robotics controlling algorithms use search to find optimal strategies in

configuration space.

The simplest searching algorithm is blind exhaustive search, in which every

single solution within the searching space is checked for its quality. We get the

optimal solution after the search space is exhausted. Blind exhaustive search is

easy to understand and simple to perform. But it is only feasible to apply it

to simple problem domains in which the searching space is very small, and it is

rarely sufficient for real world problems in which the searching space is always

very large.

An improvement over exhaustive search is hill climbing. Hill climbing is based

on optimization in Mathematics. In hill climbing, search normally starts from a

blind guess and then refines the guess incrementally until no more refinements

can be made. The refinement is usually based on the first and second order

derivative of the target function. One limitation of hill climbing search is that

it is not stable. The choice of initial guess affects both the quality of the final

solution and the speed the algorithm converges to the solution, especially for

13

CHAPTER 1. INTRODUCTION 14

problems with complex search landscape, in which hill climbing is very likely to

converge at a local optimal rather than the global optimal.

Hill climbing is one example of a more general category of searching called

heuristic search. In heuristic search, heuristic is used to suggest to the searching

with “best estimates” of which part the optimal solution lies in the searching

space. Generally, heuristic embeds the domain specific information tied to the

problem. In the case of hill climbing, first order derivative is used as heuristic.

With heuristic, the searching program can eliminate parts of search space that

are unlikely to have optimal solution such that the efficiency of the search is

improved.

This thesis concentrates on a very different kind of optimization algorithm,

Evolutionary Computation. Evolutionary computation is a population based

searching algorithm inspired by Darwin’s natural selection and Genetics in Bi-

ology. Evolutionary computation searches for “optimal” solution by repeatedly

evaluating large number of candidate solutions (i.e. called a population), se-

lecting “fitter” ones, modifying them, and producing new candidate solutions

until an optimal solution is found or resources are exhausted. Common evolution

computation techniques include Genetic Algorithms, Evolutionary Programming,

Evolution Strategies and more recently Genetic Programming. This thesis’s focus

is primarily Genetic Programming, although a number of findings in this thesis

have a wider applicability, and can be applied to other methods as well.

1.1 Genetic Programming and Bloating

Genetic Programming (GP) is a dialect of Genetic Algorithm developed in 1990s.

In genetic algorithm, a population of abstract representations of candidate solu-

tions to an optimization problem is evolved. Candidate solutions are typically

encoded in binary strings of fixed size. The evolution starts from a population of

randomly generated individuals (i.e. the initial generation). In each generation,

the fitness of each individual is evaluated first. Then multiple individuals are

stochastically selected (based on fitness) and modified (commonly either recom-

bined through crossover or randomly mutated through mutation) to from a new

generation. This process is repeated until an optimal solution is found, or the

evolution reaches the maximum number of generations specified. One advantage

of genetic algorithm is that only the genetic representation of the solution (i.e.

CHAPTER 1. INTRODUCTION 15

candidate encoding scheme) and a fitness function need to be defined, both of

which require relatively little domain specific knowledge. As a result, it is pos-

sible to solve a huge number of complex problems, in which heuristics are very

hard to be deducted because of complexity of the search space landscape, using

genetic algorithms and also the dialect Genetic Programming.

Genetic programming, developed mainly by John R. Koza in his pioneering

book [Koz92], is a specialization of genetic algorithm, in which each individual

within population under evolution is a computer program (commonly represented

as an arbitrary-length tree). In [Koz92], Koza showed that “A wide variety of

seemingly different problems from many different fields can be reformulated as

problems of program induction”. Compared with genetic algorithm, using com-

puter programs as individual gives GP a unique advantage. In genetic algorithm,

the structure of the individual (the encoding scheme) needs to be defined ex-

plicitly and is fixed in evolution process. For complex problems, defining the

structure itself can be a very hard task even for domain experts. On the other

hand, computer programs evolved in GP are flexible with variable shapes. This

allows GP to perform structural optimization (i.e. the structure of individual

can also be evolved) at the same time of the parameter optimization. In recent

years, GP has been successfully applied to a variety of engineering problems in-

cluding symbolic regression, classification control, robotics, game playing, cellular

automata programming and many others. Good surveys of GP applications can

be found in [WHM+97], [BBSW03] and [RV10].

The usage of arbitrary-length tree representation in GP promotes the appli-

cability of GP to more complex problems. But it has an unforeseen side effect:

the size of individuals in the population under evolution tends to grow uncon-

trolled without improvements in the quality of the solution. This phenomenon,

called bloat or bloating, has the four negative effects to GP. Firstly, bloating slows

down the search process. In the central of GP lies the fitness evaluation which

is computational expensive and resource demanding. The larger the individuals

within population, the slower the whole GP searching process would be. Sec-

ondly, bloating demands more memory space. As the memory price gets much

cheaper in recent years, this seems not be a huge problem. But when applying

GP to more complicated problems, it is natural to program GP with distributed

architecture. Population synchronization would become an issue if the individual

CHAPTER 1. INTRODUCTION 16

were very big. Thirdly, bloating results in decease in solution quality. For exam-

ple, hardware topology synthesis is one of the most important application areas

for GP. As the GP generated solution will be eventually used to produce hard-

ware chip, larger solutions result in higher manufacturing cost and higher power

consumption, neither of which are desirable. Last but not least, bloating places a

time limit to GP. In GA where fixed-length encoding is used, the algorithm can

always run as long as needed. This is however not the case in GP. Because of

bloating, available computation resources may be exhausted long before the de-

sired solution is found, especially in complex problems. As a result, in GP, there

is a race between finding the optimal solution and resources exhausted caused by

bloating. These negative effects of bloating represent challenges when scaling up

GP to more complex problem domains.

1.2 Objectives

The objective of this thesis is to explore modifications of standard GP in order

to improve GP algorithm’s general performance, such that GP algorithm can be

applied to more complex problem domains. This thesis full fills this objective by

trying to answer the following three questions:

1. How bad is the bloating?

2. How can bloating be controlled?

3. Apart from bloating control, how can we improve the GP performance in

general?

The purpose of the first question is to develop a better understanding of the

problem of bloating itself. Bloating has been cited as a severe problem which

would limit the scalability of GP for a long time. Most of the works in literature

have been concentrating on finding the root cause of bloating and how to eliminate

it. But, there is very little effort spending on bloating itself. The author feels

that it would be more appropriate to develop a deeper understanding of bloating

itself before trying to attack it.

The purpose of the second question is to explore alternative bloating control

methods. Since the development of GP, there are a good number of effective

bloating control methods have been developed. Are there any missing dynamics

can be leveraged to develop simple and effective bloating control methods?

CHAPTER 1. INTRODUCTION 17

The purpose of the third question is to explore alternative approaches to

improve GP performance. This is because if the ultimate purpose of the bloating

control is to allow GP to be applied to more complex problems, in theory the

same effect could also be achieved by improving GP performance by itself rather

than fighting bloating.

1.3 Contributions

This thesis presents three main contributions to GP research work:

1. It develops the concept of Activation Rate. Activation rate quantitatively

models the importance of a node within a tree. Using activation rate, the

thesis qualitatively analyzes how bloating effects the computation effort

(number of nodes) required to evaluate a program tree. It also analyzes

the crossover effect in a more detailed manner separating the crossover

selection from subtree swapping using activation rate. Finally, it develops

a new crossover called semi-intron crossover, based on activation rate. Part

of this work has been published in [LZ10a];

2. It implements a new bloating control method calledDepth Constraint Crossover.

Depth constraint crossover is motivated by a quantitative analysis of re-

moval bias bloating theory. The thesis quantitatively defines removal bias

and empirically studies the correlation between the removal bias defined

and bloating. It then theorizes a new cause of bloating called Depth Differ-

ence Hypothesis. This thesis also presents experiment results showing the

effectiveness of depth constraint crossover in controlling bloating by com-

paring it with several existing bloating control methods. Part of this work

has been published in [LZ10b];

3. It develops a new fitness function scheme called Norm-referenced fitness

function, which is motivated by norm-referenced test in education. The

new fitness function scheme defines fitness considering both individual’s raw

fitness and the population’s average fitness. Empirical studies show that,

norm-referenced fitness function is capable of improving the overall perfor-

mance of GP system. In additional, theoretical analysis of norm-referenced

fitness function reveals that the original fitness function is actually a special

case of norm-referenced fitness function. Norm-referenced fitness function is

CHAPTER 1. INTRODUCTION 18

able to explicitly address one weakness of the original fitness function, which

is defined as the curse of evolution. Part of this work has been published

in [LZ11].

1.4 Thesis Overview

The rest of this thesis is organized as follows. The following two chapters in-

troduce genetic programming in detail, and provide a review of GP literature.

Chapter 2 gives an introduction to genetic programming, and benchmark prob-

lems. Chapter 3 gives a review of GP literature mainly on bloating theory and

bloating control. These two chapters serve as background for the rest of this

thesis.

In chapter 4, we address the question “How bad is the bloating?”. The concept

of activation rate is developed and studied in detail. The power of activation rate

is that it is possible to estimate the activation rate and use it for theoretical anal-

ysis of GP. Here, using activation rate, more precisely the estimated activation

rate, the computation effort required to evaluate trees are formally studied. Also,

a number of interesting experiment results about crossover are also discussed.

Chapter 5 tries to answer “How can bloating be controlled?”. It firstly reviews

a well established bloating control theory, the removal bias. Then it extends the

removal bias theory using a new quantitative model and discovers depth difference

hypothesis as a new drive behind bloating. It then develops depth constraint

crossover which explicitly address the issue raised by depth difference hypothesis

and gives a number of empirical evidences to support the effectiveness of depth

constraint crossover.

Chapter 6 presents norm-referenced fitness function, which extends the origi-

nal fitness function to not only taking into account the raw fitness achieved by the

individual, but also how well the rest of the individuals perform within the same

population, in order to answer the question “How can we improve the GP perfor-

mance in general?”. It further shows that the norm-referenced fitness function is

a general case of the original fitness function. The original fitness function suffers

from the limitation of curse of evolution. By adjusting the control parameter

𝜆 appropriately, norm-referenced fitness function is able to overcome the limi-

tation of the original fitness function and significantly improve GP performance

CHAPTER 1. INTRODUCTION 19

across all benchmark problems. In addition, a modification of tournament selec-

tion called partial norm-referenced fitness function is also developed to address

one potential runtime limitation of norm-referenced fitness function when used

in combination with tournament selection.

Chapter 7 concludes this thesis with a summary of the contributions made

and a detailed discussion of the further works.

Chapter 2

Genetic Programming

Inspired by Darwin’s natural selection, genetic programming (GP) is a computer

simulated evolution environment evolving computer programs. In the last chap-

ter, we gave a general description of how GP works. In this chapter, we exam-

ines genetic programming workflow in more detail. This information serves as

background knowledge for discussions in subsequent chapters. This chapter is

organized as follows. Firstly, we give an introduction of the representations of

computer programs in GP. We then show how GP works and discuss each GP

phase in detail. Finally, we conclude this chapter by describing the four most

popular GP benchmark problems.

2.1 Variable Length Representation

As we mentioned in Section 1.1, one of the most important features which distin-

guishes genetic programming from genetic algorithm is that, the individuals under

evolution in GP are computer programs. Computer programs can be represented

in many different ways. The most widely used representation is tree. Tree repre-

sentation of a computer program follows the functional programming paradigm

of defining programs. In functional programming, computation is treated as the

evaluation of mathematical functions (functions which do not have side effects)

or a combination of functions in the form of high-order functions. In this way,

the notion of state and mutable data are avoided. In [Koz92], Koza uses Lisp

S-expression to represent computer programs and tree to visualize it, as shown

in Figure 2.1. In a typical tree, there are two kinds of nodes: leaf nodes and non-

leaf nodes. Leaf nodes represent inputs into the program while non-leaf nodes

20

CHAPTER 2. GENETIC PROGRAMMING 21

represent functions. As a non-fixed representation, individual program trees may

�

�

�

�
A0

�

�

�

�
A1

�

�

�

�
Or

�

�

�

�
D7

�

�

�

�
And

�

�

�

�
Not

(Not (And (Or A0 A1) D7))

Figure 2.1: An Example GP Tree and its Lisp S-expression

vary in depth, number of nodes (size), and also shape. This differs from the fixed

representation scheme used in genetic algorithms in which every individual has

the same format. Another significant difference is that in classic genetic algo-

rithm, every bit in the individual has the same weight if not explicitly changed.

In another word, the string representation is a non-hierarchical structure. But in

the case of GP, trees are hierarchical. Each node in a tree has a weight implicitly

associated. It is well known in a GP tree that, nodes towards the root of the tree

are more important than nodes deep down in the same tree. The importance of

the node not only depends on itself but also depends on the surroundings it stays

in. Program trees (also known as Tree-based GP) are the primary focus in the

thesis. Chapter 4 greatly extends the discussion of tree structure.

In addition to trees, other computer program representations also available

in GP including Linear GP [Bra04], Parallel Distributed GP [Pol97], Cartesian

GP [MH08] and so on. Linear GP defines a computer program following the im-

perative programming paradigm. Imperative programming paradigm is the most

widely used programming paradigm in modern programming languages. Imper-

ative programming describes computation in terms of instructions that change

program states. In linear GP, computer programs are linear sequences of instruc-

tions which execute sequentially. Instructions are able to read program states

from, and store results back to registers and memory. One motivation for the

development of Linear GP is that imperative programming paradigm fits into

CHAPTER 2. GENETIC PROGRAMMING 22

modern computer architecture more neutrally compared to declarative program-

ming paradigm, such as functional programming. The other arguably more im-

portant motivation is performance. GP is a computational demanding algorithm

especially when the population evolved is large. Most of the computation efforts

required in GP are spent on evaluating individuals’ fitness. While functional

programs such as Lisp S-expressions cannot be executed directly without inter-

preters which convert higher-level code into machine code at runtime, Linear GP

instructions which usually are machine codes or higher-level language constructs

however can be executed directly without this translation process. This makes it

possible to evaluate population of similar size several orders of magnitude faster.

Parallel Distributed GP and Cartesian GP are two examples of Graph-based GP.

The development of Graph-based GP is motivated by the fact that tree is actually

a special kind of graph. Graph-based GP is suitable for evolving highly parallel

programs by reusing partial results, i.e. repeated evaluation of the same subtree

can be avoided. But special genetic operators are required in breeding phase in

order to ensure offsprings produced having the correct syntax. A much more

comprehensive introduction of these GP variations can be found in [PLM08].

2.2 Genetic Programming Inputs

Before applying genetic programming to a specific problem domain, the following

domain specific inputs need to be defined: function set, terminal set, fitness

function, and a number of control parameters. Function set is the set of all

available functions for a problem. Terminal set is the set of all inputs for a

problem. When a program tree is constructed, the tree’s non-leaf nodes are

always drawn from the function set while leaf nodes are drawn from the terminal

set. For example, in Figure 2.1, Not, And, and Or are from function set, while A0,

A1, and D7 are from terminal set. Similar to functions defined in programming

languages, functions in function set usually have a number of input arguments

and a single output. This is regarded using the parent/child relationship and is

visualized as edges connecting tree nodes. For example, in Figure 2.1, we say

that D7 is a child of And and And is the parent of node D7.

The function set and terminal set together form the primitives available for

GP to explore the problem searching space. The completeness and sufficiency of

the terminal and function set are critical when applying GP. If too many values

CHAPTER 2. GENETIC PROGRAMMING 23

are put into either function set or terminal set, the searching space of GP increases

exponentially. However, if the function set or terminal set have too few values,

they may not be sufficient to construct the optimal solution. For example, in

a symbolic regression problem to approximate a damping function, the problem

becomes much easier when trigonometric functions are available in the function

set. Otherwise, GP needs to discover Taylor expansion dynamically to be able

to correctly approximate the objective function with only polynomials, which

is much harder. In complex problems, determining function set and terminal

set itself is not a trivial exercise. For example, to simulate stock price movement

using GP, is historical price sufficient as terminal set? Should moving average also

be part of terminal set? Are primitive arithmetic operators sufficient to form the

function set? Or, higher order functions such as first order derivative or domain

specific functions such as Black-Scholes model [BS73] also should be part of the

function set? These questions can only be asked by domain experts on a problem

by problem basis.On one hand, in most cases when GP behavior is studied using

benchmark problems, the function and terminal set are considered to be well

defined, on the other hand, when applying GP to solve practical problems, the

choice of function and terminal sets needs to be carefully justified.

Fitness function is used to judge the quality of the individual candidate solu-

tion within the population evolved. The quality is usually also referred as fitness

or raw fitness. The exact form of fitness function may vary from problem to

problem. Typically, a fitness function consists of a number of test cases. Each

test case includes a number of inputs and a desired output. A program tree is

evaluated using the inputs and the actual output is compared with the target

output. If the actual output matches the target output (or within a predefined

error margin), the program tree is considered to be correct for this test case. Be-

cause each program tree needs to be evaluated using all test cases, the more test

cases defined in fitness function, the longer it takes to evaluate. The choice of

test cases can either be a permutation of all input values, or a sample of values.

Fitness plays a central role in GP because, raw fitness or a value derived from

raw fitness, guides the selection of fitter individuals to produce offsprings. Section

2.3.2.1 gives a more detailed discussion about fitness.

Control parameters also play an important role in genetic programming. Com-

mon control parameters include population size, maximum number of generations,

crossover rate, mutation rate and termination condition. Generally, in GP, the

CHAPTER 2. GENETIC PROGRAMMING 24

population size used is usually bigger than what is used in genetic algorithm.

The most classic setting from Koza in [Koz92] is 4000. Some later researches use

2000 or 500. In Koza’s classic settings, the maximum number of generations is

50, crossover rate is 90% and mutation rate is 10%. The termination condition

is either the maximum number of generations reached or the optimal solution

is found before. Those settings remain the most popular choices in most later

research.

2.3 Genetic Programming Workflow

Despite some minor variations, genetic programming generally works as described

in Algorithm 1:

Algorithm 1 General Genetic Programming Flow

1: function apply-genetic-programming(terminal set 𝒕𝒔, function set 𝒇𝒔, max-
Generation 𝑚𝑔, fitness function 𝑓 , Control Params 𝑝𝑎𝑟𝑎𝑚𝑠) : best Individual

2: population 𝒑 ← build-initial-population(𝒕𝒔, 𝒇𝒔, 𝑝𝑎𝑟𝑎𝑚𝑠.𝑝𝑜𝑝𝑆𝑖𝑧𝑒,
𝑝𝑎𝑟𝑎𝑚𝑠.𝑚𝑎𝑥𝐼𝑛𝑖𝑡𝐷𝑒𝑝𝑡ℎ)

3: currentGen 𝑐𝑔 ← 0
4: while 𝑐𝑔 < 𝑚𝑔 do
5: fitness 𝒇 ← {}
6: for all individual 𝑖 in 𝑝 do
7: 𝒇 ← 𝒇 ∪ 𝑓(𝑖)
8: end for
9: if reachBest(𝒑, 𝒇) then
10: return best(𝒑)
11: else
12: 𝒑 ← breed-new-population(𝒑, 𝒇 , 𝑝𝑎𝑟𝑎𝑚𝑠)
13: end if
14: 𝑐𝑔 ← 𝑐𝑔 + 1
15: end while
16: return best(𝒑)
17: end function

The key components/procedures/operations in GP include:

1. Generation of the initial population, which creates the first generation of

population randomly. The fist generation or generation 0 serves as the

starting point for evolution;

CHAPTER 2. GENETIC PROGRAMMING 25

2. Fitness evaluation, which evaluates individual’s raw fitness based on fitness

function defined. The fitness is used to guide the selection of parents in

breeding phase;

3. Breeding for new generation, which creates new population from the cur-

rent population. Breeding phase contains two steps: parent selection and

breeding.

2.3.1 Initial Population Generation

There are three commonly used methods to generate the initial population, in-

troduced by Koza in [Koz92], Full, Grow and ramp-half-and half. Full method

always chooses node from function set if the depth of the node is smaller than

the predefined limit. When predefined maximum depth is reached, it selects from

terminal set to complete the tree. The full method can be summarized using the

recursive code in Algorithm 2.

Algorithm 2 Full Method to Randomly Generate Tree

1: function build-tree-using-full-method(terminal set 𝒕𝒔, function set 𝒇𝒔,
maxDepth 𝑚𝑑, currentDepth 𝑐𝑑) : rootNode 𝑟𝑛

2: if 𝑐𝑑 < 𝑚𝑑 then
3: 𝑟𝑛← select random 𝑓 from 𝒇𝒔
4: for all childNode 𝑐𝑛 ∈ 𝑟𝑛.𝑖𝑛𝑝𝑢𝑡𝑠 do
5: 𝑐𝑛← build-tree-using-full-method(𝒕𝒔, 𝒇𝒔, 𝑚𝑑, 𝑐𝑑+ 1)
6: end for
7: else
8: 𝑟𝑛← select random t from 𝒕𝒔
9: end if
10: return 𝑟𝑛
11: end function

With full method, trees generated are guaranteed that every branch has the

maximum depth specified. In grow method, the root node is randomly selected

from the function set. Then, child nodes whose depths are smaller than maximum

allowed depth are selected randomly from not only function set but also terminal

set. As a result, grow method is able to generate trees with different shapes,

containing branches of various depths. The grow method can be summarized

using the recursive code in Algorithm 3.

CHAPTER 2. GENETIC PROGRAMMING 26

Algorithm 3 Grow Method to Randomly Generate Tree

1: function build-tree-using-grow-method(terminal set 𝒕𝒔, function set 𝒇𝒔,
maxDepth 𝑚𝑑, currentDepth 𝑐𝑑) : rootNode 𝑟𝑛

2: if 𝑐𝑑 = 1 then
3: 𝑟𝑛← select random 𝑓 from 𝒇𝒔
4: else
5: if 𝑐𝑑 < 𝑚𝑑 then
6: 𝑟𝑛← select random 𝑛 from 𝒇𝒔 ∪ 𝒕𝒔
7: end if
8: else
9: 𝑟𝑛← select random t from 𝒕𝒔
10: end if
11: if 𝑟𝑛 ∈ 𝒇𝒔 then
12: for all childNode 𝑐𝑛 ∈ 𝑟𝑛.𝑖𝑛𝑝𝑢𝑡𝑠 do
13: 𝑐𝑛← build-tree-using-grow-method(𝒕𝒔, 𝒇𝒔, 𝑚𝑑, 𝑐𝑑+ 1)
14: end for
15: end if
16: return 𝑟𝑛
17: end function

Unlike full and grow methods, ramp-half-and-half method is not a new method

to generate a single program tree, rather a systematic approach used in combi-

nation with grow and full methods to enhance the diversity when generating a

population of program trees, in terms of tree shape, size, and depth. Let 𝑑 be the

maximum allowed tree depth and 𝑛 be the number of program trees to generate,

ramp-half-and-half method firstly divides 𝑛 into 𝑑 groups of depth 1, 2, . . . , 𝑑−1, 𝑑.
Then for each depth group which contains

𝑛

𝑑
individuals, half of the individuals

are generated using full method, the other half are generated using grow method.

Although full and grow method are primarily designed to generate trees for

initial population, these two methods, especially grow method, are also used to

generate random sub-trees in mutation operation. Given the simplicity, these

two methods together with ramp-half-and-half method are the most widely im-

plemented methods to initialize population in GP. But, these classic methods do

have some drawbacks. For example, one limitation of grow method is that, even

through the maximum allowed depth is defined, there is very little guarantee

that the program tree generated has at least one branch which reaches maximum

allowed depth. This is because the actual depth of the tree generated using grow

method highly depends on the size of function set compared to terminal set. If

CHAPTER 2. GENETIC PROGRAMMING 27

the terminal set is considerably larger compared to function set, the tree gen-

erated tends to be very small due to the fact that terminals are more likely to

be selected during the generation of the non-leaf nodes. In [Iba96], Iba suggests

that these methods are not necessarily a uniform sampling of the searching space.

Langdon and Poli also suggest that ramped-half-and-half method has a bias and

this partially results in GP performs poorly in ant problems [LP98a]. In addition,

constraint on the maximum allowed depth may be inadequate for certain problem

domains. An example is symbolic regression problem where trees generated using

ramp-half-and-half method with maximum allowed depth set to 6 tend to be too

small and too simple. As an alternative to tree depth, Chellapilla in [Che97] uses

tree size (number of nodes) as the constraint in stead of the depth and reports

positive results. Moreover, recent researches also find that initialization methods

may affect bloating. In [Luk00b], Luke points out that grow method used in

mutation operator can produce substantial amount of bloat even in the absence

of selection pressure. In [DP07], Dignum and Poli also suggest that initialization

methods which tend to produce smaller trees may speed up bloating.

There are a number of alternative initialization methods available. In [Iba96],

Iba introduces RAND tree algorithm which generates trees uniformly based on a

bijection method, which improves the GP performance. In [Luk00c], Luke intro-

duces two tree-creation algorithms Probabilistic Tree-Creation (PTC) 1 and 2.

PTC1 allows user to define generated tree size and specify the user-defined prob-

abilities over the appearance of functions. PTC2 further extends PTC1 to allow

user to define a probability distribution over generated tree sizes. Both methods

give user better control over tree creation enabling more rigorous control over

expected tree size with a very low computational complexity. Seeding is another

method which allows user to input hand-crafted trees into the initial population.

These hand-crafted trees can be created by domain experts who can suggest a

good starting point of search. The initial populations can be created by mutating

a handful number of hand-crafted trees. When applying seeding, it is important

to maintain the population’s diversity since the tree generation is no longer ran-

dom. A good introduction on seeding can be found in [PLM08]. There are also

researches in Grammar-based GP related to population generation. Grammar-

based GP [Whi96] is a branch of GP which allows Grammar based constraints to

be applied to program trees under evolution. Special tree initialization algorithm

is required to ensure the tree created follows the grammar constraints. [BGS96]

CHAPTER 2. GENETIC PROGRAMMING 28

and [GAMRRP07] develop algorithms to uniformly generate trees in the context

of Grammar-based GP.

2.3.2 Fitness Evaluation

Fitness evaluation is the most important procedure in GP. This is not only be-

cause it is the most computationally expensive step, but also the result from

fitness evaluation, fitness, is used to determine whether the solution has been

found, and to guide the selection of individuals to produce the subsequent gen-

eration.

2.3.2.1 Fitness Value

In the fitness evaluation step, the fitness function is applied to individuals within

population to measure the quality of the individual, called raw fitness. According

to Koza, raw fitness is defined as “the measurement of fitness that is stated in the

natural terminology of the problem itself” [Koz92]. The raw fitness value usually

is a single aggregated value over raw results from a number of test cases. When

fitness is used in breeding phase to select “fitter” individuals, raw fitness can be

used directly. But more commonly, a transformation of raw fitness value as an

alternative measurement of fitness is used. In [Koz92], for example, Koza also

defines standardised fitness, adjusted fitness and normalised fitness. The stan-

dardised fitness is defined to be non-negative and smaller values represent better

individuals. It is customary, but not absolutely necessary to let the optimal indi-

vidual to have standard fitness value 0. Standard fitness is good to tell whether

one individual is better than another individual. Adjusted fitness is defined to

easily tell how much better or worse an individual is compared with another

individual. Normalised fitness is calculated by dividing adjusted fitness for the

individual by the summation of the adjusted fitness for all individuals within the

population. Both adjusted fitness and normalised fitness are useful when apply-

ing fitness proportionate selection (see Section 2.3.3), while rank based selection

methods such as tournament selection can use any of these fitness measurements.

In addition to evolve a single objective, GP can also evolve multiple objectives

at the same time. The existence of multiple objectives may be due to the nature

of the problem, i.e. minimizing cost and maximizing performance, or come from

CHAPTER 2. GENETIC PROGRAMMING 29

non-functional requirements such as parsimony, efficiency and so on. One natu-

ral way to solve a multi-objective problem is to convert it into a single-objective

problem by combining the individual objective functions into a single composite

function (using weighted sum for example). In [Koz92], Koza gives an example of

fitness function combining correctness (with 75% as weight) and efficiency (with

25% as weight) to solve the block stacking problem. Another widely used example

in GP is parametric parsimony pressure [LP06]. Parametric parsimony pressure is

a bloating control method which modifies the fitness value to take into account in-

dividual program tree’s size or depth, in additional to raw fitness. The motivation

behind parametric parsimony pressure is to penalize individuals with the same

raw fitness but have bigger program trees. A more detailed review on parametric

parsimony pressure will be given in Section 3.4.2. One problem with the weighted

summation approach is that proper selection of weights or utility functions are

extremely hard even for domain experts. Moveover, the relative importance of

these objectives may change over generations as well. Another problem is that it

can be very difficult to scale multiple objectives properly. Another approach to

solve multi-objective GP problems is to adapt the related techniques from other

evolutionary algorithms such as genetic algorithm. The main idea behind multi-

objective optimization is to find the Pareto optimal solution set (Pareto front)

[KCS06]. A Pareto optimal set is a set of solutions that are non-dominated by

each other. A candidate solution is said to dominate another candidate solution,

if and only if the former is not inferior to the later in all objectives and there is

at least one objective in which the former is better. A very good tutorial about

multi-objective in the context of genetic algorithm can be found in [KCS06].

In most of the cases, fitness function gives a numeric value as individual’s

fitness. This is desired rather than necessary and in some special cases, it is

not even required. Since the ultimate purpose of fitness is to serve the selection

procedure, different selection methods demand the fitness information in different

forms. For example, fitness proportionate selection requires fitness values in a very

high precision. Tournament selection, on the other hand, only requires fitness

ranking information. In a more extreme example, Tettamanzi [Tet96] presents

competitive selection, with which the notion of fitness is never directly used.

CHAPTER 2. GENETIC PROGRAMMING 30

2.3.2.2 Evaluation Performance

Evolutionary computation is well known to be a relatively slow optimization

method compared to other methods such as linear programming, neural network

and so on. This is partially because evolutionary computation is evolving a

population of candidate solutions, while other methods mainly work on a single

one. In the case of GP, managing performance becomes even more challenging

because of bloating. As we briefly introduced in Section 1.1, bloating is a well

observed phenomenon in GP that the depth and size of program trees increase

without improvements in individuals’ fitness. One of the problems caused by

bloating is that it takes longer and longer to evaluate the population as the

population evolves. When optimizing GP runtime performance, fitness evaluation

is always the primary concern as fitness evaluation is the most time consuming

and computation intensive operations in GP.

In this section, we briefly review a number of different techniques proposed

in literature to optimize fitness evaluation. These techniques can be divided into

three categories. The fist category of methods directly speeds up fitness evalua-

tion. One of the motivation behind the development of Linear GP is to be able to

evolve real machine codes, which are much faster to execute compared to logical

program trees. Distributed GP is able to distribute the evaluation workload over

a network of computation units. An example of such distributed GP system is

PGPS proposed in [OCPT97]. PGPS uses a master-slave model in which there

is a master instance performing selection, breeding and evaluation of individuals

are distributed to a number of slave nodes. Another example is island model

adopted from other evolutionary computation methods which divides population

into multiple sub-populations and evolves sub-populations independently on dis-

tributed nodes. Other works fall into this category include: in [KM94], Keith and

Martin discuss GP implementation issues in detail, comparing several different

usage of data structures and their impact to runtime performance. In [Kei04],

Keijzer examines a number of subtree caching mechanisms that are capable of

improving the runtime efficiency of GP system. In [Lan09], Langdon develops an

implementation of GP using CUDA. CUDA is a programming API for NVIDIA

graphic card. It enables scientific programming or general purpose programming

to leverage the power of GPU.

The second category of techniques reduces the number of fitness test cases

need to be evaluated. For example, in [Alt94b, Alt94a, Tac94], Altenberg and

CHAPTER 2. GENETIC PROGRAMMING 31

Tackett develop brood recombination crossover which uses only a small fraction

of test cases to evaluate offsprings produced. In brood recombination, rather than

only producing one pair of offsprings, each pair of parent produces a number of

offsprings. But only one pair of offspring survives based on the culling function,

a function derived from the fitness function which is much less computationally

costly. By using culling function, even through overall there are more offsprings

to be evaluated because of the brood recombination, the overall computational

cost is still managed. In [GTV02], a statistical method is used to select only a

fraction of test cases in fitness evaluation.

The third category of methods reduces the number of individuals that need

to be evaluated in fitness evaluation. For example, in [XZA06b], a population

clustering method is proposed to decrease the total number of individuals that

need to be evaluated. In [Koz92], Koza avoids re-evaluation of individuals who are

created by reproduction. In [Jac05], Jackson finds a special kind of crossover, the

fitness-preserving crossover, in which offsprings produced have the same fitness as

their parent. Jackson explicitly used this property to avoid fitness evaluation on

those offsprings created by fitness-preserving crossover. In [LBP03], an adaptive

parameter technique is developed to gradually decrease population size in GP

rather than using a fixed-size population.

In additional to these methods, most of bloating control methods are able

to improve evaluation performance by reducing the depth and size of program

trees. These methods will be reviewed in detail in Chapter 3. An example of

these methods is Tarpeian method. In [Pol03], Poli develops Tarpeian method

which marks randomly selected individuals whose size (number of nodes) are

above population’s average individual size to lowest possible fitness value without

evaluating them. Although it is primarily designed to control bloating, it is also

able to improve evaluation performance since these large individuals marked no

longer require to be evaluated.

2.3.3 Parent Selection

Based on Darwin’s natural selection principle, GP evolves the population of can-

didate solutions by selecting fitter individuals in the current generation to create

offsprings to form the next generation. Fitter individuals have higher chance to

be selected as parents to produce offsprings. This simulates the idea of “the fitter

survives”. We split the discussion of breeding phase in GP into two sections. In

CHAPTER 2. GENETIC PROGRAMMING 32

this section, we discuss a variety of selection methods, and in the next section,

we review a number of common breeding operators.

Before any selection methods are reviewed, we firstly discuss several mea-

surements of selection methods. The key concept behind selection is selection

pressure. There are a number of definitions of selection pressure can be found

in literature. In the simplest form, selection pressure measures how much more

likely a fitter individual will be selected over an average individual. The higher

the selection pressure is, the faster the system converges. Fast convergence speed

reduces the overall running time for GP, but may leads to what is known as

premature convergence i.e. system converges to a local minimum. On the other

hand, lower convergence speed decreases the chance of premature convergence,

but may results in GP failing to find optimal solution because of either bloating

or reaching maximum number of generations specified. Selection pressure is not

only affected by selection method, it is also subject to the distribution of fitness in

the population [BT96]. A number of measurement of selection pressure have been

developed by Blickle and Thiele in [BT96], including average fitness, fitness vari-

ance, reproduction rate, loss of diversity and selection intensity. Also, in [GD91],

growth ratio and takeover time are introduced. Although these measurements

are developed in the context of genetic algorithm, they can be directly applied

to genetic programming. Here, we only give a brief review of selection intensity,

which will be used in later chapters. More information of other measurements

can be found in [BT96]. The selection intensity 𝐼 of a selection method is defined

as:

𝐼 =
�̄�∗ − �̄�

�̄�

where �̄�∗ is the expected mean fitness after selection, �̄� is the expected mean

fitness before selection, and �̄� is the mean fitness variance before selection.

In GP, most of the common selection methods are adapted from genetic algo-

rithm. The most popular selection methods include fitness proportionate selec-

tion, ranking selection and tournament selection. Fitness proportionate selection

is firstly developed by Holland in [Hol92], and firstly used in GP in [Koz92]

by Koza. In fitness proportionate selection, the probability that an individual

is selected is proportional to the fitness of that individual. Formally, given a

population 𝑃 with 𝑛 individuals and individual 𝑖’s fitness is 𝑓𝑖, the probability

CHAPTER 2. GENETIC PROGRAMMING 33

individual 𝑖 being selected is:

𝑝𝑖 =
𝑓𝑖∑𝑛
𝑗=1 𝑓𝑗

,

Fitness proportionate selection has several limitations. The first one is that

fitness proportionate selection depends on the scale of fitness function [BT96]. If

the differences between high fit and low fit are small, the selection method tends

to have very small selection pressure. On the other hand, if the differences are

large, fitter individuals would dominate in the selection process. Another problem

is that the selection pressure varies in different stage of evolution. In early stage

of evolution for example, the selection pressure tends to be very small [BT96] due

to the fact that randomly generated individuals tend to have similar fitness. To

overcome this problem, an improvement over proportionate selection, greedy over-

selection is introduced by Koza in [Koz92] to improve the selection intensity, and

hence improve the performance of GP. In greedy over-selection, the population is

divided into two groups, Group I and Group II, based on the individuals’ fitness

value. Group I’s individuals are fitter than Group II’s. When an individual

is selected, individual is selected from Group I with 80% probability. A final

problem is that the common implementation of fitness proportionate selection, the

weighted roulette wheel, is quite computational expensive with time complexity

of 𝑂(𝑛2) [GD91]. A pre-sorting may reduce the lookup complexity to 𝑂(𝑛𝑙𝑜𝑔𝑛).

But sorting itself can be computational expensive as well, especially when the

population is large. Moreover, the selection can only be performed after the

whole population have been evaluated.

Another commonly used selection method is tournament selection. Unlike fit-

ness proportionate selection in which the fitness value is directly used, tournament

selection uses ranking information. It simulates real world selection scenarios, for

example, when two bulls fight over the right to mate with a given cow. In tour-

nament selection, a fixed number of individuals (common tournament size in GA

is 2, in GP is more commonly to use 5 or 7) are randomly selected to form a

tournament. Then the fittest in the tournament is selected. One advantage of

tournament selection is that, the selection pressure can be easily tuned by chang-

ing tournament size. Generally speaking, given a population, bigger tournament

size results in higher selection pressure. A more detailed study of tournament

selection pressure can be found in [BT96]. Another advantage of tournament

CHAPTER 2. GENETIC PROGRAMMING 34

selection is that it is very fast with time complexity 𝑂(𝑛), without requiring to

pre-sort the population. In addition, evaluation of individuals can be delayed to

when the individual is selected as part of a tournament. With the “not-sampled

issue” for tournament selection [XZ12] (i.e. not all individuals are guaranteed

to be selected at least once as part of a tournament), fitness evaluation of indi-

viduals not being sampled can be avoided. Moreover, each tournament can be

formed in parallel, which makes tournament selection a natural choice in parallel

implementation of GP. Two issues with tournament selection are multi-sampled

issue and not-sampled issue, which are studied in detail in [XZ12]. Multi-sampled

issue refers to the same individual sampled multiple times in a tournament, while

not-sampled issue refers to individual not being selected for any tournaments. In

[XZ12], Xie and Zhang clarify that resolving multi-sampled issue and not-sampled

issue do not improve the tournament selection in a statistical significant manner.

Researches also have been performed to get a finer level selection pressure control

over tournament selection. For example, in [GD91], Goldberg and Deb present a

modification of tournament selection introducing an extra probability 𝑝 to give

a finer level of control when tournament size is set to 2 in the context of genetic

algorithm. Although the primary motivation of population clustering algorithm

is to improve fitness evaluation performance, it is demonstrated in [XZA06a] that

the algorithm is also able to dynamically adjust selection pressure along with

evolution.

According to Blickle and Thiele in [BT96], ranking selection is firstly devel-

oped in [GB89] in the context of genetic algorithm to resolve the problems of

fitness proportionate selection. In ranking selection, individuals are firstly sorted

based on fitness values. If there are 𝑁 individuals within population, the worst

individual has rank 1 and the best individual has rank 𝑁 . Then, the probability

for a individual with rank 𝑖 to be selected is determined by a function. This

function can be either linear, exponential [BT96], or even polynomial [HH08]. In

linear rank selection, let 𝑖 be the rank of the individual, 𝑁 be the population size

and 𝜂 be the control parameter, the probability for individual with rank 𝑖 being

selected is determined by the following function:

𝑝𝑖 =
1

𝑁
(1− 𝜂 + (2𝜂 − 2)

𝑖− 1

𝑁 − 1
),

CHAPTER 2. GENETIC PROGRAMMING 35

in which, the real valued control parameter 𝜂 can be used to tune selection pres-

sure and 1 ≤ 𝜂 ≤ 2. When 𝜂 = 1, 𝑝𝑖 =
1

𝑁
, i.e. each rank is selected uniformly.

