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Introduction

In recent years, the sparsity concept has attracted considerable attention in areas
of applied mathematics and computer science, especially insignal and image pro-
cessing fields [41, 29, 55]. The general framework of sparse representation is now
a mature concept with solid basis in relevant mathematical fields, such as prob-
ability, geometry of Banach spaces, harmonic analysis, theory of computability,
and information-based complexity. Together with theoretical and practical advance-
ments, also several numeric methods and algorithmic techniques have been devel-
oped in order to capture the complexity and the wide scope that the theory suggests.
All these discoveries explain why sparsity paradigm has progressively interested a
broad spectrum of natural science and engineering applications.

Sparse recovery relays over the fact that many signals can berepresented in a
sparse way, using only few nonzero coefficients in a suitablebasis or overcomplete
dictionary. The problem can be described as follows. Given afixed vectors∈ Rn

and a matrixΦ ∈ Rn×m with m> n, determine the sparsest solutionα∗, i.e.

α∗ = argmin
α
||α||0, s.t.Φα = s (BP0)

where|| · ||0 is theℓ0 quasinorm, that represents the number of non-zero entries of
the vectorα.
Unfortunately, this problem, also calledℓ0-norm minimization, is not only NP-hard
[85], but but also hard to approximate within an exponentialfactor of the optimal
solution [87]. Nevertheless, many heuristics for the problem has been obtained and
proposed for many applications. Among them we recall a greedy pursuit technique
that approximates a sparse solutions to an underdeterminedlinear system of equa-
tions. Successively, several greedy-based extended heuristics that directly attempt
to solve theℓ0-norm minimization have been proposed, for instance, Matching Pur-
suit (MP) [77], Orthogonal Matching Pursuit (OMP) [91] and Stagewise Orthogonal
Matching Pursuit (StOMP) [45].

xv
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A second key contribution [31] relaxes the problem by using the ℓ1-norm for
evaluating sparsity and solving the relaxed problem by linear programming. Typical
algorithm in this class of algorithms is Basis Pursuit (BP) [29]

This thesis provides new regularization methods for the sparse representation
problem with application to face recognition and ECG signalcompression. The
proposed methods are based on fixed-point iteration scheme which combines non-
convex Lipschitzian-type mappings with canonical orthogonal projectors. The first
are aimed at uniformly enhancing the sparseness level by shrinking effects, the lat-
ter to project back into the feasible space of solutions. In particular the algorithm
L IMAPS (Lipshitzian Mappings for Sparse recovery) is proposed asheuristics for
(BP0). This algorithm is based on a parametric classGλ of nonlinear mappings

Gλ : {α | s= Φα} → {α | s= Φα}.

First of all, the problem (BP0) is relaxed to the problem

α∗ = argmin
α
||α||<λ>, s.t.Φα = s (REL)

where, for allλ > 0, || · ||<λ> is a suitable pseudonorm such that||α||0 ≈ ||α||<λ>
for largeλ .

The main result we obtain in this part states under reasonable conditions, the
minima of (REL) are asymptotically stable fixed points ofGλ with respect to the
iterative system

αt+1 = Gλ (αt )

Then, the LIMAPS algorithm requires a suitable sequence{λt} with limt→∞ λt = ∞
Roughly speaking, this implies that|| · ||<λ> ≈ || · ||0 for larget. L IMAPS imple-
ments the system

αt+1 = Gλ (αt )

for obtaining a sparse solution ast→ ∞.
In many applications, it is often required to solve the variant of (BP0) in which

the sparsity level is a given as a constant:

α∗ = argmin
α
||Φα − s||22, s.t.||α||0 ≤ 0 (LS0)

In this thesis we propose a heuristic for (LS0) the algorithmk-L IMAPS . An empir-
ical evidence of convergence ofk-L IMAPS to good solutions is discussed.

In the second part of this thesis we study two applications inwhich sparseness
has been successfully applied in recent areas of the signal and image processing: the
face recognition problem and the ECG signal compression problem.

In the last decades, the face recognition (FR) problem has received increasing
attention. Despite excellent results have been achieved, the existing methods suf-
fer when applied in uncontrolled conditions. Such bottleneck represents a serious
limit for their real applicability. In this work we propose two different algorithms
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able to work on crucial topics in the context of uncontrolledconditions: variation in
illumination conditions, continuous occlusions and largeexpression variations. Ex-
perimental results based onk-L IMAPS show that the algorithm has high recognition
rate, showing good stability performances both in case of manually and automati-
cally registered images.

In the last few years, the need of ECG signal recordings has been enormously
augmented due to the increasing interest in health care. Portable ECG recording
systems (e.g., Holters) record ECG signals continuously for long time periods rang-
ing between several hours and few days. We present two novel and efficient signal
compression algorithms aimed at finding the sparsest representation of the ECG
signals based onk-L IMAPS . The idea behind these algorithms is to use to sparse
represent the ECG signal to compress a dictionary created from signal itself. The
saved coefficients are then discretized and rescaled in a convenient range and com-
pressed by a lossless entropy-based algorithm. Experimentally we have shown the
effectiveness of our methods which reaches high compression rate maintaining an
acceptable percent root-mean square difference level.
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Chapter 1
Sparse Recovery and Compressive Sensing

Abstract Shannon-Nyquist sampling theorem is one of the central principle in
signal processing. To reconstruct without error a signals(t) with no frequencies
higher thanB Hertz by the sampled signalsc(t), it is sufficient a sampling frequency
A> 2B.
In the last few years a further development calledcompressive sensinghas emerged,
showing that a signal can be reconstructed from far fewer measurements than what
is usually considered necessary, provided that it admits a sparse representation.
In this chapter we provide a brief introduction of the basic theory underlying com-
pressive sensing and discuss some methods to recovery a sparse vector in efficient
way.

1.1 Introduction

Compressive sensing (CS) has emerged as a new framework for signal acquisition
and sensor design [47, 28]. It provides an alternative to Shannon / Nyquist sampling
when signal under acquisition is known to be sparse or compressible. Instead of
taking periodic signal samples of lengthn, we measure inner products withp≪ n
measurement vectors and then recover the signal via sparsity seeking optimization
algorithm. In matrix notation, the measurement vectory can be expressed as

y=Ψs=ΨΦα

where the rows ofp×n matrixΨ contain the measurement vectors,Φ is ann×n
compression matrix,α is the sparse compressed signal ands is the sampled signal.
While the matrixΨΦ is rank deficient, and hence loses information in general, it
can be shown to preserve the information in sparse and compressible signals if it
satisfies the Restricted Isometry Property (RIP) [15]. The standard CS theory states
that robust signal recovery is possible fromp= O(plog n

p) measurements.

5
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Many fundamental works are proposed by Càndes, Chen, Sauders, Tao and
Romberg [31, 21, 26, 27, 23] in which are shown that a finite dimensional signal
having a sparse or compressible representation can be recovered exactly from a
small set of linear non adaptive measurements.

This chapter starts with preliminary notations on linear algebra and continue with
an introduction to the compressive sensing problem and recall some of the most
important results in literature that summarize under whichconditions compressive
sensing algorithms are able to recover the sparsest representation of a signal into a
given basis.

1.2 Preliminary Notations on Linear Algebra

The set of alln×1 column vectors with complex number entries is denoted byCn,
the i-th entry of a columns vectorx= (x1, . . . ,xn)

T ∈ Rn is denoted byxi .
The set of alln×mrectangular matrices with complex number entries is denoted by
Cn×m. The elements in the i-th row and j-th column of a matrixA is denoted byAi, j .

Let A ∈ Cn×m a rectangular matrix, the left multiplication of a matrixA with a
scalarλ gives another matrixλA of the same size asA. The entries ofλA are given
by λ (A)i, j = (λA)i, j = λAi, j . Similarly, the right multiplication of a matrixA with
a scalarλ is defined to be(Aλ )i, j = Ai, jλ . If A is ann×mmatrix andB is anm× p
matrix, the resultAB of their multiplication is ann× p matrix defined only if the
number of columnsm in A is equal to the number of rowsm in B. The entries of
the product matrix smatrixAB are defined as(AB)i, j = ∑m

k=1Ai,kBk, j . The matrix
addition is defined for two matrices of the same dimensions. The sum of twom×n
matricesA andB,s denoted byA+B, is again anm×n matrix computed by adding
corresponding elements(A+B)i, j = Ai, j +Bi, j .

The dot product, or scalar product, is an algebraic operation that takes two
equal-length vectors and returns a single number. Leta = (a1, . . . ,an) ∈ Cn and
b= (b1, . . .bn) ∈ Cn, the dot product can be obtained by multiplying the transpose
of the vectora with the vectorb and extracting the unique coefficient of the resulting
1× 1 matrix is defined as

aTb=
n

∑
i=1

aibi

Let A ∈ Cn×m, the adjoint matrix is a matrixA∗ ∈ Cm×n obtained fromA by
taking the transpose and then taking the complex conjugate of each entry. Formally
the adjoint matrix is defined as

A∗ = (A)T = AT
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whereAT denotes the transpose andA denotes the matrix with complex conjugated
entries. If the matrix isA∈ Rn×m, the adjoint matrix is given by

A∗ = AT

A square matrixA∈ Cn×n is called invertible if there exists a matrixB∈ Cn×n

such that
AB= BA= I

whereI denotes then× n identity matrix and the multiplication used is ordinary
matrix multiplication. If the matrixB exist, is uniquely determined byA and is
called the inverse ofA, denoted asA−1. An orthogonal matrix is a square matrix with
complex entries whose columns and rows are orthogonal unit vectors. Equivalently,
a matrixA is orthogonal if its adjoint matrix is equal to its inverse:

A∗ = A−1

which entails
A∗A= AA∗ = I

A symmetricn×n complex matrixA is said to be positive definite if

z∗Az> 0, ∀z∈ C
n

Similarly a symmetricn×n complex matrixA is said to be positive semi-definite if

z∗Az≥ 0, ∀z∈ C
n

Let A ∈ Cn×m, the column rank of a matrixA, denoted as rank(A), is the max-
imum number of linearly independent column vectors ofA. It is known that the
maximum number of linearly independent rows of a matrix is always equal to the
maximum number of linearly independent columns.

For a rectangular matrixA ∈ Cn×m, by definition rank(A) ≤ min{n,m}. When
rank(A) = min{n,m} A is said full rank, otherwise the matrix is said deficient rank.

A diagonal matrix is a matrixD = (di, j) ∈Cn×n such that

di, j = 0 iff i 6= j

Denote withD = diag(d1, . . . ,dn) ∈Rn×n the diagonal matrix with diagonal vec-
tor (d1, . . . ,dn). It holds that

diag(a1, . . . ,an)+diag(b1, . . . ,bn) = diag(a1+b1, . . . ,an+bn) (1.1)

diag(a1, . . . ,an)diag(b1, . . . ,bn) = diag(a1b1, . . . ,anbn) (1.2)

The diagonal matrixD = diag(d1, . . . ,dn) is invertible if and only if all the entries
of (d1, . . . ,dn) are all non-zero. In this case, we have
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diag(d1, . . . ,dn)
−1 = diag(

1
d1

, . . . ,
1
dn

)

The Hadamard product is a binary operation that takes two matrices of the same
dimensions, and produces another matrix where each elementi, j is the product of
elementsi, j of the original two matrices. LetA,B ∈ Cn×m two rectangular matri-
ces of the same dimensions, the Hadamard productA⊙B is a matrix, of the same
dimension as the operands, with elements given by

(A⊙B)i, j = Ai, jBi, j

The Hadamard product is commutative, associative and distributive over addition.
That is,

A⊙B=B⊙A (1.3)

A⊙ (B⊙C) =(A⊙B)⊙C (1.4)

A⊙ (B+C) =A⊙B+A⊙C (1.5)

(1.6)

The identity matrix under Hadamard multiplication of twon×m matrices isn×m
matrix where all elements are equal to 1.

Givenx∈R
n, the Euclidean norm ofx is defined as

||x||2 = (xTx)
1
2

The Euclidean norm measures the distance from the pointx to the origin. It is almost
immediate from the definition that the following propertieshold:

• ||x||2≥ 0 for all x∈ Rn

• ||x||2 = 0 iff x= 0
• For anyγ ∈ R, γ > 0, ||γx||2 = |γ| ||x||2

1.2.1 Singular Value Decomposition theorem

Let A be ann×mmatrix of rankr, with n< m. Then there exist unitary orthogonal
matricesU , V respectively of ordern andm such that

A=UDV∗

whereD has the form

D =

(

D1 0
0 0

)

andD1 = diag(σ1, . . . ,σr) with σ1≥σ2≥ ·· · ≥σr is a non singular diagonal matrix.
The diagonal elements ofD = diag(σ1, . . . ,σr ,0, . . . ,0) are calledsingular values



1.2 Preliminary Notations on Linear Algebra 9

of A and the number of non-zerosσi ’s is equal to the rank ofA. The ratioσ1
σr

, with
σr 6= 0 can be regarded as a condition number ofA.

1.2.2 Moore-Penrose pseudoinverse

Let A=U

(

D1 0
0 0

)

V∗ be the singular value decomposition ofA. Then the Moore-

Penrose pseudoinverse ofA is defined as

A† =V

(

D−1
1 0
0 0

)

U∗ (1.7)

It is possible to prove that the Moore-Penrose pseudoinverse A† is the unique
matrix X satisfying:

AXA= A (1.8)

XAX= X (1.9)

(XA)∗ = XA (1.10)

(AX)∗ = AX (1.11)

(1.12)

Let us consider the linear system

Ax= b

and letx0 = A†b. Then forx 6= x0 we have either

||Ax−b||2 > ||Ax0−b||2 (1.13)

or
||Ax−b||2 = ||Ax0−b||2 and||x||2 > ||x0||2 (1.14)

In other words,A†b is either the unique least square solution, or it is the least
square solution of minimum norm.
An important case is when the rows ofA are linearly independent; in this caseA†b
is the unique least square solution andA† can be obtained by

A† = (ATA)−1AT (1.15)

The product of the matrixA and then-dimensional vectorx can be written in
terms of dot product of vectors as follow:
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Ax=











aT
1 x

aT
2 x
...

aT
n x











wherea1,a2, . . . ,an denote the rows of the matrixA. Let NA be the null space ofA,
i.e.NA = {x|Ax= 0}; x∈NA is orthogonal to each row vectors ofA. The row space
of the matrixA is the span of the row vectors ofA; it follows that a vectorx∈NA iff
it is perpendicular to every vector in the row space ofA. The dimension of the null
space ofA is called nullity. It holds that rank(A)+nullity(A) = m.

Let x∈Rn =V⊕W. Thenx can be uniquely decomposed into

x= x1+ x2 with x1 ∈V andx2 ∈W

The transformation that mapsx into x1 is calledprojector matrixontoV alongW
and is denoted byP. The vectorx1 = Px transformed by the projectorP is called the
projection ofx ontoV alongW. The necessary and sufficient condition for a square
matrixP of ordern to be the projection matrix is given by

P2 = P

Let Q denote the projector that transformsx in x2. Then

Px+Qx= (P+Q)x

Because the equation above has to hold for anyx∈ R
n, it must hold that

I = P+Q

Let P a square matrix be the projector matrix ontoV alongW. ThenQ = I −P
satisfiesQ2 = I −2P+P2 = Q indicating thatQ is the projection matrix ontoW
alongV. We have that

PQ= P(I −P) = P−P2 = 0

implying that thespan(Q) constitutes the null space ofP, similarly QP= 0 imply
that thespan(P) constitutes the null space ofQ.

By coming back to the general case, letQ= A†A

Q2 = A†(AA†A) = A†A= Q

Q is the projection on the null space ofA andP= I −Q is the projection on the
orthogonal complement of the null space ofA, denoted byN ⊥

A .
The null space also plays a role in the solution to a nonhomogeneous linear sys-

tem of linear equations
Ax= b (1.16)
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If u andv are two possible solutions of the equations to the linear system (1.16),
then

A(u− v) = Au−Av= b−b= 0

Thus the difference of any two solutions of the equation (1.16) lies inNA. It follows
that any solution to the equation (1.16) can be expressed as the sum of a fixed solu-
tion v and an arbitrary element ofNA. That is, the solution set of (1.16) is defined
as

{v+ x|x∈NA}
wherev is any fixed vector satisfyingAv= b. The solution set of (1.16), also called
affine space and denoted byAA,b, is the translation of the null space ofA by the
vectorv.

1.2.3 Norm, Pseudo-Norm and Quasi-Norm inRn

For everyp with p ∈ (0 < p < ∞), let us consider the functional||.||p : Rn→ R+

defined by:

||x||p = (∑ |xi |p)
1
p (1.17)

This functional is extended top= 0 andp= ∞ as follows:

||x||0 = lim
p→0
||x||pp = |supp(x)| (1.18)

||x||∞ = lim
p→∞
||x||p = max

i
|xi | (1.19)

with supp(x) = {i|xi 6= 0} is the support of the vectorx.

It is known that||.||p, with 1≤ p≤ ∞, is a norm , i.e. it holds:

||x||p = 0 iff x= 0 (1.20)

||αx||p = |α|||x||p (1.21)

||x+ y||p≤ ||x||p+ ||y||p (1.22)

In particular,Rn equipped by||.||p is a Banach space [9].
If 0 < p< 1, ||.||p is a quasinorm [108], i.e. it satisfies the norm axioms, except that
the triangular inequality which is replaced by

||x+ y||p = γ (||x||p+ ||y||p) (1.23)

for someγ > 1. A vector space with an associated quasinorm is called a quasi-
normed vector space .
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If p= 0, the triangular inequality (1.22) holds but does not hold the scaling ax-
iom (1.21). In this case||.||0 is called pseudonorm .
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Fig. 1.1 Unit spheres inR2 for the lp norms withp = 1,2,∞, for the lp quasinorm withp = 0.5
and for the pseudonorml0.

In figure 1.1 are depicted on the plane the unit sphere and somequasinorms
{x | ||x||p = 1} for different values ofp.

1.2.4 Metric Space and Normed Vector Space

A vector space over a fieldF is a set V equipped with operation sum+ : V×V→V
and scalar multiplication. : F×V→V, such that the following conditions hold:



1.2 Preliminary Notations on Linear Algebra 13

x+ y= y+ x (commutativity) (1.24)

(x+ y)+ z= x+(y+ z) (associativity of vector addition) (1.25)

α(βx) = (αβ )x (associativity of scalar multiplication) (1.26)

x+0= 0+ x= x (additive identity) (1.27)

1x= x (scalar multiplication identity) (1.28)

x+(−x) = 0 (existence of inverse) (1.29)

α(x+ y) = αx+αy (distributivity of vector sums) (1.30)

We define a metric space an ordered pair(M,d) whereM is a set andd is a metric
function

d : M×M→R
+

such that for anyx,y,z∈M the following properties holds:

d(x,0) = 0 iff x= y (identity) (1.31)

d(x,y)≥ 0 (non negativity) (1.32)

d(x,y) = d(y,x) (simmetry) (1.33)

d(x,z)≤ d(x,y)+d(y,z) (triangular inequality) (1.34)

The functiond is also called distance function .

A normed vector space is a pair(V, ||.||) whereV is a vector space and||.|| is a
norm function onV. Observe that||x− y|| is a distance function.

