338 research outputs found

    Analytical Evaluation of Coverage-Oriented Femtocell Network Deployment

    Full text link
    This paper proposes a coverage-oriented femtocell network deployment scheme, in which the femtocell base stations (BSs) can decide whether to be active or inactive depending on their distances from the macrocell BSs. Specifically, as the areas close to the macrocell BSs already have satisfactory cellular coverage, the femtocell BSs located inside such areas are kept to be inactive. Thus, all the active femtocells are located in the poor macrocell coverage areas. Based on a stochastic geometric framework, the coverage probability can be analyzed with tractable results. Surprisingly, the results show that the proposed scheme, although with a lower defacto femtocell density, can achieve better coverage performance than that keeping all femtocells in the entire network to be active. The analytical results further identify the achievable optimal performance of the new scheme, which provides mobile operators a guideline for femtocell deployment and operation.Comment: 6 pages, 7 figures, published in IEEE International Conference on Communications (ICC'13

    Designing energy-efficient wireless access networks: LTE and LTE-advanced

    Get PDF
    As large energy consumers, base stations need energy-efficient wireless access networks. This article compares the design of Long-Term Evolution (LTE) networks to energy-efficient LTE-Advanced networks. LIE-Advanced introduces three new functionalities - carrier aggregation, heterogeneous networks, and extended multiple-input, multiple-output (MIMO) support. The authors develop a power consumption model for LIE and LIE-Advanced macrocell and femtocell base stations, along with an energy efficiency measure. They show that LIE-Advanced's carrier aggregation and MIMO improve networks' energy efficiency up to 400 and 450 percent, respectively

    A comparative investigation on the application and performance of Femtocell against Wi-Fi networks in an indoor environment

    Get PDF
    Due to the strenuous demands on the available spectrum and bandwidth, alongside the ever increasing rate at which data traffic is growing and the poor quality of experience QoE) faced with indoor communications, in order for cellular networks to remain dominant in areas pertaining to voice and data services, cellular service providers have to reform their marketing and service delivery strategies together with their overall network rchitecture. To accomplish this leap forward in performance, cellular service operators need to employ a network topology, which makes use of a mix of macrocells and small cells, effectively evolving the network, bringing it closer to the end-­‐user. This investigation explores the use of small cell technology, specifically Femtocell technology in comparison to the already employed Wi-­‐Fi technology as a viable solution to poor indoor communications.The performance evolution is done by comparing key areas in the every day use of Internet communications. These include HTTP testing, RTP testing and VoIP testing. Results are explained and the modes of operation of both technologies are compared

    Signal behaviour in an indoor environment: femtocell over macrocell

    Get PDF
    Abstract: In this paper, we consider femtocells over macrocell for improved signal, good quality of voice calling, data and Internet use in the indoor environment, where there is poor reception of signals. Mobile networks have become most frequent means of communication in well-developed areas and some other places in the world for communication and business purposes. Therefore, the deployment of femtocells has drawn the attention of mobile industry experts, researcher and other standardization organizations over macrocells. The interesting part of the femtocell is that it improves coverage, enhances the data rate at the indoor environment and more so used for security purpose. We focus on benefits of deployment of femtocells and how femtocells can optimize the total capacity of mobile network where there is poor reception. In this paper, we simulate the signal behavior of femtocell over macrocell in an indoor setting, to illustrate that femtocell improved signal and voice calling in an indoor environment

    EFFECT OF SHADOWING AND MULTIPATH FADING ON THE AREA SPECTRAL FOR CELL-EDGE USERS IN HETEROGENEOUS NETWORKS

    Get PDF
    irrespective of their location. The traditional macro-only network have been proved ineffective when communication signal is required for users located in the cell edge and a certain distance away from the macrocell base station. This is because of excess attenuation of the signal due to fading and shadowing. Multipath fading and shadowing are major causes of performance degradation in mobile communication systems. This phenomenon which arises as a result of propagation effects (like scattering, diffraction and reflection), renders the traditional macro-only network communication with users far away from the macrocell base station and located in the cell edge less effective. The deployment of femtocells around the cell edge of this macrocell helps to reduce the effect of fading and shadowing thereby increasing the overall efficiency of the cellular network. Numerical simulation carried out for the macro-femto heterogeneous network using MATLAB shows how the effect of fading and shadowing was reduced. This holds a great promise for adaptive space-based wireless sensor networks, formation-flying satellites and constellations. http://dx.doi.org/10.4314/njt.v35i2.2

    Scenario driven requirement engineering for design and deployment of mobile communication networks

    Get PDF
    The numbers of users and usage of mobile data service are increasing dramatically due to the introduction of smartphones and mobile broadband dongles. For the next decade the mobile broadband market is expected to grow and reach a level where the average data consumption per user is orders of magnitude greater than today. For the telecom industry it is a magnificent challenge to design and deploy these s high-capacity wireless networks taking into account limitations in cost, energy and radio spectrum. The objective of this paper is to highlight the need to consider a multitude of scenarios for the requirements, design and deployment of mobile broad band networks. The R&D has for many years been targeting high peak data rates enabled by improved spectral efficiency, adding more spectrum bands, aggregation of frequency bands and offloading to local wireless networks connected via public fixed phones or broadband. However, many of these features driving the technology development are representative for the conditions in US and Western Europe. The wireless networks also need to be designed assuming deployment in regions in the world where both the availability of spectrum as well as the penetration of fixed phones and broadband are limited. --Mobile broadband networks,cost and capacity,spectrum,deployment strategies,telecommunications,management of technology and R&D,economic development of natural resources
    • 

    corecore