When 𝜂 = 2, ranking selection gives highest selection pressure. In exponential

ranking selection, the probability is determined using:

𝑝𝑖 =
𝑐𝑁−𝑖∑𝑁
𝑗=1 𝑐

𝑁−𝑗

where the exponent base parameter 0 < 𝑐 < 1, can be used to control the selection

pressure. In polynomial rank selection, the probability for an individual with rank

𝑖 being selected is:

𝑝𝑖 =
𝑑+1∑
𝑗=1

𝑎𝑗𝑘
𝑗−1

where 𝑎𝑗 are control parameters and 𝑑 is the degree of the polynomial. One

limitation of rank selection is that, similar to fitness proportionate selection, the

whole population still needs to be sorted before individuals are selected.

There are a number of other selection methods that have been developed but

not widely used in GP including truncation selection, fitness uniform selection,

and so on. [BT96] gives a good review of these methods. In addition, there

are also a number of modifications of standard selection methods developed for

bloating control, which will be reviewed in Chapter 3.

2.3.4 Breeding Operators

There are three most widely used breeding operators in GP, namely crossover,mu-

tation and reproduction. The most widely used operator is crossover. Crossover

mimics the process of sexual reproduction. In the simplest form, two individuals

are firstly selected using selection methods discussed in previous section from the

population. Then one node is randomly selected from each individual and sub-

trees under two selected nodes are swapped to form a pair of offsprings. The node

selected is called crossover point. Even through this standard crossover remains

the most widely used crossover, it is not without problems. The biggest problem

is that the crossover point selection is purely random without considering the

context of the parent program. This is very different from real world biology

crossover which operates in a highly constrained and controlled context. As a re-

sult, crossover in GP is generally considered to be destructive. In [NB95], Nordin

CHAPTER 2. GENETIC PROGRAMMING 36

and Banzhaf quantitatively study the effect of crossover through a number of

experiments. They define the change in fitness Δ𝑓𝑝𝑒𝑟𝑐𝑒𝑛𝑡 from parent’s fitness to

child’s fitness as:

Δ𝑓𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
𝑓𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑓𝑎𝑓𝑡𝑒𝑟

𝑓𝑏𝑒𝑓𝑜𝑟𝑒
⋅ 100

They analyze a large number of individuals in early generations of the symbolic

regression problem and find that there is a high probability that the function of

the program is severely damaged, resulting in a fitness decrease for the individual.

A similar experiment with a much more complex experiment setup is performed

in thesis in Section 4.7. To address this issue, a number of alternative crossover

operators towards a more homologous crossover have been developed. The brood

recombination [Tac94] is inspired by the fact that in real world, animals usually

produce more offsprings and not all of them can live. In brood recombination,

instead of creating only two offsprings, a much bigger number of offsprings are

created and only the best two survive and put into the new generation. In [HS97],

Harries and Smith develop a hill climbing based crossover. Hill climbing based

crossover performs crossover between one program and an identical copy of itself

with no bias of selection of crossover point. This results in a smaller change on

the original program and this simulates a hill-climbing like local search. Sim-

ilarly, in [Ang97], another local search method, the headless chicken crossover

is developed, in which a parent is selected and crossover is performed between

the selected tree and a randomly generated tree. Headless chicken crossover can

also be considered as a kind of mutation since it exhibits a number of features

from mutation. In [PL98], Poli and Langdon introduce uniform crossover which

constructs offsprings in a bitwise manner, similar to crossover in GA. In uniform

crossover, instead of swapping the entire subtrees, tree nodes within the similar

structure in both parents are swapped individually.

Another problem with standard crossover is that there is an implicit bias

towards deeper nodes due to the nature of tree structure. A random selected

crossover point has higher chance to be at a bigger depth simply due to the fact

that the number of nodes of a certain depth increases as the depth increases. This

implicit bias results in smaller subtrees being swapped and hence smaller effects

on crossover. Considering leaf nodes (deepest nodes) as a special case, in [Koz92],

Koza defines that 90% of time the crossover point is selected at non-leaf nodes,

while 10% of time the crossover point is selected at terminal nodes. A much more

comprehensive study is conducted by Angeline in [Ang96] in which four fixed

CHAPTER 2. GENETIC PROGRAMMING 37

leaf node selection frequencies and two adaptive leaf node selection methods are

experimented. Results of experiments show that there is not a universal setting

which is optimal for every problem. To address the more general depth bias

issue, in [HS97], Harries and Smith develop a depth-based crossover, in which

the depth of crossover point is selected with equal probability. In [IIS99], depth-

dependent crossover further expands depth-based crossover by allowing a pre-

defined probability or self-adapted probability assigned to selection of crossover

point depth.

Unlike crossover, mutation is a genetic operator which works on a single par-

ent. In mutation, similar to crossover point, one node called mutation point is

randomly selected from the parent, and then the subtree under the mutation

point is replaced with a randomly generated subtree. Typically, grow method

discussed in Section 2.3.1 is used to generate the subtree. This form of mutation

is also called subtree mutation and it is the most common form of mutation.

A more comprehensive list of mutation variations can be found in [PS06] and

[PLM08]. Here, we only go through a number of typical ones. Hoist mutation

used in [Kin93] creates the new individual by randomly selecting a subtree from

the selected parents. This results in a smaller individual created compared to

the parent. Point mutation used in [PL97a] randomly selects and changes one

node rather than the entire subtree. If a function node is selected, function with

the same arity is replaced to preserve the structure of the tree. In [Ang96], An-

geline uses a non-standard genetic programming algorithm, in which offspring

reproduction is done firstly by crossover. Then, offsprings created are mutated

before putting into new population. Five different mutations are used in the

algorithm: grow, shrink, cycle, switch and numerical terminal mutation. Grow

mutation randomly selects a leaf node and replaces it with a randomly generated

tree up to depth 7. This increases mutated tree size. The shrink mutation on

the other hand reduces tree size by replacing a random subtree with a random

terminal. Cycle mutation works the same as hoist mutation with the limita-

tion that only function nodes are selected. Switch mutation swaps the subtrees

from a random parent node. The parent node needs to be a function which is

not commutative. Lastly, numerical terminal mutation assign a random numeric

value draw from a Gaussian distribution to a random leaf numeric node, which

is similar to ephemeral random constants (ERCs) used in [Koz92]. In [VTCC03],

inflate and deflate mutation are developed to study fitness-distance correlation.

CHAPTER 2. GENETIC PROGRAMMING 38

Uniform subtree mutation is developed in [BA02] as an alternative to standard

subtree mutation to control bloating. In [BJ09], Beadle and Johnson extend their

research on semantically driven crossover [BJ08] to mutation and develop seman-

tically driven mutation (SDM). SDM performs a number of standard sub-tree

mutation attempts and only accept the one which mutate the parent into a new

behavioral state.

Even through mutation is actively used in genetic algorithm, mutation is

generally considered as destructive and is not widely used in GP. This is partially

because in [Koz92] Koza’s classic breeding setting, crossover is used 90% of time,

reproduction is used 10% of time and mutation is not used at all. When mutation

is used in early GP works, the mutation to crossover ratio tends to be very low as

well. Most of researches afterwards follow the same configuration. But there are

a number of researches latter show that mutation can be beneficial. For example,

in [LS97] and later in [LS98], Luke and Spector perform extensive amount of

experiments to study the effect of crossover and mutation with a number of

different parameter setups. They conclude that with correct parameter setting,

crossover is more effective compared to mutation. But in most of the cases, the

difference between these two operators are not significant.

Finally, the reproduction operator [Koz92], instead of creating new individuals

based on selected individuals, directly injects individuals with high fitness value

into the new population. This approach mimics the idea of “the fittest survives”.

Reproduction is usually used along with either crossover or mutation or both to

form the breeding strategy. One benefit of using reproduction is that individuals

created via reproduction do not need to be re-evaluated. This reduces the fitness

evaluation cost of GP.

2.4 Benchmark Problems

There are four testing problems firstly formulated and used in [Koz92], multi-

plexer, symbolic regression, parity and artificial ant. These four problems then

become the most widely used benchmark problems in GP. Most of researches in

GP use these problems to test and compare algorithms’ efficiency.

CHAPTER 2. GENETIC PROGRAMMING 39

2.4.1 Multiplexer

Multiplexer is a boolean circuit design problem. The input to the Multiplexer N

circuit consists of k address bits 𝑎𝑖 and 2𝑘 data bits 𝑑𝑖, such that 𝑁 = 𝑘+2𝑘. So,

the input of Multiplexer circuit is:

𝑎𝑘−1, . . . , 𝑎0, 𝑑2𝑘−1, . . . , 𝑑1, 𝑑0.

The output of the Multiplexer circuit is the boolean value (0 or 1) of the particular

data bit that is singled out by the k address bits of the multiplexer. The commonly

used Multiplexer problem is Multiplexer 6 (𝑘 = 2) and Multiplexer 11 (𝑘 = 3).

The Terminal set of Multiplexer problem is the set of inputs. For example, in

Multiplexer 11, the Terminal set is:

𝑇 = {𝐴0, 𝐴1, 𝐴2, 𝐷0, 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7}.

The function set of Multiplexer problem consists of basic boolean gates. The

most commonly used function set is:

𝐹 = {𝐴𝑁𝐷,𝑂𝑅,𝑁𝑂𝑇, 𝐼𝐹}.

Since each terminal has value either 0 or 1, the permutation of inputs has 2𝑁

distinct combinations. Each combination in the permutation with the expected

result forms a test case. As a result, for example, in Multiplexer 11, there are

211 = 2048 test cases. The fitness evaluation function for Multiplexer problem

is the number of test cases in which an individual is correct. Thus, an optimal

solution gives correct result for all possible inputs.

2.4.2 Symbolic Regression

Symbolic Regression is the process of determining a summary Mathematical ex-

pression for a set of data points. The most commonly used symbolic regression is

linear regression. In linear regression, one is given a set of values of various inde-

pendent variables(s) and the corresponding values for the dependent variable(s).

The goal is to discover a set of numerical coefficients for a linear combination

of the independent variable(s) that minimizes some measure of error between

the given values and computed values of the dependent variable(s). Similarly, in

CHAPTER 2. GENETIC PROGRAMMING 40

quadratic regression, the goal is to discover a quadratic equation which minimizes

some measure of error. In Fourier regression, the goal is to discover a sine and

cosine function which minimizes error.

The process of discovering the coefficients in a formula is given in symbolic

regression algorithm. But it is left to the user to define which type of function

should be used. But in most complex problems, choosing the right base function

(e.g. either linear or quadratic) by itself is an issue. In another word, common

regression methods only takes care of how to find the coefficients of a determined

formula form. But the discovery of the formula form itself is left to the user. How-

ever, in genetic programming, both the formula form and coefficients in formula

can be dynamically determined and evolved.

The most commonly used benchmark problem in Symbolic Regression settings

are as follows. In benchmark problem, the equation we tried to discover is 𝑦 =

𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1. The terminal set consists only the independent variable 𝑥:

𝑇 = {𝑥}.

The function set consists commonly used mathematical operators:

𝐹 = {+,−, ∗,%, 𝑆𝐼𝑁,𝐶𝑂𝑆,𝐸𝑋𝑃,𝐿𝑂𝐺}.

The test cases are 20 points randomly generated using target formula 𝑦 = 𝑥4 +

𝑥3 + 𝑥2 + 𝑥 + 1. The fitness function is the sum of absolute value differences

between value of the dependent variable produced by individual program tree

and the target value of dependent variable in test cases.

Symbolic regression problem domain shows the advantage of GP using vari-

able length representation. In complex problems, the user hardly knows the exact

representation form which best fit the problem. With variable length represen-

tation, when population is evolved, the representation of each individual is also

evolved. This frees user from defining the form of the representation explicitly

prior to GP runs. As a result, Genetic Programming is uniquely suitable for those

kinds of complex problems.

CHAPTER 2. GENETIC PROGRAMMING 41

2.4.3 Parity

Like multiplexer, parity is also a boolean problem. Parity problem family has

two variations, even parity and odd parity. In even parity with 𝑛 boolean inputs,

the expected program outputs 1 if the number of 1’s in 𝑛 inputs is even. The

program returns 0 if the number of 1’s in 𝑛 inputs is odd. In odd parity with 𝑛

boolean inputs, the expected program outputs 1 if the number of 1’s in 𝑛 inputs

is odd. Commonly used number 𝑛 for parity is 3, 5, 6, and 11. For a 𝑁 parity

problem, the terminal set contains all inputs:

𝑇 = {𝐼0, 𝐼1, . . . , 𝐼𝑁−2, 𝐼𝑁−1}

The function set of the parity problem consists of boolean functions:

𝐹 = {𝐴𝑁𝐷,𝑁𝐴𝑁𝐷,𝑂𝑅,𝑁𝑂𝑅}.

Usually, the permutation of inputs is used as test cases. For a 𝑁 parity prob-

lem, there are 2𝑁 test cases. Similar to multiplexer problem, given an individual,

the fitness function returns the number of test cases in which the individual’s

output is correct.

2.4.4 Artificial Ant

Finally, artificial ant problem attempts to generate a robotic navigation program

which controls an ant to move within a grid to “eat” pellets. The navigation

program can move the ant forward, turn the ant left and turn the ant right.

The goal is to find a program which controls the ant to eat the most number of

food pellets within 400 time steps. There is no inputs required in artificial ant

problem. As a result, the terminal set is empty. Function set of ant problem

includes:

{progn3,progn2, if-food-ahead,move, left, right}

progn3 accepts three inputs and executes them sequentially. progn2 accepts

two inputs and executes them sequentially. if-food-ahead accepts two inputs

and executes the fist one if there is a food pellet in front of the ant, otherwise, it

executes the second input. move moves the ant forward one cell in grid towards

the direction ant is heading, eating the food pellet if there is one. left turns the

ant 90 degrees to the left in the same cell. right turns the ant 90 degrees to the

CHAPTER 2. GENETIC PROGRAMMING 42

right in the same cell. One interesting feature of move, left and right is that

they produce side effects. As a result, progn3, progn2 and if-food-ahead are

not commutative. For example, (progn2 move left) and (progn2 left move)

gives completely different result.

Unlike the other three problems, the fitness function of artificial ant problem

does not contain any test cases. Instead, the individual is evaluated by simulating

in a predefined grid with food pellets. An ant is placed in the top left corner of

the grid facing right and uses the program to move the ant for a maximum of 400

steps and the fitness of the program is the number of food pellets ate by the ant.

The most widely used pellets topology is “Santa Fe Trail” introduced by Koza in

[Koz92].

Chapter 3

Bloating Theory and Control

Techniques

In Chapter 2, we gave a detailed introduction of genetic programming. We men-

tioned several times that, bloat or bloating is a phenomenon that the program

trees evolved tend to grow in size and depth without improvements in quality of

solution. Bloating is an undesired side effect of using arbitrary length represen-

tation in genetic programming. Because bloating severely limits the scalability of

GP, as a result, a lion share of genetic programming literatures studies the cause

of bloating and proposes a good number of bloating control techniques to tackle

bloating since the very beginning stage of GP research. The most recent good

review of bloating theory and bloating control methods can be found in [da 08].

In this chapter, we survey these researches to give a clear map of previous achieve-

ments. This review serves as background information for the rest of this thesis,

especially for Chapter 5, in which a new bloating control method called depth

constraint crossover is proposed. This chapter is organized as follows. Firstly,

theoretical analysis of code growth in literature are surveyed. Then, survey of

various bloating control techniques is provided.

3.1 Theoretical Code Growth Models

Over last few years, there are a number of theories proposed to explain why bloat-

ing occurs. These theories include defense against crossover, redundancy theory

[Bli96], replication accuracy theory [MM95], removal bias [SF98b], modification

point depth theory [Luk00a], hitchhiking [Tac94], fitness causes bloat [LP97b], and

43

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 44

crossover bias [PLD07]. These theories are able to explain bloating from differ-

ent perspectives. But, a single comprehensive theory has not been concluded yet.

This suggests that the mechanism which drives bloating is far more complex than

previously thought and it is more likely a handful of causes which contribute to

it.

3.1.1 Intron Theory and Defense against Crossover

Early research of bloating concentrates on the existence of introns in GP program

trees. The name “intron” originates from Biology Genetics. In Genetics, DNA

is considered as the genetic material that is propagated from one generation to

the next. This is because DNA contains the instruction on how to build proteins,

which are the building blocks of life. Although DNA is the carrier of genetic

material, however it is not directly involved in protein synthesis process. It only

directs protein synthesis indirectly by sending instructions in the form of RNA.

A number of researches reveal that not all DNA sections are included in the

RNA. In fact, surprisingly only around 3% of DNA martials exist in the RNA.

DNA segments which are coded into the “final” RNA are called gene (also called

exon). Those DNA segments which are not involved in the coding of RNA are

called non-coding DNA. One kind of non-coding DNA is intron. In RNA creation

process, introns are firstly coded into RNA with the rest of gene, but they are

later removed in the final RNA product. This intron-exon structure, especially the

existence of introns, remains to be fully studied and understood in Genetics. On

one hand, introns do not contribute to functionality of genes since they are striped

off from the final RNA. On the other hand, if introns do not make contribution

to the synthesis process, it would have long been eliminated by natural selection.

A good survey of intron research in Genetics can be found in [WL96].

In the context of evolution computation, intron is usually defined as “non-

functional” codes or sub-programs within an individual, which does not affect the

fitness of the individual. Introns are not all in the same form. The formation and

structure of one intron can greatly differ from another one. The first discussion

on different types of introns can be found in [NB95]. A number of different

taxonomies of introns have also been developed in [SH98, Ang98, LSPF99, SF98b,

BT94, SH02]. In [Luk00b], Luke gives a more comprehensive bestiary of introns,

based on the structure and the formation of the introns. Two broad categories

of introns defined by Luke are Inviable and Unoptimized code. Inviable codes

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 45

are subtrees which cannot be replaced by anything “that can possibly change

the individual’s operation”. Unoptimized code are subtrees which “perform no

function in the individual, but can be replaced with subtrees which do perform

a function”. Apart from certain specific intron types such as inviable code in

certain problem domains, identifying other different types of introns remains to

be a complex manual process which cannot be fully automated.

Although intron seems to be useless and redundant at phenotype level, intron

can be beneficial to the overall evolution process. For example, in the context of

genetic algorithm, in [Lev91], Levenick shows that introducing explicitly defined

introns into bit strings can lead to dramatic improvements in success rate as much

as a factor of 10. Similarly, Nordin et al. [NFB96] introduce explicitly defined

introns in GP which improves fitness, generalization and algorithm efficiency. In

[Ang94], Ageline classifies the emergence of introns is an “innate” advantage of

GP. Ageline further describes the usefulness of introns as a protector of program

semantics from crossover: if a crossover operator is performed within intron codes,

the semantics of the offspring are preserved.

Ageline’s view is the first reference of the bloating theory defense against

crossover. The origin of the theory can not be traced in literature, but this does

not affect defense against crossover being the most widely cited bloating theory.

Defense against crossover is based on the general perception that crossover is

destructive. Empirical results of the destructiveness of crossover can be found in

[NB95]. The offsprings created by a crossover operation may have better fitness,

the same fitness or worse fitness compared to their parents. However, the proba-

bility of these three cases are not even. Nordin and Banzhaf show in [NB95] that

there is a high probability that the function of the program is severely damaged,

resulting in a fitness decrease for the individual. Given the destructive nature of

crossover, if the crossover point is selected within a building blocks (exons), there

is a high probability that this building block will be damaged, resulting decrease

in offspring’s fitness. On the other hand, if the crossover interferes an intron,

then there would be no harmful effects to the fitness of the offspring produced.

As a result, individuals with more percentage of introns are more likely to survive

within the population, since the selection of crossover point is more likely to fall

into intron region. In another word, GP favors individuals with higher ratio of in-

trons. In [JF97], Soule and Fostoer develop a constructive crossover in which only

crossover results in better offspring fitness compared to parent is preserved. Their

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 46

experiments show that using only constructive crossover, a substantial amount of

bloating can be reduced. More experimental evidence to support defense against

crossover can be found in [BL02] and [SH02].

3.1.2 Defense against Crossover Variations

There are several variations of defense against crossover. In [BT94] and later in

[Bli96], Blickle proposes redundancy theory which has a more formal mathemati-

cal model to explain bloating caused by destructiveness of crossover. In Blickle’s

mathematical model of GP, redundancy is defined as a subtree which does not

contribute to the functionality of the tree. Using the mathematical model, he

proves that the redundancy in the trees of a certain fitness value will increase

over generation, because trees with more redundancy are more likely to survive

from crossover. Blickle concludes that the bloating is driven by redundancy be-

cause for program trees with a given fitness value, increasing tree size is the

only way to achieve increase in redundancy, since some minimal size is required

for exons to allow the individual to reach that fitness level. One problem with

Bickle’s definition of redundancy is that, it is so generic that it is sometime hard

or even impractical to compute the actual redundancy in experiments. In [BT94],

Blickle gives a way to compute redundancy for boolean problems. A subtree is

redundant if the subtree does not participate in evaluation. We will introduce

this operation, marking, later in the next section.

In [MM95], McPhee and Miller suggest that there is a replication accuracy

force in GP evolution which results in the development of a collection of seman-

tically equivalent correct individuals. Given a fitness level, larger trees are more

likely to produce structurally different but semantically equivalent offsprings in

crossover, as the crossover is more likely to happen within semantically irrelevant

regions. As a result, given a certain fitness level, larger individuals’ offsprings are

more likely to survive and this results in an increase in the average population

depth and size.

Removal bias [SF98b] is another widely cited bloating theory developed on top

of the defense against crossover. In the selection of crossover point, the subtree

is more likely to be within intron region if a deeper crossover point is selected.

As a result, due to the destructiveness of crossover, offspring created in crossover

by removing a smaller subtree and attaching a bigger subtree (i.e. the growing

offspring), is more likely to survive compared with offspring created by removing

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 47

a bigger subtree and receiving a smaller subtree (i.e. the shrinking offspring). In

other words, the destructiveness of crossover results in GP system favoring the

growing offspring. Empirical experiments to support removal bias theory can be

found in [SH02, Sou98]. Later in this thesis, the removal bias is extended and

studied in detail in Section 5.3.

Modification point depth [Luk00a, Luk03], also known as depth-correlation

theory [Str03], is an abstraction over removal bias. Modification point depth

theory proposes that there is a more general mechanism behind tree growth which

is the bias towards the selection of deeper crossover point. As reported in [GR96]

and [IC99], the existence of this bias is due to that, there is a strong inverse

correlation between the depth of the crossover point and the crossover effect on

fitness. The preference over deeper crossover point results in GP favoring larger

tree and smaller subtree swapped in crossover, both of which result in bloating.

Modification point depth theory has been further advanced by Streeter in [Str03].

Streeter argues that “the key idea behind both the intron theory and the depth

correlation theory is that the receiving parents who produce offspring more similar

to themselves will tend to be large, i.e. that it is large trees which will be most

resilient in the face of crossover”. Streeter further define the concept of resilience

and show that the buildup of resilience is essential for code growth.

3.2 Anti-Defense against Crossover Evidences

There are also several anti-defense against crossover experiment evidences exist

in the literature. The first evidence can be traced back to [Tac94]. In [Tac94],

Tackett argues that defense against crossover implies that code growth is driven

by selection pressure. But the brood recombination which is less destructive does

not results in less bloating. He further suggests that bloating may relate to a

phenomenon known as hitchhiking, a product of recombination interacting with

selection. The phenomenon of hitchhiking is firstly reported in GA by Holland et

al. when they tried to use royal road function to demonstrate the superiority of

GAs over local search methods [MFH92]. Building-block hypothesis [Hol92], ar-

guably the theoretical foundation of GA, states that GA works well when short,

low-order, high-fit schemata (building blocks) recombine to form even more high-

fit, high-order schemata. Based on building-block hypothesis, when an individual

of high fitness is discovered, its high fitness allows the schemata to spread within

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 48

the population. But not only the schemata which contributes to fitness is spread

out, a portion of non-functional code (introns) is also accompanied as hitchers.

This hitchhiking effect slows down the discovery of schemata in other positions.

Tackett adapts the hitchhiking theory from GA into GP and provide two exper-

iment results to support the theory.

Another experiment evidence can be found in [BB03], in which, Brameier and

Banzhaf analyze how different types of variations affect code growth in Linear GP.

They define neutral variation as genetic operations which result in no change at

the phenotype level, and destructive variation as genetic operations which result

in worse fitness at phenotype level. They argue that experiments performed in

[JF97], in which offsprings created by constructive crossover are preserved, even

though result in less bloating, not necessarily imply that destructive variation is

the main force of bloating. This is because the experiment also rejects neutral

variation. Brameier and Banzhaf further develop a number of experiments to ana-

lyze how neutral and destructive variations affect code growth. Their experiment

results show that the influence of non-neutral variations is considerably smaller

than expected, and the neutral variations, in contrast to destructive variations,

drive code growth. Brameier and Banzhaf’s experiment result, on one hand con-

firms the emergence of introns which contributes to the code growth, but on the

other hand, rejects the destructiveness of crossover as the driving factor behind

the propagation of introns.

A further evidence is presented by Luke in [Luk00a, Luk00b], in which Luke

uses marking operator to identify inviable code with a program tree and refuses

crossover points selected in intron region. In this way, the inviable codes are

removed and all crossovers can only happen at exon region. Luke’s experiments

using this version of crossover show that, the code growth still happens even when

inviable code crossover is restricted, due to the propagation of unoptimized code

or pseudo-inviable code.

3.3 Other Models

In addition to intron based models which consider the propagation of intron and

the destructiveness of crossover as the root cause of bloating, fitness causes bloat

[LP97b, LP98b, LSPF99, LP06], as the name suggests, proposes that fitness and

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 49

selection pressure drive code growth. This theory is also known as solution distri-

bution [Sou98], diffusion theory [Luk00b, Str03], drift theory [BB03, SH02] and

nature of program search spaces theory [Pol03] in literature. In [LP97b], Lang-

don and Poli study and compare artificial ant with and without fitness selection

pressure. They theorize that the fitness function drives searching of optimal solu-

tion to converge to the searching of candidate solutions with the same fitness but

different genotype representations. This is because in GP, finding improved solu-

tions is relatively easy initially but becomes increasingly more difficult [Lan96b].

As a result, the selection gradually favors representations which have the same

fitness as their ancestors. Since there are many more longer representations of

a given fitness, as a result, the searching is drifted towards searching for larger

trees which results in increase in tree size. One significance of fitness causes

bloat theory is that, if it was fitness, the foundation of evolution, which causes

code growth, bloating would become a building block of GP, although undesired,

rather than an unforeseen side effect. This would also mean that we may never

be able to remove bloating without harming the usefulness of GP.

Crossover bias is a relative recent bloating theory which states that “bloat is

simply caused by the sampling of short, unfit programs” [PLD07, DP07, PMV08].

In [PLD07], Poli et al. show that crossover pushes the population towards a

particular distribution of program sizes, called Lagrange distribution of the second

kind, in which smaller programs are much more frequently sampled than larger

ones. However, these short programs are generally unfit and less likely to survive.

Hence, larger programs in population are more likely to be selected to breed more

frequently.

3.4 Bloating Control Techniques

In addition to theoretical works discussed in previous section which try to ex-

plain why bloating happens, there are a lot more research works have been done

to tackle bloating. In general, these bloating control methods modify different

aspects of GP process to achieve less code growth at genotype level in the hope

of not sacrificing GP performance in phenotype level. In this section, a survey of

these works is presented. There are different taxonomies available in literatures

[Zha97, LP06, da 08]. In this thesis, we feel that a more neutral taxonomy would

be based on the nature of the modifications. As a result, the rest of this section

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 50

reviews various bloating control methods and groups them based on where the

modification of GP lies in.

3.4.1 Modifications of Crossover

Since the most widely accepted bloating theory is defense against crossover, there

is no doubt that crossover becomes the primary target for bloating control re-

searches. A biggest share of literatures attempt to modify almost every aspect

of crossover in order to control bloating. This includes restricting selection of

crossover point, experimenting alternative subtree swapping techniques, intro-

ducing acceptance test over offsprings produced and so on.

The first and the most widely used bloating control method is to place a

constraint on the maximum depth of the program tree used by Koza in [Koz92].

In Koza’s depth limiting crossover, offsprings whose depth is bigger than 17 is

rejected and the parent is put into the new population instead. Because of the

simplicity of the method and the fact that it is the first bloating control method,

this method has been programmed into every GP package and it is the most

widely used bloating control method. The choice of 17 as the threshold is rather

accidental without a formal justification, but it has now became the common

practice in GP community. A variant of depth limiting method is size limiting,

where the number of nodes in program tree is used as the limiting criterion

rather than tree depth [KABK99, LSPF99, LP97b]. Despite the simplicity, depth

limiting is surprisingly effective. Luke showed that a number of later developed

control methods cannot outperform depth limiting by themselves [LP02a]. But

a combination of these methods with depth limiting always outperforms plain

depth limiting [LP06]. Depth limiting is also referred to as capping in [Sou98],

because it essentially places an absolute upper limit to the program tree depth

under evolution. In [SC04, SC05a], Silva develops dynamic limits, in which rather

than using a fixed threshold on tree depth or size, the limit, either depth or size,

can be dynamically raised or lowered based on the best solution found so far.

The biggest limitation of depth limiting method is that the method does not

have any effect until the individuals’ depth reaches the upper limit. In fact, in

[DP08], Dignum and Poli point out that size limit can result in over-sampling

of smaller size programs, which based on crossover bias theory, could speed up

bloating rushing the population to reach the absolute upper limit. Once the

absolute limit is reached, depth limiting method then tends to have a negative

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 51

effect to GP performance. This is because once the depth limit is reached, the

offspring in crossover which receives bigger subtree and gives up smaller subtree,

originally favored because of the destructiveness of crossover, is more likely to be

rejected because of its depth and being replaced by its parent. The other offspring

which receives smaller subtree and gives up bigger subtree, even though is less

likely to be rejected by depth limit, but is also less likely to be favored in fitness

selection. The combined effect results in a larger amount of parents being injected

into the next generation, which may slow down the whole evolution process.

Experiments performed in [GR96, LP97a] show that crossover in combination

with depth limiting results in premature convergence in MAX problems.

Marking is a bloating control method introduced by Blickle and Thiele in

[BT94] motivated by redundancy theory. Blickle defines redundancy as subtrees

which do not contribute to the functionality of the individual. Based on redun-

dancy theory, individuals within population tend to increase in size over gen-

erations to increase their redundancy such that they are more likely to survive

from destructiveness of crossover. The idea behind marking is to avoid crossover

at redundant edges by firstly identifying all redundant edges and then restrict

crossover point selection to non-redundant edges. Even through the definition of

redundancy is quite generic, the identification of redundant edge in practice is

not that straightforward and can be quite computational expensive. In [BT94],

Blickle gives an implementation of marking in binary problems by marking every

node in a tree when the node is evaluated. After fitness evaluation, all nodes

without marks are redundant. One thing to note is that Blickle’s implementation

of marking does not strictly follows his definition of redundancy, and marking

is not able to identify all possible redundant subtrees. In fact, marking is only

able to identify inviable code defined by Luke in [Luk00b]. In [Bli96], Blickle

further advances marking by introducing delete crossover, which swaps subtrees

which contains all redundant nodes with a single node to directly reduce redun-

dancy. Positive results for marking and delete crossover have been reported in

6-multiplexer problem.

In addition to marking, there are a number of crossover modifications de-

veloped based on defense against crossover. The hill-climbing crossover [Sou98,

SF98b], also called pseudo-hillclimbing [LP02a], rejects offsprings whose fitness

is worse than their parents. A stricter version of hill-climbing crossover, the

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 52

“upward-mobility” selection [Alt94a], only accepts offsprings whose fitness is bet-

ter than their parents. Another variation, the improved fitness selection [SH98],

only accepts offsprings whose fitness is different from their parents, without the

preference between better or worse fitness. The theoretical foundation of these

methods can also be traced back to Brameier and Banzhaf’s observations in

[BB03], which show that natural variations drive code growth.

There are several other modifications of crossover motivated by fitness causes

bloating. In [Lan00b], Langdon develops size fair crossover, in which, the choice

of the crossover point in the second parent is guided by the size of subtree to be

deleted from the first parent. Any crossover point selected from the second parent

which results in subtree to be deleted from the second parent bigger than twice

as big as the subtree to be deleted from the first parent will be rejected. Size fair

crossover is motivated by the development of size fair mutation [Lan98, LSPF99],

in which the size of random subtree generated depends on the size of the subtree

to be replaced. Langdon also further extends the size fair crossover to create

homologous crossover. Homologous crossover, in order to preserve the context in

which the subtrees are swapped, in addition to have the restriction as defined in

size fair crossover, requires the subtree deleted from the second parent to be as

similar as possible to the subtree deleted from the first parent. This is motivated

by the fact that the worth of the code not only depends on its quality, but also

depends on the context in which the code stays.

In [PL97b], one-point crossover is developed which selects a “common” crossover

point in both parents. In [HS97, SH98], Harries and Smith develop same depths

crossover which firstly selects a depth at random from the the smaller parent,

then it selects crossover points randomly from nodes appearing at that depth in

each of the parents. The theoretical basis for these methods can be traced back to

modification point depth theory. One-point crossover and same depths crossover

both promote crossover points further away from leaf nodes to be selected and

bigger subtrees to be swapped and thus reduces bloating, since according to

modification point depth theory, deeper modification points in crossover promote

bloating.

Finally, there are a number of relatively ad-hoc modifications. The waiting

room introduced in [PL04] creates a waiting queue. Newly created individuals

are placed into the queue rather than directly into population. The queue is

sorted according to the size of individuals. The larger the individual, the longer

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 53

it remains in the queue. Prune and Plant [ACEAS+08], which is inspired by a

strategy of the same name used in Agriculture, shows positive results improving

best fitness achived across a number of problem domains.

3.4.2 Modifications of Fitness Function

In addition to the modifications of crossover, another natural approach to control

bloating is to incorporate program size as part of the objectives in the fitness

function. This approach is also called parsimony pressure or parametric par-

simony pressure [LP06]. The general idea behind this approach is to penalize

individuals with bigger size in fitness. Since GP is capable of evolving the popu-

lation based on fitness function, the ambition of this approach is that, once the

program size becomes part of the fitness function, there is then no need to ex-

plicitly control bloating and GP should be able to evolve individuals with better

fitness and smaller size at the same time. Early references of using parsimony

pressure can be traced back to [Koz92] and [KEK93], although the primary con-

cern is not bloating. In [KEK93], Kinnear reports that “adding inverse size to

the fitness measure along with correctness not only decreases the size of the re-

sulting evolved algorithms, but also dramatically increases the effectiveness of

the evolution process”. However, Soule and Foster [SF98a] show that parsimony

pressure can produce poorer performance and the effects of parsimony pressure

on an evolving population is more than limiting the code growth.

In the simplest form, the linear parametric parsimony pressure, program size

is used as a linear factor in fitness function. Formally, let 𝑖 be an individual, 𝑃 (𝑖)

be the raw fitness function, and 𝑠𝑖 be the size of individual 𝑖. Then the fitness

function 𝑓(𝑖) is defined as:

𝑓(𝑖) = 𝑃 (𝑖)− 𝛼𝑠𝑖

where 𝛼 is the parsimony coefficient. Other variations of parsimony pressure

can be found in [IdGS94], [KM99] and [CC99]. Because it is applied at a fine

granted quantity level rather than rank level, the parsimony pressure essentially

establishes a quantitative trade off between fitness and size. However, accurately

defining this trade off is hard if not entirely impossible, given the complexity

of fitness landscape and program size distribution. In addition, this trade off

expectation may change over evolution process. For example, in the early stage

of GP when individuals are generally unfit and small, an individual which is fitter

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 54

and bigger may be preferred, while the same individual may not be preferred in

later stage of GP. To address these problems, Zhang and Mühlenbein [ZM95]

propose a dynamic approach which dynamically adapts the parsimony coefficient

parameter based on the fitness and size of the best individual in the generation.

Poli and McPhee [PM08] also develop a mathematical model to derive parsimony

coefficient which allows user to accurately control the effect of parsimony pressure

and even switch the bloating control off or on at different stages of evolution.

Tarpeian method [Pol03] is another variation of parsimony pressure method,

in which before any individuals are evaluated for fitness, a number of individ-

uals whose size is bigger than population’s average size are randomly selected

and marked to the lowest possible fitness value available. This effectively denies

these individuals to be selected as parent even if they are fitter compared to

other individuals. Experiments in [Pol03] show that in the presence of Tarpeian

method, population tends to grow to “a much less extent”, i.e. at least one order

of magnitude smaller than population evolved without bloat control. However, in

[LP06], Luke and Panait argue that Tarpeian method can be “overly aggressive”

and tends to be sensitive to parameters.

Instead of building a single combined fitness function of both fitness and size,

another approach is to consider size and fitness as two separated and independent

objectives, changing the fitness-based selection process to be a multi-objective

selection process. Pareto-based methods developed to control bloating using

Pareto-dominance based multi-objective selection can be found in [EN01] (Non-

domination Tournament), [dWP01] (FOCUS), [BBTZ01] (SPEA2) and [PL04]

(Biased Multiobjective Parsimony). A more detailed review of these methods

can be found in [LP06] and [BBZ].

More recently, in [TNM13], inspired by fitness causes bloat theory, Trujillo et

al. remove the notion of fitness, and use the novelty instead. In novelty search,

instead of using the quality as selection pressure, uniqueness is used. Searching is

biased to individuals which introduces novelty into the search with respect to the

rest of the population. Experiment results on several classification problems show

that, novelty search is able to reduce the mean size of the evolved population.

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 55

3.4.3 Modifications of Selection

Modifications of selection have been considered as an alternative approach to

apply parsimony pressure. These methods are also called non-parametric par-

simony pressure methods [LP06]. In general, these methods modify standard

GP selection methods (mostly tournament selection) to take into account par-

simony pressure. In [LP02a], Luke and Panait develop double tournament and

proportional tournament. Double tournament, as the name suggests, performs

two tournaments, the qualifying tournament and the final tournament. Fitness

is used in qualifying tournament as the criterion and program size is used in

the final tournament or vice versa. In proportional tournament, some portion

of tournaments selects individuals based on fitness and others are based on par-

simony. In [LP06], a detailed comparison of performance of different bloating

control methods is performed by Luke, and it shows that the performance of

double tournament is very competitive.

In [LP02b], Luke and Panait propose lexicographic parsimony pressure which

treats fitness as the the primary objective and tree size as a secondary objective in

a lexicographic order. This makes selection favoring smaller individuals when the

fitness of the individuals is the same. They further extend the idea by grouping

individuals with similar fitness into a group and treat them as having the same

fitness. Two grouping methods are developed called direct bucketing and ratio

bucketing. Experiments of direct lexicographic parsimony pressure, direct bucket-

ing and ratio bucketing can be found in [LP02b] and [LP06]. Later in this thesis,

we also compare the newly proposed bloating control method, depth constraint

crossover, with double tournament, direct lexicographic parsimony pressure, pro-

portional tournament, ratio bucket and also Tarpeian method.

3.4.4 Modifications of GP Flow

In contrast to bloating control methods discussed above which modify a concrete

GP operator or component, the following bloating control methods tend to modify

standard GP in a more fundamental way by either introducing a new operator,

component or global constraints.

The development of explicitly defined introns is mainly motivated by re-

searches of explicitly inserted introns in GA [Lev91]. Explicitly defined intron

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 56

(EDI) is a non-functional instruction segment that is “intentionally” inserted be-

tween two building blocks, which act as an intron. In [NFB96, SH98], it is shown

that by manually inserting EDIs into individuals in GP, the propagation of in-

trons can be controlled and it also results in better GP performance in terms of

evolution speed.