We callx the limit of the sequence(xn) if for each real numberε > 0, there exists
a natural numberN such that, for everyn > N, |xn− x| < ε where|.| denote the
absolute value. The sequence(xn) is said to converge to or tend to the limitx, and
we denote it asxn→ x. A sequence{xn}n of real numbers is said to have the Cauchy
property, if for every positive real numberε, there is a positive integerN such that
for all natural numbersm,n< N

|xm− xn|< ε

A metric spaceM is called complete, if every Cauchy sequence of points inM has
a limit that is also inM or, alternatively, if every Cauchy sequence inM converges
in M.

1.2.5 Convex, Smooth and Lipschitzian Functions

A setV is convex if the line segment between any two points inV lies inV, i.e., if
for anyx1,x2 ∈C and and anyθ with 0≤ θ ≤ 1, we have

θx1+(1−θ )x2 ∈V
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A real valued functionf : V → R defined on a convex setV ⊆ Rn in a vector
space is said to be convex if for any pointsx,y∈V and anyα ∈ [0,1] it holds

f (αx+(1−α))≤ α f (x)+ (1−α) f (y) (1.35)

A function f : V→R is said to be strictly convex if for anyα ∈ (0,1)

f (αx+(1−α))< α f (x)+ (1−α) f (y) (1.36)

If f is twice differentiable on its open domain and the Hessian∇2 f (x)

∇2 f (x)i, j =
∂ 2 f (x)
∂xi∂x j

with i, j = 1, . . . ,n

exists for eachx ∈ domf , then it is convex if and only if the Hessian matrix is
positive semidefinite

∇2 f (x) � 0 ∀x∈ domf

If the Hessian matrix is positive definite, i.e.,∇2 f (x) ≻ 0, ∀x∈ domf , f is strictly
convex.

Let f be a function defined on a open set on the real line and letk a non negative
integer. If the derivativesf

′
, f
′′
, . . . , f (k) exist and are continuous the functionf is

said to be of classCk . If the function f has derivatives of all orders is said to be of
classC∞ or smooth . The classC0 is the class of all continuous functions, the class
C1 is the class of all differentiable functions whose derivative is continuous.

Let (M,dM) and(N,dN) two metric spaces and letf : M → N a function. The
function f is said to be Lipschitz continuous if there exist a constantγ, called Lips-
chitz constant such that∀x,y∈M

dN( f (x), f (y)) ≤ γdN(x,y) (1.37)

The smallest constantγ is called the best Lipschitz constant. Ifγ = 1 the function
is called a short map and if the Lipschitz constant is 0≤ γ < 1 the function is called
a contraction . A function is called locally Lipschitz continuous if for everyx∈M
if there exists a neighborhoodU such thatf restricted toU is Lipschitz continuous.
A function f defined overM is said to be Hölder continuous or uniform Lipschitz
condition of orderα onM if if there exists a constantλ such that

dN( f (x), f (y)) ≤ λdN(x,y)
α ∀x,y∈M (1.38)
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1.3 Basis and Frames

A set of column vectorsΦ = {φi}ni=1 is calledbasisfor Rn if the vectors{φ1, . . . ,φn}
are linearly independent. Each vector inRn is then uniquely represented as a linear
combination of basis vectors, i.e. for any vectors∈ Rn there exist a unique set of
coefficientsα = {αi}ni=1 such that

s= Φα (1.39)

The set of coefficientsα can be univocally reconstructed as follows:

α = Φ−1s (1.40)

The reconstruction is particularly simple when the set of vectors{φ1, . . . ,φn}ni=1 are
orthonormal, i.e.

φ∗i φ j =

{

1 if i = j
0 if i 6= j

(1.41)

In this caseΦ−1 = Φ∗.

A generalization of the basis concept, that allow to represent a signal by a set of
linearly dependent vectors is theframe[76].

Definition 1.1. A frame inRn is a set of vectors{φi}mi=1 ⊂ R
n, with n< m, corre-

sponding to a matrixΦ such that there are 0< A≤ B and

A||α||22≤ ||ΦT α||22≤ B||α||22 ∀α ∈ R
n (1.42)

SinceA> 0, condition (1.42), is equivalent to require that rows ofΦ are linearly
independent, i.e. rank(Φ) = n.

If A= B then the frameΦ is calledA-tight frame, while if A= B= 1, thenΦ is
calledParseval frame.
By remembering the results presented in section (1.2.2), given a frameΦ in Rn, the
linear system

s= Φα (1.43)

admits an unique least square solutionαLS, that can be obtained by

αLS= (ΦT Φ)−1ΦTs= Φ†s (1.44)

Is simple to show that the solution in (1.44) is the smallestl2 norm vector

||αLS||22≤ ||α||22 (1.45)

for each coefficient vectorα such thatx = Φα, and it is also calledleast square
solution.
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1.4 Sparse and Compressible Signals

We say that a vectorx ∈ Rn is k-sparse when|supp(x)| ≤ k, i.e ||x||0 ≤ k. Let
Σk = {α : ||α||0≤ k} the set of allk-sparse vectors.
A signal admits a sparse representation in some frameΦ, if s= Φα with ||α||0≤ k.

In real world only few signals are true sparse, rather they can be considered
compressible, in the sense that they can be well approximated by a sparse signal.
We can quantify the compressibility of a signals by calculating the error between
the original signal and the best approximation ˆs∈ Σk

σk(s)p = min
ŝ∈Σk

||s− ŝ||p (1.46)

If s∈ Σk thenσk(s)p = 0 for any p. Another way to think about compressible
signals is to consider the rate of decay of their coefficients. For many important
class of signals there exist bases such that the coefficientsobey a power law decay,
in which case the signal are highly compressible. Specifically, if s=Φα and we sort
the coefficientsαi such that|α1| ≥ |α2| ≥ · · · ≥ |αm|, then we say that the coefficients
obey a power law decay if there exist constantsC1, q> 0 such that

|αi | ≤C1i−q

The largerq is, the faster the magnitudes decay, and the more compressible a sig-
nal is. Because the magnitude of their coefficients decay so rapidly, compressible
signals can be represented accurately byk≪ m coefficients. Specifically, for such
signal there exist constantsC2, r > 0 depending only onC1 andq such that

σk(s)2 ≤C2k−r

In fact, one can show thatσk(s)2 will decay ask−r if and only if the sorted coeffi-

cientsαi decay asir+
1
2 [39].

1.5 Underdetermined Linear System and Sparsest Solution

Let consider a matrixΦ ∈ Rn×m with n< m and a vectors, the systemΦα = shas
more unknowns than equations, and thus it has no solutions ifs is not in the span of
the columns of the matrixΦ, or infinitely many ifs is in the span of the dictionaryΦ.

We consider the sparse recovery problem, where the goal is torecover a high-
dimensional sparse vectorα from an observations:

s= Φα (1.47)
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A well-posed problem stems from a definition given by JacquesHadamard. He
believed that mathematical models of physical phenomena should have three prop-
erties:

• a solution must exists
• the solution is unique
• the solution’s behavior hardly changes when there’s a slight change in the initial

condition

Problems that are not well-posed in the sense of Hadamard aretermed ill-posed.
Inverse problems are often ill-posed .

In ill-posed problems we desire to find a single solution of systems= Φα, and
in order to select one well defined solution additional criteria are needed.
A way to do this is theregularization technique, where a functionJ(α) that eval-
uates the desirability of a would-be solutionα is introduced, with smaller values
being preferred.
Defining the general optimization problem

arg min
α∈Rm

J(α) subject toΦα = s (PJ)

whereα ∈Rm is the vector we wish to reconstruct,s∈Rn are available measure-
ments,Φ is a knownn×mmatrix is also called sensing matrix or dictionary.

It is now in the hands ofJ(α) to govern the kind of solution we may obtain. We
are interested in the underdetermined case with fewer equations than unknowns, i.e.
n< m, and ask whether it is possible to reconstructα with a good accuracy.
By fixing J(α) = ||α||0, we can constrain the solution of (1.47) to be sparsest as
possible.

The problem can be formulated as

arg min
α∈Rm

||α||0 s.t.Φα = s (P0)

where||α||0 = |supp{α}|.
Problem (P0) requires searches over all subsets of columns of Φ, a procedure

which clearly is combinatorial in nature and has high computational complexity. It
is proved that (P0) is NP-hard [85].
In fact, under the so called Restricted Isometry Conditions[15] over the sensing ma-
trix Φ, described with more details in the next session, the sparserecovery problem
P0 [20, 24] can be relaxed to the convexl1 problem

arg min
α∈Rm

||α||1 s.t.Φα = s (P1)

where||α||1 = ∑m
i=1 |αi | denotes thel1 norm of vectorα.

Problem (P1) can be reformulated as a linear programming (LP) [99] problem
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mint∈Rm ∑m
i=1 ti

s.t. −ti ≤ αi ≤ ti
Φα = s ti ≥ 0 (1.48)

This problem can be solved exactly with for instance interior point methods or with
the classical simplex algorithm.

The linear programming formulation (1.48) results inefficient in most cases, for
this reason many algorithms able to solve (P1) have been proposed in literature: for
example greedies Basis Pursuit (BP) [29], Stagewise Orthogonal Matching Pursuit
(StOMP) [45] and the Orthogonal Matching Pursuit (OMP) [91,35] or other op-
timization methods like Least Angle Regression (LARS) [48]or the Smoothedℓ0

(SL0) [82, 81] that are able to find the approximated solutionto the problem (P1)
and (P0) respectively.

In the next session are recalled the conditions for the matrix Φ under which the
sparsest solution of the problem (P0) can be recovered uniquely.

1.5.1 Null Space Property and Spark

In this section we introduce a necessary and sufficient condition for to ensure that
the unique solution of (P1) is also the solution of (P0). At this regard, givenη ∈Rm

andΛ ⊂ {1,2, . . . ,m}, we denoteηΛ the vector

(η)i =

{

ηi i ∈Λ
0 i 6∈Λ

Definition 1.2. A sensing matrixΦ ∈ Rn×m has the Null Space property (NSP) of
orderk, if there is 0< γ < 1 such that forη ∈NΦ andΛ ⊂ {1,2, . . . ,m}, |Λ | ≤ k,
it holds

||ηΛ ||1≤ γ||ηΛc||1 (1.49)

Notice that to verify the Null Space Property of a sensing matrix is not an easy task,
because we have to check each point in the null space with a support less thank.

A general necessary and sufficient condition [42] for solving problem (P0) is that
the sensing matrixΦ has the Null Space Property [43, 62]. Moreover, in [98] it is
shown that if a sensing matrixΦ has the Null Space Property it is guaranteed that
the unique solution of (P1) is also the solution of (P0).
Moreover, it is proved that ifΦ has the Null Space Property, the unique minimizer
of the (P1) problem is recovered by basis pursuit (BP).

The column rank of a matrixΦ is the maximum number of linearly independent
column vectors ofΦ. Equivalently, the column rank ofΦ is the dimension of the
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column space ofΦ.

Another criteria to assert to existence of a unique sparsestsolution to a linear
system is based on the concept of spark of a matrix the notion called spark[43]
defined as:

Definition 1.3. Given a matrixΦ, spark(Φ) is the smallest numberssuch that there
exists a set ofscolumns inΦ which are linearly-dependent.

spark(Φ) = min
z6=0
||z||0 s.t.Φz= 0

While computing the rank of a matrix is an easy goal, from a computational point
of view, the problem of computing the spark is difficult. In fact, it has been proved to
be an NP-hard problem [111]. The spark gives a simple criterion for uniqueness of
sparse solutions. By definition, each vectorz in the null space of the matrixΦz= 0
must satisfy||z||0 ≥ spark(Φ), since these vectors combine linearly columns from
Φ to give the zero vector.

Theorem 1.1.[43] Given a linear systemΦα = s, if α is a solution verifying
||α||0 < spark(Φ)

2 , thenα is the unique sparsest solution.

Proof. Let β an alternative solution such thatΦβ = s, and ||β ||0 ≤ ||α||0. This
implies thatΦ(α−β ) = 0. By definition of spark

||α||0+ ||β ||0≥ ||α−β ||0≥ spark(Φ) (1.50)

Since||α||0 < spark(Φ)
2 , it follows that||β ||0≤ ||α||0 < spark(Φ)

2 . By (1.50)

spark(Φ)≤ ||α||0+ ||β ||0 <
spark(Φ)

2
+

spark(Φ)

2
= spark(Φ)

that is impossible. ⊓⊔

1.5.2 Restricted Isometry Property

Compressive sensing allows to reconstruct sparse or compressible signals accurately
from a very limited number of measurements, possibly contaminated with noise.
Compressive sensing relies on properties of the sensing matrix such as the restricted
isometry property.

The Null Space Property is necessary and sufficient condition to ensure that any
k-sparse vectorα is recovered as the unique minimizer of the problem (P1). When
the signals is contamined by noise it will be useful to consider stronglycondition
like the Restricted Isometry Property condition [22] on matrix Φ, introduced by
Candes and Tao and defined as
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Definition 1.4. A matrix Φ satisfies the Restricted Isometry Property (RIP) of order
k if there exists aδk ∈ (0,1) such that

(1− δk)||α||22 ≤ ||Φα||22 ≤ (1+ δk)||α||22 (1.51)

holds for allα ∈ Σk

If a matrixΦ satisfies the RIP of order 2k, then we can interpret (1.51) as saying
that Φ approximately preserves the distance between any pair ofk-sparse vectors.
If the matrixΦ satisfies the RIP of orderk with constantδk, then for anyk′ < k we
automatically have thatΦ satisfies the RIP of orderk′ with constantδk′ ≤ δk.

In Compressive Sensing [68] , random matrices are usually used as random pro-
jections of a high-dimensional but sparse or compressible signal vector onto a lower-
dimensional space that with high probability contain enough information to enable
signal reconstruction with small or zero error. Random matrices drawn according
to any distribution that satisfies the Johnson-Lindenstrauss contraction inequality,
in [12] was shown that with high probability the random sensing matrixΦ has the
Restricted Isometry Property.

Proposition 1.1.Let Φ, be a random matrix of size n×m drawn according to any
distribution that satisfies the contraction inequality

P

[∣

∣

∣

∣

∣

||Φα||2−||α||2

∣

∣

∣

∣

∣

≤ ε||α||2
]

≤ 2e−nc0(ε),with 0< ε < 1

where c0(ε)> 0 is a function ofε. If Φ ∼N(0, 1
nI), c0 =

ε2

4 − ε3

6 is a monotonically
increasing function.
For a given Gaussian matrixΦ, for anyα ∈ R

m, Λ such that|Λ | = k < n and any
0< δ < 1, we have that

(1− δ )||α||22≤ ||Φα||22 ≤ (1+ δ )||α||22

with a probability

P

[

(1− δ )≤ ||Φα||22
||α||22

≤ (1+ δ )

]

> 1−2(
12
δ
)ke−nc0(δ/2)

For largem (number of columns ofΦ), estimating and testing the Restricted
Isometry Constant is computational impractical. A computationally efficient, yet
conservative bounds on Restricted Isometry Property can beobtained through the
mutual coherence.
In the next session we introduce some bounds for of the mutualcoherence of a
dictionaryΦ.
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1.5.3 Coherence

Mutual coherence is a condition that implies the uniquenessand recoverability of
the sparsest solution. While computing Restricted Isometry Property, Null Space
Property and spark are NP-hard problems, the coherence og a matrix can be easily
computed.

Definition 1.5. Let φ1, . . . ,φm the columns of the matrixΦ. The mutual coherence
of Φ is then defined as

µ(Φ) = max
i< j

|φT
i φ j |

||φi ||2||φ j ||2
By Schwartz inequality, 0≤ µ(Φ) ≤ 1. We say that a matrixΦ is incoherent if

µ(Φ) = 0.
Forn×n unitary matrices, columns are pairwise orthogonal, so the mutual coher-

ence is obviously zero. For full rankn×mmatricesΦ with m> n, µ(Φ) is strictly
positive, and it is possible to show [109] that

µ(Φ) ≥
√

m−n
n(m−1)

with equality being obtained only for a family of matrices named Grassmanian
frames. Moreover, ifΦ is a Grassmanian frame, thespark(Φ) = n+1, the high-
est value possible.

Mutual coherence is easy to compute and give a lower bound to the spark. In
order to outline this result, we briefly recall the Gershgorin’s theorem for localizing
eigenvalues of a matrix. Given an×n matrixA= {ai, j}, let beRk = ∑ j 6=k |ak, j |. The
complex diskz= {z||z−ak,k| ≤ Rk} is said Gershgorin’s disk with(1≤ k≤ n). It
holds that for Gershgorin’s theorem [57], every eigenvalues ofA belongs to (at least
one) Gershgorin’s disk.

Theorem 1.2.[43] For any matrixΦ ∈Rn×m the spark of the matrix is bounded by
a function of coherence as follows:

spark(Φ) ≥ 1+
1

µ(Φ)

Proof. Since normalizing the columns does not change the coherenceof a matrix,
without loss of generality we consider each column of the matrix Φ normalized to
the unitl2-norm. LetG= ΦT Φ the Gram matrix ofΦ.
Consider an arbitrary minor fromG of size p× p, built by choosing a subset of
p columns from the matrixΦ and computing their sub Gram matrixM. We have
|φT

i φ j |= 1 if k= j and|φT
i φ j | ≤ µ(Φ) if k= j, as consequenceRk≤ (p−1)µ(Φ).

It follows that Gershgorin’s disks are contained in{z| |1− z| ≤ (p− 1)µ(Φ)}. If
(p−1)µ(Φ) < 1, by Gershgorin’s theorem, 0 can not be eigenvalues ofM, hence
every p-subset of columns ofΦ is composed by linearly independent vectors. We
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conclude that a subset of columns ofΦ linearly dependent should containp≥ 1+
1

µ(Φ) elements, hencespark(Φ)≥ 1+ 1
µ(Φ) . ⊓⊔

Previous result, together with theorem (1.1) gives the following condition imply-
ing the uniqueness of the sparsest solution of a linear system Φα = s.

Theorem 1.3.[43] If a linear systemΦα = s has a solutionα such that||α||0 <
1
2(1+

1
µ(Φ)

), thanα is the sparsest solution.

1.6 Algorithms for Sparse Recovery

The problem we analyze in this section is to approximate a signal s using a lin-
ear combination ofk columns of the dictionaryΦ ∈ Rn×m. In particular we seek a
solution of the minimization problem

argΛ⊂{1,...,m} |Λ |=k min
|Λ |=k

min
αλ
|| ∑

λ∈Λ
φλ αλ − s||22 (1.52)

fixedk with (1≤ k≤m).

The real difficulties for solving problem (1.52) lies in the optimal selection of the
index setΛ , since the ”brute force” algorithm for the optimization requires to test

all
(m

k

)

≥
(

m
k

k
)

subsets ofk columns ofΦ; this seems prohibitive for real instances.

The algorithms for sparse recovery can be divided in three classes:

• Basis Pursuit methodswhere is desired the sparsest solution in theℓ1 sense
and there is an underdetermined system of linear equationsΦα = s that must
be satisfied exactly. The sparsest solution can be easily solved by classical linear
programming algorithms.

• Greedy methodswhere an approximation of the optimal solution is found by a
sequence of locally optimal choices.

• Convex or Non-convex methodsthat relax the combinatorial sparse problem to
a related convex/non-convex programming and solve it with iterative methods.

