6 research outputs found

    Robust Face Recognition Providing the Identity and its Reliability Degree Combining Sparse Representation and Multiple Features

    Get PDF
    For decades, face recognition (FR) has attracted a lot of attention, and several systems have been successfully developed to solve this problem. However, the issue deserves further research effort so as to reduce the still existing gap between the computer and human ability in solving it. Among the others, one of the human skills concerns his ability in naturally conferring a \u201cdegree of reliability\u201d to the face identification he carried out. We believe that providing a FR system with this feature would be of great help in real application contexts, making more flexible and treatable the identification process. In this spirit, we propose a completely automatic FR system robust to possible adverse illuminations and facial expression variations that provides together with the identity the corresponding degree of reliability. The method promotes sparse coding of multi-feature representations with LDA projections for dimensionality reduction, and uses a multistage classifier. The method has been evaluated in the challenging condition of having few (3\u20135) images per subject in the gallery. Extended experiments on several challenging databases (frontal faces of Extended YaleB, BANCA, FRGC v2.0, and frontal faces of Multi-PIE) show that our method outperforms several state-of-the-art sparse coding FR systems, thus demonstrating its effectiveness and generalizability

    DFT domain Feature Extraction using Edge-based Scale Normalization for Enhanced Face Recognition

    Full text link

    SPARSE RECOVERY BY NONCONVEX LIPSHITZIAN MAPPINGS

    Get PDF
    In recent years, the sparsity concept has attracted considerable attention in areas of applied mathematics and computer science, especially in signal and image processing fields. The general framework of sparse representation is now a mature concept with solid basis in relevant mathematical fields, such as probability, geometry of Banach spaces, harmonic analysis, theory of computability, and information-based complexity. Together with theoretical and practical advancements, also several numeric methods and algorithmic techniques have been developed in order to capture the complexity and the wide scope that the theory suggests. Sparse recovery relays over the fact that many signals can be represented in a sparse way, using only few nonzero coefficients in a suitable basis or overcomplete dictionary. Unfortunately, this problem, also called `0-norm minimization, is not only NP-hard, but also hard to approximate within an exponential factor of the optimal solution. Nevertheless, many heuristics for the problem has been obtained and proposed for many applications. This thesis provides new regularization methods for the sparse representation problem with application to face recognition and ECG signal compression. The proposed methods are based on fixed-point iteration scheme which combines nonconvex Lipschitzian-type mappings with canonical orthogonal projectors. The first are aimed at uniformly enhancing the sparseness level by shrinking effects, the latter to project back into the feasible space of solutions. In the second part of this thesis we study two applications in which sparseness has been successfully applied in recent areas of the signal and image processing: the face recognition problem and the ECG signal compression problem

    Template-based Monocular 3-D Shape Reconstruction And Tracking Using Laplacian Meshes

    Get PDF
    This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a very challenging problem in computer vision, being able to reconstruct and track 3-D deformable objects in videos allows us to develop many potential applications ranging from sports and entertainments to engineering and medical imaging. This thesis extends the scope of deformable object modeling to real-world applications of fully 3-D modeling of deformable objects from video streams with a number of contributions. We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3-D meshes, we can turn the monocular 3-D shape reconstruction of a deformable object given correspondences with a reference image into a much better-posed problem with far fewer degrees of freedom than the original one. This has proved key to achieving real-time performance while preserving both sufficient flexibility and robustness. Our real-time 3-D reconstruction and tracking system of deformable objects can very quickly reject outlier correspondences and accurately reconstruct the object shape in 3D. Frame-to-frame tracking is exploited to track the object under difficult settings such as large deformations, occlusions, illumination changes, and motion blur. We present an approach to solving the problem of dense image registration and 3-D shape reconstruction of deformable objects in the presence of occlusions and minimal texture. A main ingredient is the pixel-wise relevancy score that we use to weigh the influence of the image information from a pixel in the image energy cost function. A careful design of the framework is essential for obtaining state-of-the-art results in recovering 3-D deformations of both well- and poorly-textured objects in the presence of occlusions. We study the problem of reconstructing 3-D deformable objects interacting with rigid ones. Imposing real physical constraints allows us to model the interactions of objects in the real world more accurately and more realistically. In particular, we study the problem of a ball colliding with a bat observed by high speed cameras. We provide quantitative measurements of the impact that are compared with simulation-based methods to evaluate which simulation predictions most accurately describe a physical quantity of interest and to improve the models. Based on the diffuse property of the tracked deformable object, we propose a method to estimate the environment irradiance map represented by a set of low frequency spherical harmonics. The obtained irradiance map can be used to realistically illuminate 2-D and 3-D virtual contents in the context of augmented reality on deformable objects. The results compare favorably with baseline methods. In collaboration with Disney Research, we develop an augmented reality coloring book application that runs in real-time on mobile devices. The app allows the children to see the coloring work by showing animated characters with texture lifted from their colors on the drawing. Deformations of the book page are explicitly modeled by our 3-D tracking and reconstruction method. As a result, accurate color information is extracted to synthesize the character's texture
    corecore