Code editing is proposed by Koza in [Koz92]. Code editing is originally de-

signed as a secondary genetic operator [Koz92] which simplifies optimal program

tree GP finds at the end of the evolution. However, it is capable of reducing

the program tree size and hence reduce bloating. Code editing can be applied in

different ways [da 08]. In [SFD96], positive performance result is reported. How-

ever, Haynes reports that editing (he refer as repairing) may leads to premature

convergence [Hay98].

Automatically defined functions, also introduced by Koza [Koz94], is a mod-

ularization technique which reduces structural complexity of solutions. Auto-

matically defined functions, although not primarily designed to control bloating,

results in simplified code. This represents another way to control bloat (i.e. in-

creasing the efficiency of GP process). Similar modularization techniques include

automatically defined macros [Spe96] and so on. A complete list can be found in

[da 08].

In [dVGPG04], a well-established method for parallel evolutionary computing,

island model, is used to combat bloating. Theoretical analysis is developed to

show that increasing the number of sub-populations results in smaller overall

program size. Then empirical experiments are performed in [dVGPG04] using

one well-known benchmark, even parity five.

Resource-limited GP, introduced by Silva in [SC05a, SC05b], uses a single

limit imposed on the total amount of tree nodes that the entire population can

use. This threshold can be regarded as resources that each individual within

population competes in order to survive. Similar to depth limiting methods

which place a cap on individual level, resource-limited GP also places a cap, but

more generally at the population level. This allows GP to implicitly balance the

trade-off of having better fitness and smaller size at individual program level.

In [SV09], [Sil11] and later in [SDV12], Silva et al. develop operator equalisa-

tion inspired by the crossover bias theory. The idea behind operator equalisation

is to prevent offsprings which are either too small to be useful or bigger than

CHAPTER 3. BLOATING THEORY AND CONTROL TECHNIQUES 57

needed entering the new population. In operator equalisation, before any off-

spring is created, a pre-defined target distribution of tree size is firstly initialized.

Then, after a new individual is created and before it is put into the new popula-

tion, the new offspring is only accepted by the new population if its size fits into

the target distribution or its fitness is better than any existing individual. Ex-

periment results of operator equalisation shows plausible outcome in controlling

bloating. But a side effect of operator equalisation is that much more number

of additional evaluations (sometimes by an order of magnitude) is required to

find offsprings full-filling the target distribution criteria [Har12]. To address this

performance issue, an improvement over the operator equalisation can be found

at [GGP11].

3.5 Conclusion

In this chapter, we give a relatively comprehensive review of GP researches related

to bloating. As the primary obsolete which limits the GP’s ability to scale up

in order to solve more complex problems, bloating control has been under active

research since the very beginning stage of GP. Although the truth behind bloating

and the holy grail to combat bloating are still hidden from us, we have seen a

substantial development in literature towards the ultimate solution.

Chapter 4

Theoretical Analysis of Bloating

Effects

4.1 Introduction

In genetic programming (GP), bloating is an unforeseen side effect of using vari-

able length representation such as trees. Bloating is a phenomenon that the size of

individual program in population tends to grow as GP runs without improvement

(or very little improvement) of the individual’s fitness. Despite other problems,

the most serious problem caused by bloating is that it slows down fitness evalua-

tion. Since fitness evaluation uses most of the computation effort and time in GP,

by slowing down fitness evaluation, bloating severely limits the feasibility of GP

for more resource demanding complex problems. In the battle against bloating,

quantitative measurements of tree node importance can be used as guidelines for

modifications of GP operators. For example, in [SCZ09], a distance-based node

contribution measurement using the minimum difference between the input and

the output of the node as measurement is proposed. It is shown in [SCZ09] that

a bloating strategy based on this measurement can significantly reduce bloating.

In this chapter, we develop an alternative mathematical model in the context

of boolean GP problems, called activation rate, to understand and measure how

effective and important each tree node is in fitness evaluation and what cost or

contribution each node is making to the individual’s overall performance. Acti-

vation rate is a development over a previous bloating control method, marking

[BT94]. Activation rate uses the frequency that tree nodes are invoked (evaluated)

58

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 59

in fitness evaluation as a quantitative measurement of the node’s importance. Us-

ing this new model, it is possible to perform analysis of GP dynamics from a new

perspective. For example, in Section 4.6, we find using estimated activation rate

that apart from extreme tree shapes, for most of the other tree shapes, there ex-

ists an upper bound for the negative effects of bloating slowing down evaluation.

In Section 4.7, we give a more thorough study of crossover effects and also give

an anti-modification point depth theory experiment evidence.

The rest of this chapter is organized as follows. In the next section, we intro-

duce a new tree evaluation algorithm called bottom-up tree evaluation. Bottom-

up tree evaluation is developed to explicitly address one limitation of top-down

tree evaluation. The concept of activation rate is developed as part of the theo-

retical analysis of bottom-up tree evaluation algorithm. This work has previously

been published in [LZ10a]. Then, in Section 4.3 and 4.4, we further extend the

concept of activation rate by developing a method to estimate the activation rate.

Experiment performed has shown that the estimation of activation rate is very

accurate. The advantage of estimated activation rate is that, with it, it is possible

to perform a number of theoretical analysis of GP. We conclude this chapter with

several experiments of GP using activation rate in Section 4.6 and 4.7 which give

a number of interesting observations.

4.2 Bottom-up Tree Evaluation

4.2.1 Motivation

The most general form of fitness function contains a number of test cases. Each

individual program in the population needs to be evaluated with inputs from

each test case. Then the actual output is compared with expected output defined

in the fitness function. The raw fitness of an individual usually is defined as

the distance between the actual output and the desired output. Standard tree

evaluation evaluates a program tree top-down recursively starting from the root

node (see Algorithm 4). The sequence that nodes evaluate is the same as a

depth-first traverse of the program tree.

In some GP problems, for example multiplexer problem and parity problem,

the test cases are permutation of input values. For example, in multiplexer 11

problem, there are 11 inputs (3 address bits and 8 data bits). Since each input is

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 60

Algorithm 4 Pseudo Code for Top-down Evaluation of Program Tree

1: function top-down-evaluate(TreeNode node) : evaluatedResults
2: if node is Terminal then
3: evaluatedResults ← value-of(node)
4: return output
5: else
6: for input ∈ node’s input do
7: top-down-evaluate(input)
8: end for
9: evaluatedResults ← evaluate(node)
10: return evaluatedResults
11: end if
12: end function

binary (can either be 0 or 1), the permutation of inputs has 211 = 2048 different

cases. Although every value in this permutation is distinct, if we iterate through

this permutation, we can find that not every input changes every time. For

Inputs: A0 A1 A2 D0 D1 D2 D3 D4 D5 D6 D7

Values: 0 0 0 0 0 0 0 0 0 0 0 Case 1

0 0 0 0 0 0 0 0 0 0 1 Case 2

0 0 0 0 0 0 0 0 0 1 0 Case 3

0 0 0 0 0 0 0 0 0 1 1 Case 4

0 0 0 0 0 0 0 0 1 0 0 Case 5

.

.

.

1 1 1 1 1 1 1 1 1 0 0 Case 2045

1 1 1 1 1 1 1 1 1 0 1 Case 2046

1 1 1 1 1 1 1 1 1 1 0 Case 2047

1 1 1 1 1 1 1 1 1 1 1 Case 2048

Figure 4.1: Viewing test case inputs as permutation in Multiplexer 11 problem

example, for the permutation in Figure 4.1, comparing Case 1 to Case 2, only

input D7 is changed. Comparing Case 2 to Case 3 only D6 and D7 changes. If

we let 𝐶(𝑥) be the number of changes in a permutation for an input 𝑥, then for

a given input x whose index is n (index starts 1 from left to right) and the total

number of inputs is N, then:

𝐶(𝑥) =
2𝑁

2𝑁−𝑛
= 2𝑛 (4.1)

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 61

For example, for the permutation in Figure 4.1:

𝐶(𝐷7) =
2048

20
= 2048, 𝐶(𝐴0) =

2048

210
= 2.

Given the above fact, now let’s consider evaluating the following program tree

using the above permutation as test case inputs:

Not(And(Or(A0, A1), D7))

And’s left subtree Or(A0, A1)’s value changes at maximum 4 times (𝐶(𝐴1) = 4),

while the right subtree D7’s value changes 2048 times. Using the classical top-

down evaluation algorithm, the left subtree evaluates 2048 times while most of

the evaluations yield the same result. In fact, since the left subtree only changes

at maximum 4 times, 4 evaluations are enough. Thus, for this subtree, 2048−4 =

2044 evaluations are wasted. In Multiplexer 11 problem, this may not be a very

big issue since functions like And, Or, Not, If are very fast to execute. But for

problems whose function set consists of very complex functions, the top-down

evaluation algorithm is not very efficient in the above scenario.

The above scenario gives an example when top-down evaluation fails to per-

form well. Going back to the example, if the node And has a single cache which

stores the previous result of left subtree, then when And evaluates, it would be

able to take the new value of D7 and then compute the output using the value

stored in cache. In this way, then the left subtree of And does not need to be

re-evaluated when both A0 and A1 are not changed, i.e. the above problem of

top-down evaluation is solved.

But how does node And know if A0 or A1 is changed or not without checking

them explicitly? The bottom-up tree evaluation solves this problem. The bottom-

up evaluation can be summarized as the pseudo code in Algorithm 5. In bottom-

up tree evaluation, each node in the tree has a single cache which stores the

previous result of this node. The value in the cache can be accessed by other

nodes. There is also a unique queue needed for the evaluation process. The tree

evaluation has three phases. In the preparation phase, each node within the tree

is labeled with an index based on the depth-first traverse order. Then in the

first phase (line 3 to line 10 in Algorithm 5), every terminal node is checked if

the new value equals previous value stored in its cache or not. If the value has

been changed, then the cache is updated and the parent of the node is enqueued

into the central queue. In the second phase (line 12 to line 19 in Algorithm 5),

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 62

every node stored in the central queue is dequeued (line 14 in Algorithm 5). The

node is re-evaluated and if the output of the node changes, the node’s parent is

enqueued. This process repeats until the queue is empty. Then the output of this

evaluation is stored in the root node’s cache (line 19 in Algorithm 5).

Algorithm 5 Pseudo Code for Bottom-up Evaluation of Program Tree

1: function Bottom-up-evaluate(TreeNode root) : evaluatedResults
2: label each node in the tree using depth-first index
3: {Phase 1}
4: init(queue)
5: for terminal ∈ terminals of tree whose root is root do
6: if terminal’s value changes then
7: update terminal’s local cache
8: queue.enqueue(terminal.parent)
9: end if
10: end for
11:

12: {Phase 2}
13: while queue.count > 0 do
14: node ← queue.dequeue()
15: if node’s value changes then
16: update node’s local cache
17: queue.enqueue(node.parent)
18: end if
19: end while
20: evaluatedResults ← root.cache.value
21: return evaluatedResults
22: end function

The queue initialised at line 4 in Algorithm 5 has the following 2 features:

1. each node can only be added once, i.e. each element of the queue is unique;

2. the order of the queue is the reverse order of the index labeled in preparation

phase.

The first feature ensures each node in the tree only evaluates once. In another

word, in the worst case scenario of bottom-up tree evaluation, all nodes in the

tree will be evaluated once. The second feature of the queue ensures that a parent

node in queue would only be evaluated after all its children nodes are evaluated.

This is because nodes in a tree is labeled based on the depth-first traverse order.

Please note that, labeling nodes in a tree based on the breath-first traverse order

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 63

also full-fills the requirement of the queue. But, when since depth-first traversal

can be implemented recursively while breath-first traversal requires more memory,

in the implementation of bottom-up tree evaluation, depth-first tree traversal is

preferred.

Intuitively, bottom-up tree evaluation outperforms top-down evaluation be-

cause in bottom-up evaluation, only “necessary” evaluations are performed, re-

dundant unnecessary evaluations in top-down evaluations which yield the same

output are eliminated. The percentage of saving depends on the particular per-

mutation of test cases. This is because for a given tree, the performance of

bottom-up evaluation varies for different permutation of test cases. In the rest

of this section, we perform detailed analysis of the performance of bottom-up

evaluation algorithm.

4.2.2 Theoretical Performance Analysis

The bottom-up evaluation adds local caches to each node and a central queue

into the tree evaluation process in order to eliminate wasted function evaluations

in top-down evaluation. It is assumed that function node evaluation is complex

and the overheads introduced by queue operations can be neglected compared

with savings. Based on this assumption, the performance of both top-down and

bottom-up evaluation are related to the number of function calls on non-terminal

nodes in the tree. Using the number of function calls as the comparison criterion,

the performance of both algorithms can be theoretically analyzed.

Assuming each function’s arity is two (each function has two inputs) and there

are N different inputs (terminals). Considering a full tree 𝑇 of depth 𝑑, the total

number of nodes in 𝑇 is:

𝑁𝑢𝑚(𝑇) = 2𝑑 − 1

Since in a full tree, all nodes of depth smaller than 𝑑 are function nodes, the

number of non-terminal nodes is:

𝑁𝑜𝑛𝑁𝑢𝑚(𝑇) = 2𝑑−1 − 1

Let the total number of test cases be 𝑁𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠, so the number of function calls

for top-down tree evaluation (i.e. the performance of top-down evaluation) is:

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛(𝑇) = (2𝑑−1 − 1) ⋅𝑁𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠 (4.2)

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 64

(4.2) only applies to some problem domains. This is because (4.2) assumes that

the tree is traversed (every node is evaluated) while using top-down evaluation.

This is true for problem domains such as symbolic regression. In symbolic regres-

sion problem, all functions in function set are mathematical operators. In this

case, all children nodes of the function node need to be evaluated.

But in problem domains such as multiplexer or parity, the tree is not tra-

versed in top-down evaluation. In multiplexer domain for example, there are four

functions: And, Or, If and Not. For function Not, the child node always evalu-

ates. For function If, only two children nodes evaluate every time (the condition

node and the according action node). And and Or function can be implemented

in two different ways: bitwise or short-circuit. In bitwise implementation, both

children nodes of And and Or function evaluate. In short-circuit implementation

of And, the first child of And always evaluates, the second child evaluates only

when the first child evaluates true. Similarly, in short-circuit Or, the second child

evaluates only when the first child is false. Because this nature of multiplexer

function set, when tree is top-down evaluated, only a fraction of nodes are ac-

tually evaluated, and hence (4.2) cannot be applied directly to problem domains

such as multiplexer.

To calculate the number of function calls in domains like multiplexer, an

explicit measurement to the above feature of the function set is required. This

feature can be studied using the concept of activation rate, which is an extension

of marking. Marking is a bloating control method which explicitly model this

phenomenon. Marking [BT94] is developed by Blickle and Thiele inspired by their

redundancy theory. The idea behind marking is to avoid crossover point selected

at redundant edges. Although marking is not primarily designed for controlling

bloating [Bli96], it provides a first algorithm to identify introns [LP06], more

precisely inviable code defined by Luke in [Luk00b]. Since intron theories which

blame the propagation of intron regions as the cause of bloating are the most

widely cited bloating theory, this makes marking more valuable. For example,

in [LP06], Luke uses marking to experiment, and presents a first experiment

evidence against intron theory. In [Jac05], Jackson modifies fitness evaluation

with marking information to speed up the execution of GP.

The concept of activation rate expands marking. In marking, nodes which are

invoked are marked with a marking flag. Nodes which are not invoked then don’t

have the marking flag. Using this scheme, we can only differentiate between nodes

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 65

which have been invoked or not, and there is no difference between nodes which

have been invoked once or 10 times. In another word, in marking, the scheme

is binary (either flagged or not). In activation rate, rather than a binary flag

as in marking, for each node, we place a counter counting the number of times

the node has been invoked (we define this value as activation rate). Using this

scheme, similar to marking, nodes which have never been invoked have activation

rate equals to zero. Tree nodes which have been invoked have activation rate

bigger than zero. The difference between activation rate and marking is that,

nodes which have been invoked are treated differently. Formally, we define the

activation of a node as:

Definition 1 (Activation) Let x be a node in a tree T, in Top-down evaluation,

given a set of test cases Tcs, the Activation of x, denoted as Λ𝑇𝑐𝑠(𝑥), is total

number of times the node x is evaluated.

Using the definition of activation, we can further define the Rate of Activation:

Definition 2 (Activation Rate of Node) Let x be a node in a tree T, Tcs

be a test cases set which contains N test cases, the Activation Rate of node x,

Θ𝑇𝑐𝑠(𝑥) is:

Θ𝑇𝑐𝑠(𝑥) =
Λ𝑇𝑐𝑠(𝑥)

𝑁

With both definitions above, we can define the Activation Rate of Tree:

Definition 3 (Activation Rate of Tree) Let x be a node in a tree T, N(T) be

the number of nodes in T, Tcs be a test cases set which contains n test cases, the

Activation Rate of tree T, Θ𝑇𝑐𝑠(𝑇) is:

Θ𝑇𝑐𝑠(𝑇) =

∑𝑥∈𝑇
𝑥 Θ𝑇𝑐𝑠(𝑥)

𝑁(𝑇)

Using the concept of activation rate, the true function call counts of top-down

evaluation in any domain 𝐶𝑇𝑟𝑢𝑒 and the function call counts using top-down

traverse evaluation 𝐶𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 has the following relationship:

𝐶𝑇𝑟𝑢𝑒 = Θ ⋅ 𝐶𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (4.3)

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 66

where Θ is the average activation rate of all non-leaf nodes in a program tree.

Clearly, we can see that (4.2) implicitly assumes that Θ = 1. In problem domains

like symbolic regression, program tree’s activation rate Θ ≡ 1, while in boolean

problem domains such as multiplexer, Θ ≤ 1. So, for a full tree T, (4.2) can be

generalized using (4.3):

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛(𝑇) = 𝐶𝑇𝑟𝑢𝑒

= Θ ⋅ 𝐶𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒

= Θ ⋅ 𝑃𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒

= Θ ⋅ (2𝑑−1 − 1) ⋅𝑁𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

(4.4)

In Bottom-up evaluation, let X(T) be the set of terminals in a tree T, then:

𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝(𝑇) =
𝑥∈𝑋∑
𝑥

𝐶(𝑥)𝐸(𝑋) (4.5)

Where C(x) is defined in (4.1), and E(X) is the average number of nodes affected

when some 𝑥 ∈ 𝑋 changes. The exact form of E(X) is very hard to deduce

because it is related to not only the specific terminal in X, but also how those

terminals are connected in the tree. Without further assuming the tree structure,

which leads to the loss of generality of analysis, it is impossible to estimate E(X).

Similarly, since the value of Θ in (4.4) also depends on the shape of the tree,

without further assuming the tree structure, it is impossible to estimate 𝑃𝑡𝑜𝑝𝑑𝑜𝑤𝑛

for problem domain like multiplexer.

But we can perform worst case scenario analysis for problem domains whose

tree’s activation rate Θ ≡ 1. In the worst case scenario, every terminal x in X

has index 𝑛 = 𝑁 . In this case, the cache has no effect at all because every input

changes every time, i.e.:

𝐸(𝑋) = 2𝑑−1 − 1 (4.6)

Substituting C(x) and E(X) in (4.5) with (4.1) and (4.6), and also given the fact

that the queue used in bottom-up tree valuation only allows unique nodes, we

get:

𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝(𝑇) = 2𝑛 ⋅ (2𝑑−1 − 1)

Since 𝑛 = 𝑁 and 2𝑛 = 𝑁𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠, so we get:

𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝(𝑇) = 𝑁𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠 ⋅ (2𝑑−1 − 1)

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 67

Which is the same as 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛(𝑇). So bottom-up evaluation performs the same

as top-down evaluation in the worst case for problem domains in which Θ ≡ 1,

i.e.

𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝(𝑇) ≤ 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛(𝑇).

Now considering the probability that worst case scenario happens. For a full

tree T of depth d, the probability p:

𝑝 = (
1

𝑁
)2

𝑑−1

,

which is very small.

4.2.3 Experiments

Theoretical analysis in previous section qualitatively shows that bottom-up eval-

uation is better than top-down evaluation for problem domains in which Θ ≡ 1.

A quantitative analysis of how much better the bottom-up evaluation is however

cannot be theoretically deducted. In addition, the performance of bottom-up

evaluation for domains in which Θ ≤ 1 cannot be theoretically analyzed with-

out further assuming the structure of the tree evaluated. To fill in both gaps,

this section uses experiments in multiplexer 11 problem domain to quantitatively

compare performance of the bottom-up evaluation and the top-down evaluation.

In the first experiment, we compare performance of bottom-up and top-down

evaluation for problem domain in which Θ ≡ 1. Although in Multiplexer 11

domain, the average activation rate of non-leaf nodes are generally smaller than

1, we can artificially converts it to 1. This is done by converting short-circuit And

and Or to bitwise And and Or. For If, we evaluate both the true subtree and

the false subtree before returning the output of the former. Using this approach,

when a program tree is evaluated, every node is traversed. We call this traversing

evaluation top-down full evaluation.

In this experiment, we compare top-down full evaluation and bottom-up evalu-

ation. The experiment is designed as follows. 7000 trees are randomly generated

using ramp-half-and-half method [Koz92]. The depth of generated tree ranges

from 2 to 13. Duplicated trees are removed. We evaluate it twice firstly using

top-down full method and then bottom-up approach. Then we compare the num-

ber of non-leaf node calls using each method. The experiment result can be found

in Table 4.1. From the experiment data, we can find that a substantial amount

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 68

Depth Size Top-down Full Bottom-up Performance Enhance (%)
2 3.4571 2048 373 81.79
3 6.9253 5960 1062 82.18
4 13.7057 12935 2643 79.57
5 26.9746 26545 5748 78.35
6 53.4802 53880 12127 77.49
7 103.3013 104852 24029 77.08
8 195.7506 199130 47073 76.36
9 373.1875 380656 88593 76.73
10 258.6831 263774 65297 75.25
11 441.6177 450245 110474 75.46
12 683.4360 698935 172932 75.26
13 1102.4485 1127861 278861 75.28

Table 4.1: Top-down Full and Bottom-up Evaluation Performance (7000-trees)

of function calls (≥ 75%) can be saved using bottom-up tree evaluation. This

experiment result confirms the theoretical conclusion we deducted in the previous

section: bottom-up tree evaluation outperforms top-down evaluation for problem

domains in which Θ ≡ 1.

In the second experiment, we compare performance of the bottom-up and

top-down evaluation for domain in which Θ ≤ 1. The experiment is designed

as follows. Using the same 7000 trees generated in the first experiment, we

evaluate each tree twice firstly using top-down and then bottom-up evaluation

algorithm. We also record the average activation rate of non-leaf nodes in top-

down evaluation. The experiment result is summarized in table 4.2.

From experiment data in Table 4.2, we can find that bottom-up evaluation

outperforms top-down evaluation when tree depth is small. But as the depth of

the tree increases, the performance improvement becomes smaller. For very deep

trees (depth bigger than 8 in Table 4.2), top-down tree evaluation outperforms

bottom-up evaluation. This is mainly because as the depth of the tree increases,

the average activation rate of non-leaf nodes (Θ) decreases.

If we use top-down full evaluation as the baseline, let P1 be the performance

improvement of bottom-up evaluation compared with top-down full evaluation

and P2 be the performance enhancement of top-down evaluation compared with

top-down full evaluation. From the first experiment, we know that in multiplexer

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 69

Depth Size Top-down Bottom-up Performance Enhance (%) Θ
2 3.4571 2048 373 81.79 1.0000
3 6.9253 4964 1062 78.61 0.8482
4 13.7057 8908 2643 70.33 0.7249
5 26.9746 14797 5748 61.15 0.6014
6 53.4802 23583 12127 48.58 0.4832
7 103.3013 35437 24029 32.19 0.3834
8 195.7506 51861 47073 9.23 0.3063
9 373.1875 77173 88593 -14.80 0.2341
10 258.6831 48792 65297 -33.83 0.2214
11 441.6177 62075 110474 -77.97 0.1633
12 683.4360 75248 172932 -129.82 0.1248
13 1102.4485 95206 278861 -192.90 0.0979

Table 4.2: Top-down and Bottom-up Evaluation Performance (7000-trees)

11 domain, 𝑃1 ≈ 0.75. Since from (4.4), we know that:

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛 = Θ ⋅ 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙

So:

𝑃2 =
𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙 − 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙

= 1−Θ

When the tree depth is small (smaller than 8 in table 4.2), Θ > 0.25. So, 𝑃1 > 𝑃2.

When the tree depth is bigger than 8 in table 4.2, the Θ < 0.25, then 𝑃1 < 𝑃2.

So, in general, the performance of bottom-up evaluation compared with top-down

evaluation P:

𝑃 =
𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛 − 𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛

=
(𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙 − 𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝)− (𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙 − 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛)

Θ ⋅ 𝑃𝑇𝑜𝑝𝐷𝑜𝑤𝑛𝐹𝑢𝑙𝑙

=
1

Θ
⋅ (𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙 − 𝑃𝐵𝑜𝑡𝑡𝑜𝑚𝑢𝑝

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙

− 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙 − 𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛

𝑃𝑇𝑜𝑝𝑑𝑜𝑤𝑛𝐹𝑢𝑙𝑙

)

=
1

Θ
⋅ (𝑃1− 𝑃2)

=
𝑃1− 1 + Θ

Θ

Because from the experiment, Θ inverse correlates to the depth of the tree,

bottom-up tree evaluation outperforms the top-down evaluation algorithm when

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 70

the depth of the tree is small. This limitation may seem to be very strict for

normal GP setup. However, with effective bloating control, which is able to sig-

nificantly reduce the average depth of the population, we believe the bottom-up

tree evaluation’s overall performance would be better than top-down evaluation.

4.3 Estimating Activation Rate

In the last section, we developed the concept of activation rate to investigate the

feasibility of the bottom-up tree evaluation algorithm. The activation rate of a

tree node represents the frequency the node is evaluated for different test cases.

Computer programs respond to different inputs with different flows of execution.

In tree representation, those flows of execution are represented as different orders

of node invocation. So the phenomenon that tree nodes’ activation rates are

different from each other reflect this nature of computer programs.

The activation rate can also be theoretically estimated. This is achieved by

analyzing the function set of the problem domain. For example, if we consider

the function set of multiplexer problem domain, there are four functions: And,

Or, If and Not. As we mentioned earlier, for function Not, the child node of

the function always evaluates. For function if, only two children nodes evaluate

every time (the condition node and the according action node). Function And

and Or can be implemented in short-handed manner. In short-handed And, the

first child of And always evaluates, the second child only evaluates when the first

child evaluation returns true. Similarly, in short-handed Or, the second child only

evaluates when the first child evaluates false.

If And is a parent node and its activation rate Θparent is 1, let’s then consider

the activation rate of And’s child: intuitively, there is a 50% chance that the child

is the first (left) child. In that case, the activation rate Θ of the child is also 1.

There is also another 50% chance that the child is the second (right) child. In

that case, the activation rate Θ is 0.5, because there is 50% chance that the first

child evaluates true. So, the child of And has the activation rate:

ΘAnd
child = 0.5 ⋅ 1 + 0.5 ⋅ 0.5 = 0.5 + 0.25 = 0.75

More formally, let 𝐴 be the event when the child node is the left child and

𝑃 (𝐴) = 0.5, 𝐵 be the event when the left node is evaluates true and 𝑃 (𝐵) = 0.5.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 71

Then:

ΘAnd
child = Θparent ⋅ 𝑃 (𝐴 ∪ (𝐵 ∩ 𝐴c))

= Θparent ⋅ (𝑃 (𝐴) + 𝑃 (𝐵 ∩ 𝐴c)− 𝑃 (𝐴 ∩𝐵 ∩ 𝐴c))

= 1 ⋅ (0.5 + 0.5 ⋅ 0.5− 0)

= 0.75

Similarly, using the same definition of event 𝐴 and 𝐵:

ΘOr
child = Θparent ⋅ 𝑃 (𝐵 ∪ (𝐴c ∩𝐵c))

= Θparent ⋅ (𝑃 (𝐵) + 𝑃 (𝐴c ∩𝐵c))− 𝑃 (𝐵 ∩ 𝐴c ∩𝐵c))

= Θparent ⋅ (𝑃 (𝐵) + 𝑃 ((𝐴 ∪𝐵)c)− 0)

= Θparent ⋅ (𝑃 (𝐵) + 1− 𝑃 (𝐴 ∪𝐵))

= Θparent ⋅ (𝑃 (𝐵) + 1− 𝑃 (𝐴)− 𝑃 (𝐵) + 𝑃 (𝐴 ∩𝐵))

= 1 ⋅ (0.5 + 1− 0.5− 0.5 + 0.5 ⋅ 0.5)
= 0.75

In the case of Not, because it has only one child, so:

ΘNot
child = 1

In the more complicated case of If, which has three child nodes: the condition

branch, the true branch, the false branch, let 𝐶 be the event when the child node

is at the condition branch, 𝐶𝑇 be the event when the condition branch evaluates

true, 𝑇 be the event when the child node is at the true branch, and 𝐹 be the

event when the child node is at the false branch. Given this definition we have:

𝑃 (𝐶) =
1

3
𝑃 (𝐶𝑇) = 0.5

𝑃 (𝑇) =
1

3

𝑃 (𝐹) =
1

3

So:

ΘIf
child = Θparent ⋅ 𝑃 (𝐶 ∪ (𝐶𝑇 ∩ 𝑇) ∪ (𝐶𝑇 c ∩ 𝐹))

= Θparent ⋅ (𝑃 (𝐶) + 𝑃 (𝐶𝑇 ∩ 𝑇)− 𝑃 (𝐶 ∩ 𝐶𝑇 ∩ 𝑇) + 𝑃 (𝐶𝑇 c ∩ 𝐹)

−𝑃 ((𝐶 ∩ 𝐶𝑇 c ∩ 𝐹) ∪ (𝐶𝑇 ∩ 𝑇 ∩ 𝐶𝑇 c ∩ 𝐹)))

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 72

Because 𝐶 ∩ 𝑇 = ∅ and 𝐶 ∩ 𝐹 = ∅, so:

ΘIf
child = Θparent ⋅ (𝑃 (𝐶) + 𝑃 (𝐶𝑇 ∩ 𝑇) + 𝑃 (𝐶𝑇 c ∩ 𝐹)

= 1 ⋅ (1
3
+ 0.5 ⋅ 1

3
+ (1− 0.5) ⋅ 1

3
)

=
2

3

Summarizing all four cases, let’s consider a child node in Multiplexer domain.

ΘMultiplexer
child =

1

4
⋅ΘAnd

child +
1

4
⋅ΘOr

child +
3

8
⋅ΘIf

child +
1

8
⋅ΘNot

child

=
1

4
⋅ 3
4
+

1

4
⋅ 3
4
+

3

8
⋅ 2
3
+

1

8
⋅ 1

= 0.75

In the above calculation, If function has higher weight while Not function has

lower weight. This is because If function has three children nodes, while Not

function has only one child node. So, when If and Not function appears with the

same probability, a child node is more likely to be a child of If function compared

to Not function.

Similarly, we can perform the same calculation for parity problem, whose

function set contains And, Nand, Or and Nor:

ΘParity
child =

1

4
⋅ΘAnd

child +
1

4
⋅ΘNand

child +
1

4
⋅ΘOr

child +
1

4
⋅ΘNor

child

=
1

4
⋅ 3
4
+

1

4
⋅ 3
4
+

1

4
⋅ 3
4
+

1

4
⋅ 3
4

=
3

4
= 0.75

In the case of parity problem, all functions’ arity is 2. So, each function has a

weight of 0.25.

This value Θchild represents how much the activation rate changes from a

parent node to its child node. We formally define this value as descent rate:

Definition 4 (Descent Rate of Activation Rate) Descent Rate of Activa-

tion Rate ▽ of a problem domain P is the average change of activation rate

from a parent node to a child node in program trees from domain P.

From the definition, we can see that the value of descent rate only depends on

the function set of the problem domain. It is independent to any program trees

generated. Using descent rate, we can estimate the activation rate for nodes of

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 73

certain depth. Let 𝑥 be a node in tree 𝑇 whose depth is 𝑑, so 𝑥’s estimated

activation rate is:

Θ𝑒𝑠𝑡(𝑑) = ▽𝑑−1 (4.7)

According to (4.7), we know that nodes deep down in the tree have smaller

activation rates. Because as we discussed before, activation rate represents the

maximum number of test cases may be affected if a change is made on that node,

as a result, if a change happens at a node far away from the root, less number of

test cases will be affected. On the other hand, if the change is made at a node

near the root, more number of test cases are likely to be affected. As a result,

activation rate models the relative importance of nodes within a tree. A similar

concept to activation rate in literature is “block activation” briefly mentioned

in [Ros95]. The block activation is defined as the number of times the root

node of the block is executed. It is used for the selection of the useful block of

code within the parents. Therefore, the block activation is a concept different

from the activation rate and it serves for the different purpose. Comparing the

activation rate and the distance-based contribution measurement proposed in

[SCZ09], the predominate advantage of activation rate is that activation rate can

be theoretically estimated. The estimation method makes activation rate can be

used for theoretical analysis of GP dynamics.

4.4 Experimenting with Activation Rate Esti-

mation

Definition 2 not only defines the activation rate, but also gives a practical al-

gorithm to calculate rate of activation for each node in trees in GP population.

(4.7) gives another method to estimate the activation rate. In this section, we

study through experiments how accurate this estimation is.

The experiment is designed as follows. We randomly generate program trees

in multiplexer 11 domain using ramp-half-and-half method. For each tree, we

calculate each node’s activation rate. Then, we group these trees generated by

tree depth. For each group, we calculate the average activation rate for tree

nodes’ at each depth. This data is then compared with the theoretical estimation

calculated using (4.7) also shown in Table 4.3.

Three separated experiments have been performed. In each experiment, the

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 74

Depth Estimated Activation Rate Estimated Activation
2 0.75 1536
3 0.5625 1152
4 0.421875 864
5 0.31640625 648
6 0.237304688 486
7 0.177978516 364
8 0.133483887 273
9 0.100112915 205
10 0.075084686 154
11 0.056313515 115
12 0.042235136 86
13 0.031676352 65

Table 4.3: Theoretical Estimation of Activation Rate in Multiplexer11

depth of tree generated is randomly chosen from 2 to 13. In the first experiment,

we test 1500 trees generated. In the second experiment, 5000 trees are examined.

In the third experiment, 15000 trees are tested. In each experiment, duplicated

trees are removed before calculating the average activation rate. The experi-

ment results are summarized in column 1500-Trees, 5000-Trees and 15000-Trees

in Table 4.4. Since the searching space of all possible trees up to depth 13 is

Depth 1500-Trees 5000-Trees 15000-Trees Diff-1 Diff-2 Weighted Avg
2 0.7405 0.7419 0.7386 0.26% 0.45% 0.7395
3 0.5594 0.5581 0.5589 0.09% -0.13% 0.5587
4 0.4209 0.4184 0.4198 0.27% -0.33% 0.4195
5 0.3164 0.3138 0.3163 0.05% -0.77% 0.3157
6 0.2383 0.2358 0.2368 0.64% -0.38% 0.2366
7 0.1792 0.1760 0.1782 0.53% -1.24% 0.1778
8 0.1335 0.1315 0.1339 -0.33% -1.78% 0.1333
9 0.0997 0.0988 0.1008 -1.07% -1.96% 0.1002
10 0.0755 0.0737 0.0754 0.18% -2.20% 0.0750
11 0.0578 0.0548 0.0567 1.97% -3.26% 0.0563
12 0.0455 0.0398 0.0420 7.99% -5.38% 0.0418
13 0.0345 0.0309 0.0314 9.86% -1.60% 0.0315

Table 4.4: Observed Activation Rates in 1500, 5000, 15000 Trees Experiments

almost infinite, the experiment data are only samples of the searching space. As

a result, we need to show that the average observed activation rate we collected

is statistical representative before comparing it with estimated activation rate.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 75

In Table 4.4, column Diff-1 shows percentage differences between 1500-trees and

15000-trees. Column Diff-2 shows percentage differences between 5000-trees and

15000-trees. We can see from table that these three data sets collected have very

similar data. The percentage differences are below 2% in most cases. This shows

that the average activate rate for nodes at certain depth is stable even when the

sample size is small. In depth 12 and 13, the percentage differences are relatively

big. This is because there are relatively very small number of trees have nodes

at depth 12 and 13. We use the weighted average from depth 2 to 11 in table 4.4

to compare with estimated data in table 4.3.

Depth Observed Estimated Diff Diff%
2 0.739488739 0.75 0.010511261 1.40%
3 0.558744568 0.5625 0.003755432 0.67%
4 0.419514166 0.421875 0.002360834 0.56%
5 0.315700922 0.31640625 0.000705328 0.22%
6 0.236648017 0.237304688 0.00065667 0.28%
7 0.177774732 0.177978516 0.000203784 0.11%
8 0.133331426 0.133483887 0.000152461 0.11%
9 0.100218643 0.100112915 -0.000105728 -0.11%
10 0.075019345 0.075084686 6.53413E-05 0.09%
11 0.056308822 0.056313515 4.69221E-06 0.01%

Table 4.5: Comparison between Observed and Estimated Activation Rate

Table 4.5 compares the observed weighted average activation rate with the

theoretical estimated activation rate. We can see that estimated activation rate

is almost as accurate as the observed activation rate.The percentage differences

are no bigger than 1.5%.

4.5 Activation Rate and Fitness

As defined in Section 4.2.2, an activation of a node is when the node is evaluated.

It is a fact that a node must be evaluated to contribute the output of the pro-

gram tree. This contribution does not have to be positive. In fact, the positive or

negative effect is not only determined by the node itself but also depends on the

“environment” this node stays. In fact, the “environment”, i.e. the context, for

the node plays an even more important role, such as passing correct parameters,

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 76

to ensure the node behaves properly. As a result, the effect for a function con-

tributing to final result is very hard to quantify. But we are sure for the opposite

situation: a node does not have any contribution if it has not even been called.

In another word, a node at least needs to be called to be useful.

With this idea, we can see that the concept of activation rate of a node

actually represents the maximum number of test cases that may be impacted

when there is a change in the node. Activation rate expresses the importance of

the node quantitatively using this impact. For example, if in a tree of multiplexer

11 problem, one node A’s activation rate is 0.59375, and the other node B’s

activation rate is 0.2822265625. We say that A is about twice as important as B.

This is because a change in node A may affect at most 0.59375×2048 = 1216 test

cases, while a change in node B may only affect at most 0.2822265625× 2048 =

578 test cases. In table 4.3, we show the estimated activation rate of nodes in

different depth. The third column is calculated by the estimated activation rate

times 2048. This gives the maximum number of test cases that may be affected.

Our experiments and analysis of estimated activation rate previously suggests

that there is a relatively strong inverse relationship between the depth and the

activation rate of the node. We can use the activation rate to quantitatively

expresses one general observation in GP: “nodes deeper in tree are less important

than nodes near the root.”

In addition to node’s activation rate, we also define tree’s activation rate in

Definition 3. A program tree’s activation rate represents the percentage of nodes

in the tree which are evaluated. If we let 𝑅𝑒(𝑇) = 1−Θ(𝑇), then 𝑅𝑒(𝑇) represents

the percentage of nodes in the tree which are not evaluated (i.e. non-functional

codes). Similar to Redundancy defined in [BT94], we can define Tree Redundancy

using tree’s activation rate:

Definition 5 (Redundancy of Tree) Redundancy of Tree T, Re(T), is the per-

centage of non-functional codes in T:

𝑅𝑒(𝑇) = 1−Θ(𝑇).

Because the tree’s activation rate can be practically calculated (see Definition 3)

or theoretically estimated (using (4.8)), tree redundancy can also be calculated

in the above two ways.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 77

The concept of tree redundancy gives a new way to analyze how tree growth

affects the computation effort required to evaluate the tree. The computation

effort required to evaluate a tree is proportional to the number of nodes needed

to be evaluated in the tree, i.e.