1.6.1 Basis Pursuit

Basis Pursuit (BP) finds the best representation of a signals by minimizing theℓ1

norm of the coefficientsα of the representation. Ideally, we would like that some
components ofα to be zero or as close to zero as possible.
In [99] is shown how (P1), can be recasted into a linear programming problem
(LP)of the form

min
α∈Rm

cTα s.t.Φα = s,α ≥ 0 (1.53)
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wherecTx is the objective function,Φα = s is a collection of equality constraints
andα ≥ 0 is a set of bounds.
The objective function of (P1) is not linear, however we can transfer the nonlineari-
ties to the set of constraints by adding new variablest1, . . . , tn. This gives:

min
t∈Rm

m

∑
i=1

ti

s.t. |αi | ≤ ti i = 1, . . . ,m

Φα = s

Observing that|αi | ≤ ti if and only if −ti ≤ αi ≤ ti we can transform the original
problem (P1) into the following linear programming problemsubject tom inequali-
ties constraints.

min
m

∑
i=1

ti ( Pℓ1)

s.t.αi ≤ ti
αi ≥−ti i = 1, . . . ,m

Φα = s

Note thatαi ≤ ti implies thatIα − It ≤ 0 andαi ≥ ti implies thatIαI + t ≥ 0,
thus we have the problem in LP form

mincTt (LP)

s.t.Iα− It ≤ 0

Iα + It ≥ 0

Φα = s

wherec= [1,1, . . . ,1]T .
In order to reduce the size of (LP) problem is that of using thedual problem.

From duality theory, starting with a linear program in standard form (1.53), we can
rewrite the problem as the following dual linear program:

maxbTss.t.ΦTs+ z= c,α ≥ 0 (1.54)

Using this equivalence we can rewrite the problem (1.54) in terms of dual variables
y andv which correspond to the constraints from the primal problemwithout re-
strictions

minbTy (DLP)

s.t.ΦTy−2v=−e, 0≤ v≤ e

Once the size of the original problem (Pℓ1 ) was reduced, the dual problem (DLP)
can be solved efficiently by a linear solver.
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1.6.2 Greedy Algorithms

In literature many greedy algorithms was proposed to perform sparse recovery.
Many signal analysis methods look for a linear expansion of the unknown signal
s in terms of functionsφi .

s=
m

∑
i=1

αiφi (1.55)

We may say that in such a way the unknown signals is explained using atoms
(functionsφi ) from the dictionaryΦ, used for decomposition. MP algorithm finds
a sub-optimal solution to the problem of an adaptive approximation of a signal in
a redundant set (dictionary) of atoms. If the dictionaryΦ i is an orthonormal basis,
then the coefficients an are given simply by the inner products of the dictionary’s
atomsφi with the signalαi =< s,φi >. We would like to use a dictionaryΦ =
{φi}i=1,...,m that would properly reveal the intrinsic properties of an unknown signal,
or, almost equivalently, would give low entropy of theαi and possibilities of good
lossy compression.

We may relax the requirement of exact signal representation(1.55), and try to
automatically choose the atomsφλt , optimal for the representation of a given signal
s, from a redundant dictionaryΦ. The expansion becomes an approximation, and
uses only the functionsφλt chosen from the redundant dictionaryΦ. In practice,
the dictionary contains orders of magnitude more candidatefunctionsφλt than the
numberk of functions chosen for the representation:

s≈
k

∑
t=1

αtφλt (1.56)

A criterion of optimality of a given solution for a fixed dictionaryΦ, signals, and
number of used functionsk can be formulated as minimization of the reconstruction
error of representation

ε = ||s−
k

∑
t=1

αtφλt ||22

Finding the minimum requires checking all the possible combinations (subsets)
of k functions from the dictionary, which leads to a combinatorial explosion. There-
fore, the problem is intractable even for moderate dictionary sizes. Matching pursuit
algorithm, proposed in [77], finds a sub-optimal solution bymeans of an iterative
procedure.

In the first step, the atomφλ1
which gives the largest product with the signals is

chosen from the dictionaryΦ, composed of normalized atoms (||φλt ||22 = 1). In each
of the consecutive steps, the atomφi is matched to the signalrt which is the residual
left after subtracting results of previous iterations:
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r0 = s

rt =< rt ,φt > φt + rt−1

φλi
= arg max

φλi
∈D
|< rt ,φλi

> |

For a complete dictionary the procedure converges tos with k→ ∞ [77].

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Require: - a dictionaryΦ ∈ R

n×m

- a signals∈R
n

- a stopping criteria

1: r0 = s,α0 = 0,Λ0 = /0, t = 0
2: while [ cond ]do

3: λt ∈ argmaxj=1,...m |< rt−1,φ j > | < match>

4: Λt+1 =Λt ∪{λt} < identify: if multiple maxima exist, choose only one>

5: αt+1 = argminβ :supp(β )⊆Λt+1
||Φβ −s||22 < update>

6: rt+1 = s−Φαt+1

7: t = t +1
8: end while

Ensure: α̂ = αt = argminβ :supp(β )⊆Λt+1
||Φβ −s||22

Another greedy algorithm extensively used to find the sparsest solution of the
problem (P0) is the so called Orthogonal Matching Pursuit (OMP) algorithm pro-
posed in [35, 91] and analized by Tropp and Gilbert [113]. OMPadds a least square
minimization to each step of the Matching Pursuit. Thet-th approximant ofs is

ŝt = argmin
α
||s−

k

∑
t=1

αt φλt ||22

s.t. ŝ∈ {φλ : λ ∈Λt} (1.57)

that can be performed by standard least squares techniques.A detailed pseudo-code
of the OMP algorithm can be viewed in 1.

1.6.3 Relaxation Algorithms

An alternative way to solve the (P0) problem is to relax it to the highly discon-
tinuousℓ0-norm, continuous or even smooth approximations. Examplesof such
relaxation is to replace theℓ0 norm with convex norm as theℓ1, with nonconvex
norms like theℓp for somep∈ (0,1) or with smooth functions like∑m

i=1(1−e−λ α2
i ),
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∑m
i=1 log(1+λ α2

i ) or ∑m
i=1

α2
i

λ+α2
i
.

The problem of usingℓ0 norm, needed for a combinatorial search of its mini-
mization, are both due to the fact that theℓ0 norm of a vector is a discontinuous
function of that vector.
The main idea of the Smoothedl0 (SL0) algorithm, proposed and analyzed in
[82, 81], is to approximate this discontinuous function by asuitable continuous one,
and minimize it by means of minimization algorithms function i.e. with steepest de-
scent gradient method.
The continuous functions which approximation||α||0, should have a parameter
which determines the quality of the approximation.
Consider the single variable family of functions

fσ (α) = e
−α2

2σ2

and note that

lim
σ→0

fσ (α) =

{

1, if α = 0

0, if α 6= 0

DefiningFσ (α) =∑m
i=1 fσ (αi) it is clear that||α||0≈m−Fσ(α) for small values

of σ .

Algorithm 2 Smoothedℓ0 (SL0)
Require: - a dictionaryΦ ∈ R

n×m and the Moore-Penrose pseudo inverseΦ†

- a signals∈R
n

- a suitable decreasing sequence forσ = {σ1, . . .σT}
- a stopping criteria

1: α0 = Φ†s
2: while [ cond ]do

3: σ = σt < match>

4: Maximize the functionFσ on the feasible setS usingL iterations of the steepest ascent
algorithm (followed by projection onto the feasible set):

5: for j = 1, . . . ,L do

6: ∆α = [α1e
−|α1|2

2σ2 , . . . ,αme
−|αm|2

2σ2 ]
7: α ← α −µ∆α < whereµ is a small positive constant>

8: α ← α −Φ†(Φα −s) <orthogonal projection>

9: end for

10: t = t +1
11: end while

Ensure: α̂ = αt
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We can find the minimumℓ0 norm solution by maximizing theFσ (α) subject to
Φα = s for a very small value ofσ . Theσ parameter determines how smooth the
functionFσ is, the smaller value ofσ , closer behavior ofFσ to ℓ0 norm.

The idea is than to use a decreasing sequence forσ , for maximizingFσ for each
value ofσ , the initial value of the maximization algorithm is the maximizer ofFσ
for the previous larger value ofσ . If we gradually decrease the value ofσ , for
each value ofσ the maximization algorithm starts with an initial solutionnear the
actual maximizer ofFσ and hence we hope to escape from getting trapped into local
maxima and reach to the actual maximum for a small values ofσ , which gives the
ℓ0 norm solution.





Chapter 2
Lipschitzian Mappings for Sparse
Representation

Abstract In this chapter we present two new algorithms (LIMAPS andk-L IMAPS
respectively) for the following Sparse Recovery Problem

min
α
||α||0 s.t.s= Φα (2.1)

After a general introduction in sec. 2.1, in sec. 2.2 we describe the problem of Sparse
Recovery faced in this work, of which the two proposed algorithms are heuristics.
In sec. 2.4 we introduce a parametric class{Gλ |λ ≥ 0} of nonlinear mappings and
in sec. 2.5 we discuss some properties of iterative scheme based on these operators.
In sec. 2.5.1, for a given sequence ofλt , the iterative scheme

αt+1 = Gλt (αt) (2.2)

is discussed, proving the convergence when∑ 1
λt
< ∞.

In sec. 2.5.2 the iterative schemeαt+1 = Gλt (αt) is studied in the simple bidimen-
sional case. It is proved that, for sufficiently largeλ , the sparsest solution is ”near”
to a fixed point ofGλ .
In sec. 2.5.3, we find a connection between the fixed point ofGλ and a relax-
ation of the problem (2.1). First of all, we introduce a family {|| · ||〈λ 〉| λ > 0}
of pseudonorms (see lemma 8). Then we study the relaxed problem

min
α
||α||〈λ 〉 s.t.s= Φα (2.3)

The main result (2.3) asserts that, under reasonable assumptions, the minima of (2.3)
are asymptotically stable fixed points ofGλ .
In sec. 2.5.4 and sec. 2.6 the algorithms LIMAPS andk-L IMAPS are introduced,
together a brief discussion on empirical evidence of convergence ofk-L IMAPS in
sec. 2.6.1.

29
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2.1 General Considerations

Consider the underdetermined system of linear equations

s= Φα∗+η (2.4)

whereη represents an additive noise with mean and variance

E[η ] = 0 (2.5)

E[η2] = σ2I (2.6)

ands the vector of observations. The matrixΦ is an×msensing matrix withn<m.
The matrixΦ can be considered as the modeling operator that linksα∗(the model)
to the s− η (the noise free data). We assume that the vectorα has few entries
significantly different from 0, i.e.α∗ is approximately sparse. In this case, we can
promote the sparsity viaℓ1 regularization to overcome the singular nature ofΦ. It
is reasonable to recoverα∗, under suitable conditions on the matrixΦ, minimizing
the objective function:

E[
1
2
||s−η−Φα||22]+λ ||α||1

=
1
2
||s−Φα||22+

1
2

E[(s−Φα)η ]+
1
2

E[η2]+λ ||α||1

=
1
2
||s−Φα||22+λ ||α||1+σ2

(2.7)

The minimizer is independent fromσ2, and can be obtained solving the optimization
problem

min
α

1
2
||s−Φα||22+λ ||α||1 (QP)

that is closely related to quadratic programming. The parameterλ represents the
trade off between theℓ2-norm of the reconstruction error and theℓ1-norm of the
solution vector.

When an estimate of the noise levelσ2 in the signal is available, a different
formulation is often useful:

min
{α | ||s−Φα ||22≤σ2}

||α||1 (BP)

This formulation, called Basis Pursuit (BP) denoise problem[29], minimizes theℓ1

norm giving a maximum misfit.
When theℓ1 norm estimatorτ of a ”good” solution is available, a third formula-

tion is given by the Lasso [110]
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min
{α |||α ||1≤τ}

1
2
||s−Φα||22 (LS)

2.2 Problem Formulation and Summary of Results

In this chapter we present two new algorithms for sparse recovery problem called
L IMAPS andk-L IMAPS respectively. The LIMAPS algorithm tries to find the
sparsest solution of the reformulation of the basis pursuitdenoise problem inℓ0

norm
min

α
||α||0 s.t. ||s−Φα||22≤ σ (BP0 Noisy)

In this work we consider only the model without noise (σ = 0). The problem can be
rewritten as:

min
α
||α||0 s.t. s= Φα (BP0)

In sec. 2.5.3 we introduce a family{|| · ||〈λ 〉| λ > 0} of pseudonorm 2.5.3 that
approximate|| · ||0 for large values ofλ , and we consider the relaxation of BP0:

min
α
||α||〈λ 〉 s.t.s= Φα (REL)

In sec. 2.4 we consider a family of mappings{Gλ | λ > 0}, sec. 2.4 and we
prove that, under reasonable conditions, a solution of (REL) is an asymptotically
stable fixed point ofGλ 2.3.
This fact suggests, given a suitable sequence{λt} with limt→∞ = ∞. to consider the
iterative scheme called LIMAPS

αt+1 = Gλt (αt)

as heuristics for solving (BP0). This iterative schema in the base of the algorithm
L IMAPS presented in 2.5.4.

The second proposed algorithm, calledk-L IMAPS , is an heuristics for the fol-
lowing problem:

min
α

1
2
||s−Φα||22 s.t. ||α||0 ≤ k (LS0)

2.3 A Source of Inspiration

In recent years, a new family of numerical algorithms has been gradually built. This
family, addressing the optimization problem (QP), is theIterative Shrinkagealgo-
rithms [17, 86, 13].
Roughly speaking, in these iterative methods, each iteration comprises a multipli-
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cation byΦ and its adjoint, along with a scalar shrinkage step on the obtained result.

If Φ is unitary, the minimization of (QP) can be founded easily, with a closed
form solution that leads to shrinkage. Using the identityΦΦT = I , and exploiting
the fact thatℓ2 norm is unitary invariant, we have:

f (x) =
1
2
||s−Φα||22+λ ρ(α)

=
1
2
||Φ(ΦT s−α)||22+λ ρ(α)

=
1
2
||ΦTs−α||22+λ ρ(α)

and denotingα0 = ΦTs, we get:

f (x) =
1
2
||α0−α||22+λ ρ(α)

=
m

∑
k=1

[

1
2
(α0

k −αk)
2+λ ρ(αk)

]

=
m

∑
k=1

g(α0
k ,αk)

The minimization of the scalar function of the formg(x,a) = 1
2(x−a)2+λ ρ(x)with

respect tox requires that we either zero the gradient in the case of smooth function
ρ(·), or show that the sub-gradient ofg contains the zero, for non differentiableρ(·).
The problem can be solved, by finding ˆxopt= Sρ ,λ (a) that is the global minimizer
of the scalar objective functiong(x,a).

Let us now consider the convex functionρ(x) = |x|p with 1≤ p< 2. The scalar
objective functiong(x,a) then can be rewritten as

g(x,a) =
1
2
(x−a)2+λ |x|p

The condition of minimum is thean expressed by

g′(x,a) =x−a+ pλ |x|p−1sgn(x) = 0

from which we can derive

a=x+λ p|x|p−1sgn(x) (2.8)

Inverting the equation (2.8) we obtain

x̂opt=Sλ (a) (2.9)

that maps the inputa in the global minimizer ˆxopt. Notice that:
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(a) if a is near the origin, thenSλ (a) ≈ 0. This implies that if|Sλ (a)| ≤ ε then
|α| ≈ pλ |x|p−1 and then|Sλ (a)| ≈ (p 1

λ a)2.
(b) if a is large (tending to infinity),Sλ (a) ≈ a− pλ |a|p−1sgn(a), implying |a| >
|Sλ (a)|.

The functionSλ (a) results to be ashrinkage function.

2.4 Sparsity Promotion Mappings

The aim of this section is to establish asymptotic fixed pointapproaches for a
thresholding-based iterative process for model selectionrelying on a family of
shrinkage function represented by the uniformly Lipschitzian nonlinear mappings
F = { fλ | λ ∈ R+}, where the choice ofλ is important in controlling the shrink-
ing effects, i.e., to drive the search towards the sparsest solutions. It provides then a
fusion with the classical orthogonal projectors built on the Moore-Penrose pseudo-
inverse, in order to restore the feasibility at each iteration step.

2.4.1 Uniformly Lipschitzian Shrinking Mappings

The key feature of shrinking functions is to attenuate coefficients adaptively with
respect to scale and time, taking into proper account the general strength constraints
of the signal. This task is committed to classes of smooth sigmoidal based shrinkage
maps that may be used to promote the sparsity. These classes of shrinkage functions
introduce a little variability among coefficients with small amplitude, performing
low attenuation of coefficients with high amplitude and stronger attenuation on co-
efficients with small amplitudes. These functions depend ona parameterλ that make
possible the control of the attenuation degree imposed to coefficients. Moreover they
have the following features:

smoothness: the shrinkage function induces small variability among data with
close values.

shrinkage: a strong attenuation is imposed for small values, conversely weak
attenuation is imposed for large values.

vanishing attenuation: attenuation decreases to zero when the amplitude of the
coefficient tends to infinity.

Lipschitzianity: given a class of functions

{ fλ | fλ : R→ R, λ ∈Λ}

the class is called Lipschitzian continuous with LipschitzconstantK ≥ 0 if for
all λ ∈Λ , it holds
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| fλ (x)− fλ (y)|
|x− y| ≤ K (2.10)

for all x andy in R, with x 6= y.

Name f (x) d f (x)
dx

Exponential x(1−e−λ |x|) e−λ |x|(λ |x|−1)+1

Exponential 2 x( 2
1+e−λ |x| −1) 2λ |x|eλ |x|+e2λ |x|−1

(eλ |x|+1)2

Hyperbolic Tangent xtanh(λ |x|) tanh(λ |x|)+λ |x|sech2(λ |x|)

Absolute Value x( λ |x|2
1+λ |x|2 )

λx2(λx2+3)
(λx2+1)2

Square Root x λ |x|√
1+λ |x|2

λ |x|(λx2+2)

(λx2+1)
3
2

Error Function xer f(λ |x|) er f(λ |x|)+λ |x| d
dλ |x|er f(λ |x|)

Gudermannian x 2
π atan(sinh( π

2 λ |x|)) λ |x|sech( π
2 λ |x|)+ 2

π atan(sinh( π
2 λ |x|))

Table 2.1 Sparsity promotion mappingsf (x) and first derivativesd f(x)
dx .

In table 2.1 we list some Lipschitzian smooth sigmoidal based shrinkage maps
and their derivatives that have the properties required above.

Let us introduce some property for a uniformly Lipschitzianmapping based on a
family of nonlinear maps

F = { fλ | λ ∈R
+}, (2.11)

where the choice ofλ is important in controlling the sparsity effects. In particular,
we restrict all our analysis on the exponential family, for its well-known character-
istics.

Forλ > 0, let fλ : R→R be the shrinkage map

fλ (x) = x(1−e−λ |x|). (2.12)

Let beF = { fλ |λ > 0}. The functionfλ is an odd function with continuous deriva-
tive f ′λ (x) = (λ |x|−1)e−λ |x|+1. Since supx∈R | f ′λ (x)|= 1+e−2, as a direct conse-
quence of the intermediate value theorem| fλ (x)− fλ (y)| ≤ (1+e−2)|x−y|, for each
λ > 0 andx,y∈ R. Thus, mapping (2.12) is uniformly Lipschitzian with respect to
λ with Lipschitz constant 1+e−2. Moreover, given that| f ′λ (x)| < 1 on the interval
(−1/λ ,1/λ ), the mapping (2.12) is contractive within that interval with fixed point
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Fig. 2.2 Sparsity promotion mappingsf (x) and first derivativesd f(x)
dx .
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at the origin [10]. It obeys to the shrinkage rule since| fλ (x)| ≤ |x| for all x∈R and
it is nondecreasing, as shown by its plotting in Figure 2.3. Just for comparison, in
figure is displayed also the soft threshold functionSτ(x) = max(|x| − τ,0)sgn(x)
which arises frequently in sparse signal processing and compressed sensing. The
latter, differently from (2.12), is discontinuous andSτ(x) = 0 iff |x| ≤ τ.

x

x

x
( 1−

e
−λ
|x|
)

x

x

m
ax
(|x
|−

τ,0
)s

gn
(x
)

Fig. 2.3 The graphs of shrinking function (2.12) and the well known soft threshold function.

