13 research outputs found

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events

    Multi-Level Visual Alphabets

    Get PDF
    A central debate in visual perception theory is the argument for indirect versus direct perception; i.e., the use of intermediate, abstract, and hierarchical representations versus direct semantic interpretation of images through interaction with the outside world. We present a content-based representation that combines both approaches. The previously developed Visual Alphabet method is extended with a hierarchy of representations, each level feeding into the next one, but based on features that are not abstract but directly relevant to the task at hand. Explorative benchmark experiments are carried out on face images to investigate and explain the impact of the key parameters such as pattern size, number of prototypes, and distance measures used. Results show that adding an additional middle layer improves results, by encoding the spatial co-occurrence of lower-level pattern prototypes

    Validating the detection of everyday concepts in visual lifelogs

    Get PDF
    The Microsoft SenseCam is a small lightweight wearable camera used to passively capture photos and other sensor readings from a user's day-to-day activities. It can capture up to 3,000 images per day, equating to almost 1 million images per year. It is used to aid memory by creating a personal multimedia lifelog, or visual recording of the wearer's life. However the sheer volume of image data captured within a visual lifelog creates a number of challenges, particularly for locating relevant content. Within this work, we explore the applicability of semantic concept detection, a method often used within video retrieval, on the novel domain of visual lifelogs. A concept detector models the correspondence between low-level visual features and high-level semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised machine learning. By doing so it determines the probability of a concept's presence. We apply detection of 27 everyday semantic concepts on a lifelog collection composed of 257,518 SenseCam images from 5 users. The results were then evaluated on a subset of 95,907 images, to determine the precision for detection of each semantic concept and to draw some interesting inferences on the lifestyles of those 5 users. We additionally present future applications of concept detection within the domain of lifelogging. © 2008 Springer Berlin Heidelberg

    Robust Audio-Codebooks for Large-Scale Event Detection in Consumer Videos

    Get PDF
    Abstract In this paper we present our audio based system for detecting "events" within consumer videos (e.g. You Tube) and report our experiments on the TRECVID Multimedia Event Detection (MED) task and development data. Codebook or bag-of-words models have been widely used in text, visual and audio domains and form the state-of-the-art in MED tasks. The overall effectiveness of these models on such datasets depends critically on the choice of low-level features, clustering approach, sampling method, codebook size, weighting schemes and choice of classifier. In this work we empirically evaluate several approaches to model expressive and robust audio codebooks for the task of MED while ensuring compactness. First, we introduce the Large Scale Pooling Features (LSPF) and Stacked Cepstral Features for encoding local temporal information in audio codebooks. Second, we discuss several design decisions for generating and representing expressive audio codebooks and show how they scale to large datasets. Third, we apply text based techniques like Latent Dirichlet Allocation (LDA) to learn acoustictopics as a means of providing compact representation while maintaining performance. By aggregating these decisions into our model, we obtained 11% relative improvement over our baseline audio systems

    Everyday concept detection in visual lifelogs: validation, relationships and trends

    Get PDF
    The Microsoft SenseCam is a small lightweight wearable camera used to passively capture photos and other sensor readings from a user's day-to-day activities. It can capture up to 3,000 images per day, equating to almost 1 million images per year. It is used to aid memory by creating a personal multimedia lifelog, or visual recording of the wearer's life. However the sheer volume of image data captured within a visual lifelog creates a number of challenges, particularly for locating relevant content. Within this work, we explore the applicability of semantic concept detection, a method often used within video retrieval, on the novel domain of visual lifelogs. A concept detector models the correspondence between low-level visual features and high-level semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised machine learning. By doing so it determines the probability of a concept's presence. We apply detection of 27 everyday semantic concepts on a lifelog collection composed of 257,518 SenseCam images from 5 users. The results were then evaluated on a subset of 95,907 images, to determine the precision for detection of each semantic concept. We conduct further analysis on the temporal consistency, co-occurance and trends within the detected concepts to more extensively investigate the robustness of the detectors within this novel domain. We additionally present future applications of concept detection within the domain of lifelogging

    Feature Encoding of Spectral Descriptors for 3D Shape Recognition

    Get PDF
    Feature descriptors have become a ubiquitous tool in shape analysis. Features can be extracted and subsequently used to design discriminative signatures for solving a variety of 3D shape analysis problems. In particular, shape classification and retrieval are intriguing and challenging problems that lie at the crossroads of computer vision, geometry processing, machine learning and medical imaging. In this thesis, we propose spectral graph wavelet approaches for the classification and retrieval of deformable 3D shapes. First, we review the recent shape descriptors based on the spectral decomposition of the Laplace-Beltrami operator, which provides a rich set of eigenbases that are invariant to intrinsic isometries. We then provide a detailed overview of spectral graph wavelets. In an effort to capture both local and global characteristics of a 3D shape, we propose a three-step feature description framework. Local descriptors are first extracted via the spectral graph wavelet transform having the Mexican hat wavelet as a generating kernel. Then, mid-level features are obtained by embedding local descriptors into the visual vocabulary space using the soft-assignment coding step of the bag-of-features model. A global descriptor is subsequently constructed by aggregating mid-level features weighted by a geodesic exponential kernel, resulting in a matrix representation that describes the frequency of appearance of nearby codewords in the vocabulary. In order to analyze the performance of the proposed algorithms on 3D shape classification, support vector machines and deep belief networks are applied to mid-level features. To assess the performance of the proposed approach for nonrigid 3D shape retrieval, we compare the global descriptor of a query to the global descriptors of the rest of shapes in the dataset using a dissimilarity measure and find the closest shape. Experimental results on three standard 3D shape benchmarks demonstrate the effectiveness of the proposed classification and retrieval approaches in comparison with state-of-the-art methods

    Comparing Compact Codebooks for Visual Categorization

    No full text
    In the face of current large-scale video libraries, the practical applicability of content-based indexing algorithms is constrained by their efficiency. This paper strives for efficient large-scale video indexing by comparing various visual-based concept categorization techniques. In visual categorization, the popular codebook model has shown excellent categorization performance. The codebook model represents continuous visual features by discrete prototypes predefined in a vocabulary. The vocabulary size has a major impact on categorization efficiency, where a more compact vocabulary is more efficient. However, smaller vocabularies typically score lower on classification performance than larger vocabularies. This paper compares four approaches to achieve a compact codebook vocabulary while retaining categorization performance. For these four methods, we investigate the trade-off between codebook compactness and categorization performance. We evaluate the methods on more than 200 h of challenging video data with as many as 101 semantic concepts. The results allow us to create a taxonomy of the four methods based on their efficiency and categorization performance
    corecore