Effort(𝑇) ∝
𝑑∑

𝑖=1

𝑓(𝑖)

Where 𝑓(𝑑) is a node distribution function which returns the number of nodes

for input depth. Because the existence of redundancy (i.e. non-functional codes),

the above formula should be revised as:

Effort(𝑇) ∝ (1−𝑅𝑒(𝑇)) ⋅
𝑑∑

𝑖=1

𝑓(𝑖)

Since 𝑅𝑒(𝑇) = 1−Θ(𝑇), we have:

Effort(𝑇) ∝ Θ(𝑇) ⋅
𝑑∑

𝑖=1

𝑓(𝑖)

4.6 Activation Rate and Tree Size

Using experiment data from Section 4.4, we can find that the tree’s activation rate

decreases as the tree’s depth increases, as in Table 4.6. Estimating a program

Tree Depth 1500-Trees 5000-Trees 15000-Trees Weighted Average
2 0.821678 0.80597 0.784351 0.791982884
3 0.723303 0.709011 0.698499 0.702674163
4 0.603315 0.596777 0.589675 0.592278256
5 0.470983 0.481705 0.488888 0.485968349
6 0.383928 0.392998 0.38573 0.387294512
7 0.303356 0.304654 0.30542 0.30509786
8 0.241572 0.233286 0.236439 0.23606386
9 0.17956 0.183495 0.183299 0.183083721
10 0.175305 0.166293 0.168486 0.168451744
11 0.117756 0.127852 0.132266 0.130227163
12 0.101429 0.090494 0.100998 0.098585279
13 0.085222 0.071941 0.077086 0.076457116

Table 4.6: Tree Depth and Tree Activation Rate

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 78

tree’s activation rate is very hard. This is because the tree’s activation rate

depends on the distribution of the number of nodes over tree depth, and the

shape of a tree may vary greatly. For example, the tree size growth can be

constant (i.e. in the case of list), linear, polynomial or exponentially (i.e. in the

case of full tree). Formally, let 𝑓(𝑑) be a node distribution function which returns

the number of nodes for input depth, then the estimated activation rate of a tree

𝑇 can be calculated as follows:

Θ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑇, 𝑑) =
1 +▽ ⋅ 𝑓(2) +▽2 ⋅ 𝑓(3) + . . .+▽𝑑−1 ⋅ 𝑓(𝑑)∑𝑑

𝑗=1 𝑓(𝑗)

=

∑𝑑−1
𝑖=0 ▽𝑖 ⋅ 𝑓(𝑖+ 1)∑𝑑

𝑗=1 𝑓(𝑗)

(4.8)

𝑓(𝑑) effectively defines the shape of the program tree and it is very hard to

estimate in general. But once we get a concrete program tree, 𝑓(𝑑) is then known.

We can then use (4.8) to estimate that tree’s activation rate. In addition, using

(4.8), the computation effort required to evaluate a tree Effort(𝑇):

Effort(𝑇) ∝ Θ(𝑇) ⋅∑𝑑
𝑖=1 𝑓(𝑖)

∝ 1 +▽ ⋅ 𝑓(2) +▽2 ⋅ 𝑓(3) + . . .+▽𝑑−1 ⋅ 𝑓(𝑑) (4.9)

Since the descent rate ▽ is fixed for a problem domain, the computation effort

required to evaluate a tree relates to the distribution of nodes over depth.

In the next, we use (4.8) and (4.9) to analyze how the number of nodes actually

need to be evaluated (the computation effort required) increases when the depth

of the tree increases. As we discussed, without knowing the exact form of node

distribution function 𝑓(𝑑), it is impossible to calculate Θ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑇, 𝑑). As a result,

we firstly work with theoretical models and define two node distribution functions

as follows:
𝑓1(𝑑) = 2𝑑2 + 3𝑑+ 1

𝑓2(𝑑) = 2𝑑−1

Node distribution function 𝑓1(𝑑) represents a quadratic growth model, and 𝑓2(𝑑)

represents an exponential tree growth model similar to a full binary tree. As we

discussed early, the shape of tree varies for a given size. For example, for a binary

tree of size 𝑙, the most compact tree has a depth of log2 𝑙 + 1, while the tallest

one had depth of
𝑙 + 1

2
. In [FO82], Flajolet and Oldyzko show that, between

these two cases, the most common tree depth is near 𝑙0.63, and the average height

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 79

converges slowly to 2

√
𝜋(𝑙 − 1)

2
+ 𝑂(𝑙0.25) as 𝑙 increases. Later, in [LSPF99],

[Lan00b] and later in [Lan00a], Langdon et al. use a number of experiments to

show that, there is a strong indication that, the average depth of binary trees

in a population grows linearly at about one per generation. Using the result

from Flajolet and Oldyzko, Langdon et al. further conclude that the growth in

size is 𝑂(generations1.6) for reasonable sized programs, and it rises to a limit

of 𝑂(generations2) for trees of more than 32,000 nodes. Based on this result

from Langdon et al., we can find that, among our four theoretical models, 𝑓1(𝑑)

represents a common and average scenario, while 𝑓2(𝑑) models a more extreme

worst case.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 2 4 6 8 10 12 14

S
iz

e
of

 In
di

vi
du

al

Depth of Individual

f1d
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12 14

S
iz

e
of

 In
di

vi
du

al

Depth of Individual

f2d

Figure 4.2: Size of Individual as Depth Increases based on Node Distribution
Function 𝑓1(𝑑) and 𝑓2(𝑑)

Given the two node distribution functions, Figure 4.2 visualizes how the size

of individual increases as the depth of the individual increases based on the node

distribution function 𝑓1(𝑑) and 𝑓2(𝑑) defined. Now, with the definition of 𝑓(𝑑),

using (4.8), we can calculate Θ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑇, 𝑑) and then the number of nodes need

to be evaluated. Let ▽ = 0.75, Figure 4.3 summarizes how the number of tree

nodes needs to be evaluated increases as the depth of the tree increases given

the node distribution function 𝑓1(𝑑), 𝑓2(𝑑) and (4.8). Comparing Figure 4.2

and Figure 4.3, we can find out that, when the descent rate is smaller than 1,

the actual number of nodes needs to be evaluated increases in a much slower

manner compared to the increase in the actual size of the individual when the

depth of the individual increases. Assuming GP uses a fixed amount of time to

evaluate every tree node, then Figure 4.3 effectively visualizes quantitatively how

Effort(𝑇) (defined in (4.9)) increases as the depth of the tree increases. If we

further expands the tree depth in Figure 4.3 from 13 to 50, as shown in Figure

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 80

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14N
um

be
r

of
 N

od
es

 n
ee

ds
 to

 E
va

lu
at

e

Depth of Individual

f1d
 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14N
um

be
r

of
 N

od
es

 n
ee

ds
 to

 E
va

lu
at

e

Depth of Individual

f2d

Figure 4.3: Number of Nodes needs to be Evaluated as Depth Increases based on
Node Distribution Function 𝑓1(𝑑) and 𝑓2(𝑑)

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50N
um

be
r

of
 N

od
es

 n
ee

ds
 to

 E
va

lu
at

e

Depth of Individual

f1d
 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 0 5 10 15 20 25 30 35 40 45 50N
um

be
r

of
 N

od
es

 n
ee

ds
 to

 E
va

lu
at

e

Depth of Individual

f2d

Figure 4.4: Number of Nodes needs to be Evaluated as Depth Increases based on
Node Distribution Function 𝑓1(𝑑) and 𝑓2(𝑑) (Depth up to 50)

4.4, we can find that, interestingly, in the case of 𝑓1(𝑑), the value of Effort(𝑇)

converges, and does not increase anymore even if the tree size further increases.

In conclusion, the above experiment results suggest two very interesting new

observations regarding bloating for problem domains whose activation rate is

smaller than one:

1. as the depth of the program tree increases, the computation effort required

to evaluate the tree increases, but in a slower manner compared to increase

in the size of the tree;

2. there potentially exists a theoretical upper bound for the computation effort

required to evaluate trees for certain tree shapes.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 81

4.7 Activation Rate and Crossover

In the previous section, we use activation rate to analyze how bloating effects the

runtime tree evaluation time. In this section, we use activation rate to perform

two analyze of crossover.

4.7.1 Crossover Effects

In [NB95], Nordin and Banzhaf study the effect of crossover. They define the

change in fitness Δ𝑓𝑝𝑒𝑟𝑐𝑒𝑛𝑡 from parent’s fitness to child’s fitness as:

Δ𝑓𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
𝑓𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑓𝑎𝑓𝑡𝑒𝑟

𝑓𝑏𝑒𝑓𝑜𝑟𝑒
⋅ 100 (4.10)

They analyze a large number of individuals in early generations of the symbolic

regression problem and find that there is a high probability that the function of

the program is severely damaged, resulting in a fitness decrease for the individual.

They also find that the second most common effect of crossover is that nothing

happens. Based on this experiment, Nordin and Banzhaf conclude that crossover

is generally destructive or neutral. Constructive crossover is rare.

This idea of destructive nature of crossover is widely accepted and serves as

the basis for bloating theory “defense against crossover”. In symbolic regression

problem, the descent rate is 1. In this section, we perform a similar analysis

in multiplexer 11 domain in which the descent rate is not 1, with a much more

complex configuration setup. The purpose of this analysis is to explore if there is

any relationship between the destructiveness of crossover and the activation rate.

The experiment of crossover effect in multiplexer 11 problem is designed as

follows. We use four individual experiments to simulate different crossover scenar-

ios. For all four experiments, we firstly generate a tree as a parent for crossover

and evaluate its fitness. Then we perform crossover with another randomly gen-

erated tree to produce a child. We then evaluate the child’s fitness and compare

it with the parent tree using (4.10).

In the first experiment, denoted as Experiment 1, the parent tree is randomly

generated using grow method and the tree depth is from 3 to 15. Because the raw

fitness of randomly generated trees in multiplexer 11 problem typically ranges

from 900 to 1100, Experiment 1 simulates early run of GP in multiplexer 11,

i.e. crossover with low fitness individuals. In Experiment 1, we compare 30,000

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 82

trees. In the second experiment, denoted as Experiment 2, the parent tree’s

fitness ranges from 1300 to 1600. This simulates crossover with medium fitness

individuals. These trees are collected from other GP runs. The second parent

is a randomly generated tree using grow method. In Experiment 2, we compare

50,000 trees. In the third experiment, denoted as Experiment 3, the parent

tree’s fitness ranges from 1800 to 2000. This simulates crossover with high fitness

individuals. The second parent is a randomly generated tree using grow method.

In Experiment 3, we compare 50,000 trees. In the last experiment, denoted as

Experiment 4, the parent tree’s fitness ranges from 1800 to 2000. But unlike in

Experiment 3, the other parent is not a randomly generated tree, instead, the

second parent’s fitness is also limited to the range from 1800 to 2000. Because

randomly generated trees tend to have very low fitness (typically range from 900

to 1100), the purpose this experiment is to show whether the fitness of the second

parent affects the effect of crossover or not. In Experiment 4, we compare 50,000

trees.

In [NB95], the effect of crossover is defined as constructive, destructive or neu-

tral. Constructive crossover is a crossover event which makes fitness of the child

at least 2.5% better compared with parent. Destructive crossover is a crossover

event which make the child’s fitness at least 2.5% worse compared with the par-

ent. Neutral crossover is a crossover event which changes child’s fitness within

2.5% compared with its parent. We found that the choice of 2.5% is very arbitrary

and this rejects a small change of fitness. So, in this experiment, our analysis

uses the following definition of crossover effect.

Definition 6 (Crossover Effect) A Strictly Constructive Crossover is a crossover

event which increases the fitness of child compared with its parent.

A Strictly Neutral Crossover is a crossover event which does not change the

child fitness compared with its parent.

A Strictly Destructive Crossover is a crossover event which decreases the fit-

ness of child compared with its parent.

Using the above definition, the distribution of crossover effects can be summarized

in Table 4.7. We can see from Table 4.7 that the observation that crossover is

mostly destructive in [NB95] is correct in multiplexer domain in Experiment 2,

3 and 4. But in Experiment 1, there is no preferences between destructive and

constructive crossover. Since in [NB95], the experiment is also performed in early

runs of GP in symbolic regression, the result we got is quite different from what

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 83

Experiment Destructive % Neutral % Constructive %
1 6603 22.01% 16572 55.24% 6825 22.75%
2 34013 68.03% 12107 24.21% 3880 7.76%
3 31292 62.58% 18358 36.72% 350 0.70%
4 28972 57.94% 20494 40.10% 534 1.07%

Table 4.7: Crossover Effects Distribution

is observed in [NB95]. This suggests that the crossover effect in early runs of GP

is problem domain dependent.

We can further study the effect of crossover using the above experiment data

and activation rate. Crossover is a two phase process. Firstly, crossover points are

selected and then, the subtrees are swapped on selected crossover points. Both

the selection of crossover point and the subtree swapping contribute to the effect

of crossover.

In order to analyze the effect of subtree swapping only, we modify (4.10) as

follows:

Δ𝑓
′
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =

⎧⎨⎩
𝑓𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑓𝑎𝑓𝑡𝑒𝑟

𝑁 ⋅Θ ⋅ 100 Θ ∕= 0

0 Θ = 0,
(4.11)

where 𝑁 is the number of test cases and Θ is the activation rate of the crossover

point. In (4.11), 𝑓𝑎𝑓𝑡𝑒𝑟−𝑓𝑏𝑒𝑓𝑜𝑟𝑒 is the change in fitness after crossover. Please note

that, 𝑓𝑎𝑓𝑡𝑒𝑟 and 𝑓𝑏𝑒𝑓𝑜𝑟𝑒 in (4.11) can only be the raw fitness (see Section 2.3.2.1).

Based on the definition of activation rate, 𝑁 ⋅Θ represents the maximum number

of test cases can be affected, when a change happens on the cross point. So,

by dividing 𝑓𝑎𝑓𝑡𝑒𝑟 − 𝑓𝑏𝑒𝑓𝑜𝑟𝑒 by 𝑁 ⋅ Θ, Δ𝑓
′
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 represents the effect of swapping

subtree in crossover solely without the need to consider the effect of selection of

crossover point, as it is already considered in 𝑁 ⋅Θ.

Using (4.11), the distribution of crossover effects can be summarized as in

Table 4.8. We can see that the effect of subtree swapping is relatively stable (the

variance is relatively small in all cases). Initially, in Experiment 1, the effect

of swapping are almost the same for constructive and destructive crossover. As

the fitness of the parent increases, both effects increase but the destructive effect

increases much faster. So, the constructive subtree swapping effect is almost

neutral to the changes of parent fitness, while the destructive subtree swapping

effect is positive related to parent fitness.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 84

Experiment Crossover Type Mean Variance Standard Deviation
1 Constructive 0.0650 0.0090 0.0947

Destructive 0.0653 0.0095 0.0975
2 Constructive 0.0773 0.0098 0.0990

Destructive 0.1671 0.0193 0.1389
3 Constructive 0.1460 0.0263 0.1621

Destructive 0.3100 0.0281 0.1676
4 Constructive 0.1689 0.0324 0.1799

Destructive 0.3116 0.0294 0.1716

Table 4.8: Distribution of Constructive and Destructive Crossover based on Def-
inition 6

The effect for the selection of crossover point can also be studied using acti-

vation rate. Because Experiment 1, 3 and 4 simulate relatively extreme cases, in

this analysis, we only use data from Experiment 2. Table 4.9 summarizes the dis-

Θ Range Total Constructive Destructive Constructive %
0.1 > Θ ≥ 0.0 2974 661 2313 22.23
0.2 > Θ ≥ 0.1 6541 726 5815 11.10
0.3 > Θ ≥ 0.2 7611 822 6789 10.80
0.4 > Θ ≥ 0.3 3236 309 2927 9.55
0.5 > Θ ≥ 0.4 1106 113 993 10.22
0.6 > Θ ≥ 0.5 7465 699 6766 9.36
0.7 > Θ ≥ 0.6 869 82 787 9.44
0.8 > Θ ≥ 0.7 1652 105 1547 6.36
0.9 > Θ ≥ 0.8 601 46 555 7.65
1.0 > Θ ≥ 0.9 142 4 138 2.82

Θ = 1 5696 313 5383 5.50

Table 4.9: Distribution of Constructive and Destructive Crossover Grouped by
Crossover Point’s Activation Rate based on Definition 6

tribution of constructive and destructive crossover based on the crossover point’s

activation rate. For example, the first row in the table says for crossover point

with activation rate Θ ∈ [0.0, 0.1), there are in total 2974 non-neutral crossover

happens, in which 22.23% of them are constructive crossover. From Table 4.9, we

can clearly see that there is a trend for the number of constructive crossover to

decrease as the crossover point’s activation rate increases. Since the tree node’s

activation rate is negatively correlated to the depth of the node, we can conclude

that deeper crossover point promotes constructive crossover.

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 85

In conclusion, there are the following four interesting findings in our experi-

ment of crossover effects using multiplexer 11 domain:

1. In initial GP runs of multiplexer problem (Experiment 1), there is no pref-

erence between constructive and destructive crossover.

2. As the parent’s fitness increases, the crossover becomes more destructive

(Experiment 2 and 3).

3. The effect of subtree swapping is very stable. The constructive subtree

swapping effect is almost neutral to the changes of parent fitness, while the

destructive subtree swapping effect is positive related to parent fitness.

4. The depth of crossover point do affect crossover effect. Deeper crossover

point promotes constructive crossover.

4.7.2 Semi-Intron Crossover

As we discussed previously, marking can be used to define and find a special kind

of intron, the inviable code. Because activation rate is an extension to marking,

we can also define this kind of intron using activation rate:

Definition 7 (Introns) Introns are subtree in 𝑇 whose root node 𝑥’s activation

rate is zero.

Because activation rate marks non-introns differently, it gives a lot more flexibility

in finding introns. For example, a node may have just been called once in 11

Multiplexer domain for all 2048 test cases. This node, while using marking, is

classified as non-intron. But the effect of this node is almost the same as intron.

With the concept of activation, we can cope with this situation by defining semi-

intron:

Definition 8 (Semi-Introns) Semi-Introns are subtree in 𝑇 whose root node

𝑥’s activation is smaller than a predefined value 𝜖.

Semi-intron is the same as pseudoinvible code mentioned by Luke in [Luk03]. But

our definition provides a quantitative measurement and a practical algorithm to

identify semi-introns. Semi-introns are nodes which can be viewed as introns. By

adjusting the value of 𝜖, we can ignore a number of nodes which only affect very

small number of test cases by classifying them as introns. So, similar to marking,

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 86

we can also develop semi-intron crossover which avoids crossover points selected

at nodes which are semi-introns.

Semi-intron crossover works in the following way. While program trees are

executed in fitness evaluation, the activation rate for each node is calculated. This

is achieved by adding an accumulator of type integer for each node. When a node

is invoked, the accumulator increases by 1. Similar to marking, the additional

overheads in terms of both memory and execution time for calculating activation

rate is very small. After tree evaluation, with activation rate information, only

nodes whose activation rate are bigger than or equal to the parameter 𝜖 can be

selected as crossover points in crossover.

Using semi-intron crossover with different settings for parameter 𝜖, we can

analyze how crossover point selection affects the GP performance and bloating.

We use multiplexer 11 problem in this experiment. The experiment is designed

as follows. The parameter 𝜖 in semi-intron crossover ranges from 0 to 2048.

For each 𝜖 value, 50 independent GP runs are performed to collect information

including average fitness increases, average tree size (number of nodes) increases,

and average tree depth increases. We then compare fitness, tree depth and size

changes for different 𝜖 values. As a result, there are 102,400 independent GP

runs are examined. Fitness change is used as a measurement of GP performance,

while tree depth and size changes are used as measurements of bloating.

Parameter settings for each independent GP run are as follows. The popula-

tion size is 500. Fitness proportionate selection is used. In breeding, there is 90%

chance semi-intron crossover is used and there is 10% chance that reproduction is

used. GP runs for 300 generations. Ramp-half-and-half method [Koz92] is used

for initial population generation. One thing to note is that when parameter 𝜖

equals to 0, the semi-intron crossover behaves very similar to the normal classical

crossover. When parameter 𝜖 equals to 1, the semi-intron crossover is equivalent

to marking.

The experiment results can be viewed in Figure 4.5, 4.6 and 4.7. When the

parameter 𝜖 of semi-intron crossover increases from 0 to 2048, the selection of

crossover point becomes more and more restricted to nodes near the root. In

another word, the average depth of crossover point becomes smaller and smaller.

This is because activation rate is negatively correlated to node’s depth (from

(4.7)). As a result, semi-intron crossover restricts the depth of crossover point

using phenotype information (fitness), rather than based on genotype information

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 87

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 0 500 1000 1500 2000

A
ve

ra
ge

 P
op

ul
at

io
n

F
itn

es
s

In
cr

ea
se

s

Epsilon

Fitness Change

Figure 4.5: Average Fitness Changes for 𝜖 from 0 to 2048 in Steps of 10

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000

A
ve

ra
ge

 T
re

e
D

ep
th

 In
cr

ea
se

s

Epsilon

Depth Change

Figure 4.6: Average Tree Depth Changes for 𝜖 from 0 to 2048 in Steps of 10

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 88

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000

A
ve

ra
ge

 T
re

e
S

iz
e

In
cr

ea
se

s

Epsilon

Size Change

Figure 4.7: Average Tree Size Changes for 𝜖 from 0 to 2048 in Steps of 10

(node depth) directly.

From Figure 4.5, we can find that as 𝜖 increases, the fitness performance

generally decreases. This phenomenon is reasonable and can be explained using

activation rate. Because crossover is generally destructive [NFB96], crossover

points with higher activation rate result in more decrease in offsprings’ fitness.

As a result, the average population fitness decreases as 𝜖 increases. Another

explanation to this phenomenon is that by increasing 𝜖, we limit the ability of

semi-intron crossover by restricting the freedom of crossover point selection. Since

selection and crossover contribute to the fitness performance, limiting the effect

of crossover reduces the fitness buildup.

The second observation from Figure 4.6 and 4.7 is that, as 𝜖 increases, the

average tree depth and size firstly decrease and then slowly increase. The decreas-

ing phase (𝜖 ranges from 0 to around 500) can be explained using modification

point depth theory [Luk03]. In a nutshell, modification point depth theory says

that deep crossover points contributes to code growth and bloating. In our ex-

periment, as 𝜖 increases and crossover point depth decreases, both average tree

depth and size decrease (i.e. bloating is reduced). This supports modification

point depth theory. But in the second phase (𝜖 ranges from 500 to 2048), as 𝜖

further increases, the average depth and size should keep decreasing, according to

modification point depth theory. But as we can see from Figure 4.6 and 4.7, the

CHAPTER 4. THEORETICAL ANALYSIS OF BLOATING EFFECTS 89

average tree depth and size increase. This observation provides an experiment

evidence against the modification point depth theory.

The finally observation from experiment data is that there is generally a trade

off between GP performance (fitness in this case) and bloating control. Reducing

bloating through limiting crossover point depth decreases GP performance. But

the relationship between fitness and bloating is very complex.

4.8 Conclusion

In this chapter, we develop activation rate as a new quantitative model of tree

structure. The development of activation rate is motivated by analyzing bottom-

up tree evaluation algorithm. Activation rate models the importance of a node

within a tree using how many times the node has been evaluated as the weight.

This is because a node needs to be at least evaluated in order to contribute to

the fitness of the individual. One advantage of activation rate is that it can be

theoretically estimated. Experiment results show that, the estimated activation

rate can be very accurate. The development of the activation rate, especially the

estimated activation rate, has enabled us to analyze GP dynamics from a new

perspective.

Using activation rate, we perform a very detailed analysis about how the

computation effort required to evaluate a tree increases as the depth and size of

the tree increases. This analysis is important because it provides a quantitative

method to model by how much bloating slows down the GP tree evaluation. We

find that the computation efforts required increases slower compared to the size

of the tree when the depth of the tree increases. Moreover, there exists an upper

bound for the computer effort required for certain tree shapes. These two obser-

vations give a new insight into the effect of bloating. Also, with activation rate,

we greatly extend the analysis of crossover effect in literature and find that the ef-

fect of crossover is more complex than we previously thought. Finally, we develop

a new crossover called semi-intron crossover based activation rate. Experiments

of semi-intron crossover gives interesting evidence contrary to modification point

depth theory.

Chapter 5

Removal Bias &

Depth-Constraint Crossover

5.1 Introduction

In the last chapter, we developed activation rate and use it to quantitatively study

how bloating affects the computation effort required to evaluate trees in boolean

problems. As we reviewed in Chapter 3, bloating theory and bloating control have

been and remain to be one of the hottest research areas in GP. Over past few years,

a good number of bloating theories and control methods have been proposed

and developed. While bloating control methods developed form the front line of

defense against bloating, the importance of bloating theories cannot be neglected.

Even though a single, comprehensive theory to explain bloating has not been

concluded yet, bloating theories developed over past few years explain bloating

from different perspectives and they are more complementary than substitutes to

each other. These theories also guide or serve as foundations for the development

of bloating control methods.

In this chapter, we revisit one of the bloating theories, the removal bias.

We extend the removal bias theory by developing a quantitative definition of

removal bias and show using experiments that the amount of removal bias defined

is positively correlated to code growth. This experiment result gives another

empirical evidence to support removal bias. In addition, using this experiment

result, we develop the depth difference hypothesis which acts as a more general

abstraction over, or extension to removal bias theory. Depth difference hypothesis,

simply speaking, blames the depth difference of the subtrees swapped in crossover

90

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 91

as the root cause of bloating. This depth difference in turn is driven by the

depth difference of parents selected in crossover. As a direct application of depth

difference hypothesis, we also develop depth constraint crossover as a new bloating

control method motivated by depth difference hypothesis. Empirical results show

that the newly developed bloating control technique, despite the simplicity, is very

effective in controlling bloat without sacrificing fitness, especially when used in

combination with Koza-style depth limiting. The work presented in this chapter

significantly extends the discussion of depth constraint crossover in [LZ10b].

The rest of this chapter is organized as follows. In the next section, we firstly

expand the discussion of removal bias from Section 3.1.2. Then, we define a

quantitative model of removal bias and present experiment results to show the

strong correlation between our definition of removal bias and bloating. After

this, we introduce the depth constraint crossover in detail and compare it with a

number of existing bloating control methods. Finally, we conclude this chapter

with a more detailed discussion of depth difference hypothesis proposed.

5.2 Background and Related Work

Before start discussing about removal bias, we use a crossover example to establish

the naming convention we are going to use in the rest of this chapter. Considering

crossover in general as shown in Figure 5.1, the inputs into crossover are two

individuals and we call them Parent A and Parent B respectively. The output

are two offsprings and we call them Offspring A and Offspring B respectively.

The crossover firstly selects one crossover point from each parent. We call the

crossover point selected from parent A the Crossover Point A. We call the subtree

in parent A whose root is crossover point A the Subtree A. The subtree A is the

subtree which is going to be deleted from parent A. Similarly, we call the crossover

point selected from parent B the Crossover Point B. We call the subtree in parent

B whose root is crossover point B the Subtree B. In the example in Figure 5.1,

subtree B and parent B are the same because crossover point B happens to be

the root node of parent B. After crossover point A and B are selected, offspring

A and B are created by swapping subtree A and B. Offspring A is created by

Parent A giving up Subtree A and receiving Subtree B. Offspring B is created by

Parent B giving up Subtree B and receiving Subtree A.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 92

Figure 5.1: Example of a General Crossover

The theory of removal bias is among the oldest bloating theories. The the-

ory is firstly introduced by Soule and Foster in [SF98b]. The foundations of

removal bias theory are intron theory and defensive against crossover (catego-

rized as “protective hypothesis” in [SF98b]), in which the propagation of intron

(non-functional code) which defends the individual against the destructiveness of

crossover is considered as the root cause of bloating. In [SF98b], Soule and Foster

point out that if the root node of any subtree is intron, all descendants within

the subtree are also introns. For example, if crossover point A selected is intron,

then all nodes in subtree A are introns as well. Subtrees selected to be swapped

in crossover are more likely to be within intron regions when the crossover points

selected are deeper. As a result, if we consider two parents in crossover A and

B, if the depth of crossover point A is bigger compared to the depth of crossover

point B, resulting subtree A to be smaller (in terms of both depth and size) com-

pared to subtree B, offspring A which is produced by parent A giving up smaller

subtree A and receiving bigger subtree B (which is more likely to grow in size and

depth), is more likely to inherit the fitness from parent A. This is because the

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 93

change (crossover point A) is more likely to be within intron region and changes

in introns do not effect fitness. On the other hand, offspring B which is produced

by parent B giving up bigger subtree B and receiving smaller subtree A is more

likely to have inferior fitness. This is because the change (crossover point B)

is more likely to be within exon region and changes in functional codes usually

results in worse fitness due to the destructiveness of crossover. Given the above

analysis, Soule and Foster further ague that even though the crossover does not

necessarily increase population size, in the presence of selection pressure, offspring

A would be favored over offspring B from phenotype perspective of view. The

accumulated effects of this bias favoring smaller subtrees to be deleted contribute

to bloating in parallel to the protective hypothesis.

Soule and Foster provide two pieces of experiment evidence to support the

theory in [SF98b]. In the first experiment, the size and fitness change between

parent and offspring during crossover is examined. Soule and Foster show that

for offspring whose fitness equals or exceeds their parents, there is usually an

increase in offsprings’ size compared to their parent, especially in early genera-

tion of GP. Another experiment is performed using non-destructive crossover, in

which crossover only produces offspring whose fitness exceeds or equals to their

parents’ fitness, with which the code growth contributed from protective hypoth-

esis no longer applies. Experimental results show that, even with non-destructive

crossover, the code growth can still be observed without protective hypothesis

because the existence of removal bias. But the amount of bloating is less com-

pared to normal crossover in which both protective hypothesis and removal bias

apply. This result also confirms their view that there are multiple causes of

bloating. Removal bias and protective hypothesis are complementary and ex-

plain bloating from two different perspectives. Further experiment evidence to

support removal bias theory can be found in [SH02, Luk00a]. In [SH02], Soule

and Heckendorn show that “there is a strong inverse relationship between the size

of the removed branch during crossover and the resulting change in fitness caused

by that crossover”, however, “the size of the added branch is negatively correlated

to the fitness change”. In [Luk00a] and further in [Luk03], Luke argues that there

is a more general bias favoring deeper crossover point and this causes bloating,

i.e. the modification point depth theory, and favoring smaller removed subtree

(suggested by removal bias) can be thought as a special case of the modification

point depth theory.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 94

5.3 A New Quantitative Model

Despite the long history of removal bias, we don’t think the study of the theory

is as well established as other theories such as defense against crossover. This

is partially due to the widely accepted proposition made by Luke in [Luk00a],

in which he suggests that the modification point depth theory is an abstraction

over removal bias theory. We agree that under Luke’s interpretation of removal

bias theory, it is naturally a special case of the modification point depth theory.

However, we believe that the removal bias theory does have room for another

interpretation which cannot be explained using the modification point depth the-

ory. In this section, we explore a new interpretation of the removal bias theory

using a new quantitative model.

The center of removal bias theory lies the depth of crossover point and the

size of subtree swapped. These two factors, the depth of crossover point and

the size of subtree, are interrelated, i.e. deeper crossover point results in smaller

subtree. Based on Luke’s interpretation [Luk00a], it is favoring deeper crossover

point which results in bloating. However, Soule and Heckendorn argue in [SH02]

that, favoring deeper crossover point in removed branch is an essential condition

rather than optional. Here, we propose that not only the smaller removed branch

but also the bigger added branch play an important role in the formation of

bloating. In fact, we theorize that it is the depth difference between the two

subtrees swapped in crossover which causes the bloating. We call this, the depth

difference hypothesis.

In order to verify the depth difference hypothesis, we firstly quantitatively

define the depth difference as the amount of removal bias :

Definition 9 (Amount of Removal Bias) Let Parent A and Parent B be the

two parents selected in crossover, and Subtree A and Subtree B be the two subtrees

selected to be swapped from Parent A and Parent B respectively, also let the

function Depth(.) returns the depth of the input subtree. Then, the amount of

removal bias denoted as 𝑄bias for this crossover operation is defined as:

𝑄bias = ∣Depth(Subtree A)− Depth(Subtree B)∣

One thing to note is that, in our definition, the depth of subtree is used rather

than size of subtree. Given a fixed tree shape, the size and depth of the subtree

can be used interchangeably. We use depth rather than size because we think the

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 95

depth of subtree gives better control over size.

Problem 𝑄bias 𝜎𝑄bias
Parent Diff 𝜎Parent Diff Diff2 𝜎Diff2

Ant 5.83 10.59 17.63 17.33 0.19 26.19
11-Multiplexer 4.96 7.55 9.72 11.16 -0.19 16.48

Even-5 5.10 9.16 14.83 15.11 0.24 22.74
Regression 16.59 53.65 26.64 70.91 1.77 77.41

Table 5.1: Removal Bias at Generation 49 using No Bloating Control Methods

In the next, we perform experiments to show that the amount of removal bias

can be widely observed. In the experiment, we perform GP runs with standard

configuration settings and passively record the amount of removal bias based on

the definition for each crossover operation. The experiment settings are as fol-

lows. We use four problem domains: Artificial Ant with Santa Fe food trail,

11-Multiplexer, Even-5 Parity and Symbolic Regression of 𝑥6 − 2𝑥4 + 𝑥2. The

population size is 500 and GP runs for 50 generations. Tournament selection is

used with tournament size 5. Only crossover and reproduction are used in breed-

ing process with probability 90% and 10% respectively. In this experiment, we

do not use any bloating control methods. Using this parameter setting, approxi-

mately 562,500 crossover operations are analyzed in each problem domain. The

experiment is performed using ECJ [Luk09].

Table 5.1 summarizes the amount of removal bias at generation 49. Because

in the experiment, GP runs for 50 generations, generation 49 is the last genera-

tion which performs crossover operations. In the table, the Parent Diff column

represents the depth difference between two parents:

Parent Diff = ∣Depth(Parent A)−Depth(Parent B)∣

Diff2 is calculated as:

Diff2 = [Depth(Subtree A)−Depth(Subtree B)]

−[Depth(Parent A)−Depth(Parent B)]

At generation 49, for artificial ant, multiplexer-11 and parity-5, the amount of

removal bias is around 5. However, we observes a much bigger value (16.59) for

symbolic regression problem. We think this is due to the natural of symbolic

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 96

regression problem, which is a real numbered problem. Another interesting ob-

servation from Table 5.1 is that while both 𝑄bias and Parent Diff are quite big, the

Diff2 on the other hand is quite close to 0, even though the standard deviation

of Diff2 is quite big. This suggests that there is a weak correlation between the

amount of removal bias and the depth difference between two parents.

Figure 5.2 shows how 𝑄bias changes over generations in the experiment. This

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 0 5 10 15 20 25 30 35 40 45 50

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

Parity 5 Problem

Q_{bias}

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40 45 50

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

Artificial Ant Problem

Q_{bias}

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40 45 50

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

Multiplexer 11 Problem

Q_{bias}

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45 50

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

Symbolic Regression Problem

Q_{bias}

Figure 5.2: Amount of Removal Bias over Generations without Bloating Control

figure clearly shows the existence of the amount of removal bias and it grows over

generations. The next step of our work is to analyze if the amount of removal

bias can be linked back to bloating. To analyze the relationship between the

amount of removal bias and bloating, we perform a correlation analysis between

the amount of removal bias and the average depth of the population in each

domain using the experiment data. In each problem domain and each generation,

we calculate the average amount of removal bias from all crossover operations in

that generation and combine it with the average population depth to form a data

pair in correlation analysis. Since, for each problem domain, we run 50 tests

and each test runs for 50 generations, this gives us in total approximately 2,500

data pairs in correlation analysis for each problem domain. The result of the

correlation analysis is as shown in Table 5.2, in which, we can see that there is

a strong correlation between the amount of removal bias and the average depth

of the population across all four testing domains. Since the average depth of

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 97

Ant 11-Multiplexer Even-5 Regression
Correlation 0.9023 0.8852 0.9307 0.9519

Table 5.2: Correlation between Amount of Removal Bias and Average Depth of
the Generation

population directly correlates to bloating, this result shows that there is a strong

correlation between the amount of removal bias and the code bloating.

The first experiment shows that there is a strong correlation between the

amount of removal bias and the bloating. In the next experiment, we verify

whether this relationship still holds when there exists the parsimony pressure. In

the second experiment, we use the same configuration settings as the first exper-

iment but use Koza-style depth limiting to explicitly control bloating. In depth

limiting method, the maximum depth allowed is set to 17. Similar to Table 5.1,

Table 5.3 summarizes the amount of removal bias at generation 49 in the second

experiment. From Table 5.3, we can see that, similar to results observed from the

Problem 𝑄bias 𝜎𝑄bias
Parent Diff 𝜎Parent Diff Diff2 𝜎Diff2

Ant 3.03 3.46 1.86 2.06 -0.04 5.27
11-Multiplexer 3.03 3.35 1.21 1.46 0.06 4.83

Even-5 2.82 3.23 0.84 1.09 0.05 4.47
Regression 3.05 3.63 0.74 1.14 -0.04 4.85

Table 5.3: Removal Bias at Generation 49 with Depth-Limiting Method

first experiment, Diff2 is quite close to 0. Comparing Table 5.1 and Table 5.3,

we can find that, in the second experiment in which the bloating is controlled by

Koza-Style depth limiting method, the amount of removal bias has been reduced

considerably across all problem domains. In Figure 5.3, we plot how the amount

of removal bias changes over generations along with the average depth of the pop-

ulation. From Figure 5.3, we can see that both the average amount of removal

bias and the average depth of the population increase in the same trend. Because

of the depth limiting method, the average depth of the population is controlled,

and as a result, the average amount of removal bias has been reduced. Similar

to Table 5.2, Table 5.4 gives the correlation analysis results between the average

amount of removal bias from all crossover operations in one generation and the

average population depth of the same generation across four problem domains

in the second experiment. This quantitative result confirms the observation in

Figure 5.3.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 98

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

A
ve

ra
ge

 D
ep

th

Parity 5 Problem

Q_{bias}
Avg Depth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

A
ve

ra
ge

 D
ep

th

Artificial Ant Problem

Q_{bias}
Avg Depth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

A
ve

ra
ge

 D
ep

th

Multiplexer 11 Problem

Q_{bias}
Avg Depth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

A
m

ou
nt

 o
f R

em
ov

al
 B

ia
s

A
ve

ra
ge

 D
ep

th

Symbolic Regression Problem

Q_{bias}
Avg Depth

Figure 5.3: Amount of Removal Bias over Generations with Depth-Limiting
Method

Ant 11-Multiplexer Even-5 Regression
Correlation 0.8205 0.8533 0.8797 0.9581

Table 5.4: Correlation between Amount of Removal Bias and Average Depth of
the Generation In Experiment 2

In conclusion, the above two experiment results show that, our definition of

the amount of removal bias:

1. can be widely observed in different GP problems;

2. increases over generations;

3. has a strong correlation to the average depth of the population.

It is also showed in the second experiment that, the amount of removal bias can

be reduced by controlling the average depth of the population.

5.4 Depth Constraint Crossover

In the last section, we develop a quantitative model called the amount of removal

bias. Empirical results in the last section demonstrate the strong correlation

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER 99

between the amount of removal bias defined and the average depth of the pop-

ulation. It also shows that controlling bloating is able to reduce the amount of

removal bias. Although this result is quite interesting, it is not sufficient enough

to support the depth difference hypothesis. This is because, in depth difference

hypothesis, we are more interested in whether the “inverse” relationship holds,

i.e. whether reducing the amount of the removal bias is able to reduce the amount

of bloating. In this section, we use the amount of removal bias to develop a depth

constraint crossover to support the depth difference hypothesis.

Depth constraint crossover implements a very simple strategy to directly con-

trol the amount of removal bias by modifying the standard crossover. In depth

constraint crossover, an additional constraint is implemented in the selection of

crossover points such that the depth difference between subtree A and subtree B

swapped must be no bigger than a predefined threshold 𝜖, i.e:

𝑄bias = ∣Depth(Subtree A)−Depth(Subtree B)∣ ≤ 𝜖

where 𝜖 ∈ ℤ∗.