To deal with high dimensional data, we extend mapping (2.12)to many dimen-
sions , obtaining the one-parameter family of nonlinear mappingsFm= {Fλ :Rm→
Rm | λ ∈R+}, where thek-th component(Fλ (x))k of Fλ

(Fλ (x))k = fλ (x), (1≤ k≤m) (2.13)

Analogously to the scalar case, the function[ fλ (x1)/x1, . . . , fλ (xm)/xm] repre-
sents a symmetric sigmoid function inm dimensions, where larger values ofλ give
sharper sigmoids, in the limit becoming a Heaviside multi-dimensional step func-
tion.

Now we come back to the problem

Φα = s

whereΦ is ann×msensing matrix of full rank, ands is the vector of observations.
The set of possible solutionsAΦ ,s = {x|Φx= s} is the affine spaceν +NΦ , where
NΦ = {y|Φy = 0} is the null space ofΦ andν is the solution with minimumℓ2

norm. We recall thatν = Φ†s, whereΦ† = (ΦT Φ)−1ΦT is the Moore-Penrose
pseudo inverse ofΦ.

Let P be the projector ontoNΦ . For eachx in Rm is projected in a pointy ∈
AΦ ,s = ν +NΦ as follow:

y= Px+ν (2.14)

These early assumptions suggest to define a new mapping by composing the
shrinking (2.13) and the feasibility (2.14). As a consequence, we get the self-
mapping familyGλ : AΦ ,s→AΦ ,s, which has the form
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Gλ (α) = PFλ (α)+ν, (2.15)

Sinceα ∈AΦ ,s, it holdsα = x+ν for a suitablex∈NΦ ; as a consequence:

Gλ (α) = P(x+ν)+ν−P(α⊙e−λ |α |) (2.16)

= x+ν−P(α⊙e−λ |α |)

= α−P(α⊙e−λ |α |)

2.5 Iterative scheme and Fixed Point Characterization

The aim of this section is to show that a fixed point iterative scheme involving
mapping (2.15) becomes an effective procedure to find good approximation of the
sparsest solution to the linear system (2.4), providing that a suitable sequence ofλt

would be supplied.
By denoting withTλ : Rm→NΦ the mapping defined byTλ (α) = Pα⊙e−λ |α |,

a fixed pointα∗ of mapping (2.15) satisfies:

α∗ = Gλ (α∗) ⇐⇒ Tλ (α∗) = 0. (2.17)

Thus, eachα∗ in the set FixGλ ≡KTλ ⊆ AΦ ,s uniquely corresponds to the point
α∗ ⊙ e−λ |α∗| ∈ NΦ , beingKTλ and NΦ the kernel ofTλ and the null space of
projectorP respectively.

For mapping (2.15) we study the convergence of sequences of successive ap-
proximations (Picard process) with a given initial value. In particular, we take into
exam two cases: the first with fixed parameterλ and the latter providing a sequence
{λt}t≥0, tending to become arbitrarily large ast → ∞. Both the analysis will be
useful in the study of minimizers for sparsity promotion functionals.

2.5.1 Convergence for increasing sequences ofλ

In this case, for a given incresing sequence of real numbers{λt}t≥0, we define the
iterates as

{

α0 = α ∈AΦ ,s

αt = Gλt−1
(αt−1), t ≥ 1

(2.18)

and we study the convergence of the sequence{αt}t≥0.
The first lemma provides an inductive form of the general termαt .

Lemma 1 Let{αt} be the sequence generated by (2.18), then it holds:

αt = Pα−P

(

t−1

∑
k=0

αk⊙e−λk|αk|
)

+ν , t ≥ 1. (2.19)
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Proof. To prove the lemma we proceed by induction onn. The caset = 1 is trivial.
For t > 1, by definition we have

αt = Gλt−1
(αt−1) = Pαt−1−P

(

αt−1⊙e−λt−1|αt−1|
)

+ν .

Assume inductively that the equality (2.19) is true for every positive integer less
thant. Thus, the induction hypothesis and the idempotency ofP imply that

Pαt−1 = P2α−P2

(

t−2

∑
k=0

αk⊙e−λk|αk|
)

+Pν

= Pα−P

(

t−2

∑
k=0

αk⊙e−λk|αk|
)

,

because
Pν = (I −Φ†Φ)Φ†s= Φ†s−Φ†ΦΦ†s= 0.

Hence, the proposition holds fort, and this completes the proof.⊓⊔

By limiting the sum of reciprocals of{λt}, the sequence{αt} results to be con-
vergent, as stated in the following lemma.

Lemma 2 Let {λt} be a real positive sequence. Then, if∑∞
t=01/λt < +∞, the se-

quence{αt} converges as t→+∞.

Proof. First of all observe that the univariate mapping

x 7→ |x|e−λ |x| ≤ 1
eλ

is bounded, which implies

∥

∥

∥αk⊙e−λk|αk|
∥

∥

∥≤
√

m
e

1
λk

.

For anyn> n′ and since||P||< 1 we have:

||αn−αn′ ||=||P(
n−1

∑
k=n′

αk⊙e−λk|αk|)|| (2.20)

≤||
n−1

∑
k=n′

αk⊙e−λk|αk|||

≤
n−1

∑
k=n′
||αk⊙e−λk|αk|||

≤
√

m
e

n−1

∑
k=n′

1
λk
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For all ε > 0 therefore, there always exists a indexγ such that, forn,n′ > γ it holds
that

|
n

∑
k=n′

1
λk
| ≤ e√

m
ε

It follows that if ∑n
k=n′

1
λk

converges also{αk} is convergent.
Given the previous bound, we show now that the sequence (2.18) is a Cauchy

sequence.
We conclude that the hypothesis done on the sequence{λt} is sufficient to get

the convergence in norm of∑+∞
k=0 αk⊙e−λk|αk|. ⊓⊔

2.5.2 Fixed points ofGλ in the bidimensional case

In this section we discuss the fixed points ofGλ in the simple bidimensional case.
Consider the family of Lipshitzian functions with parameter λ > 0

Gλ : AΦ ,s→AΦ ,s

given by
Gλ (α) = α−P(α⊙e−λ |α |)

whereP is the projector onNΦ . We can assume without loss of generality that
||ν||= 1 because

Gλ

(

α
||ν||

)

=
1
||ν||G λ

||ν||
(α)

The linear system in the bidimensional case, is then:

(φ1,φ2)

[

α1

α2

]

= s

wheres∈ R is fixed. Without loss of generality, we can consider||(φ1,φ2)|| = 1,
which can be written in terms of a unique parameterθ , as for instance(φ1,φ2) =
(−sinθ ,cosθ ) andNΦ = {(z,w) |φ1z+ φ2w = 0} = {x(cosθ ,sinθ ) |x ∈ R}. The

solutions

[

α1

α2

]

are in the affine spaceν +NΦ , with ν =

[

−sinθ
cosθ

]

s. Without loss

of generality, we can consider the cases= 1, thenν =

[

−sinθ
cosθ

]

.

The problem is transformed into the study of the fixed points of Gλ (α), with
fixed λ . Consider the bijectionψ : R→AΦ ,s given by:

x 7→ x(cosθ ,sinθ )+ (−sinθ ,cosθ )

With respect to the bijection, the operatorGλ : AΦ ,s→AΦ ,s becomes the operator
Sλ : R→ R. The picture in figure 2.4 shows the above bijection in which the point
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xu= x(cosθ ,sinθ ) is mapped onα = (xcosθ ,sinθ )+ (−sinθ ,cosθ ) andGλ (α)
is mapped onSλ (x)(cosθ ,sinθ ).

x

y

xu

α

Sλ (x)

Gλ α

x

Fig. 2.4 Representation of the bijection in which the pointxu= x(cosθ ,sinθ ) is mapped onα =
(cosθ ,sinθ )+(−sinθ ,cosθ ) and the mapGλ (α) is mapped onSλ (x).

An explicit write forSλ is given by:

x 7→ 〈xu+ν− (xu+ν)⊙e−λ |xu+ν|),u〉

where〈·, ·〉 denotes the usual dot product inR2. Thus, in this setting, we characterize
the fixed points of the transformation

Sλ (x) = x− cosθ (xcosθ − sinθ )e−λ |xcosθ−sinθ |−
sinθ (xsinθ + cosθ )e−λ |xsinθ+cosθ | (2.21)

varying the parametersλ andθ .
The equation for the determination of the fixed points is:

e−λ |xcosθ−sinθ |e−λ |xsinθ+cosθ | =
1+ xtanθ
1− xcotθ

(2.22)
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For sake of simplicity, we suppose that sinθ ,cosθ > 0. In order to identify the
interval where fixed points lie, we obtain:

Lemma 3 If x≥ tanθ then0< Sλ (x)< x

Proof. Sincex≥ sinθ
cosθ , thenxcosθ − sinθ ≥ 0, andxcosθ + sinθ > 0, then

Sλ (x)−x=−cosθ (xcosθ−sinθ )e−λ (xcosθ−sinθ)−sinθ (xsinθ +cosθ )e−λ (xsinθ+cosθ) < 0

which concludes the proof.⊓⊔

Under the same hypothesis it holds, with similar proof:

Lemma 4 If x≤−cotθ then0> Sλ (x)> x

By lemma 3 and 4, the presence of fixed points out of the interval (−cotθ , tanθ )
can be excluded.
In this case we can therefore conclude that the fixed points ofthe transformation
Sλ (x) must be in the interval(−cotθ , tanθ ). We can drop the absolute values, ob-
taining:

Sλ (x)= x−cosθ (xcosθ−sinθ )e−λ (xcosθ−sinθ)−sinθ (xsinθ +cosθ )e−λ (xsinθ+cosθ)

The equation for the fixed points is then:

e−λ (sinθ−cosθ)eλ x(cosθ+sinθ) =
1+ xtanθ
1− xcotθ

The function

y1(x) =
1+ xtanθ
1− xcotθ

(2.23)

is a rectangular hyperbola that cuts thex-axis inx=−cotθ . The hyperbola has the
vertical asymptotex= tanθ and intersects they-axis in the pointy= 1. The function

y2(x) = e−λ (sinθ−cosθ)e+λ (sinθ+cosθ)x (2.24)

is a growing exponential function.
We can remark:

• If sinθ > cosθ , the function (2.24) intersects the ordinate axis in a pointwith
coordinate ˆy< 1. This guarantees the existence of a fixed point ˆx< 0; if λ ≫ 1
it holds that ˆx≈ −cotθ . We conclude observing that, forλ sufficiently large, ˆx
is a sparse solution.

• If sinθ < cosθ , the function (2.24) intersects the ordinate axis in a pointof co-
ordinate ˆy> 1. This guarantees the existence of a fixed point ˆx> 0; if λ ≫ 1 it
holds that ˆx≈ tanθ .

The pointx̂ is asymptotically stable if|S′(x̂)| < 1. If λ ≫ 1 it holds that ˆx≈ tanθ
and

S′(x̂)≈ 1− cos2 θ − sin2θ (1−λ tanθ )e−λ tanθ (2.25)
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It follows that, if λ ≫ 1, |S′(x̂)|< 1, hence the point ˆx is asymptotically stable.
Similarly, if sinθ > cosθ , the fixed point ˆx = −cotθ is asymptotically stable for
λ ≫ 1.

We now analyze in details, for illustrative purposes, the caseθ = π
4 . The function

Sλ can be rewritten as

Sλ (x) =x− 1
2
(x−1)e

− λ√
2
|1−x|− 1

2
e
− λ√

2
|1+x|

(2.26)

Posing for simplicityt = λ√
2
, we have

Sλ (x) =x− 1
2
(x−1)e−t|1−x|− 1

2
e−t|1+x|. (2.27)

The fixed points are in the interval(−1,1) and they are solutions of the equation

e2tx =
1+ x
1− x

(2.28)

We observe that

• for eacht, x1 = 0 is fixed point
• if d

dxe2tx|x=0 >
d
dx

1+x
1−x|x=0 iff t > 1. In this case there are two other fixed points

x2 andx3 such that−1< x2 < 0< x3 < 1.
• if 0 < t ≤ 1 it exists only the fixed pointx1 = 0.

To study the fixed point stability, we calculate:

S′(x) = 1− 1
2

e−t(1−x)(1+t(x−1))− 1
2

e−t(1+x)(1−t(x+1)) (2.29)

Let S′(x1) = S′(0) = 1− e−t(1− t). If t > 1 the fixed pointx1 is instable and if
0< t < 1 the pointx1 is asymptotically stable. Since fort sufficiently high,x2≈−1
andx3≈ 1, then:

S′(x2)≈ S′(1) =
1
2
(1−e−2t(1−2t)) (2.30)

If t > 1 is−e−2t(1−2t) < e−2, S′(1) ≤ 1
2(1+e−2) < 1. The pointx3, that exists for

t > 1, is asymptotically stable. Similarly for the fixed pointx2.

Now we return to the original transformation in the affine spaceAΦ ,s

Gλ (α) = α−P(α⊙e−λ |α |) (2.31)

In the bijection betweenAΦ ,s andR, given byα = xu+ ν, with u = (cosθ ,sinθ )
andν = (−sinθ ,cosθ ), for sufficiently largeλ , the pointα̂ = xu+ν is the asymp-
totically stable fixed point of the iterative system generated byGλ . We observe that:
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• if x̂≈ tanθ , then

α̂ ≈ tanθ (cosθ ,sinθ )+ (−sinθ ,cosθ ) = (0,
1

cosθ
)

• if x̂≈ cotθ , then

α̂ ≈−cotθ (cosθ ,sinθ )+ (−sinθ ,cosθ ) = (− 1
sinθ

,0)

The fixed pointsα̂, are then very close to the minimizers of the problem (BP0), as
λ →+∞ they satisfy:

α̂ = min
α∈AΦ,s

||α||0 (2.32)

2.5.3 Sparsity Minimization

In this subsection, our objective is to study the sparsity minimization property of
the fixed points of the iterative system. To do this, let us nowconsider the family of
functions

gλ (z) = 1−e−λ |z|(1+λ |z|) (2.33)

with parameterλ > 0. We can easily verify that the first derivative of the function
(2.33) is given by

Lemma 5
g′λ (z) = λ 2ze−λ |z|

A graphical representation of the functiongλ (z) can be obtained observing that
gλ (z) is even, is increasing forz≥ 0, it holds that 0≤ gλ (z) < 1, if |z| ≪ 1

λ is
gλ (z) ≈ λ 2z2 while |z| ≫ 1

λ is gλ (z) ≈ 1. In particular,g′λ (z) andg′′λ (z) are contin-
uous functions.

Respect to the parameterλ , if holds that:

Lemma 6

lim
λ→∞

gλ (z) =

{

0 z= 0

1 z 6= 0
(2.34)

A further property of (2.33) is the following:

Lemma 7 ∀x,y∈R it holds:

gλ (x+ y)≤ gλ (x)+gλ (y) (2.35)

Proof. Since gλ (z) = g1(λz), we can limit ourselves to the study in the case of
λ = 1. Considering the function

G(x,y) = e−x−y(1+ x+ y)−e−x(1+ x)−e−y(1+ y)+1
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1−e−λ |z| (1+λ |z|)

1
λ− 1

λ x

Fig. 2.5 Parametric functiongλ .

∀x,y≥ 0. We observe that the point(0,0) is the minimum of G(x,y), then:

G(x,y)≥G(0,0) = 0

i.e.
e−x−y(1+ x+ y)−e−x(1+ x)−e−y(1+ y)+1≥ 0

This is equivalent to

1−e−x−y(1+ x+ y)≤ 1−e−x(1+ x)+1−e−y(1+ y) (2.36)

We conclude that

g1(x+ y) = 1−e−|x+y|(1+ |x+ y|)
= 1−e−|x|−|y|(1+ |x|+ |y|)
= 1−e−|x|(1+ |x|)+1−e−|y|(1+ |y|)
= g1(x)+g1(y)

⊓⊔

Let us now study the functional with parameterλ > 0:

|| · ||<λ> : Rm→ R
+ (2.37)

where||(α1, . . . ,αm)||<λ> = ∑k=1,...,mgλ (αk).
The principal properties of|| · ||<λ> are summarized in the following points:

Lemma 8 ∀λ > 0, || · ||<λ> is a pseudonorm

Proof. • For all α,β ∈ Rm it holds that

||α||<λ> = 0⇐⇒ ∑
k=1,...,m

gλ (αk) = 0

⇐⇒ gλ (αk)(1≤ k≤m)

⇐⇒ α = 0

(2.38)
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• For all α,β ∈ Rm it holds that

||α +β ||<λ> ≤ ||α||<λ>+ ||β ||<λ>

Infact:

||α +β ||<λ> = ∑
k=1,...,m

gλ (αk+βk)

≤ ∑
k=1,...,m

gλ (αk)+gλ(βk)

= ∑
k=1,...,m

gλ (αk)+ ∑
k=1,...,m

gλ (βk)

= ||α||<λ>+ ||β ||<λ>

(2.39)

Lemma 9 ∀α ∈Rm, limλ→∞ ||α||<λ> = ||α||0
Proof.

lim
λ→∞
||α||<λ> =

= ∑
k=1,...,m

lim
λ→∞

gλ (αk)

= |{k | αk 6= 0}|= ||α||0
(2.40)

Returning to the original problem:

min||α||0 s.t. α ∈ ν +NΦ (2.41)

it can be relaxed as

min||α||<λ> s.t. α ∈ ν +NΦ (2.42)

The justification of such relaxation is given by (9): limλ→∞ ||α||<λ> = ||α||0.
Let a1, . . . ,ar with r ≤ m− n, an orthogonal basis of the null spaceNΦ , where
ak = (ak,1, . . . ,ak,m) with 1 ≤ k ≤ r. Recalling that the vectorν is orthogonal to
a1, . . . ,ar , the null spaceNΦ can be rewritten as:

NΦ =

{

α ∈ | α = ∑
k=1,...,r

xkak, (x1, . . . ,xr) ∈ R
r

}

Given the orthogonal basisa1, . . . ,ar , the projectorP : Rm→NΦ is defined by:

P(y) = ∑
k=1,r

〈y,ak〉ak. (2.43)
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Given the vectorα = ∑k=1,...,r xkak+ν, the problem (2.42) can be recasted in the
problem:

min
x∈Rr ∑

j=1,...,m
gλ (α j ) with α j = ∑

k=1,...,r

xkak, j +ν j (2.44)

Note that, fixed an orthogonal basis, the problem (2.44), turns out to be an uncon-
strained problem on the entire spaceRr . The aim of the following results is to show
that the fixed point of the operatorLλ (α) are local minima of the problem (2.44). A
necessary condition of minimum is to nullify the gradient:

∂
∂xs

(

∑
j=1,...,n

gλ (α j )

)

= 0, ∀(s= 1, . . . , r).

