2,084 research outputs found

    BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks

    Get PDF
    The proliferation of autonomous Wireless Sensor Networks (WSN) has spawned research seeking power efficient communications to improve the lifetime of sensor motes. WSNs are characterized by their power limitations, wireless transceivers, and the converge-cast communications techniques. WSN motes use low-power, lossy radio systems deployed in dense, random topologies, working sympathetically to sense and notify a sink node of the detectable information. In an effort to extend the life of battery powered motes, and hence the life of the network, various routing protocols have been suggested in an effort to optimize converge-cast delivery of sensor data. It is well known that reducing the overhead required to perform converge-cast routing and communications reduces the effects of the primary power drain in the mote, the transceiver. Furthermore, WSNs are not well protected; network security costs energy both in computation and in RF transmission. This paper investigates the use of a Mobile Ad-hoc Networking (MANET) routing protocol known as B.A.T.M.A.N. in WSN. This thesis proposes that the features of B.A.T.M.A.N. in the MANET realm may prove beneficial to the WSN routing domain; and that slight modifications to the routing technique may prove beneficial beyond current protocol technologies. The B.A.T.M.A.N. variant will be compared against the contemporary LEACH WSN routing protocol to discern any potential energy savings

    Energy-efficiency media access control in wireless ad hoc networks

    Get PDF

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    Cross-layer aided energy-efficient routing design for ad hoc networks

    No full text
    In this treatise, we first review some basic routing protocols conceived for ad hoc networks, followed by some design examples of cross-layer operation aided routing protocols. Specifically, cross-layer operation across the PHYsical layer (PHY), the Data Link layer (DL) and even the NETwork layer (NET) is exemplified for improving the energy efficiency of the entire system. Moreover, the philosophy of Opportunistic Routing (OR) is reviewed for the sake of further reducing the system's energy dissipation with the aid of optimized Power Allocation (PA). The system's end-to-end throughput is also considered in the context of a design example
    corecore