The code implementation of depth constraint crossover is relatively simple as

well. It can be implemented as in Algorithm 6. In the implementation, if depth

of parent1 is smaller than parent2, parent1 and parent2 are swapped such that

the while loop is guaranteed to be able to find suitable crossover point in parent2

full-filling the constraint. One thing to note is that, the selection of crossover

point1 and point2 in the pseudo code not necessarily needs to be random. Any

existing crossover point selection methods can be used as long as the selected

pair of points full-fill the constraint. Another note is that this implementation

could potentially slow down GP if too many retries are required to find a suitable

crossover point in parent2 especially when both d1 and size of parent2 are big.

However, our experiment shows that there is very little performance difference

between depth constraint crossover and normal crossover in terms of running

time. This is because, the depth constraint crossover is able to effectively limit the

growth in size for the population such that it never needs to face big individuals.

As a result, our implementation of depth constraint crossover follows the same

logic as in Algorithm 6. Modifications of Algorithm 6 may be required if poor

runtime performance is observed especially when the initial population contains

big individuals.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER100

Algorithm 6 Depth Constraint Crossover

1: function crossover(individual parent1, individual parent2, param 𝜖) : off-
spring1, offspring2

2: if depth(parent1) < depth(parent2) then
3: parent1 ↔ parent2
4: end if
5: point1 ← random-select(parent1)
6: point2 ← random-select(parent2)
7: d1 ← depth-subtree-whose-root-is(point1)
8: while d1 > depth(parent2) + 𝜖 do
9: point1 ← random-select(parent1)
10: d1 ← depth-subtree-whose-root-is(point1)
11: end while
12: d2 ← depth-subtree-whose-root-is(point2)
13: while ∣𝑑1− 𝑑2∣ > 𝜖 do
14: point2 ← random-select(parent2)
15: d2 ← depth-subtree-whose-root-is(point2)
16: end while
17: offspring1, offspring2 ↔ subtree-swap(parent1, parent2, point1, point2)
18: end function

Next, we perform experiments to compare the performance of depth con-

straint crossover with Koza-style depth limiting method. We choose Koza-style

depth limiting method as the baseline to test depth constraint crossover perfor-

mance because it is the most widely accepted bloating control method. In the

first experiment, we compare depth constraint crossover against depth limiting

using four problem domains: Artificial Ant with Santa Fe food trail, 11 Boolean

Multiplexer, Even-5 Parity and Symbolic Regression of 𝑥6− 2𝑥4 + 𝑥2. Similar to

experiments in the previous section, the population size used is 500 and GP runs

for 50 generations. Tournament selection of size 5 is used. Only crossover and

reproduction operator are used in breeding phase with 90% and 10% probability

respectively. For depth limiting method, the maximum depth threshold is set to

17. For depth constraint crossover, we experiment with threshold parameter 𝜖

ranges from 0 to 5 in step of 1.

The experiment results can be found in Table 5.5. In the table, each row

represents experiment result for a specific parameter. For each experiment, the

first row is the statistics at generation 0. The second row is the statistics at gen-

eration 50. For each experiment parameter setting, we collect the Size of Run,

which is the average tree size for all individuals, the Depth of Run, which is the

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER101

Artificial Ant Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 36.5072 2.1070 4.1998 0.0539 58.3000 7.0150

50 144.0344 43.0130 12.1597 0.6649 29.1020 9.5110

𝜖 = 5 0 36.7016 1.9822 4.2029 0.0476 59.2000 5.0239

50 147.2643 → 43.3230 13.9536 2.2482 27.1667 → 9.4237

𝜖 = 4 0 37.1428 1.3010 4.2172 0.0419 58.1200 8.8806

50 135.9783 → 36.6117 13.0163 1.8166 27.8000 → 10.5527

𝜖 = 3 0 37.0173 1.7962 4.2124 0.0459 59.6600 8.5758

50 122.4274 → 45.2742 11.9634 1.6146 27.2128 → 9.3875

𝜖 = 2 0 37.0212 1.6986 4.2073 0.0457 59.6600 7.1934

50 101.4703 ↑ 29.4275 10.2296 1.01850 28.7959 → 8.1365

𝜖 = 1 0 36.8406 1.7274 4.2100 0.0537 60.1800 5.9184

50 96.3762 ↑ 41.4020 8.4120 0.7659 29.5417 → 8.4260

𝜖 = 0 0 36.6874 1.8300 4.2010 0.0526 59.2600 7.3670

50 57.4887 ↑ 23.5606 5.3487 0.5224 31.6531 → 7.7947

Symbolic Regression Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 11.5321 0.2897 4.5721 0.0350 1.0706 0.3470

50 59.0995 15.5746 12.5412 0.5956 0.0880 0.0646

𝜖 = 5 0 11.5594 0.3379 4.5715 0.0500 1.0836 0.3383

50 85.4887 ↓ 21.3514 17.8416 3.1305 0.0953 → 0.1005

𝜖 = 4 0 11.4974 0.2285 4.5677 0.0344 1.1188 0.3201

50 71.0383 → 18.8290 16.2361 2.5738 0.0896 → 0.0723

𝜖 = 3 0 11.5854 0.3083 4.5760 0.0356 1.0544 0.3645

50 62.3953 → 11.9895 14.3390 1.8280 0.0890 → 0.0862

𝜖 = 2 0 11.5956 0.2933 4.5719 0.0429 1.0928 0.3429

50 49.7187 ↑ 11.0970 11.8744 1.2432 0.0917 → 0.0976

𝜖 = 1 0 11.4577 0.3261 4.5636 0.0451 1.1120 0.3670

50 39.3750 ↑ 13.8156 9.1164 1.2259 0.0980 → 0.0884

𝜖 = 0 0 11.5370 0.3612 4.5710 0.0457 1.2310 0.3567

50 21.8227 ↑ 7.7429 5.3728 0.5544 0.2689 ↓ 0.1808

Multiplexer 11 Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 20.8731 1.1156 3.7884 0.0549 766.3200 18.1035

50 146.1525 35.4965 12.0101 0.6416 256.3878 85.8078

𝜖 = 5 0 21.0576 1.1638 3.8044 0.0514 769.9600 22.0708

50 145.2237 → 37.8773 12.7697 1.5776 249.3400 → 90.1873

𝜖 = 4 0 20.9180 1.0904 3.7868 0.0637 768.0000 15.2630

50 129.9460 → 40.5407 12.2724 1.5458 247.9600 → 77.9215

𝜖 = 3 0 20.9720 1.1065 3.7906 0.0534 770.1600 21.3311

50 128.8608 → 36.8215 11.2843 1.1211 239.9600 → 80.3241

𝜖 = 2 0 20.7576 1.2816 3.7830 0.0676 765.9200 21.0939

50 111.4878 ↑ 33.1141 10.0520 1.0513 248.4082 → 71.6055

𝜖 = 1 0 20.9818 0.9284 3.7880 0.0441 770.1000 20.3590

50 98.2923 ↑ 31.7001 8.4215 0.6990 221.6000 → 87.5808

𝜖 = 0 0 20.8796 0.9276 3.7901 0.0575 770.6600 19.2433

50 55.5466 ↑ 24.6967 4.9741 0.5823 250.5600 → 97.7401

Even-5 Parity Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 20.6750 0.8614 3.9663 0.0502 13.9400 0.5444

50 198.0517 34.8353 13.2706 0.4673 6.4600 1.7574

𝜖 = 5 0 20.6471 0.6698 3.9667 0.0450 14.0800 0.4400

50 212.8723 → 51.8730 15.0923 1.6717 6.5400 → 1.8784

𝜖 = 4 0 20.7148 0.8290 3.9665 0.0479 13.8800 0.5154

50 194.3445 → 30.3713 13.9462 1.4281 5.8000 → 1.3115

𝜖 = 3 0 20.7821 0.8588 3.9688 0.0523 14.0200 0.5828

50 181.5988 → 42.1715 13.0648 1.3508 6.0400 → 1.5615

𝜖 = 2 0 20.9270 0.7650 3.9765 0.0517 14.1200 0.4308

50 162.4306 ↑ 34.0961 11.3054 0.8166 5.8000 → 1.9596

𝜖 = 1 0 20.5198 0.9599 3.9604 0.0551 14.1800 0.5546

50 140.1154 ↑ 28.1080 9.39379 0.5782 4.9400 ↑ 2.0041

𝜖 = 0 0 20.5762 0.7667 3.9624 0.0426 14.1600 0.5783

50 59.8392 ↑ 0.8709 5.8739 0.0149 7.0400 → 1.3410

Table 5.5: Summary of Experiment Results Comparing Koza-Style Depth Lim-
iting Method and Depth Constraint Crossover

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER102

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
A

nt
)

Generation

Koza
COT5
COT4
COT3
COT2
COT1
COT0

(a) Artificial Ant Problem

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
P

ar
ity

5)

Generation

Koza
COT5
COT4
COT3
COT2
COT1
COT0

(b) Even-5 Parity Problem

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
M

ul
tip

le
xe

r1
1)

Generation

Koza
COT5
COT4
COT3
COT2
COT1
COT0

(c) Multiplexer 11 Problem

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
R

eg
re

ss
io

n)

Generation

Koza
COT5
COT4
COT3
COT2
COT1
COT0

(d) Symbolic Regression Problem

Figure 5.4: Size of Run Changes over 50 Generations for Depth Constraint
Crossover and Koza-style Depth Limiting

average depth for all individuals, and Raw Fitness, which is the best raw fitness

achieved in the run. All these values in the table are an average of 50 independent

runs. We use Size of Run as the criterion to compare the performance of depth

constraint crossover and depth limiting method. Best raw fitness is presented to

ensure that the depth constraint crossover does not harm GP performance when

controlling bloating. For all values in the table, smaller values are better. To

establish means for statistical significance, we perform T-test with a 99% confi-

dence interval on size of run and raw fitness. In the table, ↑ represents mean value

which is statistically superior to Koza depth limiting baseline, ↓ represents mean

value which is statistically inferior, and → represents no statistically significant

difference.

From Table 5.5, we haven’t observed any decrease in GP performance in terms

of best raw fitness achieved when depth constraint crossover is used except for

one case when 𝜖 = 0 in symbolic regression problem, in which there is around

20% decrease in fitness. We think this is mainly due to to the fact that depth

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER103

constraint crossover with 𝜖 value 0 is very special. When the threshold value 𝜖

is set to 0, the subtrees swapped in and out must have exactly the same depth.

As a result, the crossover cannot produce offsprings with different depths from

their parents. In our experiment, the initial population is generated using Koza’s

ramp-half-and-half method with the maximum depth of 6. This means that, for

all problems, when depth constraint crossover with 𝜖 = 0 is used, the maximum

depth of individuals cannot exceed 6. For symbolic regression problem, since most

of functions’ arity is 1, the initial population would be much smaller in terms of

size compared to initial populations of other problem domains. This makes depth

constraint crossover with 𝜖 = 0 hard to explore the searching space to archive the

same level of performance as other parameter settings.

In addition to Table 5.5, Figure 5.4 shows how the average size of run changes

over generations. We can see that in artificial ant, multiplexer 11 and even-5

parity problems, depth constraint crossover with 𝜖 value 5 produces the amount

of bloat quite similar to Koza-style depth limiting method. But, on symbolic

regression problem however, depth constraint crossover with 𝜖 value 5 produces

considerably more bloating (on average 85.49) compared to depth limiting method

(on average 59.10). We think this is because in symbolic regression problem, the

bloating force is much stronger. This can be partially supported by results in

Table 5.1, in which we can see that the amount of removal bias is two times bigger

in regression problem compared to values in the other three problems. A smaller

𝜖 threshold value is required for depth constraint crossover to properly control

bloating in symbolic regression problem. Across all four benchmark problem

domains, 𝜖 value 1 and 2 produce less bloating compared to depth-limiting method

in a statistically significant manner. 𝜖 equals 3 and 4 produce less bloating in

boolean domains but not in a statistically significant manner. As a special case,

𝜖 value 0 completely denies the ability of offsprings to have depths different from

their parents. This represents the strictest control over increase in population’s

average depth. As a result, depth constraint crossover with 𝜖 value 0 produces

minimal amount of bloating compared to all other threshold settings. But in

regression problem, we see worse fitness, and in the other three domains, we see

worse performance although not in a statistically significant manner. Overall,

depth constraint crossover with 𝜖 value 1 gives the optimal control of bloating

without scarifying fitness. With 𝜖 value 1, depth constraint crossover produces

on average 32.11% less bloating compared to depth limiting method.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER104

𝜖 Problem 𝑄bias 𝜎𝑄bias
Parent Diff 𝜎Parent Diff Diff2 𝜎Diff2

𝜖 = 0 Ant 0.000 0 0.000 0 0.004 5 0.066 8 0.001 0 0.066 9
Regression 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

Multiplexer 11 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
Even-5 Parity 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

𝜖 = 1 Ant 0.605 0 0.488 9 1.402 2 1.314 7 0.008 2 2.102 5
Regression 0.623 1 0.484 6 1.319 7 1.521 0 0.016 7 2.166 9

Multiplexer 11 0.588 5 0.492 1 1.018 3 1.086 1 0.051 3 1.703 0
Even-5 Parity 0.587 5 0.492 3 0.971 4 0.936 5 −0.019 4 1.575 2

𝜖 = 2 Ant 0.932 2 0.761 0 2.433 9 2.283 3 0.030 4 3.589 3
Regression 1.051 9 0.763 3 2.258 1 2.297 7 0.047 6 3.509 1

Multiplexer 11 0.955 2 0.764 1 1.888 8 1.847 6 0.035 0 2.971 1
Even-5 Parity 0.943 1 0.754 7 1.535 5 1.449 9 0.018 5 2.475 4

𝜖 = 3 Ant 1.222 4 1.029 1 3.348 2 3.019 7 0.052 5 4.836 8
Regression 1.403 4 1.040 3 3.123 4 2.744 6 −0.045 8 4.596 6

Multiplexer 11 1.251 3 1.029 1 2.439 5 2.401 7 −0.016 5 3.846 1
Even-5 Parity 1.239 6 1.026 6 2.116 9 2.097 4 −0.020 3 3.458 9

𝜖 = 4 Ant 1.448 8 1.283 1 4.087 1 3.624 3 0.027 0 5.858 6
Regression 1.769 3 1.321 8 3.689 8 3.359 5 0.024 6 5.534 5

Multiplexer 11 1.512 6 1.309 7 3.039 4 3.091 9 −0.016 5 4.846 1
Even-5 Parity 1.468 9 1.282 5 2.768 2 2.768 3 −0.026 9 4.472 1

𝜖 = 5 Ant 1.682 3 1.571 1 4.865 2 4.312 4 0.000 6 6.986 5
Regression 2.048 6 1.592 4 4.066 3 3.784 6 −0.029 0 6.241 1

Multiplexer 11 1.724 2 1.565 2 3.481 2 3.459 1 0.062 8 5.563 7
Even-5 Parity 1.691 6 1.536 0 3.347 2 3.238 2 0.021 3 5.265 5

Table 5.6: Removal Bias at Generation 49 with Depth Constraint Crossover

Table 5.6 summarises the amount of removal bias at generation 49 when depth

constraint crossover is used in the experiment. Comparing data in Table 5.6 to

data in Table 5.3, we can see that depth constraint crossover can effectively reduce

the amount of removal bias and the amount of removal bias is positive related

to the threshold parameter 𝜖. The effectiveness of depth constraint crossover in

reducing bloat shows that reducing the amount of removal bias can be used as

an effective way to control bloating. This experiment result supports the depth

difference hypothesis.

In [LP06], Luke shows that combining depth limiting with other bloating con-

trol methods always results in better control of bloat. Based on this observation,

in the next experiment, we compare depth constraint crossover in combination

with depth limiting against plain depth limiting. The experiment setup is the

same as last experiment. The only difference is that in addition to depth con-

straint crossover, which adds constraints to selected crossover points, the depth of

offsprings created also cannot exceeds 17. Experiment results are summarized in

Table 5.7. Compared to experiment results in Table 5.5, we can find that depth

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER105

constraint crossover combined with depth limiting is able to significantly outper-

form plain depth constraint crossover when threshold parameter 𝜖 is relatively

big (3, 4, 5 in the experiment) in control bloating. However, when threshold is

smaller (2 or 1 in the experiment) the improvement is relatively small. This is

due to the fact that Koza-style depth limiting only becomes effective when off-

springs’ depth reaches 17. When 𝜖 is relatively small, the population’s average

depth increases in a much slower manner. As a result, Koza-style depth limiting

is less effective. An extreme case is when 𝜖 equals 0, in which the population’s

average depth cannot grow beyond 6. In this case, the Koza-style depth limiting

is not at all effective, and therefore, the experiment gives the same result as pre-

vious experiment. Similar to Figure 5.4, Figure 5.5 shows how size of run changes

over generations. Same as previous experiment, threshold 𝜖 value 1 gives opti-

mal control of bloating without loss of fitness. With 𝜖 value 1, depth constraint

crossover combined with depth limiting produces on average 35.51% less bloating

compared to plain depth limiting method.

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
A

nt
)

Generation

Koza
KDC5
KDC4
KDC3
KDC2
KDC1
KDC0

(a) Artificial Ant Problem

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
P

ar
ity

5)

Generation

Koza
KDC5
KDC4
KDC3
KDC2
KDC1
KDC0

(b) Even-5 Parity Problem

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
M

ul
tip

le
xe

r1
1)

Generation

Koza
KDC5
KDC4
KDC3
KDC2
KDC1
KDC0

(c) Multiplexer 11 Problem

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 R
un

 (
R

eg
re

ss
io

n)

Generation

Koza
KDC5
KDC4
KDC3
KDC2
KDC1
KDC0

(d) Symbolic Regression Problem

Figure 5.5: Size of Run Changes over 50 Generations for Depth Constraint
Crossover combined with Depth Limiting and Koza-style Depth Limiting

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER106

Artificial Ant Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 36.5072 2.1070 4.1998 0.0539 58.3000 7.0150

50 144.0344 43.0130 12.1597 0.6649 29.1020 9.5110

𝜖 = 5 0 37.1081 2.2816 4.2111 0.0530 59.3200 7.9207

50 127.9321 → 43.3762 12.0351 0.8574 28.6939 → 10.2941

𝜖 = 4 0 36.7764 1.7009 4.2013 0.0456 58.3000 8.8414

50 126.4094 → 34.8137 11.8947 0.8183 29.1042 → 6.3022

𝜖 = 3 0 36.8772 1.7609 4.2164 0.0460 60.1400 5.7654

50 111.9589 ↑ 29.4106 11.0159 0.9195 27.8400 → 8.9986

𝜖 = 2 0 36.8946 1.9465 4.2053 0.0509 59.9000 8.3120

50 103.8140 ↑ 39.2420 10.2524 0.9907 28.4490 → 8.2563

𝜖 = 1 0 36.6100 1.9817 4.2049 0.0441 60.4200 6.5271

50 88.0542 ↑ 25.4204 8.5616 0.6602 27.5918 → 8.7387

𝜖 = 0 0 36.6874 1.8300 4.2010 0.0526 59.2600 7.3670

50 57.4887 ↑ 23.5606 5.3487 0.5224 31.6531 → 7.7947

Symbolic Regression Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 11.5321 0.2897 4.5721 0.0350 1.0706 0.3470

50 59.0995 15.5746 12.5412 0.5956 0.0880 0.0646

𝜖 = 5 0 11.5190 0.3760 4.5731 0.0428 1.0786 0.2997

50 59.2834 → 14.5976 13.1756 0.6022 0.0638 → 0.0492

𝜖 = 4 0 11.4683 0.2849 4.5726 0.0391 1.0788 0.3582

50 55.8001 → 11.9861 13.1431 0.6172 0.0761 → 0.0651

𝜖 = 3 0 11.6088 0.3364 4.5708 0.0473 1.1353 0.4123

50 51.1228 ↑ 11.2239 12.3284 0.8633 0.0777 → 0.0601

𝜖 = 2 0 11.5346 0.2796 4.5768 0.0450 1.2460 0.3070

50 46.4787 ↑ 12.4366 11.4310 0.8801 0.0763 → 0.0693

𝜖 = 1 0 11.4620 0.3341 4.5680 0.0421 1.0802 0.3140

50 37.7814 ↑ 10.2628 9.5780 1.0445 0.0935 → 0.0790

𝜖 = 0 0 11.5370 0.3612 4.5710 0.0457 1.2310 0.3567

50 21.8227 ↑ 7.7429 5.3728 0.5544 0.2689 ↓ 0.1808

Multiplexer 11 Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 20.8731 1.1156 3.7884 0.0549 766.3200 18.1035

50 146.1525 35.4965 12.0101 0.6416 256.3878 85.8078

𝜖 = 5 0 20.8292 1.1571 3.8014 0.0613 770.0800 16.2232

50 120.2280 → 29.4349 11.3901 0.6936 245.4286 → 91.7379

𝜖 = 4 0 20.9148 1.0941 3.7932 0.0550 764.8800 26.1631

50 112.0201 ↑ 27.1307 10.9528 0.7222 256.7347 → 90.1404

𝜖 = 3 0 20.9527 1.0022 3.7885 0.0570 765.3600 23.5370

50 109.0671 ↑ 31.1328 10.7898 0.9347 266.7200 → 87.9161

𝜖 = 2 0 20.8327 0.9657 3.7904 0.0564 767.2800 18.2768

50 103.2645 ↑ 31.2748 9.7734 0.8896 254.1200 → 89.4341

𝜖 = 1 0 21.0098 1.0512 3.7902 0.0605 772.2600 27.2755

50 101.4085 ↑ 30.5448 8.2726 0.6367 225.8000 → 86.4095

𝜖 = 0 0 20.8796 0.9276 3.7901 0.0575 770.6600 19.2433

50 55.5466 ↑ 24.6967 4.9741 0.5823 250.5600 → 97.7401

Even-5 Parity Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

Koza 0 20.6750 0.8614 3.9663 0.0502 13.9400 0.5444

50 198.0517 34.8353 13.2706 0.4673 6.4600 1.7574

𝜖 = 5 0 20.8728 0.8094 3.9752 0.0524 14.0600 0.5064

50 173.9904 ↑ 32.4364 13.0044 0.5505 6.1000 → 1.6882

𝜖 = 4 0 20.7510 0.9450 3.9757 0.0569 14.0400 0.5276

50 163.7528 ↑ 30.0571 12.5871 0.5832 6.4200 → 1.7099

𝜖 = 3 0 20.7396 0.8875 3.9715 0.0462 14.1400 0.6003

50 147.6448 ↑ 23.9076 11.7555 0.6925 5.9800 → 1.8920

𝜖 = 2 0 20.4891 0.6922 3.9559 0.0442 14.0400 0.5276

50 143.0514 ↑ 24.2787 10.8385 0.6220 5.8000 → 1.5875

𝜖 = 1 0 20.5921 0.8109 3.9578 0.0463 14.0200 0.6161

50 125.7805 ↑ 25.8096 9.2304 0.4777 5.2200 ↑ 1.8143

𝜖 = 0 0 20.5762 0.7667 3.9624 0.0426 14.1600 0.5783

50 59.8392 ↑ 0.8709 5.8739 0.0149 7.0400 → 1.3410

Table 5.7: Summary of Experiment Results Comparing Koza-Style Depth Lim-
iting Method and Depth Constraint Crossover combined with Depth Limiting
Method

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER107

From Figure 5.4 and Figure 5.5, we can clearly see that, if only size of run is

considered, parameter 𝜖 value 0 produces the least amount of bloating compared

to other 𝜖 values. If we compare the size of run at generation 50 between depth

constraint crossover with 𝜖 value 0 and depth limiting method, depth constraint

crossover with 𝜖 value 0 produces 63.73% less bloat. When compared to depth

constraint crossover with 𝜖 value 1, 𝜖 value 0 produces 46.43% less bloat. However,

as we discussed earlier, setting 𝜖 to 0 does result in worse best fitness achieved,

especially in regression problem.

In order to leverage the superior performance advantage in controlling bloating

for 𝜖 value 0, we modify the depth constraint crossover to allow parameter 𝜖 to

be real number in the range between 0 and 1 (𝜖 ∈ [0, 1]). The implementation of

depth constraint crossover is changed as follows to handle real numbered 𝜖 value.

Similar as in Algorithm 6, after the crossover point is selected in the second

parent and the amount of removal bias (∣𝑑1− 𝑑2∣) is calculated, if the amount of

removal bias is bigger than 1, then the crossover point is rejected immediately.

If the amount of removal bias equals 0, then the crossover point is accepted. If

the amount of removal bias equals 1, then a random number between 0 and 1 is

generated. If the random number is smaller than the real numbered threshold 𝜖,

then the crossover point is accepted, otherwise the crossover point is rejected and

a new one is selected.

In the next experiment, we test the performance of depth constraint crossover

with real numbered 𝜖. We use the same setting as previous two experiments. In

this experiment, we test the following 𝜖 values: 0.5, 0.1, 0.01, 0.005 and 0.001.

The experiment result is summarized in Table 5.8. In the table, in order to estab-

lish means for statistical significance, we perform T-test with a 99% confidence

interval on size of run and raw fitness. In the table, ↑ represents mean value

which is statistically superior to depth constraint crossover combined with depth

limiting with threshold 1, ↓ represents mean value which is statistically inferior,

and → represents no statistically significant difference.

From Table 5.8, we can find that when 𝜖 equals 0.5, there is very little perfor-

mance difference compared to depth constraint crossover combined with depth

limiting with threshold 1. Performance improvements in terms of average size of

run can be observed when 𝜖 equals 0.1 in symbolic regression and parity problem,

however not in a statistical significant manner in artificial ant and multiplexer

11 problem. 𝜖 value 0.001 gives very similar performance compared to when 𝜖

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER108

Artificial Ant Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 1 0 36.6100 1.9817 4.2049 0.0441 60.4200 6.5271

50 88.0542 25.4204 8.5616 0.6602 27.5918 8.7387

𝜖 = 0.5 0 37.3096 1.9525 4.2177 0.0557 59.6400 6.5750

50 81.4541 → 29.4061 8.0549 0.7041 24.3125 → 11.0475

𝜖 = 0.1 0 36.7370 1.4787 4.2032 0.04163 59.0600 5.3307

50 80.4786 → 32.4146 6.9326 0.5944 28.6531 → 8.6769

𝜖 = 0.01 0 37.0866 1.9283 4.2144 0.0494 60.6600 4.7691

50 67.5618 → 23.0569 5.7645 0.4947 31.2708 → 7.6151

𝜖 = 0.005 0 36.5176 1.9974 4.1939 0.0474 59.4000 6.8264

50 64.1212 ↑ 26.2522 5.6577 0.4206 29.2857 → 8.5905

𝜖 = 0.001 0 36.7023 1.8154 4.1985 0.05598 59.3800 6.5173

50 61.8453 ↑ 27.2933 5.4212 0.5685 30.5600 → 6.5212

𝜖 = 0 0 36.6874 1.8300 4.2010 0.0526 59.2600 7.3670

50 57.4887 ↑ 23.5606 5.3487 0.5224 31.6531 → 7.7947

Symbolic Regression Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 1 0 11.4620 0.3341 4.5680 0.04207 1.0802 0.3140

50 37.7814 10.2628 9.5780 1.0445 0.0935 0.0790

𝜖 = 0.5 0 11.5874 0.3307 4.5803 0.0439 1.1227 0.3468

50 32.3185 → 11.2485 8.2206 0.9553 0.1142 → 0.1112

𝜖 = 0.1 0 11.5194 0.3229 4.5741 0.0409 1.0695 0.3870

50 23.6785 ↑ 7.2165 6.8247 1.1137 0.1872 → 0.1650

𝜖 = 0.01 0 11.5431 0.3068 4.5724 0.0386 1.1039 0.3581

50 21.2308 ↑ 7.2065 5.8125 0.5882 0.2357 ↓ 0.1384

𝜖 = 0.005 0 11.5732 0.3030 4.5774 0.0440 1.1778 0.3494

50 21.1401 ↑ 4.8813 5.9088 0.5581 0.2696 ↓ 0.1854

𝜖 = 0.001 0 11.5080 0.3016 4.5721 0.0445 1.2226 0.2910

50 23.3780 ↑ 6.7325 5.6184 0.5115 0.2182 ↓ 0.1309

𝜖 = 0 0 11.5370 0.3612 4.5710 0.0457 1.2310 0.3567

50 21.8227 ↑ 7.7429 5.3728 0.5544 0.2689 ↓ 0.1808

Multiplexer 11 Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 1 0 21.0098 1.0512 3.7902 0.0605 772.2600 27.2755

50 101.4085 30.5448 8.2726 0.6367 225.8000 86.4095

𝜖 = 0.5 0 20.7296 0.9292 3.7707 0.0559 766.2800 14.7730

50 82.9456 → 23.8601 7.8956 0.5120 231.9200 → 75.8071

𝜖 = 0.1 0 21.1228 1.0134 3.8033 0.0559 770.4200 16.1667

50 82.9599 → 25.6596 6.6344 0.5139 223.4792 → 85.8790

𝜖 = 0.01 0 21.0441 0.8632 3.7994 0.0501 768.4000 14.6697

50 69.4039 ↑ 26.1322 5.6265 0.5296 215.1600 → 98.7620

𝜖 = 0.005 0 20.7317 1.1003 3.7914 0.0631 770.0000 26.7791

50 63.9289 ↑ 24.1838 5.4746 0.4537 241.2200 → 88.0312

𝜖 = 0.001 0 20.8502 0.9651 3.7783 0.0537 769.0000 15.5653

50 56.5472 ↑ 23.4380 5.0931 0.5314 257.9592 → 95.4649

𝜖 = 0 0 20.8796 0.9276 3.7901 0.0575 770.6600 19.2433

50 55.5466 ↑ 24.6967 4.9741 0.5823 250.5600 → 97.7401

Even-5 Parity Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 1 0 20.5921 0.8109 3.9578 0.0463 14.0200 0.6161

50 125.7805 25.8096 9.2304 0.4777 5.2200 1.8143

𝜖 = 0.5 0 20.4971 0.9301 3.9610 0.0493 14.1400 0.4477

50 120.6688 → 25.5293 8.7823 0.4863 5.5833 → 2.1779

𝜖 = 0.1 0 20.6328 0.8822 3.9616 0.0497 14.1000 0.5000

50 102.8551 ↑ 20.3228 7.7146 0.4112 5.4082 → 1.7487

𝜖 = 0.01 0 20.6890 0.9316 3.9628 0.0510 14.1400 0.4903

50 74.1753 ↑ 11.5057 6.4449 0.3135 6.0200 → 2.1118

𝜖 = 0.005 0 20.6026 0.9208 3.9654 0.0501 14.1200 0.4308

50 71.4626 ↑ 11.0315 6.2973 0.3337 6.0400 → 1.7996

𝜖 = 0.001 0 20.5880 0.7558 3.9658 0.0364 14.1400 0.5295

50 61.7714 ↑ 3.8767 5.9509 0.1318 7.0600 ↓ 1.4200

𝜖 = 0 0 20.5762 0.7667 3.9624 0.0426 14.1600 0.5783

50 59.8392 ↑ 0.8709 5.8739 0.0149 7.0400 ↓ 1.3410

Table 5.8: Summary of Experiment Results of Depth Constraint Crossover with
Real Number Threshold Parameter 𝜖

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER109

equals to 0. In regression problem, 𝜖 values 0.1, 0.01, 0.005 and 0.001 give better

performance in terms of size of run, but we have observed worse best raw fitness

achieved. 𝜖 value 0.5 produces less bloating, but gives worse best raw fitness,

however, both of which are not in statistical significant manners. In the other

three boolean problem domains, 𝜖 value 0.005 achieves the best control of bloat-

ing without performance loss in terms of best raw fitness achieved. In these three

domains, 𝜖 value 0.005 produces 35.77% less bloating compared to 𝜖 value 1. It

produces 58.55% less bloating compared to Koza style depth limiting method.

5.5 Depth Difference Hypothesis

In the previous section, we developed depth constraint crossover as a new bloating

control method. The effectiveness of depth constraint crossover in controlling

bloating shows that by reducing the amount of removal bias, the amount of

bloating can be reduced. This result, in combination to the observation in Section

5.3 that there is a strong correlation between the amount of removal bias and the

average depth of the population, support depth difference hypothesis, the depth

difference between the two subtrees swapped causes the bloating. In this section,

we give a more in-depth discussion about depth difference hypothesis.

Before we dig into the depth difference hypothesis, we would like to firstly

briefly review the relationship between individual program tree depth and size.

Tree structure is a widely used data structure in computer science. In general

tree structure, there is a relative weak positive correlation between depth and size

of the tree. This is due to the fact that trees can have different shapes. However,

when the tree shape is defined, the tree depth defines the upper bound for tree

size. For example, for binary tree, in which each node has at most two child

nodes, the maximum number of nodes (size) allowed for a tree with depth 𝑑 is:

𝑠 = 2𝑑 − 1.

On the other hand, given the size of the tree, it is very hard to work out the

depth of the tree even for binary trees. As a result, when controlling bloating,

controlling the depth increase is more appropriate compared to controlling the

size increase directly, since the former gives a guaranteed upper limit on size.

Now, we know that tree depth places an upper limit on tree size and increasing

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER110

in tree depth results in increasing in this threshold, which allows the tree size to

grow. Then, how the depth of the tree changes in GP? At the individual program

tree level, the only way for an individual to increase or decrease its own depth is

via crossover or mutation, which performs structural changes on the individual.

Here, we only consider crossover, since mutation is rarely used in GP. In crossover,

it is possible for the individual to increase its depth by having subtree of smaller

depth removed and subtree with bigger depth inserted. However, only this effect

cannot increase the population’s average depth. This is because, at the same

time, there is another individual’s depth decreases by having subtree of bigger

depth swapped with subtree with smaller depth.

At the population level, population’s average depth is increased over genera-

tion by selection favoring deeper trees. Deeper and potentially bigger trees are

favored for several reasons. Firstly, they are more resilient to the destructiveness

of crossover, based on defensive against crossover theory. Secondly, they are more

likely fitter than smaller individuals based on fitness causes bloat theory [LP97b].

Finally, in crossover, the growing individual created by removing smaller subtree

and attaching bigger subtree is more likely to be fitter than the shrinking individ-

ual. This can be explained using the experiment result of crossover effect in the

last chapter. The growing individual, which has deeper crossover point, is more

likely to be created by constructive crossover compared to the shrinking individ-

ual. So, this combined effect of crossover creating deeper individuals at individual

level and the selection favoring deeper individuals at population level represent

the fundamental cause of increase in population’s average depth over generations.

Although both effects are necessary to the formation of bloating, we think the

former is relatively more essential since it is the most fundamental mechanism in

GP for individual’s depth to increase. Based on depth difference hypothesis, in

depth constraint crossover, where the depth difference between subtrees swapped

in crossover is controlled by a pre-defined threshold, deeper individuals are much

less likely to be generated via crossover, and thus effectively controls bloating.

Depth constraint crossover with 𝜖 value 0 represents the most extreme sce-

nario which gives the strictest control of bloating. When 𝜖 equals 0, subtrees

swapped in crossover must have the same depth. This requirement ensures that

offsprings created by crossover inherit the same depth as their parents and hence

completely denies crossover’s ability to increase individual’s depth. This means

that, if the initial population is generated using ramp-half-and-half methods with

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER111

maximum depth 6, the maximum population depth cannot exceed 6. However, if

we review the experiment result in Table 5.5, surprisingly, even with this rather

strict restriction, we only observed statistically significant worse performance in

regression problem. We think the reason for this is that in regression problem,

the function set have relatively small arity. This makes the initial population

much smaller compared to other domains, which we believe is also too small to

evolve any competitive candidate solutions. The average tree size is around 11 at

generation 0 in regression problem, while in multiplexer 11 and parity 5 problems,

the average size is around 20 and in ant problem, the average size is 36, which

is three times as big as the average in regression problem. Apart from regression

problem, there is no decrease in the best raw fitness achieved in the other three

boolean problems. This interesting observation suggests that the relationship

between increasing in the population’s depth/size and finding fitter candidate

solutions may be much weaker than previously thought.

If the depth difference hypothesis holds and it is the depth difference between

subtree swapped in crossover which drives the bloating, what would be the cause

of the depth difference between subtrees swapped in the first place? Intuitively, we

think the depth difference between subtrees swapped in crossover is driven by the

depth difference between two parents. Assuming that parents selected in crossover

have similar shapes, i.e. number of nodes at a given depth are approximately

the same, the depth of subtree selected from the parent then depends on the

distribution of nodes over depth for the parent tree. If the depth of the two

parents are the same, then it is more likely that the depth of subtrees selected

are similar. Experiment evidence to support this proposition can be found in

Table 5.1, 5.3 and 5.6, in which we record Diff2, which is the difference between

parent depth difference and subtrees swapped depth difference. If we review Diff2

across above three experiments, we can see that the average value is very close to

0. This result supports our view that it is the depth difference between parents

in crossover which results in the depth difference between subtree swapped. If

the depth difference between subtree swapped is driven by the depth difference

between parents selected in crossover, instead of controlling the former as in depth

constraint crossover, will controlling the later directly feasible? We think even

through the former is driven by the later, however, this relationship is not strong

enough to give an accurate enough control of bloating. This can be verified by

the value of 𝜎Diff2 in Table 5.1, 5.3 and 5.6, which are considerably big.