It holds that

0=
∂

∂xs

[

∑
j=1,...,n

gλ (α j )

]

= ∑
j=1,...,n

g′λ (α j )
∂

∂xs
= ∑

j=1,...,n
g′λ (α j )as, j = (g′,as),

whereg′ = (g′λ (α1), . . . ,g′λ (αn)). SincePα ⊙ e−λ |α | = 0 is the fixed point condi-
tion of the operatorGλ (α), and sinceg′ = λ 2α ⊙e−λ |α |, we can conclude that the
necessary condition of minimum becomes

P(g′) = ∑
s=1,...,r

〈g′,as〉as = 0. (2.45)

Previous result can be stated in following theorem:

Theorem 2.1.Letα∗ a solution of local minimum of

min||α||<λ> s.t.α ∈ ν +NΦ

then, it holds that
P(α∗⊙e−λ |α∗|) = 0

It follow that the pointα∗ is a fixed point of Gλ (α) = α−P(α⊙e−λ |α |) ⊓⊔

2.5.3.1 Fixed Point Stability

Aiming to show both the local minimum property and the stability property of the
fixed point, we use the second partial derivative test. Necessary condition of relative
minimum of the problem (2.42) is that

∂
∂xk

(

∑
j=1,...,m

gλ (α j )

)

= 0, ∀k= 1, . . . , r (2.46)

or equivalently
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(

∑
j=1,...,m

g′λ (α j )ak, j

)

= 0, ∀k= 1, . . . , r (2.47)

Let P the projector inNΦ , i.e. Pα = ∑k=1,...,m〈α,ak〉ak; the condition 2.47 can be
rewritten as

Pg′λ (α) = 0.

A sufficient condition sinceα is a relative minimum, is that the Hessian matrix

H(α) =

(

∂ 2

∂xs∂xu

(

∑
k=1,...,m

gλ (αk)

))

must be positive defined. With a direct calculus

H(α) = ∑
k=1,...,m

g′′λ (αk)as,kau,k (2.48)

Let us consider the transformationGλ : AΦ ,s→AΦ ,s defined as

Gλ (α) = α−P(α⊙e−λ |α |).

We are interested in the study of the iterative system

αt+1 = Gλ (αt ) (2.49)

Suppose thatα∗ is a relative minimum of (2.42) such that the HessianH(α∗) is
positive definite, i.e. has all the eigenvalues greater thanzero.
We now show that a fixed pointα∗ is a asymptotically stable fixed point of the
iterative system (2.49).

In this regard, consider the bijectionφ : η +NΦ →Rm given by

xk = 〈α,ak〉, α = η +∑
k

xkak.

Let Lλ : Rm→ Rm, given byLλ = φGλ φ−1, it is convenient to study instead of
(2.49) the isomorphic iterative system

x(t +1) = Lλ (x(t)) (2.50)

In terms of components

xk(t +1) = xk(t)−
1

λ 2 ∑
j=1,...,r

g′λ (α j)ak, j

with α j = η j +∑l=1xl al , j .
Let x∗ the fixed point ofLλ , corresponding toα∗, i.e. x∗ = 〈α∗,ak〉. The lin-

earizationx∗+∆(t)≈ x(t) of the system (2.50) in the neighborhood ofx∗ is given
by
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∆k(t +1) = ∆k(t)− ∑
s=1,...,r

[

∂
∂xs

1
λ 2 ∑

j=1,...,m

g′λ (α j)ak, j

]

α=α∗
∆s(t)

Since
∂

∂xs
( ∑

j=1,...,m
g′λ (α j)) = ∑

j=1,...,m
g′′λ (α j )ak, jas, j = Hk,s(α)

results that

∆(t +1) = ∆(t)− 1
λ2

∑
s=1,...,r

Hk,s(α∗)∆s(t)

or in vector notation

∆(t +1) = (I − 1
λ 2 H(α∗))∆(t) (2.51)

We can conclude that

Lemma 10 If the eigenvaluesε of I− 1
λ 2 H(α∗), satisfy that|ε| < 1, than α∗ is

asymptotic stable fixed point of the system (2.49).

Since the eigenvaluesε of I− 1
λ 2 H(α∗) are related to the eigenvalues ofγ of H(α∗)

by ε = 1− η
λ 2 , then we can study the eigenvalues ofH(α∗).

Recall thatg′λ (z) = λ 2ze−λ |z|, results that

g′′λ (x) = λ 2(1−λ |z|)e−λ |z|. (2.52)

λ2(1−λ |z|)e−λ |z|

1

0 2
λ

−e−2 z

Fig. 2.6 Graph of 1
λ 2 g′′λ (z).

The function 1
λ 2 g′′λ (z), illustrated in Fig. 2.6, is an even function, with the max-

imum value in 0, end minimum value in± 2
λ , in particular results that−e−2 ≤

1
λ 2 g′′λ (z)≤ 1.

Theorem 2.2.For all α ∈ ν +NΦ , let ε be the maximum eigenvalueε of 1
λ 2 H(α);

thenε ≤ 1.

Proof. Recall that 1
λ 2 Hs,k(α) = ∑ j=1,...,mρ jas, jak, j , with ρ j =

1
λ 2 g′′λ (α j) ≤ 1. We

know that:

ε = max
||(v1,...,vr )||=1

∑
i,s

vi
1

λ 2Hi,s(α)vs
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It result that

∑
i,s

vi
1

λ 2 Hi,s(α)vs = ∑
i,s

vi

(

∑
j=1,...,m

ρ jas, jai, j

)

vs

= ∑
j

ρ j

(

∑
i=1

viai, j

)2

≤ ∑
j=1,...,m

(

∑
i=1,...,r

viai, j

)2

(2.53)

Cansidering an orthonormal basis a1, . . . ,ar ,ar+1, . . . ,am of Rm, the matrix A=
(ai, j) is orthogonal and then

∑
j=1,...,m

(

∑
i=1,...,r

viai, j

)2

= ||(v1, . . . ,vr ,0, . . . ,0)A||2

= ||(v1, . . . ,vr ,0, . . . ,0)||2 for orthogonality of A

= ||v||2 = 1

(2.54)

We conclude with

ε = max
(v1,...,vr 0)||2=1

∑
i,s

vi
1

λ 2Hi,s(α)vs≤ 1 (2.55)

⊓⊔

We are able to prove the main result of this section:

Theorem 2.3.Let α∗ a relative minimum of (2.42), with H(α∗) positive defined,
thenα∗ is the asymptotically stable fixed point of the iterative system (2.49).

Proof. Each eigenvalueε of I − 1
λ 2 H(α∗) is equal toε = 1− γ, whereγ is an

eigevalue of 1
λ 2 H(α∗). By theorem 2.2, we know thatγ ≤ 1; furthermore, since

H(α∗) is positive defined, it holds that:

0< γ ≤ 1

Sinceε = 1− γ, we conclude that0 ≤ ε < 1. Since, each eigenvalueε of I −
1

λ 2 H(α∗) verifies that|ε|< 1, α∗ is asymptotically stable fixed point.
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2.5.4 TheL I M APS Algorithm

Stating the role of the parameterλ in the family of Lipschitzian-type mappingsF ,
we call it sparsity ratiobecause it determines how strong the overall increment of
the sparsity level should be within each step of the iterative process. In fact, when
applied iteratively, for smallλ this kind of mappings should promote sparsity by
forcing the magnitude of all componentsαi to become more and more close to zero
(recall that the map is contractive within(−1/λ ,1/λ )). On the other hand, for high
values ofλ , the chance to reduce the magnitudes of theαi diminishes, fixing its
value over the time. Hence, for gaining sparsity, the scheduling of sparsity ratioλ
should start from small values and then increase according to the iteration stepn.

This behavior is exhibited by the algorithm LIMAPS (which stands for LIPS-
CHITZIAN MAPPINGS FORSPARSITY) introduced in [2], whose pseudo-code is
sketched in Algorithm 3.

Algorithm 3 L IMAPS
Require: - a dictionaryΦ ∈ R

n×m

- its pseudo-inverseΦ†

- a signals∈R
n

- a sequence{λt}t≥0

1: t← 0
2: α ← ν
3: while [ cond ]do

4: λ ← λt <sparsity ratio update>

5: β ← fλ (α) <increase sparsity>

6: α ← β −Φ†(Φβ −s) <orthogonal projection>

7: t← t +1 <step update>

8: end while

Ensure: a fixed-pointα = Pα +ν

Remark 1 As said informally above, its ability to find desired solutions is
given by wise choices which will be adopted for the sequence{λt}t≥0, together with
choosing a good dictionary. Among many candidates respecting the constraints im-
posed by (2), one of the most promising sequence, at least on empirical grounds, is
the geometric progression whoset-th term has the form

λt = γλt−1 = θγt for t ≥ 1,

whereλ0 = θ andγ > 1 are positive and fixed constants.

Remark 2 In order to have faster computations, the projection operation P
must be split into the two matrix products of steps 5 and 6 in pseudocode LIMAPS .
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x

y

sparse solutions

AΦ,s

NΦ

αt

fλ (αt)

P fλ (αt)

ν

αt+1 = P fλ (αt)+ν

affine space ofΦ

null space ofΦ

Fig. 2.7 2D example of the LIMAPS iteration scheme. Starting from a pointαt in the affine space
AΦ ,s, the point is shrinked applying thefλ function. After that, the shrinked point is projected into
the null space ofΦ . As last step, the point is shifted into the affine space by adding the least square
solutionν

.

Remark 3 The stop condition of thewhile loop (line 3: of Algorithm 3) may
capture different events leading to a correct termination of the iterative system to a
solution having minimum error and, hopefully low sparsity.

In realistic computations we found solutions with very small error when the algo-
rithm reaches values near machine precision. Possible choices may include to bound
the difference between two successive iterates, that is, until ||αn−αn−1|| ≥ ε, or the
discrepancy between the value||P

[

∑∞
k=0 αk⊙e−λk|αk|

]

|| and zero.

Remark 4 L IMAPS algorithm has a very simple iteration scheme given by step
5 and 6 of the pseudocode. Each iteration consists of two vector additions and two
matrix multiplications.
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2.6 Sparsity Approximation with Best k-Basis Coefficients

The main drawback of LIMAPS is represented by the need of providing a right se-
quence for the parameterλ indexing the function family in (2.11) so as to achieve a
convergent sequence{αt}t≥0. Moreover, even if it has good performances on sparse
recovery, in general there is no way to upper bound the sparsity level which LIMAPS
carries out, unless to accomplish an unnatural thresholding on the final coefficient
vector.

In this section we suggest a new fixed point iterative method inspired by the
same nonlinear operator on which LIMAPS is based on. In particular, it is shown
that the method is able to adaptively find a suitable sequence{λt} for approximately
solving the problem (LS0). This choice should also be made inthe light of relevant
constraints imposed on the objective function of such a problem, that is to choosek
coefficients not null and discard the remainingm− k.

Fixed 1≤ k≤ n, a possible strategy for findingk-sparse solutions using LIMAPS
consists on choosingλt = σ−1

t at timet ≥ 0 satisfying

σt = α̂k+1 (2.56)

beingα̂ the absolute values ofα rearranged in descending order andα̂k+1 its k-th
element. The goal of this choice is double:

1. to speed up the process aimed at dropping the smallest coefficients, i.e., those
corresponding to elementŝα j ≤ σt , which have indices in the setΛ(t) = { j :
|α j | ≤ σt};

2. to minimize the solution error induced byα “adjusting” the not null coeffi-
cients, i.e., those corresponding to elementsα̂ j > σt which have indices in the
setΛc(t) = { j : |α j |> σt}.

Based upon this strategy, the method should ideally force the σt values in such a
way to have

lim
t→+∞

gσt (|α j |) = 1−e−|α j |/σt =

{

1, if j ∈Λ(t)

0, if j ∈Λc(t)
.

Clearly, this requires that∀ j ∈ Λ(t) the ratio between the absolute value of the
coefficient|α j | and the parameterσt tends to infinite, while∀ j ∈Λc(t), |α j | have to
be an infinitesimal of order greater than that ofσt , leading to

lim
t→+∞

fσt (α j) = α jgσt (|α j |) =
{

α j , if j ∈Λ(t)

0, if j ∈Λc(t)
.

The overall algorithm, calledk-L IMAPS (which stands fork-COEFFICIENTS

L IPSCHITZIAN MAPPINGS FORSPARSITY), is sketched in Algorithm 4.
It should be noted that the last step of the algorithm accomplishes a threshold-

ing of the final point carried out by the while loop because in some cases it can



2.6 Sparsity Approximation with Bestk-Basis Coefficients 53

Algorithm 4 k-L IMAPS
Require: - dictionaryΦ ∈ Rn×m

- signalx∈Rn

- least square solutionν = Φ†x
- sparsity levelk

1: α ← ν
2: while [ cond ]do

3: σ ← sort (|α |)
4: λ ← 1/σk+1
5: α ← α −P

(

α ⊙e−λ |α̂|)

6: end while

7: α̂ ← PCk(α)

Ensure: An approximate solution̂α ∈ Ck.

have some noise among the null coefficients, that is those with indices in the setΛc.
However, experimentally we found that such coefficients reach arbitrary close to
zero values as the number of loops increases, making the threshold step not strictly
necessary. In Fig. 2.8 we plot theα coefficients showing thus annealing-like behav-
ior which hits the not required coefficients exhibited byk-L IMAPS already at the
beginning of the first iterations.

1 15 10 15 20 25 30 1 15 10 15 20 25 30

1 15 10 15 20 25 30 1 15 10 15 20 25 30

σ
15

 = 0.0103 σ
30

 = 7.72e−04

σ
15

 = 0.0191 σ
30

 = 0.0039

Sparsity k = 10

Sparsity k = 20

Fig. 2.8 Sorted absolute values of theα coefficients. The red stencils represent the absolute values
of σt at varius times. They separate the null coefficients (black stencils) from the absolute values
of those not null (blue stencils).

Thek-L IMAPS algorithm relies on the nonlinear self-mapping
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α 7→ α−P
(

α⊙e−λ |α |
)

(2.57)

over the affine convex set (affine space)AΦ ,s = {α ∈ Rm : Φα = x}, whereλ > 0
is a parameter.

Starting with an initial guessα ∈ Rm and applying the mapping (2.57), the se-
quences{αt}t>0 obtained by the iterative step

αt+1 = αt −P
(

αt ⊙e−λt |αt |
)

, (2.58)

where{λt}t>0 given by (2.56). Points that at the same time minimize the problem
(LS0) and are fixed points of (2.57) are those we are looking for. To this end, after a
fixed number of iterations,k-L IMAPS uses the nonlinear orthogonal projectionPCk

onto the setCk = {β ∈Rm : ‖β ‖0≤ k} expressed by

PCk(α) = arg min
β∈Ck

‖α−β ‖2 . (2.59)

Note that, due to the nonconvexity ofCk, the solution of problem (2.59) is not
unique.

2.6.1 Empirical Convergence fork-L I M APS

To provide empirical evidence on the convergence ratio, in Fig. 2.9 we plot the
curves given by the norm

||Pαe−λ |α ||| (2.60)

during the first simulation steps of system (2.58). They are chosen as examples
for highlighting how it behaves and how is in general the slope of the curves which
result to be decaying in all simulations. Here in particular,k-sparse random instances
s∈Rn and random matrix dictionariesΦ ∈Rn×m with fixed sizen= 100 and various
m= 200, . . . ,1000. The different slopes are mainly due to the ratiom/n rather than
the values imposed to the algorithm by means of the sparsity parameterk. In fact,
the curves do not significantly change when we use values fork > k∗, wherek∗ is
the optimum sparsity of the given signals.

2.7 Simulation of LI M APS Algorithm

To show the effectiveness of LIMAPS algorithm we directly compared it with some
algorithms for sparsity recovery well-known in literature, as Matching Pursuit (MP)
[77], Orthogonal Matching Pursuit (OMP) [91, 113], Stagewise Orthogonal Match-
ing Pursuit (StOMP) [45], LASSO [48], LARS [48], Smoothed L0(SL0) [82], It-
erative Soft Thresholding [49], Accelerated iterative hard thresholding (AIHT) [17]
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Fig. 2.9 Plotting of the norm in (2.60) with sparsityk = 10, size n = 100 and m =
200,400,800,1000.

and Improved SL0 (ISL0)[66]. In order to make the ISL0 algorithm behavior more
stable, in our implementation we used the explicit pseudo inverse calculation instead
of the conjugate gradient method, so penalizing its time performances in case of big
size instances.

In all tests, the framesΦ and the optimum coefficientsα∗ are randomly generated
using the noiseless Gaussian-Bernoulli stochastic model,i.e., for all i, j ∈ [1, . . . ,m]:

Φi j ∼N (0,n−1) and α∗i ∼ xi ·N (0,σ),

wherexi ∼ Bern(p). In this way each coefficientα∗i has probabilityp to be active
and probability 1− p to be inactive. When the coefficientα∗i is active, its value
is randomly drawn with a Gaussian distribution having zero mean and standard
deviationσ . Conversely, if the coefficient is not active the value is setto zero. As far
as the parameters are concerned, we fixλ0 = 10−3 andγ = 1.01 because they have
given good results in all considered instances, coming out essentially independent
from the sizen×mof the frames and sizem of the coefficient vectors.

We evaluate the performances of the algorithms measuring relative error and
computation time:

1. as errors we consider the Signal-to-Noise-Ratio (SNR) and the Sum of Squares
Error (SSE) of found approximate solutionα with respect the optimumα∗.
Precisely:

SNR= 20log10
‖α‖

‖α−α∗‖ , SSE= ‖s−Φα̂‖2;



56 2 Lipschitzian Mappings for Sparse Representation

2. as computation time we take the CPU time spent in the execution of the algo-
rithm cores, without including the computation of instances generation or the
pseudo-inverse matrix of the dictionary in our and SL0 algorithms.

The simulations were performed on AMD Athlon II X4 630 Processor 64
bit, 2.8 GHz processor with 4 GB of memory, using MATLAB with Sparse-
Lab (http://sparselab.stanford.edu ) and Toolbox Sparse Optimiza-
tion (http://www.ceremade.dauphine.fr/ ˜ peyre/matlab/ ) for al-
gorithm implementation. The algorithm LIMAPS is available online at the URL
http://dalab.dsi.unimi.it/limaps .

Among the many experiments done, in Figure 2.10, Figure 2.11and Figure 2.12
we report the average SNR, times and the relative number (in %) of correctly recov-
ered atoms values respectively, obtained from executions on instances ofn = 200
equations andmranging from 300 to 1400 variables, moving the percentage ofspar-
sity k from 10% to 50% overn. For eachn,m andk 100 instances of dictionary and
coefficients were randomly generated.

As can be noted, our algorithm outperforms all the others with regard to the
reconstruction quality, reaching arbitrary precision andkeeping a CPU execution
time comparable with the others. The most interesting results are obtained with the
sparsity levels between the 30% and the 50% overn, where our algorithm keeps a
good accuracy in terms of SNR.
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Fig. 2.10 Averages SNR of the algorithms vs. sparsity, expressed in percentage of the number of
equationsn.

http://sparselab.stanford.edu
http://www.ceremade.dauphine.fr/~peyre/matlab/
http://dalab.dsi.unimi.it/limaps
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Fig. 2.11 Averages computational times of the algorithms vs. sparsity, expressed in percentage of
the number of equationsn.