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER112

Artificial Ant Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 0.005 0 36.5176 1.9974 4.1939 0.0474 59.4000 6.8264

50 64.1212 26.2522 5.6577 0.4206 29.2857 8.5905

Double 0 37.0169 1.6276 4.1995 0.0452 60.0800 7.3887

50 66.7920 19.2286 9.9729 1.1211 22.8958 10.0088

Lexicographic 0 36.6843 1.7532 4.2013 0.0440 61.1200 5.6979

50 66.8094 31.3975 8.6428 1.8406 25.7708 7.7278

Proportional 0 37.3178 1.8752 4.2168 0.0454 60.1000 7.2422

50 56.9323 15.8125 8.9785 1.0414 22.8511 8.4501

RatioBucket 0 36.9909 1.4740 4.2107 0.0405 60.7400 6.2284

50 50.7024 20.6484 8.1215 1.6454 21.4884 9.1661

Tarpeian 0 36.8238 1.9061 4.2114 0.0461 60.1600 6.0212

50 79.1673 20.8880 10.3141 0.8706 26.0638 9.0352

Symbolic Regression Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 1 0 11.4620 0.3341 4.5680 0.04207 1.0802 0.3140

50 37.7814 10.2628 9.5780 1.0445 0.0935 0.0790

Double 0 11.5423 0.2909 4.5658 0.0458 1.1681 0.3622

50 33.3359 14.3639 10.2822 2.4552 0.1879 0.2785

Lexicographic 0 11.4922 0.3016 4.5741 0.0406 1.2327 0.3099

50 57.0514 22.1228 12.0107 2.0388 0.1516 0.2592

Proportional 0 11.5124 0.3594 4.5722 0.0426 1.2201 0.3277

50 26.7825 16.1713 7.7715 3.0394 0.2952 0.3673

RatioBucket 0 11.5324 0.2959 4.5685 0.0435 1.1073 0.3581

50 44.6117 16.9906 11.1136 2.1283 0.1336 0.2381

Tarpeian 0 11.5136 0.3162 4.5709 0.0410 1.2422 0.3332

50 33.3742 13.2137 9.7025 2.5560 0.2155 0.2338

Multiplexer 11 Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 0.005 0 20.7317 1.1003 3.7914 0.0631 770.0000 26.7791

50 63.9289 24.1838 5.4746 0.4537 241.2200 88.0312

Double 0 20.9084 1.0136 3.7968 0.0555 768.0400 20.5621

50 73.2230 22.7514 9.8726 1.0185 294.0851 119.2123

Lexicographic 0 20.8380 1.0467 3.7848 0.0613 768.1600 12.1051

50 97.9815 56.8519 9.6649 2.0350 258.6400 94.3860

Proportional 0 20.9548 1.3185 3.7887 0.0593 765.4800 17.2363

50 51.2006 26.2164 7.7052 1.5114 367.9000 119.0899

RatioBucket 0 20.6647 1.0971 3.7816 0.0555 767.9600 25.6421

50 84.7025 50.0376 9.1237 2.6173 279.6735 111.1528

Tarpeian 0 20.8227 1.0269 3.7850 0.0574 769.2800 13.1317

50 73.9358 28.9790 9.7769 1.1089 326.6600 104.2588

Even-5 Parity Problem

Param Gen Size of Run 𝜎size Depth of Run 𝜎depth Raw Fitness 𝜎fitness

𝜖 = 0.005 0 20.6026 0.9208 3.9654 0.0501 14.1200 0.4308

50 71.4626 11.0315 6.2973 0.3337 6.0400 1.7996

Double 0 20.6922 0.8236 3.9691 0.0461 14.0400 0.4454

50 128.6236 30.1495 11.8982 0.6911 6.2600 1.7528

Lexicographic 0 20.7195 0.9078 3.9760 0.0506 14.2000 0.4899

50 109.6214 28.5508 10.8912 1.0532 5.8400 2.0626

Proportional 0 20.8817 0.7230 3.9847 0.0447 14.0800 0.4833

50 105.8656 29.3556 10.9360 0.6253 6.9400 1.6782

RatioBucket 0 20.6222 0.8520 3.9652 0.0530 13.9600 0.2800

50 101.1207 25.1416 10.4136 1.0227 5.9000 1.7916

Tarpeian 0 20.6286 0.9577 3.9665 0.0554 14.1400 0.6328

50 126.0209 27.4786 11.8730 0.5083 7.1000 1.5133

Table 5.9: Summary of Experiment Results Comparing Depth Constraint
Crossover with Other Bloating Control Methods

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER113

In the final experiment in this section, we compare depth constraint crossover

with a number of existing bloating control methods exist in literature includ-

ing double tournament [LP02a], proportional tournament [LP02a], lexicographic

tournament [LP02b], ratio bucketed tournament [LP06] and Tarpeian selection

[Pol03]. These techniques have been compared in detail previously in [LP06] by

Luke and Panait. As a result, here for each bloating control method, we use the

optimal parameter setting found in [LP06] to compare against depth constraint

crossover. For double tournament selection, the first tournament is based on size

and the second is based on fitness. The tournament size for the first tournament

is 1.4 and the tournament size for the second tournament is 7. For proportional

tournament, the tournament size is 7 and 20% time, the proportional tournament

selection is based on size and the other 80% is based on fitness. For lexicographic

tournament, the tournament size is 7. For ratio bucket tournament selection, the

size of tournament is 7 and the number of buckets is 2. For Tarpeian selection,

30% of “big” individuals are killed in every generation. For depth constraint

crossover, tournament size is 5. Threshold 𝜖 is set to 0.005 for boolean problems

and 1 for symbolic regression problem. The rest of experiment parameters are

the same as previous experiments.

The experiment result can be found in Table 5.9. In artificial ant problem,

ratio bucket selection produces least amount of bloating (50.7024). Depth con-

straint crossover gives similar performance compared to double tournament and

lexicographic selection. In symbolic regression problem, proportional selection

produces least amount of bloating (26.7825), but with the cost of fitness. Depth

constraint crossover produces average amount of bloating (37.7814) but best raw

fitness (0.0935). Similarly, in multiplexer 11 problem, depth constraint crossover

produces average amount of bloating (63.9289) and best raw fitness (241.2200).

In even-5 parity problem, depth constraint crossover produces least amount of

bloating (71.4626) and the average raw fitness (6.0400). Overall, the performance

of depth constraint crossover is reliable and very competitive across all problem

domains.

5.6 Conclusion

In this chapter, we extend the removal bias bloating theory to develop depth

difference hypothesis. Depth difference hypothesis blames the depth difference

CHAPTER 5. REMOVAL BIAS & DEPTH-CONSTRAINT CROSSOVER114

between subtree swapped in crossover as the root cause of bloating and this

depth difference is driven by depth difference of parents selected. In order to

support depth difference hypothesis, we quantitatively define the depth differ-

ence of subtree swapped as amount of removal bias. Experiment results show

that, there is a strong correlation between average depth of the population and

average amount of removal bias, and more importantly, controlling the amount

of removal bias reduces the average depth of the population and vice visa. This

empirical evidence supports the depth difference hypothesis theory. Motivated

by depth difference hypothesis theory, depth constraint crossover, which controls

the amount of removal bias directly, has been developed as a new bloating con-

trol method. A number of experiments conducted show that depth constraint

crossover, despite the simplicity, is capable of effectively controlling bloating by

controlling the population average depth without affecting GP performance in

terms of best fitness achieved. And with the optimal control parameter we found

(𝜖 = 0.005 which gives best control of bloating while maintaining the performance

in terms of best raw fitness archived) via experiments, depth constraint crossover

is very competitive compared to other existing bloating control methods.

Chapter 6

Norm-Referenced Fitness

Evaluation

6.1 Introduction

Optimization of genetic programming has always been a hot topic in genetic pro-

gramming research. The goal of the optimization is to improve the efficiency of

GP in order to solve more complex problems. A lion share of these optimizations

are bloating control methods which we have discussed in detail in previous chap-

ters. Bloating control methods concentrate on bloating. By controlling bloating,

genetic programming algorithm can be executed much faster and runs for much

more generations, which improves the capacity of GP for more complex problems.

Different from bloating control, other optimization methods focus on improving

GP’s ability to find fitter solutions faster, which directly improve the efficiency

of GP. Some of these methods improve GP performance by exploring alternative

representations of individuals. Examples of these methods include automated

defined functions [Koz94], Linear GP, Graph-based GP and so on. Other meth-

ods improve GP performance by developing more efficient genetic operators. One

example of these methods is greedy over-selection introduced by Koza in [Koz92].

In greedy over-selection, the population is divided into two groups, Group I and

Group II, based on individual’s fitness value. Group I’s individuals are fitter than

Group II’s. When an individual is selected, individual is selected from Group I

with 80% probability. In this way, greedy over-selection greatly improves the

selection intensity, and hence improves the convergence speed of GP.

115

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 116

In this chapter, we explore an alternative of the original fitness function, norm-

referenced fitness function, which is able to improve GP performance. Norm-

referenced fitness function is motivated by the concept of norm-referenced test.

It evaluates an individual’s performance not only based on how well the individual

performs, but also taking into account other individuals’ performance within the

same population. Experiments and analysis show that, norm-referenced fitness

function is able to significantly improve GP performance. This work presented

in this chapter greatly extends our previous published work in [LZ11]. The rest

of this chapter is organized as follows. In the next section, we discuss the limita-

tion of the original fitness function and the motivation of norm-referenced fitness

function. After that, we introduce two internal fitness measures and use them

to build the norm-referenced fitness function. Then, we study empirically the

performance of norm-referenced fitness function firstly in even 5 parity problem

in detail and then extend to other GP problem domains and OneMax problem in

GA as well. We also use the experiment results to develop the implicit bias the-

ory, which forms the theoretical foundation of norm-referenced fitness function.

Finally, we conclude this chapter with partial norm-referenced fitness function,

which addresses one potential runtime performance limitation of norm-referenced

fitness function when used in conjunction with tournament selections.

6.2 Motivation

In educational assessment, there are mainly two different types of tests widely

used: criterion-referenced test and norm-referenced test [Bon96]. In criterion-

referenced test, as the name implies, exam takers are measured against a number

of predefined objective criteria [Bon96]. A typical example of criterion-referenced

test is driving test. In norm-referenced test, candidates are measured against a

predefined group of exam takers, to give an estimation of their relative positions

in that population [Bon96]. Examples of norm-referenced test include IQ test,

many entrance exams such as Graduate Record Examinations (GRE) [Wik13].

The main difference between norm- and criterion-referenced test is that, the for-

mer tries to show the relative ranking of test subjects while the later assesses

the mastery of certain material [Bon96]. As a result, entrance exams are gener-

ally norm-referenced exams since institutions are more interested in exam takers’

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 117

relative ranking, while most of the end of term diagnostic exams are criterion-

referenced tests because lecturers are more interested in whether students have

mastered the course material or not.

One limitation of criterion-referenced test is the possibility that exam takers

are judged by exam questions which are not appropriate to their level. One

extreme example would be testing students in high school Mathematics using

Calculus. Every student would probably fail in this test, but this test does not

assess those students’ mathematical knowledge at all. To avoid this problem,

question setters must make sure their expectation matches exam takers’ actual

level. On the other hand, since norm-referenced test does not seek to enforce any

expectation over what exam takers should be able to do, it does not have this

limitation.

In GP, the role of fitness function is very similar to an exam. Individuals

within population are “exam takers”. The fitness value obtained is the exam

result. GP system then uses the exam result to guide the selection of parents in

breeding phase. For example, in fitness proportionate selection, the probability

that an individual is selected is proportional to the fitness of that individual. The

exact form of fitness function may vary from problem to problem. Typically, a

fitness function consists of a number of test cases. Each test case consists of a

number of inputs and a desired output. The test case acts as a “question” in

exam. An individual’s fitness value for a test case is usually the distance from

individual’s actual output to the desired output. More formally, let 𝑥 be an

individual, we use 𝑓𝑖(𝑥) to represent the fitness value of individual 𝑥 for test case

𝑖. Then, for a fitness function which consists of 𝑛 test cases, denoted as 𝐹 (𝑥), we

have:

𝐹 (𝑥) =
𝑛∑

𝑖=1

𝑓𝑖(𝑥). (6.1)

The fitness function is a criterion-referenced test. This is because an individual’s

“absolute” performance is used to judge the quality of that individual. As a

result, the fitness function in GP does have the expectation mis-match problem

we discussed previously. For example, evaluating the newly generated population

using fitness function is pretty similar to test high school students Mathematics

using Calculus, as the fitness function is too “hard” to randomly created indi-

viduals. The fundamental problem of this miss-match between the expectation

and the actual performance is that, it reduces the ability to differentiate between

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 118

better exam takers and worse exam takers. In another word, when using criterion-

referenced test result to establish the relative ranking of test takers, one needs

to ensure that test questions match the exam takers’ average level, such that the

results are able to adequately differentiate those exam takers’ level. On the other

hand, a norm-referenced test would be a better fit in this scenario because, firstly

norm-referenced test does not enforce any expectation of test subjects’ level, and

secondly the primary purpose of the norm-referenced test is to give ranking infor-

mation telling which exam taker performs at an average level, which exam taker

does better, and which exam taker does worse.

6.3 Internal Fitness Measure

As we discussed in the previous section, the fundamental problem of the criterion-

referenced fitness function used in GP is that, it only subjectively judges the

quality of candidate solutions without taking into account other individuals’ per-

formance within the same population. To overcome this problem, in this section,

we build a more comprehensive fitness function which not only considers individ-

ual’s subjective raw fitness, but also takes into account the current population’s

performance. We call the former “external” fitness measure because it is defined

by the user and is provided as input into the GP system. We call the later

“internal” fitness measure because it is derived from the population and it is

independent to the problem GP system is solving.

In this section, we consider two ways to build the “internal” fitness measure.

Fitness function is usually a summation of errors from every single test case.

Usually, we consider all test cases as a single fitness value. The objective of GP

system is to minimize 𝐹 (𝑥). Now, if we consider each test case independently, for

a problem with 𝑛 test cases, given a population 𝑃 which consists of 𝑚 individuals,

for each test case, we can calculate the population 𝑃 ’s performance:

𝑒𝑖 =

∑𝑚
𝑗=1 𝑆(𝑓𝑖(𝑥𝑗))

𝑚
(6.2)

where 𝑆(.) is a scaling function and 𝑆(𝑥) ∈ [0, 1] and 𝑓(.) is the same as in (6.1).

Let 𝒆 = (𝑒1, 𝑒2, ..., 𝑒𝑛), then 𝒆 represents the population’s performance for all test

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 119

cases. Normalizing this error vector 𝒆, we get a weight vector 𝒘−, in which:

𝑤−
𝑖 =

𝑒𝑖∑𝑛
𝑖=1 𝑒𝑖

(6.3)

This weight vector 𝒘− represents the relative importance of test cases using error

as the criterion.

Similar to the calculation above, if we use accuracy rather than error as the

criterion, we can calculate the population 𝑃 ’s performance, 𝒂 = (𝑎1, 𝑎2, ..., 𝑎𝑛),

where:

𝑎𝑖 = 1− 𝑒𝑖 (6.4)

Normalizing 𝒂, we get the weight vector 𝒘+, where:

𝑤+
𝑖 =

𝑎𝑖∑𝑛
𝑖=1 𝑎𝑖

(6.5)

This weight vector 𝒘+ represents the relative importance of test cases using

accuracy as the criterion.

We can use 𝒘− and 𝒘+ as internal fitness measures to create adjustments of

original fitness function. Let 𝒇 = (𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑛(𝑥))
𝑇 , if only 𝒘− is used, we

get:

𝐹−
𝑎𝑑𝑗(𝑥) = 𝒘− ⋅ 𝒇

If only 𝒘+ is used, we get:

𝐹+
𝑎𝑑𝑗(𝑥) = 𝒘+ ⋅ 𝒇 .

In the next, we give a brief example calculating 𝒘−, 𝒘+, 𝐹−
𝑎𝑑𝑗(𝑥) and 𝐹+

𝑎𝑑𝑗(𝑥),

using even parity 3 problem domain which has 8 test cases as an example. Con-

sidering a population of 4 individuals: 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. The fitness of each

individual is listed in table 6.1. For this population 𝑃 , using (6.2), we get:

Individual 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 F
𝑝1 0 0 0 0 0 1 1 0 2
𝑝2 1 0 1 0 1 1 1 0 5
𝑝3 1 0 1 0 1 0 1 0 4
𝑝4 0 0 0 0 1 1 1 0 3

Table 6.1: Fitness Values of 4 Individuals in 𝑃

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 120

𝒆 = (
2

8
,
0

8
,
2

8
,
0

8
,
3

8
,
3

8
,
4

8
,
0

8
)

= (0.25, 0, 0.25, 0, 0.375, 0.375, 0.5, 0)

Where 𝑆(𝑥) = 𝑥 is used as the scaling function. Normalizing 𝒆 using (6.3), we

get:

𝒘− = (
0.25

1.75
,

0

1.75
,
0.25

1.75
,

0

1.75
,
0.375

1.75
,
0.375

1.75
,
0.5

1.75
,

0

1.75
)

= (0.143, 0, 0.143, 0, 0.214, 0.214, 0.286, 0)

Similarly, we can also calculate 𝒂 using (6.4):

𝒂 = (1− 2

8
, 1− 0

8
, 1− 2

8
, 1− 0

8
, 1− 3

8
, 1− 3

8
, 1− 4

8
, 1− 0

8
)

= (0.75, 1, 0.75, 1, 0.625, 0.625, 0.5, 1)

Normalizing 𝒂 using (6.5), we get:

𝒘+ = (
0.75

6.25
,

1

6.25
,
0.75

6.25
,

1

6.25
,
0.625

6.25
,
0.625

6.25
,
0.5

6.25
,

1

6.25
)

= (0.12, 0.16, 0.12, 0.16, 0.1, 0.1, 0.08, 0.16)

Using 𝒘− and 𝒘+, we can calculate 𝐹−
𝑎𝑑𝑗 and 𝐹+

𝑎𝑑𝑗. For example, for 𝑝1:

𝐹−
𝑎𝑑𝑗(𝑝1) = (0.143, 0, 0.143, 0, 0.214, 0.214, 0.286, 0)⋅

(0, 0, 0, 0, 0, 1, 1, 0)𝑇

= 0.5

𝐹+
𝑎𝑑𝑗(𝑝1) = (0.12, 0.16, 0.12, 0.16, 0.1, 0.1, 0.08, 0.16)⋅

(0, 0, 0, 0, 0, 1, 1, 0)𝑇

= 1.08.

𝐹−
𝑎𝑑𝑗 and 𝐹+

𝑎𝑑𝑗 consider the present population’s performance from two different

perspectives of view. If we use the examination analogy, in which all test cases are

exam questions, using the original fitness function, all “questions” are worth the

same mark. In 𝐹−
𝑎𝑑𝑗, in which the original fitness function is adjusted using 𝒘−,

“hard” questions which most of students cannot answer are worth more marks.

This encourages students to try to solve those hard questions. In 𝐹+
𝑎𝑑𝑗, where

the original fitness function is adjusted using 𝒘+, “easy” questions which most

of students answer correctly are worth more marks. This promotes students to

concentrate on easy questions while ignoring hard ones. The accumulated effect

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 121

of 𝐹−
𝑎𝑑𝑗 drifts the population towards unexplored region of searching space. This

is because a “hard” test case attracts the population by having a bigger weight.

But once the population performs better on that “hard” test case, its weight

becomes smaller. Then the population moves its “interest” to other “hard” test

cases. In another word, 𝐹−
𝑎𝑑𝑗 destabilizes the evolution by keeping changing the

searching direction. On the other hand, the accumulated effect of 𝐹+
𝑎𝑑𝑗 drives the

population to converge to the current state of evolution. This is because “easy”

test cases, which have bigger weights, have even bigger weights as the population

evolves. In another word, 𝐹+
𝑎𝑑𝑗 stabilizes the evolution by enforcing the search

direction.

In fact, 𝐹−
𝑎𝑑𝑗 and 𝐹+

𝑎𝑑𝑗 represent two different but equally important aspects of

the evolution system: the exploration and exploitation [BT95]. On one hand, 𝐹−
𝑎𝑑𝑗

constantly changes the searching direction to explore the whole searching space.

On the other hand, 𝐹+
𝑎𝑑𝑗 drifts the population into convergence, maintaining the

stability of the system. The balance between exploration and exploitation is

critical to the behavior of GP system [BT95]. As a result, we can combine 𝐹−
𝑎𝑑𝑗

and 𝐹+
𝑎𝑑𝑗 to build a more comprehensive fitness function based on population’s

performance:

𝐹𝑎𝑑𝑗(𝑥) = 𝜆 ⋅ 𝐹−
𝑎𝑑𝑗(𝑥) + (1− 𝜆) ⋅ 𝐹+

𝑎𝑑𝑗(𝑥)

= (𝜆𝒘− + (1− 𝜆)𝒘+) ⋅ 𝒇
= 𝒘 ⋅ 𝒇

(6.6)

where 𝜆 is a parameter and 𝜆 ∈ [0, 1]. We call this new fitness function (6.6) the

norm-referenced fitness function because it not only considers the raw fitness value

𝒇 , but also takes into account population’s performance. Similar to the norm-

referenced test, which gives relative rank of test taker, 𝐹𝑎𝑑𝑗 gives an individual’s

fitness value which is relative to the present population’s performance.

One inspiration of norm-referenced fitness function is boosting algorithm de-

veloped in machine learning [Sch90]. Boosting is a popular machine learning

technique in supervised learning. The idea behind boosting is to construct a

“strong” classifier by combining multiple “simple” and “weak” classifiers. Despite

the variety in weighting scheme of the “weak” classifiers and Mathematical hy-

pothesis made, most of boosting algorithms iteratively learn a number of “weak”

classifiers and then adding them together based on some weighting mechanism

to form the final “strong” classifier. During this iteration process, after a “weak”

classifier is added, the training data set is usually re-weighted, either based on

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 122

the performance of the “weak” classifier learnt in this iteration, or based on the

performance of the combined “strong” classifier so far. Training data which are

misclassified gain weight and data points which are classified correctly lose weight.

In this way, in the future iterations, the weak classifier generated would be more

focus on the part of training set previously misclassified. This rationale is shared

in norm-referenced fitness function when the weights for test cases are adjusted

in each generation.

Similarly, in the context of genetic algorithm, Eiben et al [EVDHVH98] in-

troduce Stepwise Adaptation of Weights (SAW) method to adjust weights of test

cases in graph coloring problem. In SAW, every 𝑇𝑝 number of fitness evaluations,

the weight of test cases which have been colored wrongly by the best individual

in the population is creased by Δ𝑤. In [EVDHVH98], it is also shown that the

exact value of the two newly introduced control parameter 𝑇𝑝 and Δ𝑤 “do not

have a significant effect on the performance”, as long as 𝑇𝑝 is sufficiently small,

and SAW is able to drastically improve the performance of both the convergence

to the optimal solution and convergence speed in graph coloring problem stud-

ied. Comparing to SAW, norm-referenced fitness function adjusts the weights

of the test cases based on the whole population instead of just the best so far

individual. Using the population’s average performance instead of the best so far

individual’s performance gives us the ability to perform a more detailed theoret-

ical analysis of the algorithm, which we will discuss in Section 6.5. Furthermore,

instead of applying a delta (Δ𝑤) to the existing weight of the test case in SAW,

norm-referenced fitness function recalculate the weight for each test case every

generation explicitly.

6.4 Norm-referenced Fitness

The norm-referenced fitness function introduced in the previous section can be

implemented by porting into existing GP implementations using adjusted fitness.

The concept of adjusted fitness is originally developed by Koza to “exaggerate

the importance of small differences in the value of the standardized fitness as

the standardized fitness approaches 0” [Koz92]. It was mainly used for fitness

proportionate selection. Later on, because of the development of various bloating

control methods, the usage of adjusted fitness has been extended. Nowadays,

most of GP implementations use adjusted fitness calculation as a custom point

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 123

where users can alter raw fitness value, applying linear parametric parsimony

pressure for example, and underlying selection methods are based on adjusted

fitness rather than raw fitness values [SA05].

In the case of norm-referenced fitness function, the adjustment of fitness can

be implemented in two steps. After every individual’s fitness in the current

population is calculated, we firstly calculate 𝒘− and 𝒘+ using Algorithm 7.

Algorithm 7 Algorithm to Build 𝒘− and 𝒘+

1: function build-metric(population 𝑝) : 𝒘−, 𝒘+

2: 𝒆← (𝑒1 = 0, . . . , 𝑒𝑛 = 0), 𝑖 = 1 . . . 𝑛
3: 𝒂← (𝑎𝑖 = 0, . . . , 𝑎𝑛 = 0), 𝑖 = 1 . . . 𝑛
4: for testcase 𝑖 = 1 . . . 𝑛 do
5: for all individual 𝑥 ∈ 𝑝 do
6: 𝑒𝑖 = 𝑒𝑖 + 𝑆(𝑓𝑖(𝑥))
7: 𝑎𝑖 = 𝑎𝑖 + (1− 𝑆(𝑓𝑖(𝑥)))
8: end for
9: end for
10: 𝒘− ← (𝑤−

1 =
𝑒1∑𝑛
𝑖=1 𝑒𝑖

, . . . , 𝑤−
𝑛 =

𝑒𝑛∑𝑛
𝑖=1 𝑒𝑖

), 𝑖 = 1 . . . 𝑛

11: 𝒘+ ← (𝑤+
1 =

𝑎1∑𝑛
𝑖=1 𝑎𝑖

, . . . , 𝑤+
𝑛 =

𝑎𝑛∑𝑛
𝑖=1 𝑎𝑖

), 𝑖 = 1 . . . 𝑛

12: return 𝒘− and 𝒘+

13: end function

Then, with 𝒘− and 𝒘+, we can calculate fitness adjustments for every indi-

vidual in the population using Algorithm 8.

Algorithm 8 Algorithm to Calculate Fitness Adjustment

1: function calc-adjusted-fitness(individual x, 𝒘−, 𝒘+, 𝜆) : 𝑓𝑎𝑑𝑗
2: 𝑓𝑎𝑑𝑗 ← 0
3: for testcase 𝑖 = 1 . . . 𝑛 do
4: 𝑓𝑎𝑑𝑗 = 𝑓𝑎𝑑𝑗 + (𝜆 ⋅ 𝑤−

𝑖 + (1− 𝜆) ⋅ 𝑤+
𝑖) ⋅ 𝑓𝑖(𝑥)

5: end for
6: return 𝑓𝑎𝑑𝑗
7: end function

Unlike common fitness adjustment calculations such as linear parametric par-

simony pressure, in which the adjusted fitness is calculated immediately after the

calculation of raw fitness for an individual, norm-referenced fitness adjustment

can only be calculated after all individuals’ raw fitness within the population are

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 124

evaluated. This is because the calculation of 𝒘− and 𝒘+ require every individ-

ual’s raw fitness information. In addition, to avoid repeated evaluation, every

individual’s fitness needs to be stored as a vector indexed by the test case num-

ber rather than a single aggregated value. This is because individual test case

fitness information i.e. 𝑓(𝑥), is required in both Algorithm 7 and Algorithm 8.

Without re-evaluation, the runtime overheads to implement the adjustment can

be neglected.

6.4.1 Initial Experiments

In the first experiment, we test the performance of norm-referenced fitness func-

tion using even parity 5 problem domain. We firstly randomly generate 50 initial

populations. Then, for each population generated, we perform GP runs firstly

using the original fitness function, and then using the norm-referenced fitness

function developed. We test the parameter 𝜆 ranging from 0 to 1 in the step of

0.1 for norm-referenced fitness function. So, for each population initialization,

we have 11 GP runs, one using the original fitness function, and the other 10

using norm-referenced fitness function with different 𝜆 values. Since the output

of GP system is usually the best individual in the last generation, to compare

the performance, we use best individual in the current generation as the crite-

rion. The rest of experiment parameters are as follows. The population size is

500. Tournament selection is used and tournament size is set to 5. In breeding

process, only crossover and reproduction are used with probability 90% and 10%

respectively. GP runs for 50 generations. We use 𝑆(𝑥) = 𝑥 as the scaling function

in (6.2). We use GPLab [SA05] as the testing platform.

Table 6.2 summaries the experiment result we get. The best fitness column is

the average best fitness achieved at generation 50 over 50 initializations. In order

to illustrate the statistical significance, we perform T-Test with 95% confidence

between the original statistics (in the first row) and each 𝜆 value. The test results

are given in column T-Test in Table 6.2, where ↑ represents mean value which is

statistically superior to original fitness function, ↓ represents mean value which is

statistically inferior, and→ represents no statistically significant difference. From

Table 6.2, we find that norm-referenced fitness function developed outperforms

the original fitness function when parameter 𝜆 is around 0.5. 𝜆 equals to 0.5 gives

best performance improvement (16.08%). But, when 𝜆 is small, the performance

is worse compared to the original fitness function. Because we are using the same

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 125

Fitness Function 𝜆 Best Fitness 𝜎 T-Test
Original 7.46 1.459

Norm-referenced

1.0 7.70 1.170 →
0.9 7.60 1.095 →
0.8 7.50 1.063 →
0.7 6.92 1.197 ↑
0.6 6.32 1.618 ↑
0.5 6.26 1.180 ↑
0.4 6.84 2.043 →
0.3 9.92 2.252 ↓
0.2 11.46 1.846 ↓
0.1 11.52 1.526 ↓
0.0 11.44 1.627 ↓

Table 6.2: Best Fitness at Gen 50 in Even Parity 5 Problem

50 initializations across experiments of different parameters, in addition to the

average performance comparison above, it is also possible to compare performance

in a one-to-one basis, as in Table 6.3. From Table 6.3, we can find that, when

𝜆 Num of Better Num of Equal Num of Worse
1.0 15 15 20
0.9 17 7 26
0.8 18 11 21
0.7 24 8 18
0.6 26 13 11
0.5 29 13 8
0.4 25 10 15
0.3 6 6 38
0.2 2 2 46
0.1 0 2 48
0.0 0 3 47

Table 6.3: Number of GP Runs when Norm-referenced Fitness Function Performs
Better, Equal, or Worse Compared to the According Original Fitness function
with Same Initialization

𝜆 = 0.4, 0.5, 0.6, 0.7, norm-referenced fitness function performs better in around

50% of initializations.

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 126

6.4.2 Analysis of Selection Intensity

Norm-referenced fitness function adjusts the original fitness function using the

population’s performance. This adjustment changes individuals’ fitness ranks

and ultimately affects the selection of parents in the breeding phase. Thus, it is

possible to analyze the effect of norm-referenced fitness function by studying how

it affects the selection of parents. Here, we use selection intensity to analyze the

effect of the norm-referenced fitness function. Selection intensity is developed by

Blickle and Thiele in [BT96]. The selection intensity 𝐼 of a selection method is:

𝐼 =
�̄�∗ − �̄�

�̄�

where �̄�∗ is the expected mean fitness after selection, �̄� is the expected mean

fitness before selection, and �̄� is the mean fitness variance before selection. The

selection intensity subjects to the distribution of fitness before selection. As a

result, in [BT96], Blickle and Thiele restricted the fitness distribution to normal-

ized Gaussian distribution in order to derive mathematical formulas, such that

different selection methods can be compared. In our case, however, the goal

is to analyze how norm-referenced fitness function affects the selection method

throughout the evolution process. Thus, we need to consider different distribu-

tions of fitness.

The simulation of selection intensity is designed as follows. We select a single

GP run from previous experiment in which the original fitness function is used.

For each generation, we simulate tournament selections with tournament size 5

firstly using original fitness function, then using norm-referenced fitness function

with 𝜆 ranging from 0 to 1 in step of 0.1. We then calculate the selection intensity

for each case. In order to reduce the randomness in tournament selection, we use

the same random number generator for each simulation, i.e. the same 5 random

individuals are selected, only the selection of the best may be altered based on

different fitness functions and parameter 𝜆 settings. The simulation result is in

Figure 6.1.

From this simulation, we get two direct observations. Firstly, the selection in-

tensity of tournament selection with the original fitness function increases in later

generations. The average selection intensity for the original fitness function from

generation 0 to 20 is 0.192, while this average increases to 0.810 for generation 21

to 50. Secondly, for tournament selection with norm-referenced fitness function,

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 127

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

S
el

ec
tio

n
In

te
ns

ity

Generation

original
lambda = 1

lambda = 0.9
lambda = 0.8
lambda = 0.7
lambda = 0.6
lambda = 0.5
lambda = 0.4
lambda = 0.3
lambda = 0.2
lambda = 0.1

lambda = 0

Figure 6.1: The Selection Intensity of Tournament Selection for the Original
Fitness Function and Norm-referenced Fitness Functions with Different 𝜆 Settings

the selection intensity behaviors can be divided into three categories. For 𝜆 values

from 0.6 to 1, where 𝒘− dominates 𝐹𝑎𝑑𝑗, the selection intensity fluctuates around

0. For 𝜆 values 0 to 0.4, where 𝒘+ dominates 𝐹𝑎𝑑𝑗, the selection intensity follows

the same trend as the original fitness function. For 𝜆 value 0.5, the selection

intensity seems to be independent to generation. The mean selection intensity is

0.149, which is very close to the initial selection intensity in generation 0, which

is 0.171. This observation confirms our discussion in Section 6.3. 𝒘− promotes

exploration by reducing the selection intensity, while 𝒘+ promotes exploitation

by increasing the selection intensity. 𝜆 value 0.5 gives the best balance between

exploration and exploitation. As a result, it gives the best performance in the

initial experiment.

6.5 Implicit Bias Theory

To further study the selection intensity, let’s review 𝐹𝑎𝑑𝑗. From (6.6), we have:

𝐹𝑎𝑑𝑗(𝑥) = (𝜆𝒘− + (1− 𝜆)𝒘+) ⋅ 𝒇
=

∑𝑛
𝑖=1(𝜆𝑤

−
𝑖 + (1− 𝜆)𝑤+

𝑖) ⋅ 𝑓𝑖(𝑥)

Substitute 𝑤−
𝑖 and 𝑤+

𝑖 using (6.3) and (6.5), we get:

𝐹𝑎𝑑𝑗(𝑥) =
∑𝑛

𝑖=1(𝜆
𝑒𝑖∑𝑛
𝑖=1 𝑒𝑖

+ (1− 𝜆)
𝑎𝑖∑𝑛
𝑖=1 𝑎𝑖

) ⋅ 𝑓𝑖(𝑥)

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 128

Substitute 𝑎𝑖 using (6.4), we have:

𝐹𝑎𝑑𝑗(𝑥) =
∑𝑛

𝑖=1(𝜆
𝑒𝑖∑𝑛
𝑖=1 𝑒𝑖

+ (1− 𝜆)
1− 𝑒𝑖∑𝑛

𝑖=1(1− 𝑒𝑖)
) ⋅ 𝑓𝑖(𝑥)

=
∑𝑛

𝑖=1

𝑒𝑖(𝜆𝑛−
∑𝑛

𝑖=1 𝑒𝑖) + (1− 𝜆)
∑𝑛

𝑖=1 𝑒𝑖
(𝑛−∑𝑛

𝑖=1 𝑒𝑖)
∑𝑛

𝑖=1 𝑒𝑖
⋅ 𝑓𝑖(𝑥)

Let 𝜆 =

∑𝑛
𝑖=1 𝑒𝑖
𝑛

, then:

𝐹𝑎𝑑𝑗(𝑥) =
∑𝑛

𝑖=1

𝑛 ⋅ 𝑒𝑖 ⋅ 0 + (𝑛−∑𝑛
𝑖=1 𝑒𝑖)

∑𝑛
𝑖=1 𝑒𝑖

𝑛 ⋅ (𝑛−∑𝑛
𝑖=1 𝑒𝑖)

∑𝑛
𝑖=1 𝑒𝑖

⋅ 𝑓𝑖(𝑥)

=
1

𝑛
⋅∑𝑛

𝑖=1 𝑓𝑖(𝑥)

=
𝐹 (𝑥)

𝑛

which is independent of 𝑒𝑖. On one hand, we could say that norm-referenced

fitness function is useless when parameter 𝜆 =

∑𝑛
𝑖=1 𝑒𝑖
𝑛

. On the other hand,

we can also say that the original fitness function is a “special” kind of norm-

referenced fitness function, in which the parameter 𝜆 is dynamically adjusted to∑𝑛
𝑖=1 𝑒𝑖
𝑛

for each generation. We call this value 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, i.e.

𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =

∑𝑛
𝑖=1 𝑒𝑖
𝑛

Since 𝑒𝑖 represents the population’s average error for a single test case 𝑖,

∑𝑛
𝑖=1 𝑒𝑖
𝑛

then is the population’s average error for the problem currently solving. Within

the evolution process, the population’s fitness generally improves. So, this value∑𝑛
𝑖=1 𝑒𝑖
𝑛

becomes smaller as GP system evolves. In another word, in the original

fitness function, the 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 value decreases through generations. Since smaller

𝜆 means stronger effect of 𝒘+, thus, there is an implicit bias within the original

fitness function increasing the selection intensity as GP system evolves, “pushing”

the system to converge.

Figure 6.2 gives an example of how 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 changes when the original fit-

ness function is used. In the initial population at generation 0, the 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is

0.49975, which is very close to 0.5. This is not an accident. Parity problem is

a binary problem. The output can only be either 1 or 0. Because the initial

population is randomly generated, as a result, the expected value of 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 in

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 129

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50

la
m

bd
a

or
ig

in
al

Generation

lambda original

Figure 6.2: 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 for a GP Run in Even Parity 5 Problem using Original Fitness
Function

generation 0 would be 0.5. With 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 equals to 0.5 initially, the original fitness

function achieves a good balance between exploration and exploitation. But, as

the population’s fitness gets better, the 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 gets smaller, the original fitness

function then puts more weight on exploitation, breaking the balance between

exploration and exploitation. As a result, after around 35 generations, the GP

system’s evolution speed has been greatly reduced. So, in conclusion, the main

problem of original fitness function is the implicit bias towards exploitation in

later generations. On the other hand, because of the fixed 𝜆 parameter setting,

norm-referenced fitness function does not have this implicit bias.

Using this theory of implicit bias, we can explain why different 𝜆 values achieve

different performances in the initial experiment. In the initial experiment, 𝜆

values ranging from 0 to 0.3 failed to perform well. This is because those 𝜆 values

are too small such that the GP system does not have enough ability to explore the

searching space. As a result, in the selection of parameter 𝜆, we generally should

avoid small numbers. This is because small 𝜆 values not only cannot reduce the

implicit bias towards exploitation in the original fitness function, but also enforce

the bias. So, smaller 𝜆 values may lead to early convergence of the system, which

is not desired.

On the other hand, when 𝜆 is too big, the selection intensity would be very

small. This does remove the implicit bias in later generations, but it put too

much emphasis to exploration in early generations, such that the evolution will

be slowed down. This is why 𝜆 values 1, 0.9 and 0.8 haven’t achieved better

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 130

performance compared to the original fitness function in the initial experiment.

In even parity 5 problem domain, norm-referenced fitness function with 𝜆 value

0.5 gives the best balance between the exploration and exploitation. In early

generations, it mimics the behavior of the original fitness function to give a good

balance between the exploration and exploitation. In later generations, when the

implicit bias starts to affect the original fitness function breaking the balance, the

norm-referenced fitness function with 𝜆 equals to 0.5 still maintains the balance.

The theory of the implicit bias towards exploitation in original fitness function

not only can be used to explain why norm-referenced fitness function works as

we discussed above, the significance of this theory is much more profound. In

fact, this theory offers a new perspective while tuning selection pressure in GP.

Selection pressure is the key feature of selection methods [PLM08] and it plays

a critical role in GP system [XZA07]. Furthermore, selection pressure plays an

important role in bloating [GEBK04]. But, current researches about selection

pressure control are mainly concentrated on modifications of selection methods.

For example, in [XZA06a], a modification of standard tournament selection using

population clustering is developed. The theory of implicit bias shows that, in

addition to selection methods, fitness function also plays an important role in the

formation of selection pressure. Adjusting parameter 𝜆 in norm-referenced fitness

function provides a complete new and effective approach to tune the selection

pressure. For example, from Figure 6.1, we can see that 𝜆 value 1 is able to

significantly reduces the selection intensity of tournament selection to around

0 for all generations. 𝜆 value 0.5 is able to maintain the selection intensity of

tournament selection at a constant level, rather than increasing over generations.

In addition, the implicit bias theory also gives an unique insight into the

convergence of GP. Previous researches regarding the convergence of GP are gen-

erally based on the loss of diversity symptom. It is widely believed that it is the

crossover which results in population lossing diversity over generations and the

pre-mature convergence of GP. For example, in [Lan96a], Langdon regards the

common phenomenon in GP that improvements in the best fitness value in the

population occurs rarely after 20 to 30 generations as the “death of crossover”.

As a result, a number of “clever” GP operators are developed such as in [CM02]

and [SD06] which are able to preserve the diversity of the population. However,

the implicit bias theory reveals another and arguably more fundamental cause

of convergence: the fitness function of GP system itself “pushes” the population

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 131

towards convergence when the population’s average performance gets better and

better. In fact, we think that the lose of diversity could merely be a symptom

of the curse of evolution. This is because selection methods which have been

thought as the root cause of the loss of diversity is controlled and driven by

fitness function.

In the early stage of evaluation in which the population’s average performance

is not very good (𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is big), the original fitness function is able to balance

the exploration and exploitation, driving the population to evolve quickly. How-

ever, as the population’s average performance getting better and 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 getting

smaller, according to our discussion in Section 6.3, the fitness function is more

“interested” in individuals copying their parents’ behavior, and failed to capture

“better” individuals which perform well on “hard” test cases, because the “hard”

test cases have relatively smaller weights. So, the same fitness function, which

promotes the evolution in the early stage of evolution, becomes the obsolete to

the evolution in later generations. We call this phenomenon the curse of evo-

lution. The curse of evolution shows that, in the later generations when the

evolution slows down, it not only because it is increasingly hard to find fitter

solutions, but also and more likely due to the fitness function is no longer able to

effectively evolve the population. In addition, the curse of evolution shows that

“the selection favoring representations which have the same fitness as those from

which they were created” [LP97b] may not due to either the fact that crossover

cannot produce “fitter” individuals or any selection scheme. In fact, in the later

generations, offsprings having the same phenotype behavior as their parents are

favored because the fitness function favors individuals copying the population’s

behavior.

Finally, the curse of evolution represents a first evidence showing that the

population plays a much more important role in the selection of “fitter” indi-

viduals. The original fitness function, which we thought is quite subjective, can

actually be affected by the performance of population. On the other hand, the

curse of evolution also implies that, there is actually a conflict between finding

the optimal solution, which is what we expect GP to perform, and what GP

actually does, finding fitter populations, especially in later stage of evolution. In

another word, unfit individuals within the population is quite useful to balance

the population’s performance such that the the population is able to positively

affects the fitness function.

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 132

6.5.1 Further Experiment in Even Parity 5 Domain

In the simulation in previous section, we find that bigger 𝜆 values result in smaller

selection intensity and conclude that this slows down the convergence speed of the

algorithm. In the next experiment, we study whether smaller selection intensity

leads to better convergence of algorithm in longer term despite the speed. In this

experiment, we randomly choose 10 initializations created in the first experiment

and run them for 300 generations instead of 50. Given enough time for GP

algorithm to evolve, we then check if the norm-referenced fitness function leads

to better convergence for big 𝜆 values. The rest of parameters are the same as in

initial experiment. Here, we test norm-referenced fitness with 𝜆 values ranging

from 0.5 to 1 in step of 0.1.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 1

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 0.9

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 0.8

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 0.7

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 0.6

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

B
es

t F
itn

es
s

of
 G

en

Generation

normal
lambda = 0.5

Figure 6.3: Comparison of Best Fitness of Generation Changes over Generations
Between Original Fitness Function and Norm-referenced Fitness Functions with
Different 𝜆 Settings

The experiment result is summarized in Table 6.4 and Figure 6.3. In Table

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 133

Initialization Original
Norm-referenced

Best Param
𝜆 = 1.0 𝜆 = 0.9 𝜆 = 0.8 𝜆 = 0.7 𝜆 = 0.6 𝜆 = 0.5

1 3 (300) 2 (300) 0 (110) 1 (300) 0 (140) 0 (232) 0 (193) 𝜆 = 0.9

2 3 (300) 0 (240) 1 (300) 0 (213) 0 (151) 0 (192) 0 (100) 𝜆 = 0.5

3 5 (300) 0 (219) 3 (300) 1 (300) 1 (300) 2 (300) 1 (300) 𝜆 = 1.0

4 5 (300) 3 (300) 1 (300) 1 (300) 1 (300) 3 (300) 0 (156) 𝜆 = 0.5

5 8 (300) 0 (290) 1 (300) 0 (204) 2 (300) 3 (300) 0 (190) 𝜆 = 0.5

6 5 (300) 4 (300) 0 (244) 0 (213) 3 (300) 1 (300) 0 (209) 𝜆 = 0.8

7 3 (300) 0 (215) 0 (252) 0 (188) 1 (300) 0 (215) 3 (300) 𝜆 = 1.0, 0.6

8 4 (300) 2 (300) 5 (300) 1 (300) 0 (281) 1 (300) 0 (271) 𝜆 = 1.0

9 4 (300) 3 (300) 3 (300) 0 (227) 1 (300) 1 (300) 1 (300) 𝜆 = 0.8

10 6 (300) 0 (198) 0 (240) 3 (300) 5 (300) 0 (207) 3 (300) 𝜆 = 1.0

Avg. Fitness 4.6 1.4 1.4 0.7 1.4 1.1 0.8

Table 6.4: Experiment Results for 10 Initializations Running 300 Generations

6.4, each cell gives the best raw fitness achieved. The number in brackets is the

generation when the best raw fitness is achieved. GP runs in which the optimal

solution is found (raw fitness 0) are highlighted. From Figure 6.3, we can find

that, original fitness function performs very well in the first 100 generations. The

best fitness of generations has been improved from 13.7 at generation 0 to 5.7 at

generation 100. But after that, it failed to continuously improve the best fitness

of generation. It takes 200 generations to improve the best fitness of generation

to 4.6 at generation 300. On the other hand, norm-referenced fitness function

is able to continuously improve the best fitness of generation. Bigger 𝜆 value

results in slower improvements in early generations. When 𝜆 equals to 1, it takes

62 generations for norm-referenced fitness function to outperform original fitness

function. It takes 72 generations when 𝜆 equals to 0.9. This number is reduced

to 61 when 𝜆 equals to 0.8, 45 when 𝜆 equals to 0.7, 50 when 𝜆 equals to 0.6, and

10 when 𝜆 equals to 0.5. But, given 300 generations to evolve, norm-referenced

fitness function outperforms original fitness function in almost all cases for all

𝜆 values experimented. In addition, there is no clear difference in performance

for different 𝜆 values. This suggests that even though bigger 𝜆 value results in

smaller selection intensity and it slows down the evolution, given enough time

to evolve, big 𝜆 value can always achieve the same level of performance as the

optimal 𝜆 (0.5 in our case), and greatly outperforms the original fitness function.

Thus, when selecting 𝜆 value, we can increase the number of generations GP runs

to reduce the sensitivity of the parameter 𝜆.

6.5.2 Experiment in Other Problem Domains

In previous sections, we study the performance of norm-referenced fitness function

in detail using one problem domain even parity 5. In this section, we extend our

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 134

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

ra
w

 fi
tn

es
s

generation

Norm-Referenced
Orignal

Figure 6.4: Best Fitness by Generation for Norm-referenced and Original Fitness
Function in Multiplexer 11 Problem

experiments to a number of other interesting problem domains including two other

boolean problems, multiplexer 11 and artificial ant, a real numbered problem, the

sextic regression problem and finally OneMax problem which is widely used in

GA.

The first problem domain we are interested in is multiplexer 11 problem.

Unlike even parity 5 problem which only contains 32 test cases, the interesting

aspect of multiplexer 11 problem is that, it contains 2048 independent test cases.

The experiment of norm-referenced fitness function in multiplexer 11 problem is

designed as follows. Norm-referenced fitness function with 𝜆 value 0.5 is com-

pared with original fitness function using the best raw fitness achieved in each

generation as criterion. The population size is set to 500. Tournament selec-

tion is used with tournament size 5. Crossover and reproduction are used with

90% and 10% probability respectively. The experiment result is summarized in

Figure 6.4. From the result, we can find that norm-referenced fitness function

significantly outperforms the original fitness function especially in later genera-

tions. This behavior is quite similar to what is observed in even parity 5 problem.

This suggests that norm-referenced fitness function is able to scale up to handle

problem domains which contain a lot of test cases.

In the next, we study the behavior of norm-referenced fitness function in arti-

ficial ant problem. The nature of artificial ant problem is quite different compared

to multiplexer and parity problems. In the later two problems, the individuals

are functions without side effects and test cases are independent to each other.

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 135

However, this is not the case for artificial ant problem. In artificial ant problem,

the individuals are not functions without side effects and the performance of the

ant not only depends on the correctness of the program but also the location of

the ant. Moreover, each food on the ground are not independent to each other

in artificial ant problem. A successful move for the ant to eat one food could

result in a number of subsequent foods to be eaten by the ant easily. Since the

test cases are correlated to each other, the population is more likely to converge

since exploring alternative better solutions are much harder compared to when

the test cases are not correlated. As a result, we believe that a bigger 𝜆 value for

norm-referenced fitness function, which prompts exploration over exploitation, is

required to improve the overall performance. In the next experiment, we compare

the performance of norm-referenced fitness function and original fitness function

in ant problem. For norm-referenced fitness function, we test 𝜆 equals 0.5, 0.6,

0.7, 0.8, 0.9 and 1.0. The rest of experiment parameters are the same as previous

experiment in multiplexer 11 problem. The experiment result is summarized in

Table 6.5. To establish the statistical significance, we use T-Test with 99% con-

fidence to compare original fitness function and norm-referenced fitness function.

From Table 6.5, we can see that norm-referenced fitness function with 𝜆 value

Fitness Function 𝜆 Best Fitness 𝜎 T-Test
Original 29.102 9.511

Norm-referenced

1.0 24.163 8.683 →
0.9 22.286 8.051 ↑
0.8 24.673 8.175 →
0.7 25.021 7.157 →
0.6 22.531 8.325 ↑
0.5 26.532 6.869 →

Table 6.5: Best Fitness at Gen 50 in Artificial Ant Problem

0.5, 0.7, 0.8 and 1.0 perform better than original fitness function, but not in a

statistical significant manner. 𝜆 value 0.6 and 0.9 perform better than original

fitness function in a statistical significant manner. 𝜆 value 0.9 performs best and

it outperforms the original fitness function by 23.42%. This confirms the expec-

tation that in ant problem where test cases are correlated to each other, bigger

𝜆 value performs better compared to 𝜆 value 0.5.

All previous experiments deal with discrete domain, in which 𝑓(𝑥) is binary.

This makes the selection of scaling function 𝑆 in (6.2) quite simple. In regression

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 136

problems, however, 𝑓(𝑥) usually is not bounded, i.e. 𝑓(𝑥) ∈ [0,∞). In this

case, for certain unfit individuals, 𝑓(𝑥) could be extremely large. These outliers

affect the calculation of 𝑒𝑖 and ultimately affect the calculations of both 𝒘−

and 𝒘+. For example, using GP to solve quartic symbolic regression problem

(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 with 20 points generated from [-1, 1] as test cases), individual

2𝑥4 + 𝑥3 + 3𝑥2’s error for test case 𝑥 = 1 is 6− 4 = 2. Another individual 𝑒𝑒
𝑒𝑥

’s

error for the same test case is 3814275.1. If we add those two errors together

directly in (6.2), the effect of the first error value will be neglected. Moreover,

from pure implementation point of view, adding very big numbers together in

(6.2) may cause floating point number overflow. Then 𝑒𝑖 will be∞ and the whole

calculation of 𝒘− and 𝒘+ will be wrong.

To solve this problem, we need an effective scaling function in (6.2) to control

those outliers. In this thesis, we develop a simple linear scaling function as follows.

Given a population 𝑃 = {𝑥𝑖∣1 ≤ 𝑖 ≤ 𝑚}, for a problem which contains 𝑛 test

cases, let

𝐸 = {𝑓𝑖(𝑥𝑗)∣1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}

Let 𝑎 = 𝑚𝑖𝑛(𝐸) i.e. the minimal value in E, and 𝑏 = 𝑡𝑟𝑖𝑚𝑚𝑒𝑎𝑛(𝐸), i.e. the

trimmed mean value of E, then the scaling function S is:

𝑆(𝑥) =

⎧⎨⎩
0, 𝑥 = 𝑎

1

2(𝑏− 𝑎)
𝑥− 𝑎

2(𝑏− 𝑎)
, 𝑎 < 𝑥 ≤ 2𝑏− 𝑎

1, 𝑥 > 2𝑏− 𝑎

(6.7)

This scaling function uses a linear function to map the minimal error value (𝑎)

to 0, and the trimmed mean value (𝑏) to 0.5. All values bigger than 2(𝑏− 𝑎) are

mapped to 1. For every generation, we rebuild 𝐸 and recalculate the value of 𝑎

and 𝑏 before calculating 𝑒𝑖 and 𝑎𝑖. One thing to note is that, 𝑆(𝑓(𝑥)) here is an

adjustment of 𝑓(𝑥) relative to present population’s performance. Comparing the

value of 𝑆(𝑓(𝑥)) from different generations would be meaningless.

We test the performance of norm-referenced fitness function with the linear

scaling function using sextic regression problem introduced in [Koz94]. In sextic

problem, the equation to be regressed is 𝑦 = 𝑥6−2𝑥4+𝑥2 where 𝑥 ∈ [−1, 1]. The
experiment is designed as follows. Similar to the initial experiment, we firstly

generate 50 initializations. Then for each initialization, we firstly run GP with

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 137

original fitness function, and then run with norm-referenced fitness function. In

the later, the parameter 𝜆 ranges from 0.5 to 1 in step of 0.1. We also use best

individual in the last generation as comparison criteria. The population size is

500. Tournament selection is used and the tournament size is 5. crossover and

reproduction are used for selection of parent in breading with probability 90%

and 10% respectively. GP runs for 50 generations. In the scaling function (6.7),

when calculating trimmed mean, we discard 10% values at both high and low

ends.

The experiment results are summarized in Table 6.6. In sextic problem, we

find that 𝜆 equals to 1.0 gives the best performance improvement (40.35%). The

Fitness Function 𝜆 Best Fitness 𝜎 T-Test
Original 0.347 0.318

Norm-referenced

1.0 0.229 0.207 ↑
0.9 0.288 0.278 ↑
0.8 0.313 0.339 →
0.7 0.306 0.319 →
0.6 0.364 0.342 →
0.5 0.329 0.301 →

Table 6.6: Best Fitness at Gen 50 in Sextic Problem

optimal 𝜆 value in sextic problem is much bigger compared to parity problem.

We think this is mainly because of the usage of scaling function (6.7), rather than

the change of problem domain. In previous discussion, we find that the original

fitness function is a “special” kind of norm-referenced fitness function, in which

the parameter 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 equals to

∑𝑛
𝑖=1 𝑒𝑖
𝑛

for each generation. In parity problem,

this value goes down as GP evolves. But in sextic problem, because of the linear

scaling function (6.7), in which the trimmed mean is always mapped to 0.5, the

value of 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 does not change through generations and

𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ≈ 0.5

for all generations. In early generations, when individuals are generally unfit, this

value is reduced by the scaling function. In later generations, when individuals are

generally fit, the scaling function amplifies this value. As we discussed previously,

big 𝜆 value prevents GP system from converging in later generations and this leads

to better performance. Since the 𝜆 has been amplified by the scaling function in

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 138

later generations, as a result, we need even bigger 𝜆 values to effectively control

the convergence speed. In our case, the scaling function (6.7) amplifies 𝜆 in sextic

problem. So, bigger value (𝜆 = 1) performs best. In conclusion, the selection

of scaling function has much bigger implication to the norm-referenced fitness

function. It may affect the value of optimal parameter 𝜆. For the linear scaling

function (6.7) developed, we can generally choose big 𝜆 values like 0.9 or 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

fit
ne

ss

generation

Norm-Referenced
Orignal

Figure 6.5: Average Population Fitness Change over Generations for Norm-
referenced and Original Fitness Function in OneMax Problem

Even though the norm-referenced fitness function is developed in the con-

text of genetic programming, the development of norm-referenced fitness func-

tion however does not use any GP specific domain information. As a result,

the norm-referenced fitness function can be easily applied to other evolutionary

computation methods. In the last experiment in this section, we apply norm-

referenced fitness function to genetic algorithm using OneMax problem. OneMax

problem [SE91] is arguably one the most widely known and used benchmark

problems in genetic algorithm. The goal of OneMax problem is to maximize the

number of ones of a bitstring. Formally, the goal of OneMax problem is to find a

bit string �⃗� = {𝑥1, 𝑥2, . . . , 𝑥𝑁}, with 𝑥𝑖 ∈ {0, 1}, which maximizes:

𝐹 (�⃗�) =
𝑁∑
𝑖=1

𝑥𝑖

In our experiment, we optimize 20 bits bitstrings, i.e. 𝑁 = 20. The rest of control

parameters are defined as follows. Population size is set to 10. Only crossover

operator is used for breeding. Tournament selection with tournament size 2 is

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 139

used for selection of parents in crossover. GA runs for 50 generations. In the

initial genome generation, each bit has 10% chance to be 1 and 90% to be 0. For

norm-referenced fitness function, we set the 𝜆 equals 0.5. We use average fitness

of population at each generation to compare the performance of norm-referenced

fitness function and original fitness function. The experiment is performed using

ECJ [Luk09]. The experiment result can be viewed in Figure 6.5. Unlike previous

experiments in which smaller raw fitness values are better. In OneMax problem,

bigger fitness values are better and the optimal raw fitness value is 1. From the

figure, we can see that norm-referenced fitness function is able to outperform

original fitness function in a statistical significant manner. At generation 50,

norm-referenced fitness function outperforms original fitness function by 7.84%.

Finally, we experiment the performance of norm-referenced fitness function as 𝑁

increases from 20 to 50, 100, 150 and 200. The experiment result is summarized

in Table 6.7. In Table 6.7, the value before ± is the average best fitness achieved

and the value after is the standard deviation. From Table 6.7, we can see that,

𝑁 Norm-referenced Original
20 0.970 ± 0.028 0.900 ± 0.051
50 0.850 ± 0.036 0.755 ± 0.043
100 0.722 ± 0.030 0.649 ± 0.028
150 0.647 ± 0.023 0.599 ± 0.022
200 0.604 ± 0.024 0.568 ± 0.021

Table 6.7: OneMax Problem Performance for 𝑁 in 20, 50, 100, 150 and 200

as N increases and onemax problem becomes harder, both norm-referenced and

original fitness function performs worse as expected. But, norm-referenced fitness

function always able to outperforms the original fitness function for a given 𝑁

value.

6.6 Partial Norm-referenced Fitness

At the beginning of this chapter, when we gave the description of the norm-

referenced fitness function algorithm, we explained that norm-referenced fitness

adjustment can only be calculated after all individuals within the population

are evaluated because the calculation of 𝒘− and 𝒘+ require every individual’s

raw fitness information. In general, this limitation would not cause any runtime

performance issue. But, when using tournament selection with norm-referenced

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 140

fitness function, the above limitation may result in two problems which affects

runtime performance of GP due to two unique features of tournament selection.

The first feature of tournament selection is that it suffers from “not-sampled is-

sue” [XZ12], i.e. not all individuals are guaranteed to be selected at least once as

part of tournament. These not sampled individuals which originally not required

to be evaluated now need to be evaluated because their fitness value are required

as part of the calculation for 𝒘− and 𝒘+. The second feature is that, tourna-

ment selection supports parallel processing of multiple tournaments. However,

when it is used with norm-referenced fitness function, no tournament selection

can be processed until the evaluation of all individuals within the population is

completed. In another word, when using norm-referenced fitness function, tourna-

ment selection no longer can be used in a multi-threaded manner. This problem,

although may not be a big issue in single threaded implementation of GP, may

result in inferior runtime performance in multi-threaded implementation of GP.

In this section, we address this limitation of norm-referenced fitness function by

implementing partial norm-referenced fitness function.

Partial norm-referenced fitness function implements the same concept as norm-

referenced fitness function but only at tournament level. Given a tournament 𝑇

in tournament selection which contains 𝑡 individuals, and a problem with 𝑛 test

cases, for each test case 𝑖, we can calculate the tournament 𝑇 ’s performance:

𝑒𝑝𝑖 =

∑
𝑥𝑗∈𝑇 𝑆(𝑓𝑖(𝑥𝑗))

𝑡
(6.8)

where 𝑆(.) is a scaling function and 𝑆(𝑥) ∈ [0, 1] and 𝑓(.) is the same as in (6.1).

Let 𝒆𝒑 = (𝑒𝑝1, 𝑒
𝑝
2, ..., 𝑒

𝑝
𝑛), then 𝒆𝒑 represents the tournament T’s performance for

all test cases. Similar to (6.3), normalizing 𝒆𝒑, we get 𝒘𝒑−, where:

𝑤𝑝−
𝑖 =

𝑒𝑝𝑖∑𝑛
𝑖=1 𝑒

𝑝
𝑖

(6.9)

Similar to (6.4), we can calculate the tournament 𝑇 ’s performance, 𝒂𝒑 = (𝑎𝑝1, 𝑎
𝑝
2, ..., 𝑎

𝑝
𝑛),

where:

𝑎𝑝𝑖 = 1− 𝑒𝑝𝑖 (6.10)

Normalizing 𝒂𝒑, we get the weight vector 𝒘𝒑+, where:

𝑤𝑝+
𝑖 =

𝑎𝑝𝑖∑𝑛
𝑖=1 𝑎

𝑝
𝑖

(6.11)

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 141

With 𝒘𝒑− and 𝒘𝒑+, we define the partial norm-referenced fitness function 𝐹 𝑝
𝑎𝑑𝑗

for tournament 𝑇 as:

𝐹 𝑝
𝑎𝑑𝑗(𝑥) = 𝜆𝑝 ⋅ 𝐹 𝑝−

𝑎𝑑𝑗 (𝑥) + (1− 𝜆𝑝) ⋅ 𝐹 𝑝+
𝑎𝑑𝑗 (𝑥)

= (𝜆𝑝𝒘𝒑− + (1− 𝜆𝑝)𝒘𝒑+) ⋅ 𝒇
= 𝒘𝒑 ⋅ 𝒇

(6.12)

where 𝑥 ∈ 𝑇 .

In essence, 𝐹 𝑝
𝑎𝑑𝑗 represents an approximation of 𝐹𝑎𝑑𝑗. The quality of this

estimation depends on the size of the tournament and how “well” the tournament

of individuals are selected from the population. Norm-referenced fitness function

𝐹𝑎𝑑𝑗 is a global weight optimization for a given population, while the partial norm-

referenced fitness function is a local weight optimization for a given tournament

in tournament selection. As a result, the performance of partial norm-referenced

fitness may not be as good as norm-referenced fitness function. Norm-referenced

fitness function can be implemented by modifying tournament selection. After the

tournament is randomly selected, we calculate𝒘𝒑 and then adjust each individual

in the tournament’s raw fitness, and then use the adjusted fitness to determine

the winner of the tournament. A very important thing to note is that although in

all norm-referenced fitness function experiments above, we only use tournament

selection, this is only because the performance of tournament selection is good

compared to other selection methods such as fitness proportionate selection. The

norm-referenced fitness function is a generic modification of fitness function and

can be used in conjunction with all other selection methods. However, the partial

norm-referenced fitness function is only a modification of tournament selection

and hence can only be used in conjunction with tournament selection to address

the potential runtime performance limitation of norm-referenced fitness function.

In the next, we compare partial norm-referenced fitness function, norm-referenced

fitness function and original fitness function using artificial ant, multiplexer 11

and even parity 5 problem. For partial norm-referenced fitness function and

norm-referenced fitness function, we experiment parameter 𝜆 values 0.5 to 1.0,

in the step of 0.1. Tournament selection of tournament size 5 is used. GP runs

for 300 generations. Crossover and reproduction are used with 90% and 10%

probability respectively. The experiment is performed using ECJ [Luk09]. For

each parameter setting, we perform 50 GP runs to calculate the average perfor-

mance. Table 6.8 summarizes the experiment result of partial norm-referenced,

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 142

Artificial Ant Problem

Fitness Function 𝜆 Gen 50 Gen 100 Gen 200 Gen 300

Original 28.46 ± 11.18 26.14 ± 11.65 22.76 ± 12.42 21.54 ± 12.21

Norm-referenced

1.0 27.24 ± 6.78 23.64 ± 6.56 19.52 ± 6.66 17.18 ± 6.49

0.9 23.16 ± 7.86 19.26 ± 7.39 14.80 ± 7.34 12.52 ± 7.38

0.8 25.22 ± 7.41 19.46 ± 7.76 17.16 ± 7.76 14.84 ± 6.83

0.7 22.96 ± 10.45 18.22 ± 9.99 14.78 ± 9.60 13.40 ± 8.55

0.6 22.60 ± 8.27 18.92 ± 8.68 15.68 ± 8.34 14.46 ± 7.95

0.5 24.62 ± 7.57 20.34 ± 8.54 17.28 ± 8.02 15.34 ± 7.75

Partial Norm-referenced

1.0 26.14 ± 9.25 23.60 ± 10.57 19.34 ± 10.28 17.14 ± 10.45

0.9 27.90 ± 8.76 23.84 ± 8.92 20.32 ± 8.94 17.98 ± 8.18

0.8 27.10 ± 10.24 23.56 ± 10.06 21.60 ± 9.48 19.88 ± 9.16

0.7 26.64 ± 9.41 23.36 ± 9.69 19.96 ± 8.73 18.06 ± 8.74

0.6 25.14 ± 9.65 23.22 ± 9.71 20.96 ± 10.13 19.76 ± 9.41

0.5 25.90 ± 8.96 23.10 ± 8.91 20.18 ± 9.62 18.94 ± 9.69

Even Parity 5 Problem

Fitness Function 𝜆 Gen 50 Gen 100 Gen 200 Gen 300

Original 6.48 ± 1.88 5.48 ± 2.13 4.20 ± 2.14 3.62 ± 2.14

Norm-referenced

1.0 6.92 ± 1.29 3.96 ± 1.59 1.04 ± 1.15 0.24 ± 0.55

0.9 6.42 ± 1.46 3.68 ± 1.67 1.1 ± 1.20 0.48 ± 0.78

0.8 6.20 ± 1.37 3.10 ± 1.63 0.96 ± 1.20 0.44 ± 0.83

0.7 5.82 ± 1.65 3.04 ± 1.71 0.84 ± 1.12 0.28 ± 0.53

0.6 5.58 ± 1.27 2.64 ± 1.42 0.64 ± 0.87 0.22 ± 0.46

0.5 5.70 ± 1.36 2.52 ± 1.50 0.52 ± 0.78 0.20 ± 0.44

Partial Norm-referenced

1.0 10.56 ± 1.20 7.74 ± 2.30 5.06 ± 2.36 3.58 ± 2.44

0.9 9.82 ± 1.24 7.24 ± 2.03 4.94 ± 2.93 3.74 ± 2.73

0.8 10.02 ± 1.46 7.20 ± 1.93 4.92 ± 2.76 3.56 ± 2.91

0.7 8.96 ± 1.41 7.06 ± 1.79 4.84 ± 2.63 3.64 ± 2.76

0.6 8.36 ± 1.31 5.84 ± 1.94 3.22 ± 2.26 2.18 ± 2.35

0.5 7.44 ± 1.91 4.84 ± 2.27 2.52 ± 2.24 1.82 ± 2.02

Multiplexer 11 Problem

Fitness Function 𝜆 Gen 50 Gen 100 Gen 200 Gen 300

Original 268.72 ± 73.22 187.68 ± 76.25 130.40 ± 92.32 112.16 ± 97.86

Norm-referenced

1.0 83.48 ± 92.67 6.64 ± 22.22 0.00 ± 0.00 0.00 ± 0.00

0.9 95.96 ± 98.55 13.28 ± 29.22 0.00 ± 0.00 0.00 ± 0.00

0.8 81.72 ± 90.86 14.64 ± 35.63 1.28 ± 8.96 0.00 ± 0.00

0.7 104.28 ± 80.20 11.1 ± 27.93 2.56 ± 12.54 0.00 ± 0.00

0.6 91.48 ± 82.28 7.36 ± 24.57 4.16 ± 19.94 3.84 ± 19.87

0.5 86.16 ± 81.40 10.4 ± 27.07 0.00 ± 0.00 0.00 ± 0.00

Partial Norm-referenced

1.0 210.8 ± 115.10 82.56 ± 85.64 18.24 ± 45.71 7.68 ± 27.57

0.9 230.92 ± 95.16 73.80 ± 71.50 4.00 ± 15.20 0.00 ± 0.00

0.8 227.36 ± 114.58 92.66 ± 98.87 13.48 ± 38.91 2.56 ± 17.92

0.7 194.64 ± 85.96 68.64 ± 72.77 20.80 ± 42.72 11.84 ± 32.13

0.6 189.92 ± 99.96 69.38 ± 96.99 25.28 ± 80.07 18.24 ± 76.80

0.5 143.24 ± 87.61 51.46 ± 58.79 18.24 ± 42.21 10.88 ± 34.83

Table 6.8: Best Raw Fitness at Generation 50, 100, 200, 300 using Partial Norm-
referenced, Norm-referenced and Original Fitness Function

norm-referenced and original fitness function. The value before ± is the aver-

age best raw fitness achieved and the value after is the standard deviation. In

artificial ant problem, all 𝜆 values give better performance compared to original

fitness function. As we discussed in previous section, the optimal 𝜆 parameter is

bigger. For norm-referenced fitness function, the optimal 𝜆 value is 0.9 and at

generation 300, it is 41.88% better than the original fitness function. For partial

norm-referenced fitness function, the optimal 𝜆 value is 1.0 and at generation

300, it is 20.43% better. In even parity 5 problem, the optimal 𝜆 parameter for

norm-referenced fitness function is 0.5, with which, it is able to outperform the

original fitness function by 94.48% at generation 300. Partial norm-referenced

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 143

results in worse performance in the first 50 generations, but it is able to catch up

and eventually outperforms original fitness function. The optimal 𝜆 parameter

value is also 0.5, in which it outperforms the original fitness function by 49.72%

at generation 300. Norm-referenced and partial norm-referenced fitness function

performs extremely well in multiplexer 11 problem. For norm-referenced fitness

function, with the optimal 𝜆 value 0.5, all 50 GP runs are able to find optimal

solution within no more than 133 generations. For partial norm-referenced fit-

ness function, considering only the first 50 generation, bigger 𝜆 values result in

worse performance. But, given enough generation to evolve, all 𝜆 values are able

to significantly outperform the original fitness function. 𝜆 value 0.9 gives opti-

mal performance. All 50 GP runs are able to find optimal solution within 284

generations.

This experiment also expands the experiment in Section 6.5.1, in which only

even parity 5 problem is studied with 10 initialization. Experiment result for

norm-referenced fitness function confirms the findings in Section 6.5.1. On the

other hand, for partial norm-referenced fitness function, overall, the runtime per-

formance gain is not without cost. The partial fitness function is able to out-

perform the original fitness function, but its performance in terms of best fitness

achieved is not as good as norm-referenced fitness function. The choice between

partial norm-referenced fitness function and norm-referenced fitness function de-

pends on the requirement from the problem GP is solving. For problem domain

which is time sensitive, it is more appropriate to use the partial norm-referenced

fitness function in order to leverage the parallel processing ability of tournament

selection.

6.7 Conclusion

In this chapter, we develop an dynamic fitness function to improve GP perfor-

mance. This is motivated by the analysis in Section 6.3 showing that the original

fitness function in GP may not be appropriate for the population. Then, we

develop the norm-referenced fitness function by taking into account not only the

raw fitness achieved by the individual, but also how well the rest of the individu-

als perform within the same population. With the proper controlling parameter

𝜆, the norm-referenced fitness function is able to “guide” the population towards

unexplored area of searching space and at the same time maintain the stability

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 144

of the evolution. Further analysis of norm-referenced fitness function in Section

6.5 reveals that the original fitness function widely used can be thought as a

special case of norm-referenced fitness function with a changing 𝜆 value 𝜆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.

This finding then reveals that the original fitness function suffers from a implicit

bias towards exploitation. We name this implicit bias as the curse of evolution

and it acts as the theoretical foundation of norm-referenced function. Empiri-

cal evidences from not only GP problems but also GA problems have also been

given in this chapter to support the performance norm-referenced fitness func-

tion. In these experiments, it is shown that norm-referenced fitness function

has very promising performance over the original fitness function. We also find

in Section 6.5.1 that, given enough generation to evolve, the sensitivity of the

choice of parameter 𝜆 can be greatly reduced. Finally, to address the potential

runtime performance limitation of norm-referenced fitness function when used

in conjunction with tournament selection, we develop a modification of tourna-

ment selection called partial norm-referenced fitness function which applies the

same concept of norm-referenced fitness function but only at the local tourna-

ment level. Experiments of partial norm-referenced fitness function show that it

is able to outperform the original fitness function but is not as good as norm-

referenced fitness function. This leaves the user of the algorithm to balance the

choice between better performance or better runtime performance.

The promising performance of norm-referenced fitness function is not acciden-

tal. In fact, it simulates one important aspect of evolution [Rob91], the feedback

loop of evolution from the environment, i.e. the evolution of species changes the

environment and this change of environment then affects the evolution of the

species. With the original fitness function, the objective of the evolution is fixed

and not affected by the evolution of the population. This kind of no feedback

evolution certainly happens in real world. For example, polar bears may adapt

to colder climates by growing thicker fur, but the climate is not affected by the

increased fur at all [Rob91]. However, other evolution scenarios, the environment

does response to the evolution of species and thus forms a feedback loop (either

positive or negative). A example of the feedback loop can be found in the evo-

lution of energy technology, in which the adaption of fossil fuels has caused the

global warming which drives the exploration of alternative energy source. In the

norm-referenced fitness function, the evolution objective is specially tailored ac-

cording to the present population’s performance. As a result, the fitness function

CHAPTER 6. NORM-REFERENCED FITNESS EVALUATION 145

evolves by itself along with the population. This work represents an attempt to

establish a feedback loop in genetic programming. The competitive performance

of norm-referenced fitness function shows that adding the feedback loop dynamic

into GP is a promising further research direction.

Chapter 7

Conclusion and Further Work

One advantage of genetic programming is the ability to perform structural op-

timization at the same time of performing the parameter optimization. This

unique feature of GP makes it a very promising technique especially when solv-

ing complex problems in which the structure of the solution is not known a priori.

However, scaling up GP is not at all a trivial task. One unique challenge faced

would be bloating, which presents a serious obsolete to GP’s scalability. This

suggests that scaling GP not only requires tactical changes of the algorithm, but

also systematic advancements of the understanding of GP dynamics.

This thesis seeks to improve the scalability of GP from two different perspec-

tives and by answering three questions raised in the objectives section in Chapter

1. The first question “How bad is the bloating?” and the second question “How

can bloating be controlled?” concentrate on fighting bloating as bloating is so far

the biggest obsolete when scaling up GP. The third question “Apart from bloat-

ing control, how can we improve the GP performance in general?” addresses

the GP scalability issue from a different perspective: if bloating cannot be elim-

inated completely, can we speed up GP to find the optimal solution faster? By

answering these three questions, the works described in this thesis develop a bet-

ter systematic understanding of GP from a number of different perspectives and

hence improve the overall performance of GP in order to solve more complex

problems.

146

CHAPTER 7. CONCLUSION AND FURTHER WORK 147

7.1 Contributions

To answer the first question “How bad is the bloating?”, we developed activation

rate in Chapter 4. Activation rate quantitatively models the fact that not all

tree nodes in an individual contribute to the fitness of the individual. We further

linked this fact to the characteristic of function set of the problem domain as de-

scent rate. Using descent rate, we were able to accurately estimate the activation

rate of a tree node of a certain depth. This gave us the ability to theoretically

study how the computation effort of an individual program tree increases as the

depth of the tree increases. We experimented with two theoretical tree size growth

models deducted based on previous researches of tree growth, and found that the

computation effort required to evaluate these trees increases as the depth of the

tree increases, but in a slower manner compared to the increase in tree size. In

addition to the above result, we studied an alternative tree evaluation algorithm,

the bottom-up tree evaluation, using activation rate. Bottom-up tree evaluation

is developed to address a scenario in tree evaluation where top-down evaluation

is costly and less effective. Using activation rate as a theoretical tool, we found

that bottom-up tree evaluation algorithm outperforms standard top-down tree

evaluation when the program tree depth is relatively small (no bigger than 8).

Also, we use activation rate to perform experiments to study crossover effects.

Using activation rate, we were able to analyze the effect of crossover point se-

lection and the effect of subtree swapping separately. We found that the effect

of subtree swapping is generally stable, however, constructive crossover is more

likely to happen when deeper crossover point is selected. Finally, we use activa-

tion rate to develop semi-intron crossover. Experiment of semi-intron crossover

with different parameter setting gave an interesting anti-modification point depth

theory empirical evidence.

To answer the second question “How bloating can be controlled?”, we re-

viewed one famous bloating theory, removal bias. We extended the theory by

quantitatively define the removal bias as the depth difference between subtree

swapped in crossover. Experiments of this quantitative measure of removal bias

revealed that there is a strong positive correlation between the depth difference

between subtree swapped in crossover and the average depth increase of the pop-

ulation. We called this observation the depth difference hypothesis. We showed

that the depth difference between subtree swapped, which is driven by the depth

difference between parents selected for crossover, represents the most fundamental

CHAPTER 7. CONCLUSION AND FURTHER WORK 148

mechanism for GP to produce offsprings with different depths. Also, this geno-

type depth difference between parents is completely irrelevant to their phenotype

performance. As a result, motivated by this depth difference hypothesis, we de-

veloped the depth constraint crossover which adds an additional constraint in

crossover point selection limiting the depth difference between subtree swapped.

Experiments of depth constraint crossover showed that it is very competitive

compared to a number of existing bloating control methods.

In addition to studying bloating and proposing a new bloating control method,

we seek alternative methods to improve GP performance, in order to answer the

third question “Apart from bloating control, how can we improve the GP perfor-

mance in general?”. This is motivated by the fact that if the ultimate purpose of

the bloating control is to allow GP to be applied to more complex problems, in

theory, the same effect could also be achieved by improving GP performance by it-

self rather than fighting bloating. We developed a dynamic fitness function called

norm-referenced fitness function. Unlike the original fitness function used in stan-

dard GP which is fixed, norm-referenced fitness function dynamically adjusts the

weight of each test case based on the population’s performance on all test cases.

The population’s performance is measured by balancing two conflicting metric:

the exploration and the exploitation. Experiments of the norm-referenced fit-

ness function showed that it is able to significantly improve the GP performance

compared to the original fitness function.

Our analysis of the original fitness function showed that, it can be considered

as a special case of the norm-referenced fitness function in which the balance

between exploration and exploitation can only be maintained in early generations.

Once the original fitness function brings the population’s average performance to

a certain level, the balance of exploration and exploitation breaks and there is

an implicit bias towards exploitation. So, original fitness function which drives

evolution in early stage ends up becoming obsolete of evolution later on. We called

this curse of evolution, which we consider as the theoretical evidence explaining

why the original fitness function fails.

We also developed a modification of standard tournament selection called

partial norm-referenced fitness function which applies the same concept of norm-

referenced fitness function but only at tournament level. The partial norm-

referenced fitness function addresses one potential runtime performance limita-

tion of norm-referenced function in the cost of phenotype performance. But it is

CHAPTER 7. CONCLUSION AND FURTHER WORK 149

still able to significantly outperforms the original fitness function especially given

enough generations to evolve.

7.2 Further works

This thesis explored a variety of areas in genetic programming including bloating,

fitness evaluation, crossover effects, crossover point selection, and fitness function.

As a result, there are many choices for future directions of research. In this

section, I list four of them.

Developing More Effective Crossover. The analysis of crossover effect using

activation rate reveals that deeper crossover point results in higher chance of

constructive crossover. An intuitive application of this observation is to place a

minimum depth in the selection of crossover point. However, the choice of this

minimum is hard to deduct. This is because on one hand, bigger minimum depth

would results in higher chance of constructive crossover, but on the other hand,

deeper crossover point results in smaller change on the individual’s fitness as well.

Moreover, based on modification point depth theory, deeper crossover point pro-

duces more bloating. Is there any connection between constructive crossover and

bloating? Finding the optimal setting for this minimum depth requires balancing

between fitness and bloating.

Exploring GP with Fixed Depth Population. When experimenting depth con-

straint crossover, we found that when we set the parameter 𝜖’s value to 0 to

completely deny the ability for individual to grow its depth, it produces least

amount of bloating with surprisingly reasonable fitness performance. In fact,

apart from symbolic regression problem, in the other three domains, there is no

statistically significant loss in fitness. This suggests that the relationship between

tree size growth at genotype level and the fitness improvement at phenotype level

may be much weaker than we previously thought. Equipped with a more sophis-

ticated initial population generation algorithm, depth constraint crossover with

𝜖 equals 0 may able to be sufficient in finding optimal solution.

Extending the Curse of Evolution. During the analysis of norm-referenced

fitness function, we discover one limitation of the original fitness function and

named it as the curse of evolution. In addition to support norm-referenced fitness

function, curse of evolution can also be used to explain the convergence of the

evolution. The curse of evolution reveals one fundamental limitation of standard

CHAPTER 7. CONCLUSION AND FURTHER WORK 150

GP setup. However, we believe norm-referenced fitness function only represents

one possible approach to solve the curse of evolution. Alternative methods to

resolve curse of evolution may lie in “cleverer” context-aware selection method

which compensates the limitation of the original fitness function, similar to partial

norm-referenced fitness function.

Exploring the Efficiency of Combining Depth Constraint Crossover and Norm-

referenced Fitness Function. The depth constraint crossover developed in this

thesis has shown its effectiveness in controlling bloating. On the other hand,

the norm-referenced fitness function shows great potential in improving the GP

performance. One next step is to explore how effectively we can tune GP when

combining these two methods in more complex real world problems.