A second kind of experiment was aimed at studing the algorithm behavior when
the sparsity levelk is low (e.g., 50% overn), that is when algorithms find more
difficulties to converge toward the sparsest solution in general. To this end, we have
generated random instances of dimensionsn = 400 andm= 800 with a sparsity
level k = 200, doing also in this case 100 trials. The results are outlined in Table
2.2, listed by error averagesµSSE,µSNR and mean timesµtime together with their
relative standard deviationsσ . Again LIMAPS gives the best results in terms of
SNR and of SSE with lower standard deviations while the timesremain comparable
with other algorithms. Finally, it must be noted that the SSEof solutions found by
L IMAPS vanishes at each iteration of while cycle (statement 1: in Algorithm 1)
since they are remapped every time onto the feasible space of(BP0).

2.8 Simulation ofk-L I M APS Algorithm

In order to empirically study how thek-L IMAPS algorithm performs, we have car-
ried out two kinds of experiments on synthetic and real data respectively. The first
was conducted on random instances assumed to have the sparsity property, while
the second was aimed to learn a dictionary for a class of electrocardiogram (ECG)
signals taken from standard benchmark. Other applicationsthat can benefit from
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Fig. 2.12 Relative number (in %) of correctly recovered atoms not equal to zero. An atom is
considered correctly reconstructed if the deviation from the true value of the estimated value is less
than 5%.

Table 2.2 Averages and standard deviations of the results obtained bythe algorithms from 1000
trials with instances of dimensionsm= 800,n= 400 andk= 200.

µSSE σSSE µSNR σSNR µtime σtime

L IMAPS 1.5e-24 1.3e-24249.8114.9 0.79 0.23

SL0 4.8e-24 7.6e-25 24.7 38.30.15 0.01

ISL0 4.3e-16 3.7e-15 82.7 89.5 9.10 12.70

IST 6.2e+04 2.2e+05 -0.1 5.0 0.33 0.07

AIHT 5.8e+03 1.6e+03 5.4 1.28 0.06 0.02

LASSO 1.3e+02 1.1e+03 8.3 2.0 1.79 0.20

LARS 2.3e-10 2.3e-09 6.3 2.2 0.79 0.07

MP 2.4e+04 4.3e+03 1.9 0.7 0.18 0.01

OMP 2.4e+00 2.8e-01 1.6 5.5 11.4 0.79

StOMP 3.8e+05 1.4e+05 2.4 0.7 0.02 0.01

the sparsity and overcompleteness concepts include compression, regularization in
inverse problems and feature extraction.

By synthetic instances we mean a collection of instances of problem BP0 satis-
fying sparsity requirements and defined by an ensemble of matricesΦ of sizen×m
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and an ensemble ofk-sparse vectorss∈ Rn. All matrices have been sampled from
the uniform spherical ensemble, while each vectors was a single realization of a
random variable havingk nonzeros sampled from a standard iidN (0,1) distribu-
tion.

The OMP andk-L IMAPS algorithms are compared measuring their perfor-
mances on each realization according to the quantitative criterion given by the mean
square error:

MSE=
‖Φα− s‖2

n

A diagram of the integral of the error depicts the performances of the two algo-
rithms for a wide variety of instances. The average value of such cumulative error
measure is displayed as a function ofρ = k/n andδ = n/m. Fig. 2.13 displays a grid
of δ −ρ values, withδ ranging through 50 equispaced points in the interval [.01,
.5] andρ ranging through 100 equispaced points in [.01, 1]; here the signal length
is fixed ton= 100. Each point on the grid shows the cumulated mean square error
between the original and reconstructed, averaged over 100 independent realizations
at a givenk,m.

It can be noticed that MSE of OMP increases particularly whenδ tends to .5
andρ tends to 1, whilek-L IMAPS is less sensitive with respect to these saturation
values.

To show the effectiveness of our algorithm on real data, we focus on the dic-
tionary learning task for sparse representation applied toECG signals. Instances are
taken from the Physionet bank [59], specifically in the classof normal sinus rhythm,
collecting many patient records with normal cardiac activity. We took a long ECG
registration relative to a single patient and we split the signal into segments of length
n= 128, each one corresponding to a second of the signal registration and sampled
with frequencyfs = n, then we divide the blocks so obtained into two groups: train-
ing set and test set.

To perform the dictionary learning task we use KSVD[5] and MOD[50] tech-
niques working in conjunction with both the pursuit algorithm OMP and our non-
linear methodk-L IMAPS as sparsity recovery algorithms. In the training phase, the
algorithms perform 50 iteration steps with a fixed sparsity level of 64 coefficients
(50% of the signal length), over a dataset collecting 512 samples randomly picked
from training set. At the end of the learning phase, the dictionaries carried out by
the learning algorithms were tested on 5000 signals picked from the test set using
the same sparse recovery algorithms (OMP ork-L IMAPS ) previously applied in
the training phase.

To evaluate the accuracy of the signal reconstruction, one of the most used perfor-
mance measure in the ECG signal processing field is the root mean square difference
or PRD, together with its normalized version PRDN (which does not depend on the
signal mean), defined respectively as:

PRD= 100∗ ‖s− ŝ‖2
‖s‖2

and PRDN= 100∗ ‖s− ŝ‖2
‖s− s̄‖2

,
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Fig. 2.13 Each point on the grid shows the cumulative MSE between the original s and recon-
structedΦα signals, averaged over 100 independent realizations. The grid of δ −ρ values is done
with δ ranging through 50 equispaced points in the interval [.01, 5] and ρ ranging through 100
equispaced points in [.01, 1].

wheres andŝ are the original and the reconstructed signals respectively, while s̄ is
the original signal mean.

As it can be observed in Tables 2.3 and 2.4 our sparse recoveryalgorithm, ap-
plied to the dictionary learning, obtains the best results on average for both training
algorithms MOD and KSVD, with standard deviations comparable to that of OMP.

The convergence error is a parameter in evaluating such a kind of algorithms.
In figure 2.14 we report all MSEs ensured by the algorithms: also in this casek-
L IMAPS outperforms OMP with both MOD and KSVD algorithms.

Qualitatively speacking, the signals recovered using dictionaries trained with
OMP suffer from a significant error in the more “flat” regions,which are mainly
localized nearby the most prominent features of a normal electrocardiogram, given
by the three graphical deflections seen on a typical ECG signal and called QRS
complex.
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Table 2.3 PRD over 5000 test signals.

PRD mean (%) PRD std. dev.

KSVD-LiMapS 15.86 5.26

MOD-LiMapS 16.16 5.05

KSVD-OMP 17.92 5.13

MOD-OMP 17.41 4.93

Table 2.4 PRDN over 5000 test signals.

PRDN mean (%) PRDN std. dev.

KSVD-LiMapS 16.17 5.26

MOD-LiMapS 15.86 5.05

KSVD-OMP 17.92 5.13

MOD-OMP 17.42 4.92
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Fig. 2.14 Mean square error over the training set during each iteration of the learning process.

2.8.1 Empirical Phase Transition

Following [16], one of the main aspects of the CS systems is its ability to recover
k-sparse signals when then∼ k, as the problem size grows, i.e.n→ ∞. Each sparse
recovery algorithm exhibits a phase transition property, such that, when no noise is
present, it exists ak∗n such that for anyε >0, ask∗n, n→∞, the algorithm successfully
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recovers allk-sparse vectors, provided thatk < (1− ε)k∗n and does not recover all
k-sparse vectors ifk> (1− ε)k∗n.

We assumeΦ is an×mmatrix withn<m, drawn from i.i.d.N (0,n−1), the nor-
mal distribution with mean 0 and variancen−1 and letα ∈Rm a realmdimensional
vector withk< n non zero entries.

For the problem(s,Φ) we seek the sparsest vectorα such thats= Φα. When
the solution of (P1) is the same as the solution of the problem(BP0),α is called a
point of ℓ1/ℓ0 equivalence.
Following the convention used by Donoho [44], we denoteρ = k

n andδ = n
m a nor-

malized measure of problem indeterminacy and a normalized measure of the spar-
sity respectively, and we define regions(δ ,ρ) ∈ [0,1]2 that describe the difficulty
of a problem instance, in which there is a high probability onthe draw of Gaussian
matrix Φ that for large problem sizes(k,n,m)→ ∞, all α ∈ Σk are points ofℓ1/ℓ0

equivalence.
A problem can be considered difficult to recover if the sparsity measure and the
problem indeterminacy measure are high.

The region whereℓ1/ℓ0 equivalences occur for allα ∈ Σk is given by(δ ,ρ) for

ρ ≤ (1− ε)ρS(δ ) (2.61)

for anyε > 0, where the functionρS(δ ) defines a curve below which there is expo-
nentially high probability on the draw of a matrixΦ with Gaussian i.i.d. entries that
everyk-sparse vector is a point ofℓ1/ℓ0 equivalence .
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Search

Fig. 2.15 Donoho-Tanner [44] Phase Transition.
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Any problem instance with parameters(k,n,m), ∀ε > 0, if k
n = ρ < (1−ε)ρS(δ ),

then with high probability in the draw of a matrixΦ with entries drawn i.i.d. from
N (0,n−1) everyα ∈ Σk is a point ofℓ1/ℓ0 equivalence.

Rudelson and Vershynin in [100] provided a sufficient condition under which
Gaussian matrices will recover allα ∈ Σk.
The next theorem shows the main result in terms of lower boundon the phase tran-
sition ρRV

S (δ ) for Gaussian matrices.

Theorem 2.4.For anyε > 0 as(k,n,m)→ ∞, there is an exponentially high prob-
ability on the draw ofΦ with Gaussian i.i.d. entries that everyα ∈ Σk is a point of
ℓ1/ℓ0 equivalence ifρ < (1− ε)ρRV

S (δ ), whereρRV
S (δ ) is the solution of

ρ =
1

12+8log( 1
ρδ )β 2(ρδ )

with

β (ρδ ) = exp

(

log(1+2log( e
ρδ ))

4log( e
ρδ )

)

The curve(δ ,ρRV
S (δ )) is the theoretical curve that separates the successful re-

coverability area positioned below from unrecoverable instances described by the
portion of phase space above. In Fig. 2.15, the Donoho-Tanner [44] phase transition
is illustrated. The area under the red curve represents theℓ1/ℓ0 equivalence area.

For a given algorithm, we estimate the phase transition measuring the capability
of sparse recovery through extensive experiments. We fix thenumber of equations
of the undetermined system ton= 100 and we move the number of variablesmand
the sparsity levelk through a grid of 900δ and 100ρ , with δ varying from 0.01 to
1.0 and withρ varying from 0.01 to 1.0. At each(δ ,ρ) combination, we perform
100 problem instances.

Each problem instance is randomly generated using the Gaussian-Bernoulli
stochastic model, with each frame entryΦi, j ∼ N (0,n−1). Each entry belonging
to the optimal solutionα∗ is modeled as

α∗ ∼ xi .N (0,σ)

with xi ∼ Bern(p) distributed as a Bernoulli random variable with parameterp,
probability of coefficient’s activity. Finally the vector of known termssof the linear
system is calculated byΦα∗ = s.

A problem instance generated as described above is thus a triplet (Φ,s,α∗) con-
sisting of a frameΦ ∈R

n×m and ak sparse coefficients vectorα∗.
To better highlight the reconstruction performances obtained by each algorithm,

we chose to plot the phase transition plane in terms of Signal-to-Noise-Ratio (SNR),
that compares the level of the desiredk sparse vectorα∗ to the level of noise of the
estimated vectorα.
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In our experiments we estimated the phase transition of fouralgorithms: OMP,
LASSO (LARS), SL0 and our LIMAPS algorithm. For each one of them we per-
formed 9∗ 106 sparse reconstructions using a dedicated workstation to reduce the
computational time required for the simulations.

In Figures 2.16,2.17,2.18, 2.19, 2.20 we depict empirical phase transitions es-
timated through instances extracted from the Gaussian-Bernoulli stochastic model
described above. The transitions obtained in terms of probability of reconstruction
obey the following ordering:

L IMAPS > SL0> LASSO> OMP

Otherwise, if we consider the obtained reconstruction quality in terms of Signal-
to-Noise-Ration, the SL0 algorithm obtains the worst results, especially in the area
between 0.01≤ δ ≤ 0.8.
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Fig. 2.16 1D Phase Transition of the OMP, LIMAPS , LASSO and SL0 algorithm. In this graph, a
signal is considered reconstructed if the SNR of the estimated signal is greater or equal to 100dB.

To show the behavior of the LIMAPS algorithm with different nonlinear sparse
promoting mappings, extensive experiments are conducted varying dictionaries. The
chosen dictionaries are matrices commonly used or having features easily found in
real cases. The dictionaries used in these experiments are described below:

• Gaussian Dictionary: A Gaussian random dictionaryΦ ∈ Rn×m has each entry
Φi, j drawn from i.i.d.N (0,n−1) normal distribution with mean 0 and variance
n−1.
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Fig. 2.17 Signal to Noise phase transition of the OMP algorithm.

Fig. 2.18 Signal to Noise phase transition of the LASSO (LARS) algorithm.
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Fig. 2.19 Signal to Noise phase transition of the SL0 algorithm.

Fig. 2.20 Signal to Noise phase transition of the LIMAPS algorithm.
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• Partial Circulant Dictionary : Given a vectorφ = (φ1, . . . ,φm), the partial cir-
culant matrixC∈ n×m is defined as

C=











φ1 φm . . . φ2

φ2 φ1 . . . φ3
...

...
...

φn φn−1 . . . φm−n











where each entryφi is drawn from i.i.d.N (0,n−1)normal distribution with mean
0 and variancen−1.

• Partial Toeplitz Dictionary : Given a vectorφ = (φ1, . . . ,φm+n), the partial
Toeplitz matrixT ∈ n×m is defined as

T =











φ1 φ2 . . . φm

φ2 φ3 . . . φm+1
...

...
...

φn φn+1 . . . φm+n











whit each entryφi randomly extracted from the i.i.d.φi ∼ N (0,n−1) random
variable.

• Ternary Dictionary : Each entry of the Ternary dictionaryΦ has a probabilityp
to have value equal to zero. If the entryΦi, j is not equal to zero, has probability
0.5 to take value 1 and probability 0.5 to take value−1.

• Bernoulli Dictionary : Each entryΦi, j of the Bernoulli dictionaryΦ has proba-
bility p= 0.5 to take value 1 and probabilityp= 0.5 to take value−1.

• Fourier Dictionary : the entries of the Fourier dictionaryΦ ∈Cn×m are given by

Φ j ,k =
1√
m

exp
2π i jk

m

• Sparse dictionary: Sparse dictionayΦ ∈ Rn×m is a matrix populated primar-
ily with zeros. The entries of the dictionary that differ from zero are randomly
choosen from a Gaussian random variable. Formally, each entry φi, j has prob-
ability p to be active and probability 1− p to be inactive. Whenφi, j is active,
its value is randomly drawn with a Gaussian distribution having zero mean and
standard deviation1n. Conversely, if the coefficient is not active, the value is set
to zero. In our experiments,p is set to 0.5.

For each dictionary and for each sparsity promoting mappinglisted in table
(2.4.1) we estimate the phase transition measuring the capability of sparse recov-
ery in terms of Signal to Noise (SNR) of the LIMAPS algorithm. We fix the number
of equations of the undetermined system ton = 100 and we move the number of
variablesm and the sparsity levelk through a grid of 50δ and 90ρ , with δ varying
from 0.01 to 1.0 and withρ varying from 0.01 to 1.0. At each(δ ,ρ) combination,
we performed 100 problem instances. The results are shown inAppendix B of this
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thesis. As we can see the LIMAPS algorithm reaches a high reconstruction area in
almost all couples sparsity promoting mapping - dictionary.

2.9 Conclusions

We developed new heuristics to solve efficiently the sparse recovery of signals de-
scribed by underdetermined linear systems. They consist inalternating two lips-
chitzian maps: one promotes the sparsity of each near-feasible solution (or point)
falling outside the affine space associated with the linear transformation and the
other remaps such a solution in the nearest point of the feasible space.

The so derived heuristics one based on a iteration schemes which converge to
good solution coinciding, in many cases, with the sparsest one solution admitted.

With the experimental results conduced in section 2.7, we highlight the high
solution quality and a good average time complexity in practice, comparable with
the fastest well-known reconstruction algorithms; in particular, such technique is
promising because it exhibits very good performances (highSNR) also in case of
very high sparsity (nearn/2), values for which many others fail.

In particular, we have considered both the case of random generated instances
and the case of real data picked to ECG signal database with application to the dic-
tionary learning. We directly compare all accomplished tests with the well-known
greedy method called Orthogonal Matching Pursuit and we show that the proposed
method outperforms the latter one obtaining less noisy solutions in both kinds of
experiment.

We point out that the theoretical analysis of the algorithmsis particularly difficult
and it deserves further studies. The main open problems are related to the clarity
into details the properties of the iterative systems generated by the mappingsGλ . In
particular, we proved that the local minima of the||α||<λ> over the set{α | s=
Φα} are asymptotically stable fixed points ofGλ . An open problem is to show that
the sequence

αt+1 = Gλ (αt )

converges for any initial pointα0.
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Chapter 3
Face Recognition

Abstract In the first part of this chapter, we present a new holistic approach for
face recognition [3] that even with few training samples is robust against both
poorly defined and poorly aligned training and testing data.Working in the con-
ventional feature space yielded by the Fisher’s Linear Discriminant analysis, it uses
the sparse representation algorithm, namelyk-L IMAPS introduced in chapter 2, as
general classification criterion. Thanks to its particularsearch strategy, it is very fast
and able to discriminate among separated classes lying in the low-dimension Fish-
erspace. In the second part of this chapter, we introduce a local-based FRS namely
k-L IMAPS LFR, proposing two possible local features: either raw sub-images or
Gabor features. Both these variants combine weak classifiers based on random local
information, creating a new robust classifier able to recognize faces in presence of
occlusions.

3.1 Introduction

In the last decades the face recognition problem has been widely studied involving
biological researchers, psychologists, and computer scientists. This interest is moti-
vated by the numerous applications it involves, such as human-computer interaction
(HCI), content-based image retrieval (CBIR), security systems and access control
systems [125]. Unfortunately there is still a big disparitybetween the performances
achieved by existing automatic face recognition systems (FRSs) [125, 97] and hu-
man ability in solving this task. In particular, the existing methods behave very well
under controlled conditions, but their performances drop down significantly when
dealing with uncontrolled conditions [125, 112, 97]. The term uncontrolled con-
ditions refers to several problems affecting the images, includingvariations in the
environmental conditions (lighting, clutter background), variations in the acquired
face (expressions, poses, occlusions), and even the quality of the acquisition (fo-
cus/blurred). All these problems have high probability to happen in real applica-
tions, thus they need to be faced to have a robust face recognition system (FRS).

71
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Many solutions have been proposed to face each single problem: several illumi-
nation invariant FRSs have been presented (e.g. [107, 46, 60, 83]), and also systems
dealing with variations of the expression and occlusions (e.g. [84, 7]). However,
such systems are specialized on one problem, while in real applications, it is neces-
sary a system able to deal with any possible imperfection, even added together. In
this perspective a big effort has been done: the FRSs proposed in [122, 38, 104, 95]
deal with uncontrolled images in general, achieving high performances. But again
when trying to adopt them in real applications other problems arise. The first con-
cerns thenumber of images per subjectsrequired for training: many FRSs [122, 38]
behaves well only if a sufficiently representative trainingset is available which,
however, is not possible in many applications. On the contrary in literature we find
works where the training phase requires only one image per subject (facing the so
calledSmall Sample Size problem) [70, 96], but then the performances are too poor.
Another question concerns the step of face cropping: most approaches [104, 95]
present results on face images cropped using manual annotated landmarks, but this
is not indicative of the performances we would have applyingthe methods on au-
tomatic detected faces. In fact it has been amply demonstrated that the system per-
formances decrease drastically in presence of misalignment [18]. This problem has
been tackled in [124, 118] showing extensive results. Otherfactors to take into ac-
count evaluating a FRS are its scalability, namely, ”does the system perform well
even with big galleries?”, and the computational cost of thealgorithm: real-time is
often required in applicative contexts.

Existing FRSs can be classified in holistic (H) and local-based (L). The holistic
approaches are suitable in case of low quality images considering they do not re-
quire to design and extract explicit features. The most popular are Eigenface [115],
Fisherface [14] and Laplacianface [64]. More recently a newapproach [123] based
on the sparse representation theory [41, 25] has been proposed, proving its effec-
tiveness. This method aims at recognizing a test image as a sparse representation
of the training set, assuming that each subject can be represented as a linear com-
bination of the corresponding images in the training set. The main disadvantage of
this method, and of all the holistic approaches in general, is that it requires a very
precise (quasi-perfect) alignment of all the images both inthe training and in the test
sets: even small errors affect heavily the performances [37]. Besides, they require to
have numerous images per subject for training. All these characteristics are not con-
ceivable for real world applications. The local-based methods extract local features
either on the whole face [92] or in correspondence to peculiar fiducial points [120].
By construction, such methods are more robust to variationscaused by either illu-
mination or pose changes. Moreover they are more suitable todeal with face partial
occlusions [90, 79] that may occur in real world applications. Their main disad-
vantages are the computational cost and the fact that they require a certain image
resolution and quality, which cannot be guaranteed in real world applications.

In this chapter we propose both a holistic method and a local approach, high-
lighting their strengths and weaknesses.

The holistic approach follows [123], while being fast, robust and completely au-
tomatic. The crucial peculiarity consists in the adopted sparse approximation algo-
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rithm, solving an underdeterminend linear system using thek-L IMAPS algorithm
[2] presented in chapter 2. Such method is based on suitable Lipschitzian type map-
pings providing an easy and fast iterative scheme which leads to capture sparsity in
the face subspace spanned by the training set. With this change the method achieves
higher performances both in presence of unregistered and uncontrolled images.

The local-based approach we propose is also based on thek-L IMAPS algorithm,
while it extracts local and multiscale information (eitherraw sub-images or Gabor
features) in correspondence to the visible parts of faces. Such setting makes the
approach suitable to deal with partial occlusions caused byeither accessories (e.g.
sunglasses, scarves or hats), or hands or hair on the faces, or even external sources
that partially occlude the camera view. The main novelty of our algorithm is that it
attempts to solve the face recognition problem with a set of weak classifiers com-
bined by the majority vote rule to create a strong FRS that classifies among multiple
linear regression models, being robust to partial occlusions and misalignments.

3.2 Holistic Face Recognition byk-L I M APS Algorithm

In this section we propose a completely automatic and fast FRS based on the sparse
representation (SR) method. Both the training and the test sets are preprocessed
with the off-the-shelf face detector presented in [116] plus the eyes and mouth lo-
cator presented in [19]. The obtained face sub-images are projected in the Fisher
space and then sparsity is accomplished applying the recently proposed algorithm
k-L IMAPS [2]. Such method is based on suitable Lipschitzian type mappings pro-
viding an easy and fast iterative scheme which leads to capture sparsity in the face
subspace spanned by the training set.

We tested out method on the Yale, Yale B Extended [56], ORL [88], BANCA [11]
and FRGC version 2.0 database [93], and compared it with the SRC method. These
experiments prove that, despite the system is completely automatic, it is robust with
respect to misalignments and variations in expression or illumination.

3.2.1 Eigenfaces and Fisherfaces

Holistic Face Recognition algorithms deal with face imagestrying to extract global
features describing the face in its wholeness. In this section we outline two fun-
damental techniques used to extract interesting features useful for solving the face
recognition problem. These techniques are low sensitive tolarge variations in light-
ing intensity, direction and number of light sources and to different facial expres-
sions.

The first is the principal component analysis (PCA) that extracts a set of features
called Eigenfaces which maximize the total scatter over thewhole training set. The
second method exploits the information given by the labels of the training set to
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extract features called Fisherfaces which are the most discriminative as possible
among the different classes.

3.2.1.1 Eigenfaces

The Eigenface method [114, 69], is based on the principal component analysis
(PCA) also called Karhunen–Loéve transformation for dimensionality reduction .
It applies a linear projection from the image space to a lowerdimensional feature
space so that the chosen directions maximize the total scatter across all classes, i.e.
across all images of all faces. Choosing the projection which maximizes total scatter,
the principal component analysis retains unwanted variations such as for example
facial expressions and illuminations.

Let {x1, . . . ,xN} with xi ∈ Rn be a set ofN images taking values in ann-
dimensional image space, and assume that each imagexi belongs to one of theC
classes{1, . . . ,C}. Let us consider a linear transformation mapping the original n-
dimensional image space into anl -dimensional feature space , withl < n. The new
feature vectorsyi ∈ Rl are defined by:

yi =WTxi with i = 1, . . . ,N (3.1)

whereW ∈ Rn×l is an orthonormal column matrix.

Let ST the total scatter matrix defined as

ST =
N

∑
i=1

(xi− µ)(xi− µ)T

whereµ ∈Rn is the mean image of all samples, then after applying the linear trans-
formationWT , the scatter of the transformed feature vector{y1, . . . ,yN} isWTSTW.
Principal component analysis choose the projectionWopt such that the determinant
of the total scatter matrix of the projected samples is maximized

Wopt = argmax
∣

∣WTSTW
∣

∣

with Wopt = [w1, . . . ,wl ] is the set ofn-dimensional eigenvectors ofST corre-
sponding to thel largest eigenvalues . Considering these eigenvectors havethe same
dimension of the original images, they are also called Eigenfaces.

If the principal component analysis is presented with images of faces under
varying illumination , the projection matrixWopt will contain principal components
which retain, in the projected feature space, the variationdue to lighting. For this
reason, the points in the projected space will not be well clustered according to the
subject identity.

The eigenvectors that catch the variance of lighting are thefirst eigenvectors,
thus, discarding them permits a reduction of the variation due to lighting, and con-
sequently a better clustering of the projected samples.
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Fig. 3.1 Examples of Eigenfaces of some subjects of the YaleB database.

3.2.1.2 Fisherfaces

The principal component analysis projections are optimal for reconstruction from
a low dimensional basis but they may not be optimal from a discrimination stand-
point.
Since the learning set is labeled, it makes sense to use this information to build a
more reliable method for reducing the dimensionality of thefeature space .

Fisher Linear Discriminant analysis (FLD) [54, 14] is a class specific method,
in the sense that it tries to reshape the scatter in order to make it more reliable for
classification. This method selects the projection matrixW of (3.1) such that the
ratio of the between class scatter and the within class scatter is maximized. We
define the between class scatter matrix as:

SB =
C

∑
i=1

Ni(µi− µ)(µi− µ)T

and let the within class scatter matrix be

SW =
C

∑
i=1

∑
xj∈Xi

(x j − µi)(x j − µi)
T

whereµi is the mean image of the classXi andNi the number of samples in the
classXi . If SW is non singular, the optimal projectionWopt is chosen as the matrix
with orthonormal columns which maximizes the ratio betweenthe determinants of
the between and the within class scatter matrix of the projected samples respectively

Wopt = argmax
W

∣

∣WTSBW
∣

∣

|WTSWW| (3.2)

The matrixWopt = [w1, . . . ,wl ] is the matrix that contains the generalized eigen-
vectors ofSB andSW corresponding to thel generalized eigenvalues
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SBwi = λiSWwi with i = 1, . . . , l

Fig. 3.2 Examples of Fisherfaces of some subjects of the YaleB database.

The maximum number of nonzero generalized eigenvalues isC−1, so an upper
bound onl is C−1, whereC is the number of classes.

In the face recognition problem, a possible difficulty that can be appear is that the
within class scatter matrixSW ∈ Rn×n can be singular. This stems from the fact that
the rank of the matrixSW is at mostN−C, and in general the number of imagesN in
the learning set is much smaller then the numbern of pixels in each image, making
possible to choose the matrixW such that the within class scatter of the projected
samples can be made exactly zero.

To avoid this problem in [14] it was proposed an alternative to the criterion (3.2)
called Fisherfaces , that projects the image set to a lower dimensional space such
that the within class scatter matrixSW is nonsingular . This can be achieved by using
the principal component analysis to reduce the dimensions of the feature space to
N−C and then applying the standard Fisher linear discriminant (3.2) to reduce the
dimension toC−1. The projection matrixWopt can be rewritten as

WT
opt =WT

f ldWT
pca (3.3)

where

Wpca= argmax
W

∣

∣WTSTW
∣

∣

Wf ld = argmax
W

∣

∣WTWT
pcaSBWpcaW

∣

∣

∣

∣WTWT
pcaSWWpcaW

∣

∣

whereWpca is the projection matrix of the principal component analysis andWf ld

is the projection matrix of the Fisher linear discriminant.
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3.2.2 Classification Based on Linear Sparse Representation

The classification process aiming at identifying a subject within a fixed group of
individuals can be successfully carried out using techniques based on sparse repre-
sentation [123].

This process can be recasted into the problem of finding the sparsest represen-
tation of a test image, usually represented by a vector in a suitable feature space
x ∈X ⊆ Rn, into a frame (calleddictionary in this context)Φ = [φ1, . . . ,φm] as-
sumed to be a wide collection (m> n) of vectors (oratoms) in X , each one coding
a subject belonging to a fixed training set. In this setting, asparse representation for
x means to linearly combine the fewest possible training images, i.e., the smallest
number of atoms such thatx= ∑i αiφi , or equivalently in matricial form

Φα = x. (3.4)

Ideally, under condition of underdetermination of the system (3.4) the sparsest
solution can be found as a unique solution of the NP-hard optimization problem
BP0

In order to make effective the general techniques based on sparsity promotion
two main issues must be taken into account:

1. projection– it helps both in extracting holistic features to discriminate among
subjects and in projecting high-dimensional face images tolow-dimensional
feature spaces, so making computations faster.

2. approximation– the recovery by the exact superposition of few atoms is some-
times unlikely for holistic feature spaces, therefore it isbetter for the sparse rep-
resentation to focus on constructing the best approximation of an image with a
linear combination ofk, or fewer, atoms from the dictionary, as stated by the
sparse approximation problem:

min
α∈Rm

‖Φα − x‖ subject to ‖α ‖0 ≤ k, (LS0)

where‖·‖ represents the standard Euclidean norm.

Following [123], the previous defined sparsity framework can be used to deter-
mine, givenc distinct classes or subjects, at which one a given test imagebelongs.
To this end data are arranged such that the training samples from thei-th class are
represented as column vectors of the matrixAi = [x1, . . . ,xni ] ∈ Rn×ni . The training
set collecting all subjects is then obtained by stacking allmatricesAi into matrix
A= [A1, . . . ,Ac].

As a usual practice, a dimensional reduction is carried out by linearly project-
ing high-dimensional face images to low-dimensional feature spaces by means of a
suitable matrixW. Thus the dictionaryΦ for the sparse recovery is determined as
Φ =W A. Successively, in the classification stage, given a test imagex, the projected
sampley=W x is used to find a sparse vectorα such thatΦα ≈ y, i.e., to solve one
out the many sparsity problems as, for instance, the problemreferred by (LS0).
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In the purpose of solving the membershipi of the test imagex, one looks for
the linear span of the training samples associated to the subject i that better ap-
proximates the feature vectory. In other words, by denoting witĥαi the coefficient
vector whose only nonzero entries are the ones inα associated to classi (zeroing
all others entries), the identity ofy is found minimizing the residual with the linear
combinationΦα̂i , i.e., by applying the discrepancy rule:

identity(y) = argmini∈[1,..,c] ‖y−Φα̂i‖. (3.5)

3.2.3 Classification byk-L I M APS

The holistic FRS we propose here, namelyk-L IMAPS HFR, follows the setting
of the general framework introduced in the previous section, while adopting the
k-L IMAPS algorithm to solve the sparsity promotion.

The entire process for face recognition usingk-L IMAPS is summarized in the
flow diagram of Figure 3.3 and consists in the following steps.

Fig. 3.3 Thek-L IMAPS FR system.

1. Projection– which embed training and testn-dimensional images in the LDA
space ((c−1)-dimensional vectors) in order to extracts holistic facial features
using the matrixWLDA as projector.

2. Sparsity– which finds a sparse representation of a test imagex by building the
dictionaryΦ =WLDA A∈R(c−1)×n (with c−1< n) and applyingk-L IMAPS to
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the projected test imagey=WLDA xusing dictionaryΦ, an initial guessα0 =Py,
and the sparsity parameters.
Classify– which finds the identity ofx by applying rule (3.5).

3.2.4 Databases

As claimed before, our goal is to define a FRS that works independently of the ac-
quisition conditions. In order to verify this independence, we test our FRS on several
databases that differ significantly one from the others withrespect to several aspects:
the illumination conditions, the photo sharpness, the facepose and expression, the
context, and the subject cardinality. In particular in table (3.1) we report the results
obtained on the following databases:

1. Yale db: contains 165 grayscale images of 15 individuals with homogeneous
background. There are 11 images per subject, where the expression (neutral,
happy, sad, sleepy, and wink) and the illumination conditions (central/right/left-
light) are varied. The subjects are also acquired both with or without glasses.

2. YaleB + Extended YaleB db[56]: contains 21888 grayscale images of 38 in-
dividuals acquired in 9 poses and 64 different illuminations, all with homoge-
neous background. For our experiments we considered the images with frontal
faces under any illumination conditions (2432 images).

3. ORL db [88]: contains 400 grayscale images of 40 distinct subjectsin frontal
position and with homogeneous background. The images were taken at different
times, varying the lighting, facial expressions (open / closed eyes, smiling / not
smiling) and facial details (glasses / no glasses).

4. BANCA db [11]: it is a large, realistic and challenging multi-modal database.
For our experiments we refer to the sections Controlled and Adverse.Con-
trolled: it consists of 2080 images of of 52 people placed in front of the camera
and looking down as if reading. The images were acquired in 4 different ses-
sions. The images have homogeneous background while the illumination condi-
tions vary from daylight to underexposed.Adverse: like the Controlled section
it consists of 2080 images. The main difference is that the background is non-
uniform and the image quality and illumination are poorer.

5. FRGC version 2.0 db[93]: this dataset reports images of 466 people acquired
in several sessions (from 1 to 22, varying from person to person), over two pe-
riods (Fall 2003 and Spring 2004). A session consists of six images: fourcon-
trolled and twouncontrolled, both acquired with either neutral or smiling face
expression. Controlled images are acquired in frontal pose, with homogeneous
illumination, while the uncontrolled ones represent smaller faces, often blurred
and acquired in several illumination conditions. For our experiments we con-
sidered only the subjects with at least three sessions per period. This brought us
to 384 subjects, in the case of the uncontrolled section, and394 subjects for the
controlled one.
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Table 3.1 Database description. From the left to the right the columnsare the database name,
number of subjects, number of images, background, illumination, expression, timing and the image
quality.

Database N. sbj N. Imgs. Back. Illum. Expr. Timing Qual.

Yale 15 165 hom. varies varies n good

ORL 40 400 hom. varies varies y good

BANCA Controlled 52 2080 hom. good reading y good

BANCA Adverse 52 2080 clutter poor reading y bad

Extended Yale B (frontal) 38 2432 hom. varies neutral n good

FRGC v.2 Controlled 394 5726 hom. good varies y good

FRGC v.2 Uncontrolled 384 5248 clutter poor varies y bad

3.2.5 Experimental results

In this section we present the experimental results obtained running our system
on several public databases.
All the experiments have been carried out on images automatically localized
with the face detector proposed in [117] followed by the eyesand mouth locator
presented in [19].No human interventionis required. The misalignment we deal
with is exemplified in Fig. 3.4.

Fig. 3.4 Examples of automatic cropping on uncontrolled images (first line from the FRGC v.2
db; second line from the BANCA Adverse db).

The number of images in the training set has been deliberately kept low (k vary-
ing between 3 and 5) in order to emulate real world settings. The results we
report have been obtained mediating over 100 trials; at eachiteration,k images
are randomly selected for training and the remaining are used to construct the
test set. Comparisons have been carried out with the state-of-the-art SRC [123],
with a feature space dimension equal to 100, which is a good compromise be-
tween the performances and the computational costs.
We first set up several experiments referring to a subset of the FRGC 2.0 dataset.
The choice of this database is due to its high subject cardinality and to its rich-
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Table 3.2 The face recognition rate (%) on the FRGC 2.0 controlled, varying the cardinality. In
brackets we report the number of features which brought to such percentage.

# Subj 50 100 150 200 239

k= 3 97.6 (100) 96.4 (180) 95.6 (200) 94.9 (340) 93.9 (360)

k= 4 98.4 (100) 98.3 (200) 97.0 (250) 96.9 (390) 95.4 (490)

k= 5 98.8 (160) 98.2 (230) 98.2 (280) 97.2 (340) 97.2 (390)

ness in the acquisition conditions (both controlled and uncontrolled), allowing
to analyze our FRS under several critical aspects. In particular, we first explored
thesystem scalability: considering only the controlled images of people with
neutral expressions, we tested the system performances incrementing the sub-
jects cardinality. As shown in Table 3.2, the decrease of performances is more
important for small values ofk.
Second, we investigated how theexpression variationinfluences the perfor-
mances. In the first two columns of Table 3.3 we report the results obtained
by both our algorithm and the SRC, varyingk and the pool of images: either
neutral or neutral and smiling of the FRGC 2.0 database. As wecan see, the
expression variation causes a loss of less than one percentage point for both our
method and the SRC, showing a desirable invariance to the expressions.
We explored the system behavior onuncontrolledimages reporting the results
in the last column of Table 3.3. This is the more realistic andchallenging sce-
nario, where the subjects are non-collaborative and the acquisition conditions
non-optimal. In this case the performances are poorer, reflecting the challenge
of the task. The low quality of these images affects the recognition percentage
in two ways: first the face locator is less precise, resultingin more misaligned
faces (see Fig. 3.4). Second, the feature extractor itself has to deal with less
discriminative information deleted by blurring, and even misleading informa-
tion caused by shadows or glasses. What we highlight howeveris the large gap
between the performance we achieve and the SRC ones. Confirming that our
method is more robust in presence of misalignment and unfavorable conditions.

Table 3.3 The face recognition rate (%) on 239 subjects of the FRGC 2.0 controlled, neutral versus
neutral and smiling and FRGC 2.0 uncontrolled.