Bibliography

[ACEAS+08] Eva Alfaro-Cid, Anna Esparcia-Alcázar, Ken Sharman, Fran-

cisco Fernández de Vega, and J. J. Merelo. Prune and plant:

A new bloat control method for genetic programming. In HIS

’08: Proceedings of the 2008 Eighth International Conference on

Hybrid Intelligent Systems, pages 31–35, Washington, DC, USA,

2008. IEEE Computer Society.

[Alt94a] L. Altenberg. The evolution of evolvability in genetic program-

ming. In K. E. Kinnear, editor, Advances in Genetic Program-

ming, pages 47–74. MIT Press, Cambridge, MA, 1994.

[Alt94b] Lee Altenberg. Emergent phenomena in genetic programming.

In Anthony V. Sebald and Lawrence J. Fogel, editors, Evolution-

ary Programming — Proceedings of the Third Annual Conference,

pages 233–241, San Diego, CA, USA, 24-26 February 1994. World

Scientific Publishing.

[Ang94] Peter J. Angeline. Genetic programming and emergent intelli-

gence. In Kenneth E. Kinnear, Jr., editor, Advances in genetic

programming, pages 75–97. MIT Press, Cambridge, MA, USA,

1994.

[Ang96] Peter J. Angeline. An investigation into the sensitivity of ge-

netic programming to the frequency of leaf selection during sub-

tree crossover. In Proceedings of the First Annual Conference

on Genetic Programming, GECCO ’96, pages 21–29, Cambridge,

MA, USA, 1996. MIT Press.

[Ang97] Peter J. Angeline. Subtree crossover: Building block engine or

macromutation? In John R. Koza, Kalyanmoy Deb, Marco

151

BIBLIOGRAPHY 152

Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.

Riolo, editors, Genetic Programming 1997: Proceedings of the

Second Annual Conference, pages 9–17, Stanford University, CA,

USA, 13-16 July 1997. Morgan Kaufmann.

[Ang98] Peter J. Angeline. Subtree crossover causes bloat. In John R.

Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,

Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Gold-

berg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming

1998: Proceedings of the Third Annual Conference, pages 745–

752, University of Wisconsin, Madison, Wisconsin, USA, 22-25

July 1998. Morgan Kaufmann.

[BA02] Terry Van Belle and David H. Ackley. Uniform subtree mutation.

In Proceedings of the 5th European Conference on Genetic Pro-

gramming, EuroGP ’02, pages 152–161, London, UK, UK, 2002.

Springer-Verlag.

[BB03] Markus Brameier and Wolfgang Banzhaf. Neutral variations cause

bloat in linear GP. In Conor Ryan, Terence Soule, Maarten Kei-

jzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors,

Genetic Programming, Proceedings of EuroGP’2003, volume 2610

of LNCS, pages 286–296, Essex, 14-16 April 2003. Springer-Verlag.

[BBSW03] Wolfgang Banzhaf, Markus Brameier, Marc Stautner, and Klaus

Weinert. Genetic programming and its application in machin-

ing technology. In Hans-Paul Schwefel, Ingo Wegener, and Klaus

Weinert, editors, Advances in Computational Intelligence: Theory

and Practice, Natural Computing Series, chapter 7, pages 194–

242. Springer, 2003.

[BBTZ01] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zit-

zler. Multiobjective genetic programming: Reducing bloat us-

ing SPEA2. In Proceedings of the 2001 Congress on Evolutionary

Computation CEC2001, pages 536–543, COEX, World Trade Cen-

ter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 May

2001. IEEE Press.

BIBLIOGRAPHY 153

[BBZ] Stefan Bleuler, Johannes Bader, and Eckart Zitzler. In Joshua

Knowles, David Corne, and Kalyanmoy Deb, editors, Multiobjec-

tive Problem Solving from Nature: from concepts to applications,

chapter 9, pages 177–200.

[BGS96] Walter Bohm and Andreas Geyer-Schulz. Exact uniform initializa-

tion for genetic programming. In Richard K. Belew and Michael

Vose, editors, Foundations of Genetic Algorithms IV, pages 379–

407, University of San Diego, CA, USA, 3–5 August 1996. Morgan

Kaufmann.

[BJ08] Lawrence Beadle and Colin G Johnson. Semantically driven

crossover in genetic programming. In IEEE World Congress on

Computational Intelligence, pages 111–116. IEEE, January 2008.

[BJ09] Lawrence Beadle and Colin G. John’son. Semantically driven mu-

tation in genetic programming. In Proceedings of the Eleventh

conference on Congress on Evolutionary Computation, CEC’09,

pages 1336–1342, Piscataway, NJ, USA, 2009. IEEE Press.

[BL02] W. Banzhaf and W. B. Langdon. Some considerations on the

reason for bloat. Genetic Programming and Evolvable Machines,

3(1):81–91, 2002.

[Bli96] Tobias Blickle. Theory of Evolutionary Algorithms and Applica-

tion to System Synthesis. PhD thesis, Swiss Federal Institute of

Technology, Zurich, November 1996.

[Bon96] Linda A. Bond. Norm- and criterion-referenced testing. Practical

Assessment, Research & Evaluation, 5(2), Retrieved January 27,

2011, from http://http://pareonline.net/getvn.asp?v=5&n=

2,1996.

[Bra04] Markus Brameier. On Linear Genetic Programming. PhD thesis,

Fachbereich Informatik, Universität Dortmund, Germany, Febru-

ary 2004.

[BS73] Fischer Black and Myron S Scholes. The pricing of options and

corporate liabilities. Journal of Political Economy, 81(3):637–54,

May-June 1973.

BIBLIOGRAPHY 154

[BT94] Tobias Blickle and Lothar Thiele. Genetic programming and

redundancy. In J. Hopf, editor, Genetic Algorithms within the

Framework of Evolutionary Computation (Workshop at KI-94,

Saarbrücken), pages 33–38, Im Stadtwald, Building 44, D-66123

Saarbrücken, Germany, 1994. Max-Planck-Institut für Informatik

(MPI-I-94-241).

[BT95] Tobias Blickle and Lothar Thiele. A mathematical analysis of

tournament selection. In Proceedings of the 6th International Con-

ference on Genetic Algorithms, pages 9–16, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers Inc.

[BT96] Tobias Blickle and Lothar Thiele. A comparison of selection

schemes used in evolutionary algorithms. Evol. Comput., 4:361–

394, December 1996.

[CC99] Michael J. Cavaretta and Kumar Chellapilla. Data mining using

genetic programming: The implications of parsimony on general-

ization error. In Peter J. Angeline, Zbyszek Michalewicz, Marc

Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings of the

Congress on Evolutionary Computation, volume 2, pages 1330–

1337, Mayflower Hotel, Washington D.C., USA, 6-9 July 1999.

IEEE Press.

[Che97] Kumar Chellapilla. Evolving computer programs without sub-

tree crossover. IEEE Transactions on Evolutionary Computation,

1(3):209–216, September 1997.

[CM02] Vic Ciesielski and Dylan Mawhinney. Prevention of early conver-

gence in genetic programming by replacement of similar programs.

In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry

Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, ed-

itors, Proceedings of the 2002 Congress on Evolutionary Compu-

tation CEC2002, pages 67–72. IEEE Press, 12-17 May 2002.

[da 08] Sara Guilherme Oliveira da Silva. Controlling Bloat: Individual

and Population Based Approaches in Genetic Programming. PhD

thesis, Coimbra University, Portugal, April 2008.

BIBLIOGRAPHY 155

[DP07] Stephen Dignum and Riccardo Poli. Generalisation of the limit-

ing distribution of program sizes in tree-based genetic program-

ming and analysis of its effects on bloat. In Proceedings of the

9th annual conference on Genetic and evolutionary computation,

GECCO ’07, pages 1588–1595, New York, NY, USA, 2007. ACM.

[DP08] Stephen Dignum and Riccardo Poli. Crossover, sampling, bloat

and the harmful effects of size limits. In Michael O’Neill, Leonardo

Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcazar, Iva-

noe De Falco, Antonio Della Cioppa, and Ernesto Tarantino, ed-

itors, Proceedings of the 11th European Conference on Genetic

Programming, volume 4971 of LNCS, pages 158–169, Naples, 26-

28 March 2008. Springer.

[dVGPG04] Francisco Fernandez de Vega, German Galeano Gil, Juan Anto-

nio Gomez Pulido, and Jose Luis Guisado. Control of bloat in ge-

netic programming by means of the island model. In Xin Yao, Ed-

mund Burke, Jose A. Lozano, Jim Smith, Juan J. Merelo-Guervós,

John A. Bullinaria, Jonathan Rowe, Peter Tiňo Ata Kabán, and

Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature

- PPSN VIII, volume 3242 of LNCS, pages 263–271, Birmingham,

UK, 18-22 September 2004. Springer-Verlag.

[dWP01] Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Re-

ducing bloat and promoting diversity using multi-objective meth-

ods. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Lang-

don, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,

Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors,

Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2001), pages 11–18, San Francisco, California,

USA, 7-11 July 2001. Morgan Kaufmann.

[EN01] Anikó Ekárt and S. Z. Németh. Selection based on the pareto

nondomination criterion for controlling code growth in genetic

programming. Genetic Programming and Evolvable Machines,

2(1):61–73, 2001.

[EVDHVH98] A. E. Eiben, J. K. Van Der Hauw, and J. I. Van Hemert. Graph

BIBLIOGRAPHY 156

coloring with adaptive evolutionary algorithms. Journal of Heuris-

tics, 4(1):25–46, June 1998.

[FO82] Philippe Flajolet and Andrew Odlyzko. The average height of

binary trees and other simple trees. Journal of Computer and

System Sciences, 25(2):171 – 213, 1982.

[GAMRRP07] M. Garcia-Arnau, D. Manrique, J. Rios, and A. Rodriguez-Paton.

Initialization method for grammar-guided genetic programming.

Knowledge-Based Systems, 20(2):127–133, March 2007. AI 2006,

The 26th SGAI International Conference on Innovative Tech-

niques and Applications of Artificial Intelligence.

[GB89] John J. Greffenstette and James E. Baker. How genetic algorithms

work: A critical look at implicit parallelism. In Proceedings of the

3rd International Conference on Genetic Algorithms, pages 20–

27, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers

Inc.

[GD91] David E. Goldberg and Kalyanmoy Deb. A comparative analysis

of selection schemes used in genetic algorithms. In Gregory J. E.

Rawlins, editor, Foundations of Genetic Algorithms, pages 69–93.

San Francisco, CA: Morgan Kaufmann, 1991.

[GEBK04] Steven Gustafson, Anikó Ekárt, Edmund Burke, and Graham

Kendall. Problem difficulty and code growth in genetic program-

ming. Genetic Programming and Evolvable Machines, 5:271–290,

September 2004.

[GGP11] Marc-André Gardner, Christian Gagné, and Marc Parizeau. Bloat

control in genetic programming with a histogram-based accept-

reject method. In Proceedings of the 13th annual conference com-

panion on Genetic and evolutionary computation, GECCO ’11,

pages 187–188, New York, NY, USA, 2011. ACM.

[GR96] Chris Gathercole and Peter Ross. An adverse interaction between

crossover and restricted tree depth in genetic programming. In

John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.

Riolo, editors, Genetic Programming 1996: Proceedings of the

BIBLIOGRAPHY 157

First Annual Conference, pages 291–296, Stanford University, CA,

USA, 28–31 July 1996. MIT Press.

[GTV02] Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi.

Limiting the number of fitness cases in genetic programming using

statistics. In PPSN VII: Proceedings of the 7th International Con-

ference on Parallel Problem Solving from Nature, pages 371–380,

London, UK, 2002. Springer-Verlag.

[Har12] Robin Harper. Spatial co-evolution: quicker, fitter and less

bloated. In Terry Soule, Anne Auger, Jason Moore, David Pelta,

Christine Solnon, Mike Preuss, Alan Dorin, Yew-Soon Ong, Chris-

tian Blum, Dario Landa Silva, Frank Neumann, Tina Yu, Aniko

Ekart, Will Browne, Tim Kovacs, Man-Leung Wong, Clara Piz-

zuti, Jon Rowe, Tobias Friedrich, Giovanni Squillero, Nicolas Bre-

deche, Stephen Smith, Alison Motsinger-Reif, Jose Lozano, Mar-

tin Pelikan, Silja Meyer-Nienberg, Christian Igel, Greg Hornby,

Rene Doursat, Steve Gustafson, Gustavo Olague, Shin Yoo, John

Clark, Gabriela Ochoa, Gisele Pappa, Fernando Lobo, Daniel

Tauritz, Jurgen Branke, and Kalyanmoy Deb, editors, GECCO

’12: Proceedings of the fourteenth international conference on Ge-

netic and evolutionary computation conference, pages 759–766,

Philadelphia, Pennsylvania, USA, 7-11 July 2012. ACM.

[Hay98] Thomas Haynes. Collective adaptation: The exchange of coding

segments. Evol. Comput., 6(4):311–338, 1998.

[HH08] Kassel Hingee and Marcus Hutter. Equivalence of probabilistic

tournament and polynomial ranking selection. In IEEE Congress

on Evolutionary Computation, pages 564–571. IEEE, 2008.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology, Control

and Artificial Intelligence. MIT Press, Cambridge, MA, USA,

1992.

[HS97] Kim Harries and Peter Smith. Exploring alternative operators

and search strategies in genetic programming. In John R. Koza,

BIBLIOGRAPHY 158

Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,

Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming

1997: Proceedings of the Second Annual Conference, pages 147–

155, Stanford University, CA, USA, 13-16 July 1997. Morgan

Kaufmann.

[Iba96] Hitoshi Iba. Random tree generation for genetic programming.

In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberger, and

Hans-Paul Schwefel, editors, PPSN, volume 1141 of Lecture Notes

in Computer Science, pages 144–153. Springer, 1996.

[IC99] Christian Igel and Kumar Chellapilla. Investigating the influ-

ence of depth and degree of genotypic change on fitness in ge-

netic programming. In Wolfgang Banzhaf, Jason Daida, Agos-

ton E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and

Robert E. Smith, editors, Proceedings of the Genetic and Evo-

lutionary Computation Conference, volume 2, pages 1061–1068,

Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[IdGS94] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Advances in genetic

programming. chapter Genetic programming using a minimum de-

scription length principle, pages 265–284. MIT Press, Cambridge,

MA, USA, 1994.

[IIS99] Takuya Ito, Hitoshi Iba, and Satoshi Sato. A self-tuning mecha-

nism for depth-dependent crossover. In Lee Spector, William B.

Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Ad-

vances in Genetic Programming 3, chapter 16, pages 377–399.

MIT Press, Cambridge, MA, USA, June 1999.

[Jac05] David Jackson. Fitness evaluation avoidance in boolean GP prob-

lems. In David Corne, Zbigniew Michalewicz, Marco Dorigo,

Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood,

Tan Kay Chen, Guenther Raidl, Ali Zalzala, Simon Lucas, Ben

Paechter, Jennifier Willies, Juan J. Merelo Guervos, Eugene Eber-

bach, Bob McKay, Alastair Channon, Ashutosh Tiwari, L. Gwenn

Volkert, Dan Ashlock, and Marc Schoenauer, editors, Proceedings

BIBLIOGRAPHY 159

of the 2005 IEEE Congress on Evolutionary Computation, vol-

ume 3, pages 2530–2536, Edinburgh, UK, 2-5 September 2005.

IEEE Press.

[JF97] Terence Soule James and James A. Foster. Code size and depth

flows in genetic programming. In Genetic Programming 1997:

Proceedings of the Second Annual Conference, pages 313–320.

Morgan Kaufmann, 1997.

[KABK99] John R. Koza, David Andre, Forrest H. Bennett, and Martin A.

Keane. Genetic Programming III: Darwinian Invention & Prob-

lem Solving. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1999.

[KCS06] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-

objective optimization using genetic algorithms: A tutorial. Reli-

ability Engineering & System Safety, 91(9):992–1007, September

2006.

[Kei04] Maarten Keijzer. Alternatives in subtree caching for genetic pro-

gramming. In Maarten Keijzer, Una-May O’Reilly, Simon M.

Lucas, Ernesto Costa, and Terence Soule, editors, EuroGP, vol-

ume 3003 of Lecture Notes in Computer Science, pages 328–337.

Springer, 2004.

[KEK93] Jr. Kenneth E. Kinnear. Generality and difficulty in genetic pro-

gramming: Evolving a sort. In Proceedings of the 5th International

Conference on Genetic Algorithms, pages 287–294, San Francisco,

CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[Kin93] Kenneth E. Kinnear, Jr. Generality and difficulty in genetic pro-

gramming: Evolving a sort. In Proceedings of the 5th International

Conference on Genetic Algorithms, pages 287–294, San Francisco,

CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[KM94] Mike J. Keith and Martin C. Martin. Genetic programming in

c++: implementation issues. In Advances in genetic programming,

pages 285–310. MIT Press, Cambridge, MA, USA, 1994.

BIBLIOGRAPHY 160

[KM99] Tatiana Kalganova and Julian Miller. Evolving more efficient digi-

tal circuits by allowing circuit layout evolution and multi-objective

fitness. In Proceedings of the 1st NASA/DOD workshop on Evolv-

able Hardware, EH ’99, pages 54–63, Washington, DC, USA, 1999.

IEEE Computer Society.

[Koz92] John R. Koza. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. The MIT Press, De-

cember 1992.

[Koz94] John R. Koza. Genetic programming II: automatic discovery of

reusable programs. MIT Press, Cambridge, MA, USA, 1994.

[Lan96a] W. B. Langdon. Data Structures and Genetic Programming. PhD

thesis, University College, London, 27 September 1996.

[Lan96b] William B. Langdon. Data structures and genetic programming.

In Advances in genetic programming: volume 2, pages 395–414.

MIT Press, Cambridge, MA, USA, 1996.

[Lan98] W. B. Langdon. The evolution of size in variable length represen-

tations. In 1998 IEEE International Conference on Evolutionary

Computation, pages 633–638, Anchorage, Alaska, USA, 5-9 May

1998. IEEE Press.

[Lan00a] W. B. Langdon. Quadratic bloat in genetic programming. In Dar-

rell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian

Parmee, and Hans-Georg Beyer, editors, Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECCO-2000),

pages 451–458, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan

Kaufmann.

[Lan00b] W. B. Langdon. Size fair and homologous tree crossovers for tree

genetic programming. Genetic Programming and Evolvable Ma-

chines, 1(1-2):95–119, 2000.

[Lan09] W. B. Langdon. A CUDA SIMT interpreter for genetic program-

ming. Technical Report TR-09-05, Department of Computer Sci-

ence, King’s College London, Strand, WC2R 2LS, UK, 18 June

2009. Revised.

BIBLIOGRAPHY 161

[LBP03] Sean Luke, Gabriel Catalin Balan, and Liviu Panait. Population

implosion in genetic programming. In Proceedings of the 2003 in-

ternational conference on Genetic and evolutionary computation:

PartII, GECCO’03, pages 1729–1739, Berlin, Heidelberg, 2003.

Springer-Verlag.

[Lev91] James R. Levenick. Inserting introns improves genetic algorithm

success rate: Taking a cue from biology. In Proceedings of the

Fourth International Conference on Genetic Algorithms, pages

123–127. Morgan Kaufmann, 1991.

[LP97a] W. B. Langdon and R. Poli. An analysis of the MAX problem in

genetic programming. In John R. Koza, Kalyanmoy Deb, Marco

Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Ri-

olo, editors, Genetic Programming 1997: Proceedings of the Sec-

ond Annual Conference, pages 222–230, Stanford University, CA,

USA, 13-16 July 1997. Morgan Kaufmann.

[LP97b] W. B. Langdon and R. Poli. Fitness causes bloat. In Soft Com-

puting in Engineering Design and Manufacturing, pages 23–27.

Springer-Verlag, 1997.

[LP98a] W. B. Langdon and R. Poli. Why ants are hard. In John R. Koza,

Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco

Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hi-

toshi Iba, and Rick Riolo, editors, Genetic Programming 1998:

Proceedings of the Third Annual Conference, pages 193–201, Uni-

versity of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998.

Morgan Kaufmann.

[LP98b] William B. Langdon and Riccardo Poli. Fitness causes bloat:

Mutation. In EuroGP ’98: Proceedings of the First European

Workshop on Genetic Programming, pages 37–48, London, UK,

1998. Springer-Verlag.

[LP02a] Sean Luke and Liviu Panait. Fighting bloat with nonparametric

parsimony pressure. In PPSN VII: Proceedings of the 7th Interna-

tional Conference on Parallel Problem Solving from Nature, pages

411–421, London, UK, 2002. Springer-Verlag.

BIBLIOGRAPHY 162

[LP02b] Sean Luke and Liviu Panait. Lexicographic parsimony pressure.

In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis,

R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,

L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and

N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference, pages 829–836, New

York, 9-13 July 2002. Morgan Kaufmann Publishers.

[LP06] Sean Luke and Liviu Panait. A comparison of bloat control meth-

ods for genetic programming. Evol. Comput., 14(3):309–344, 2006.

[LS97] Sean Luke and Lee Spector. A comparison of crossover and mu-

tation in genetic programming. In John R. Koza, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,

and Rick L. Riolo, editors, Genetic Programming 1997: Proceed-

ings of the Second Annual Conference, pages 240–248, Stanford

University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[LS98] Sean Luke and Lee Spector. A revised comparison of crossover and

mutation in genetic programming. In John R. Koza, Wolfgang

Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,

David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba,

and Rick Riolo, editors, Genetic Programming 1998: Proceedings

of the Third Annual Conference, pages 208–213, University of Wis-

consin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kauf-

mann.

[LSPF99] William B. Langdon, Tery Soule, Riccardo Poli, and James A.

Foster. The evolution of size and shape. In Advances in genetic

programming: volume 3, pages 163–190. MIT Press, Cambridge,

MA, USA, 1999.

[Luk00a] Sean Luke. Code growth is not caused by introns. In Darrell

Whitley, editor, Late Breaking Papers at the 2000 Genetic and

Evolutionary Computation Conference, pages 228–235, Las Vegas,

Nevada, USA, 8 July 2000.

[Luk00b] Sean Luke. Issues in Scaling Genetic Programming: Breeding

BIBLIOGRAPHY 163

Strategies, Tree Generation, and Code Bloat. PhD thesis, De-

partment of Computer Science, University of Maryland, A. V.

Williams Building, University of Maryland, College Park, MD

20742 USA, 2000.

[Luk00c] Sean Luke. Two fast tree-creation algorithms for genetic pro-

gramming. IEEE Transactions on Evolutionary Computation,

4(3):274–283, September 2000.

[Luk03] Sean Luke. Modification point depth and genome growth in ge-

netic programming. Evol. Comput., 11(1):67–106, 2003.

[Luk09] Sean Luke. ECJ 19: A Java evolutionary computation library.

http://cs.gmu.edu/∼eclab/projects/ecj/, 2009.

[LZ10a] Geng Li and Xiao-Jun Zeng. Bottom-up tree evaluation in

tree-based genetic programming. In Ying Tan, Yuhui Shi, and

Kay Chen Tan, editors, The first International Conference on

Swarm Intelligence, volume 6145 of Lecture Notes in Computer

Science, pages 513–522. Springer, 2010.

[LZ10b] Geng Li and Xiao-Jun Zeng. Controlling bloating using depth

constraint crossover. In Computational Intelligence (UKCI), 2010

UK Workshop on Computation Intelligence, Sept. 2010.

[LZ11] Geng Li and Xiao-Jun Zeng. Genetic programming with a norm-

referenced fitness function. In Natalio Krasnogor and Pier Luca

Lanzi, editors, 13th Annual Genetic and Evolutionary Computa-

tion Conference, GECCO ’11, pages 1323–1330, 2011.

[MFH92] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The

royal road for genetic algorithms: Fitness landscapes and ga per-

formance. In Proceedings of the First European Conference on

Artificial Life, pages 245–254. MIT Press, 1992.

[MH08] Julian Francis Miller and Simon L. Harding. Cartesian genetic

programming. In Proceedings of the 2008 GECCO conference com-

panion on Genetic and evolutionary computation, GECCO ’08,

pages 2701–2726, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 164

[MM95] Nicholas F. Mcphee and Justin D. Miller. Accurate replication in

genetic programming. In L. Eshelman, editor, Genetic Algorithms:

Proceedings of the Sixth International Conference, ICGA95, pages

303–309, Pittsburgh, PA, USA, JanuaryMay-JanuarySeptember

1995. Morgan Kaufmann.

[NB95] Peter Nordin and Wolfgang Banzhaf. Complexity compression

and evolution. In Proceedings of the 6th International Conference

on Genetic Algorithms, pages 310–317, San Francisco, CA, USA,

1995. Morgan Kaufmann Publishers Inc.

[NFB96] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly

defined introns and destructive crossover in genetic programming.

In Advances in genetic programming: volume 2, pages 111–134.

MIT Press, Cambridge, MA, USA, 1996.

[OCPT97] Mouloud Oussaidène, Bastien Chopard, Olivier V. Pictet, and

Marco Tomassini. Parallel genetic programming and its applica-

tion to trading model induction. Parallel Computing, 23(8):1183–

1198, August 1997.

[PL97a] Riccardo Poli and W. B. Langdon. Genetic programming with

one-point crossover. In P. K. Chawdhry, R. Roy, and R. K. Pant,

editors, Soft Computing in Engineering Design and Manufactur-

ing, pages 180–189. Springer-Verlag London, 23-27 June 1997.

[PL97b] Riccardo Poli and W. B. Langdon. A new schema theory for ge-

netic programming with one-point crossover and point mutation.

In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fo-

gel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic

Programming 1997: Proceedings of the Second Annual Conference,

pages 278–285, Stanford University, CA, USA, 13-16 July 1997.

Morgan Kaufmann.

[PL98] Riccardo Poli and William B. Langdon. On the search proper-

ties of different crossover operators in genetic programming. In

John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E.

BIBLIOGRAPHY 165

Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Program-

ming 1998: Proceedings of the Third Annual Conference, pages

293–301, University of Wisconsin, Madison, Wisconsin, USA, 22-

25 July 1998. Morgan Kaufmann.

[PL04] Liviu Panait and Sean Luke. Alternative bloat control meth-

ods. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-

Georg Beyer, Edmund Burke, Paul Darwen, Dipankar Dasgupta,

Dario Floreano, James Foster, Mark Harman, Owen Holland,

Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens,

and Andy Tyrrell, editors, Genetic and Evolutionary Computa-

tion – GECCO-2004, Part II, volume 3103 of Lecture Notes in

Computer Science, pages 630–641, Seattle, WA, USA, 26-30 June

2004. Springer-Verlag.

[PLD07] Riccardo Poli, William B. Langdon, and Stephen Dignum. On

the limiting distribution of program sizes in tree-based genetic

programming. In Marc Ebner, Michael O’Neill, Anikó Ekárt,

Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, editors,

Proceedings of the 10th European Conference on Genetic Program-

ming, volume 4445 of Lecture Notes in Computer Science, pages

193–204, Valencia, Spain, 11 - 13 April 2007. Springer.

[PLM08] Riccardo Poli, William B. Langdon, and Nicholas Fre-

itag McPhee. A field guide to genetic programming.

Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With contribu-

tions by J. R. Koza).

[PM08] Riccardo Poli and Nicholas Freitag McPhee. Parsimony pressure

made easy. In GECCO ’08: Proceedings of the 10th annual confer-

ence on Genetic and evolutionary computation, pages 1267–1274,

New York, NY, USA, 2008. ACM.

[PMV08] Riccardo Poli, Nicholas Freitag McPhee, and Leonardo Vanneschi.

The impact of population size on code growth in gp: analysis and

BIBLIOGRAPHY 166

empirical validation. In GECCO ’08: Proceedings of the 10th an-

nual conference on Genetic and evolutionary computation, pages

1275–1282, New York, NY, USA, 2008. ACM.

[Pol97] Riccardo Poli. Parallel distributed genetic programming applied

to the evolution of natural language recognisers. In David Corne

and Jonathan L. Shapiro, editors, Evolutionary Computing, AISB

Workshop, volume 1305 of Lecture Notes in Computer Science,

pages 163–177. Springer, 1997.

[Pol03] Riccardo Poli. A simple but theoretically-motivated method to

control bloat in genetic programming. In Conor Ryan, Ter-

ence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and

Ernesto Costa, editors, Genetic Programming, Proceedings of Eu-

roGP’2003, volume 2610 of LNCS, pages 204–217, Essex, 14-16

April 2003. Springer-Verlag.

[PS06] Alan Piszcz and Terence Soule. A survey of mutation techniques in

genetic programming. In Maarten Keijzer, Mike Cattolico, Dirk

Arnold, Vladan Babovic, Christian Blum, Peter Bosman, Mar-

tin V. Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G.

Ficici, James Foster, Arturo Hernandez-Aguirre, Greg Hornby,

Hod Lipson, Phil McMinn, Jason Moore, Guenther Raidl, Franz

Rothlauf, Conor Ryan, and Dirk Thierens, editors, GECCO 2006:

Proceedings of the 8th annual conference on Genetic and evolu-

tionary computation, volume 1, pages 951–952, Seattle, Washing-

ton, USA, 8-12 July 2006. ACM Press.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-

ern Approach (2nd Edition). Prentice Hall, December 2002.

[Rob91] D S Robertson. Feedback theory and darwinian evolution. Journal

of Theoretical Biology, 152(4):469–484, 1991.

[Ros95] Justinian P. Rosca. Towards automatic discovery of building

blocks in genetic programming. In Working Notes for the AAAI

Symposium on Genetic Programming, pages 78–85. AAAI, 1995.

BIBLIOGRAPHY 167

[RV10] Cristóbal Romero and Sebastián Ventura. Educational data min-

ing: A review of the state of the art. IEEE Transactions on

Systems, Man, and Cybernetics, Part C, 40(6):601–618, 2010.

[SA05] Sara Silva and Jonas Almeida. Gplab-a genetic programming tool-

box for matlab. In In Proc. of the Nordic MATLAB Conference

(NMC-2003, pages 273–278, 2005.

[SC04] Sara Silva and Ernesto Costa. Dynamic limits for bloat control:

Variations on size and depth. In Kalyanmoy Deb, Riccardo Poli,

Wolfgang Banzhaf, Hans-Georg Beyer, Edmund Burke, Paul Dar-

wen, Dipankar Dasgupta, Dario Floreano, James Foster, Mark

Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea

Tettamanzi, Dirk Thierens, and Andy Tyrrell, editors, Genetic

and Evolutionary Computation – GECCO-2004, Part II, volume

3103 of Lecture Notes in Computer Science, pages 666–677, Seat-

tle, WA, USA, 26-30 June 2004. Springer-Verlag.

[SC05a] Sara Silva and Ernesto Costa. Comparing tree depth limits and

resource-limited GP. In David Corne, Zbigniew Michalewicz,

Marco Dorigo, Gusz Eiben, David Fogel, Carlos Fonseca, Gar-

rison Greenwood, Tan Kay Chen, Guenther Raidl, Ali Zalzala, Si-

mon Lucas, Ben Paechter, Jennifier Willies, Juan J. Merelo Guer-

vos, Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh

Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoenauer,

editors, Proceedings of the 2005 IEEE Congress on Evolution-

ary Computation, volume 1, pages 920–927, Edinburgh, UK, 2-5

September 2005. IEEE Press.

[SC05b] Sara Silva and Ernesto Costa. Resource-limited genetic program-

ming: the dynamic approach. In GECCO ’05: Proceedings of the

2005 conference on Genetic and evolutionary computation, pages

1673–1680, New York, NY, USA, 2005. ACM.

[Sch90] Robert E. Schapire. The strength of weak learnability. Mach.

Learn., 5(2):197–227, July 1990.

[SCZ09] Andy Song, Dunhai Chen, and Mengjie Zhang. Bloat control

in genetic programming by evaluating contribution of nodes. In

BIBLIOGRAPHY 168

GECCO ’09: Proceedings of the 11th Annual conference on Ge-

netic and evolutionary computation, pages 1893–1894, New York,

NY, USA, 2009. ACM.

[SD06] Lothar M. Schmitt and Stefan Droste. Convergence to global

optima for genetic programming systems with dynamically scaled

operators. In Proceedings of the 8th annual conference on Genetic

and evolutionary computation, GECCO ’06, pages 879–886, New

York, NY, USA, 2006. ACM.

[SDV12] Sara Silva, Stephen Dignum, and Leonardo Vanneschi. Opera-

tor equalisation for bloat free genetic programming and a survey

of bloat control methods. Genetic Programming and Evolvable

Machines, 13(2):197–238, June 2012.

[SE91] J.D. Schaffer and L.J. Eshelman. On Crossover as an Evolutionary

Viable Strategy. In R.K. Belew and L.B. Booker, editors, Proceed-

ings of the 4th International Conference on Genetic Algorithms,

pages 61–68. Morgan Kaufmann, 1991.

[SF98a] Terence Soule and James A. Foster. Effects of code growth and

parsimony pressure on populations in genetic programming. Evol.

Comput., 6(4):293–309, December 1998.

[SF98b] Terence Soule and James A. Foster. Removal bias: a new cause of

code growth in tree based evolutionary programming. In 1998

IEEE International Conference on Evolutionary Computation,

pages 781–186, Anchorage, Alaska, USA, 5-9 May 1998. IEEE

Press.

[SFD96] Terence Soule, James A. Foster, and John Dickinson. Code growth

in genetic programming. In John R. Koza, David E. Goldberg,

David B. Fogel, and Rick L. Riolo, editors, Genetic Programming

1996: Proceedings of the First Annual Conference, pages 215–223,

Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[SH98] Peter W. H. Smith and Kim Harries. Code growth, explicitly

defined introns, and alternative selection schemes. Evol. Comput.,

6(4):339–360, 1998.

BIBLIOGRAPHY 169

[SH02] Terence Soule and Robert B. Heckendorn. An analysis of the

causes of code growth in genetic programming. Genetic Program-

ming and Evolvable Machines, 3(3):283–309, 2002.

[Sil11] Sara Silva. Reassembling operator equalisation: a secret revealed.

In Natalio Krasnogor, Pier Luca Lanzi, Andries Engelbrecht,

David Pelta, Carlos Gershenson, Giovanni Squillero, Alex Freitas,

Marylyn Ritchie, Mike Preuss, Christian Gagne, Yew Soon Ong,

Guenther Raidl, Marcus Gallager, Jose Lozano, Carlos Coello-

Coello, Dario Landa Silva, Nikolaus Hansen, Silja Meyer-Nieberg,

Jim Smith, Gus Eiben, Ester Bernado-Mansilla, Will Browne, Lee

Spector, Tina Yu, Jeff Clune, Greg Hornby, Man-Leung Wong,

Pierre Collet, Steve Gustafson, Jean-Paul Watson, Moshe Sip-

per, Simon Poulding, Gabriela Ochoa, Marc Schoenauer, Carsten

Witt, and Anne Auger, editors, GECCO ’11: Proceedings of the

13th annual conference on Genetic and evolutionary computation,

pages 1395–1402, Dublin, Ireland, 12-16 July 2011. ACM.

[Sou98] Terence Soule. Code Growth in Genetic Programming. PhD thesis,

University of Idaho, Moscow, Idaho, USA, 15 May 1998.

[Spe96] Lee Spector. Simultaneous evolution of programs and their control

structures. In Advances in genetic programming: volume 2, pages

137–154. MIT Press, Cambridge, MA, USA, 1996.

[Str03] Matthew J. Streeter. The root causes of code growth in genetic

programming. In Conor Ryan, Terence Soule, Maarten Keijzer,

Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Ge-

netic Programming, Proceedings of EuroGP’2003, volume 2610 of

LNCS, pages 443–454, Essex, 14-16 April 2003. Springer-Verlag.

[SV09] Sara Silva and Leonardo Vanneschi. Operator equalisation, bloat

and overfitting: a study on human oral bioavailability prediction.

In Proceedings of the 11th Annual conference on Genetic and evo-

lutionary computation, GECCO ’09, pages 1115–1122, New York,

NY, USA, 2009. ACM.

[Tac94] Walter Alden Tackett. Recombination, Selection, and the Genetic

Construction of Computer Programs. PhD thesis, University of

BIBLIOGRAPHY 170

Southern California, Department of Electrical Engineering Sys-

tems, USA, 1994.

[Tet96] Andrea G. B. Tettamanzi. Genetic programming without fitness.

In John R. Koza, editor, Late Breaking Papers at the Genetic Pro-

gramming 1996 Conference, pages 193–195, Stanford University,

CA, USA, 28–31 July 1996. Stanford Bookstore.

[TNM13] Leonardo Trujillo, Enrique Naredo, and Yuliana Martinez. Prelim-

inary study of bloat in genetic programming with behavior-based

search. In Michael Emmerich, Andre Deutz, Oliver Schuetze,

Thomas Baeck, Emilia Tantar, Alexandru-Adrian, Pierre Del

Moral, Pierrick Legrand, Pascal Bouvry, and Carlos A. Coello,

editors, EVOLVE - A Bridge between Probability, Set Oriented

Numerics, and Evolutionary Computation IV, volume 227 of Ad-

vances in Intelligent Systems and Computing, pages 293–305, Lei-

den, Holland, July 10-13 2013. Springer.

[VTCC03] Leonardo Vanneschi, Marco Tomassini, Philippe Collard, and

Manuel Clergue. Fitness distance correlation in structural mu-

tation genetic programming. In Proceedings of the 6th European

conference on Genetic programming, EuroGP’03, pages 455–464,

Berlin, Heidelberg, 2003. Springer-Verlag.

[Whi96] P. A. Whigham. Search bias, language bias and genetic program-

ming. In Proceedings of the First Annual Conference on Genetic

Programming, GECCO ’96, pages 230–237, Cambridge, MA, USA,

1996. MIT Press.

[WHM+97] Mark Willis, Hugo Hiden, Peter Marenbach, Ben McKay, and

Gary A. Montague. Genetic programming: An introduction and

survey of applications. In Ali Zalzala, editor, Second International

Conference on Genetic Algorithms in Engineering Systems: Inno-

vations and Applications, GALESIA, University of Strathclyde,

Glasgow, UK, 1-4 September 1997. Institution of Electrical Engi-

neers.

[Wik13] Wikipedia. Graduate record examinations, 2013. [Online; accessed

24-Augest-2013].

BIBLIOGRAPHY 171

[WL96] Annie S. Wu and Robert K. Lindsay. A survey of intron research

in genetics. In PPSN IV: Proceedings of the 4th International

Conference on Parallel Problem Solving from Nature, pages 101–

110, London, UK, 1996. Springer-Verlag.

[XZ12] Huayang Xie and Mengjie Zhang. Impacts of sampling strategies

in tournament selection for genetic programming. Soft Comput.,

16(4):615–633, April 2012.

[XZA06a] Huayang Xie, Mengjie Zhang, and Peter Andreae. Automatic se-

lection pressure control in genetic programming. In Proceedings of

the Sixth International Conference on Intelligent Systems Design

and Applications - Volume 01, ISDA ’06, pages 435–440, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

[XZA06b] Huayang Xie, Mengjie Zhang, and Peter Andreae. Population

clustering in genetic programming. In Pierre Collet, Marco

Tomassini, Marc Ebner, Steven Gustafson, and Anikó Ekárt, edi-

tors, EuroGP, volume 3905 of Lecture Notes in Computer Science,

pages 190–201. Springer, 2006.

[XZA07] Huayang Xie, Mengjie Zhang, and Peter Andreae. An analysis of

constructive crossover and selection pressure in genetic program-

ming. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, GECCO ’07, pages 1739–1748, New

York, NY, USA, 2007. ACM.

[Zha97] Byoung-Tak Zhang. A taxonomy of control schemes for genetic

code growth. Position paper at the Workshop on Evolutionary

Computation with Variable Size Representation at ICGA-97, 20

July 1997.

[ZM95] Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy

and parsimony in genetic programming. Evol. Comput., 3(1):17–

38, 1995.