NEUTRAL NEUTRAL AND SMILING UNCONTROLLED

k-LiMapS SRC k-LiMapS SRC k-LiMapS SRC

k= 3 93.9 (360) 92.8 93.2 (380) 91.8 77.1 (390) 68.4

k= 4 95.4 (490) 95.3 94.6 (500) 94.7 82.8 (360) 74.7

k= 5 97.2 (390) 96.6 96.3 (460) 96.2 87.2 (380) 79.1

Secondly we investigate the behavior of our algorithm on different databases
described in 3.2.4, like Yale, Extended Yale B, Banca Controlled and Adverse,
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ORL and the FRGC v.2 Controlled and Uncontrolled. With this experiment
we wanted to demonstrate the robustness of our method independently of the
database in analysis.

Table 3.4 The face recognition rate (%) on some databases.

Database k = 3 k = 4 k = 5
k-L I M APS HFR SRC k-L I M APS HFR SRC k-L I M APS HFR SRC

Yale 95.7 (26) 36.7 97.4 (46) 39.9 98.0 (44) 41.0

ORL 89.6 (52) 65.5 93.0 (66) 83.0 95.3 (54) 89.4

BANCA Co. 90.8 (148) 81.1 94.3 (154) 89.9 96.5 (190) 93.8

BANCA Ad. 86.3 (148) 77.4 90.7 (154) 87.5 93.9 (198) 91.9

Ext. Yale B 89.3 (109) 45.7 94.2 (114) 69.9 96.3 (146) 79.7

FRGC v.2 Co. 90.1 (565) 87.8 94.0 (625) 92.4 96.0 (685) 94.4

FRGC v.2 Un. 72.5 (530) 65.6 79.7 (530) 72.1 84.6 (634) 75.1

The experiments have been carried out keeping low the numberof images per
subjects in the training set and repeating 100 times each single setting. In table
3.4 we report the average results; regarding the standard deviations, we remark
they are always very low (varying between 0.013 and 0.019), indicating a good
stability of the system. Results are presented for each database, reporting for
eachk: the best results obtained varying the number of featuresn (in brackets
we indicate the corresponding value ofn) and the results obtained on the same
data running the SRC algorithm.
In the following we highlight some aspects crucial for the applicability of the
system in real applications: the robustness to possible misalignment produced
by the localization step (sec. 3.2.5.1); the low criticality of the parameter set-
ting (sec. 3.2.5.2); the robustness in a wide range of acquisition conditions
(sec. 3.2.4); the low computational cost in testing phase (sec. 3.2.5.3).

3.2.5.1 Face localization

In all the experiments the images have been cropped automatically: we applied
the face detector proposed in [116], followed by the eyes andmouth locator
(EML) presented in [19]. The faces missed by the Viola-Jonesface detector are
not considered for the subsequent steps, while the misalignments caused by the
EML is managed by the FRS.
In order to give a quantitative estimate of the misalignmenterror, we computed
the relative error measure introduced by Jesorsky [67] defined as

deye=
max(||Cl −C̃l ||, ||Cr −C̃r ||)

||Cl −Cr ||
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where the values̃Cr/l stand for the eye positions output by the localization mod-
ule, while the valuesCr/l are the ground truth of the right and left eye centers re-
spectively. This measure, which normalizes the localization error over the inter-
ocular distance, is scale independent. We analogously define thedmouthmeasure
as the mouth detection error normalized over the inter-ocular distance. Accord-
ing to these measures, we can say that on all the datasets the method achieves
both deye anddmouth≤ 0.25 in about 99− 100% of the processed images, ex-
cept for the uncontrolled sections of the BANCA and FRGC databases where
it achieves the 95%. A more precise localization (deye and dmouth≤ 0.10) is
attained in the 85% of controlled images and 60% of the uncontrolled sections.
Figure 3.4 shows qualitatively the level of misalignment wedeal with.

3.2.5.2 Parameters setting

The algorithm requires to fix three parameters:k, that is the number of images
per subject in the training set,n: the feature space dimensionality, ands: the
number of atoms selected byk-L IMAPS .

a. Regardingk, it is obvious that the bigger it is the better the performances
are. However, in order to emulate real world settings, we keep k low (vary-
ing it between 3 and 5). This choice frames our FRS as a solution to the
small sample size (SSS) problem.

b. The feature space dimensionalityn depends on both the database and the
value ofK. This is the reason why, whenever possible, it is advisable to
tunen for each experiment. Results reported in table 3.4 are basedon tuned
values ofn.
We remark, however that good performances can be achieved setting n
equal to any value between the number of subjects in the training set and the
number,ω , of eigenvalues greater than a fixed value (e.g., 10−6): the per-
formance trend in this range changes slowly, while overcoming the superior
limit ω they drop down drastically.

c. Thek-L IMAPS algorithm requires to set the numbers of atoms to select
from the dictionary. This is not a critical parameter (varying it between 2
and 10 no significant differences are encountered). In the experiments we
sets= k: so doing in the best casek-L IMAPS will select all and only the
k atoms in the dictionary corresponding to the current targetsubject.

3.2.5.3 Computational costs

A last but not least aspect to take in consideration when designing and imple-
menting a FRS is its computational cost: traditional approaches in the field of
the compressive sensing require to solve linear systems, adopting the expen-
sive simplex method. If on one hand this allows to achieve high performances,
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on the other hand, it is computational very expensive preventing by itself the
applicability in real applications.
The k-L IMAPS HFR is very fast being based on an iterative search strategy,
that in the case of face recognition arrives to convergence after few iterations
(namely 5-10).
In particular, the MATLAB implementation of our algorithm runs each image
in 0.01 seconds when referring to the most populous dictionary (FRGC con-
trolled), resulting in a real-time solution for the FR problem.

3.3 Face Recognition with Occlusions byk-L I M APS

Occlusions and variation of expressions are the most commondifficulties in
applications involving automatic FRSs. Sources of occlusions can be apparel
like sunglasses, eyeglasses, scarves and hats as well as hands or hair covering
part of a face or even other objects placed between the cameraand the face.
Other kind of occlusions can be considered extreme variation of illumination
like dark shadows or excessive lighting.
Robustness to occlusions is essential for real world FRSs. If faces are partially
occluded, holistic methods based on Eigenfaces of Fisherfaces [14] cannot be
applied, since all the features extracted from the trainingset would be corrupted.
In this work we propose a local-based FRS namelyk-L IMAPS LFR, com-
bining a set of weak local classifiers obtaining a strong and robust classifier,
suitable to solve the face recognition problem under occlusions. This algorithm
exploits two possible local features: the first, described in 3.3.2, called Multi-
scale Random Tessellations (MRT), consist of natural patches extracted from
face images; the second, are Gabor features (Gf) that well describe contours
and local variations in spatial domain.
Thek-L IMAPS LFR system consists of two phases: the dictionary construction
and the test phase. Regarding the first one, we proceed selecting k unoccluded
images per subject and extracting from each of them a high numberZ, of local
features (the same pool of features for all the images).Z dictionaries are then
constructed, one for each featurez, linearizing the corresponding information
extracted from each training images and placing them side byside in the matrix
Φz.
The testing phase is articulated in the following steps. At first the test image
is classified according to the possible occlusion (unoccluded / glasses / scarf)
performed through the use of the EML locator. In the case the EML locator cor-
rectly localize eyes, the subject must be checked by the scarf detector described
in [80] in order to determine the scarf possible presence. Otherwise, if the EML
fails to locate eyes, the face are classified as occluded by sunglasses. On the
basis of this information, we inhibit the occluded regions referring to off-line
defined masks. In particular two binary masks, one corresponding to sunglasses
and the other to scarves. The masks are mathematically described asM(x,y):
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M(x,y) =

{

0, if the pixel (x,y) is not occluded

1, otherwise

Fig. 3.5 Classification of occlusions and feature points extraction.

M is used to define a feature property. Letz be a feature inZ and let(xz,yz) be
the center of the feature support,h andw be its height and width respectively.
Then, given 0< σ < 1, we say thatz is σ -unoccluded if

∑
⌈xp+

w
2 ⌉

i=⌊xp−w
2 ⌋

∑
⌈yp+

h
2⌉

i=⌊yp− h
2⌋

M(i, j)

wh
≤ σ

Applying this inspection, a subsetSof dictionaries is selected for classification
so that

Φz∈ S if z is σ -unoccluded.

EachΦz∈ S is a weak classifier behaving as the one presented in section 3.2.2.
The final decision is determined applying the majority vote rule as described
in the next subsection. Finally, at the end of this section wedetail two possible
features to be casted in thek-L IMAPS LFR system.

3.3.1 Combining Classifiers

Let D = {D1, . . . ,DL} be a set of classifiers, called also pool or ensemble, such
thatDi : Rn→Ω , whereΩ = {ω1, . . . ,ωc}, assigns to eachx∈Rn a class label
ω j ∈ Ω . The majority vote method for combining classifiers decisions, is one
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of many methods that assign tox the class labelω j that is supported by the
majority of the classifiersDi .
In general given the votes ofL classifiersD1, . . . ,DL, we define a majority vote
classifier as follows

C(x) = argmax
i

L

∑
j=1

wj I(D j(x) = i) (3.6)

wherew1, . . . ,wL are weights such that∑ j wj = 1, andI(.) is an indicator func-
tion. If weights arewj =

1
L , (3.6) can be rewritten as

C(x) = mode{D1(x), . . . ,DL(x)} (3.7)

where mode(.) is the value that appears most often in the set of classifiers.
Finding independent classifiers is one aim of classifier fusion methods for the
following reason. LetL be odd,Ω = {ω1,ω2}, and all classifiers have the same
classification accuracyp ∈ [0,1]. The majority vote method with independent
classifiers decisions gives an overall correct classification accuracy calculated
by the binomial formula

pma j =
⌊L/2⌋
∑
i=0

(

L
i

)

pL−i(1− p)i

where⌊x⌋ denotes the largest integer less than or equal tox. The majority vote
method with independent classifiers is guaranteed to give a higher accuracy than
individual classifiers whenp> 0.5 [72, 71].

3.3.2 Local Features

The first pool of features we are interested in investigatingconsists of patches
extracted varying randomly the position, the height and thewidth. These raw
data capture local details, varying the scale and thus the retailed details.
In figure 3.6 we can see examples of random patches maintainedin presence
of different kind of occlusions. We observe that both the screaming and neutral
expression images are unoccluded, thus their occlusion masks are set to 0 for
all pixels.
The second pool of features we investigate is obtained applying a bank of Gabor
filters in correspondence to a certain number of points randomly extracted from
the non occluded face portion.
A Gabor filter is a linear band pass filter, widely used for edgedetection, ob-
tained by modulating an harmonic sinusoidal function with aGaussian function.
The filter has a real and an imaginary component representingorthogonal di-
rections.
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Fig. 3.6 Example of Random Pieces for different occlusions.

The impulse response of a Gabor filter is defined as

greal(x,y;λ ,θ ,φ ,σ ,γ) = e
− x′2+y′2γ2

2σ2 cos(2π
x′

λ
+φ)

gimag(x,y;λ ,θ ,φ ,σ ,γ) = e
− x′2+y′2γ2

2σ2 sin(2π
x′

λ
+φ)

Fig. 3.7 Real (cosine-type) and imaginary (sine-type) part of the impulse response of a Gabor
filter.

wherex′ = xcos(θ )+ ysin(θ ) andy′ =−xsin(θ )+ ycos(θ ).
The parameterλ is the wavelength of the sinusoidal function,θ is the orienta-
tion of the Gabor function ,σ represents the sigma of the Gaussian envelope,γ
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specifies the ellipticity of the support of the Gabor function andφ is the phase
offset.
The real and the imaginary components of the Gabor filter may be used individ-
ually or combined to form a complex number as defined below:

g(x,y;λ ,θ ,φ ,σ ,γ) = e
− x′2+y′2γ2

2σ2 ei(2π x′
λ +φ)

The response of a Gabor filter to an image is obtained by a 2D convolution
operation. LetI(x,y) denotes the image and letG(x,y;λ ,θ ,φ ,σ ,γ) be the re-
sponse of a Gabor filterg(x,y;λ ,θ ,φ ,σ ,γ) at point(x,y) on the image plane.
The responseG(.) of the Gabor filter is obtained as

G(x,y;λ ,θ ,φ ,σ ,γ) = I(u,v)∗g(x,y;λ ,θ ,φ ,σ ,γ)

=

∫ ∫ +∞

−∞
I(u,v)g(x−u,y− v;λ ,θ ,φ ,σ ,γ)dudv

In figure 3.8 we show the amplitude of response of Gabor filterswith different
orientations and scales applied to a face image.
Wiskott at al. in [121] suggest a set of Gabor filters with 5 spatial frequencies
and 8 distinct orientations to create an efficient filter bank.
Parameters are resumed in table 3.5

Table 3.5 Parameters of Gabor filters.

Parameter Symbol Values

Orientation θ {0, π
8 ,

2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8 }
Wavelength λ {4,4

√
2],8,8

√
2,16}

Phase φ {0, π
2 }

Gaussian Radius σ {4,4
√

2],8,8
√

2,16}
Aspect Radius γ 1

Gabor filters are among the most popular tools for facial feature extraction.
Their use in automatic face recognition system is motivatedby two major fac-
tors: their computational properties and their biologicalrelevance.
When exploited for feature extraction, a filter bank with several filters is usually
created and used to extract multiorientational and multi-scale features from the
given face image.
By convolving face images with the Gabor kernels of the filterbank previously
defined, we would have a total of 40 Gabor filter response images. These im-
ages could be used as features, but their high dimensionality would make this
approach impractical.
To reduce the feature space, our approach consists in generating random points
spatially located in non occluded area of the image, and in calculating local
features through the application of the Gabor filter bank.
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Fig. 3.8 Example of features extracted convolving a subject with Gabor filters with different ori-
entations and scales.

3.3.3 Occlusion and Expression Database

Our goal is to test thek-L IMAPS LFRS system in case of partial occlusions
or expression variations. To this end we adopted the AR [78] database that con-
tains images of faces acquired with different occlusions and with different ex-
pressions.
This face database was created by Aleix Martinez and Robert Benavente in
the Computer Vision Center (CVC) at the U.A.B. It contains over 4,000 color
images corresponding to 126 people’s faces (70 men and 56 women). Images
show frontal view faces with different facial expressions,illumination condi-
tions, and occlusions (sun-glasses and scarves). The pictures were taken at the
CVC under strictly controlled conditions. No restriction on clothing, make-up,
hair style, etc. were imposed to participants. Each person participated in two
sessions, separated by two weeks (14 days) time.
The same pictures were taken in both sessions.
All images are stored in raw file format of the form G-xx-yy.raw. The letter ’G’
represents the gender of the subject and can assume the value”M” for males
and ”F” for females, ’xx’ is a unique person identifier (from ”00” to ”70” for
males and from ”00” to ”56” for females) and ’yy’ specifies thefeatures of each
image; its meanings are described in the following table:

1 Neutral expression
2 Smile
3 Anger
4 Scream
5 left light on
6 right light on
7 all side lights on
8 wearing sun glasses
9 wearing sun glasses and left light on
10 wearing sun glasses and right light on
11 wearing scarf
12 wearing scarf and left light on
13 wearing scarf and right light on
14 to 26 second session (same conditions as 1 to 13)
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3.3.4 Experimental results

In this section we present the experimental results obtained on the AR database run-
ning our local-FRS using both Multiscale Random Tessellation and Gabor features
.

Table 3.6 Face recognition rate (%) for AR registered with 100 subjects, 100 trials.

k-L I M APS LFR k-L I M APS LFR SRC PFI

Type Train Test MRT Gf

200 pieces 300 points

1 Glasses [1 : 4,14 : 17] [8,21] 98.15 94.50 97.50 97.50

2 Scarf [1 : 4,14 : 17] [11,24] 98.27 97.30 93.00 93.50

3 Glasses [1,5 : 7,14,18 : 20] [8 : 10,21 : 23] 95.01 95.00 96.00 97.70

4 Scarf [1,5 : 7,14,18 : 20] [11 : 13,24 : 26] 96.45 97.17 91.50 82.50

5 Glasses [1,2,5 : 7] [8 : 10,21 : 23] 87.80 91.30 79.30 84.50

6 Scarf [1,2,5 : 7] [11 : 13,24 : 26] 92.05 95.53 82.30 73.20

7 Neutral [1,2,5 : 7] [14,15,18 : 20] 98.94 99.76 96.20 98.80

8 Expression [1 : 4,7] [15 : 17] 95.77 96.47 91.00 97.00

In all the experiments the images are automatically locatedwith the face detector
proposed in [117] and automatically registered by the eyes and mouth locator (EML)
presented in [19]. In case of sunglasses, the EML reports theeyes absence, thus
we refer to the face localized by the face detector. In case ofscarves, the eyes are
generally correctly localized, allowing a partial registration.

The results we report have been obtained mediating over 100 experiments, vary-
ing randomly the patches for the Multiscale Random Tessellation (MRT) and the
point locations for the Gabor features (Gf).

We setup two sessions of experiments. In the first we adopt 8 images per subject
for the training set (k= 8), according to the experiments reported in literature [123].
In the second we reducek to 5 in order to test the system behavior in more realistic
conditions. In all cases the training images are non occluded. Comparisons have
been carried out with the state-of-the-art SRC [123] and with the algorithm proposed
in [103, 105] that use a large features sets extracted locally in each image.

In the first session, the training sets are constructed as proposed in [123]. In
particular the authors propose two scenarios: in the first (adopted for the experiments
1 and 2 in the table (3.6)) the training sets represents each subject under different
expressions, while the illumination condition is constant. In the second (adopted for
the experiments 3 and 4 in the table (3.6)), the expression isalways neutral while
the illumination conditions vary over the training images.In the second session all
illumination and neutral and smiling expressions are used for training. Only in the
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case of test over the expressions, we enrich the training with all the expressions,
reducing the illumination variability.

Experiments are run both on manually registered images and on automatic regis-
tered images. Results are respectively summarized in in table (3.6) and in table (3.7).
We observe that in all the experiments we obtained a very low standard deviation,
varying between 0.022 and 0.037 indicating good stability results.

Table 3.7 Face recognition rate (%) for AR unregistered with 72 subjects, 100 trials.

k-L I M APS k-L I M APS SRC PFI

Type Train Test MRT GC

200 pieces 300 points

1 Glasses [1 : 4,14 : 17] [8,21] 84.40 82.74 52.56 83.80

2 Scarf [1 : 4,14 : 17] [11,24] 95.51 96.50 88.46 70.90

3 Glasses [1,5 : 7,14,18 : 20] [8 : 10,21 : 23] 78.21 81.60 56.55 74.50

4 Scarf [1,5 : 7,14,18 : 20] [11 : 13,24 : 26] 92.86 95.95 84.33 71.40

5 Glasses [1,2,5 : 7] [8 : 10,21 : 23] 65.60 66.84 44.02 62.80

6 Scarf [1,2,5 : 7] [11 : 13,24 : 26] 87.18 91.42 75.50 64.20

7 Neutral [1,2,5 : 7] [14,15,18 : 20] 91.64 94.02 83.59 92.50

8 Expression [1 : 4,7] [15 : 17] 80.80 85.76 74.64 91.20

As we can see in table 3.6, our local-FRS using 300 Gabor features results the
best classifier in almost all cases, except for the first experiment that use training
images with controlled frontal illumination but with variations in expressions. In
this case the best results are obtained adopting the MRT features. This behavior of
the Gabor features could be explained by the fact that the Gabor filter bank is very
sensitive to edges caused by expression variations, corrupting the training informa-
tion.

In the second most realistic scenario, where the images are automatically reg-
istered, the worst performances are obtained in the case of glasses occlusion. This
result confirms the difficulty already shown in table 3.6 of recognizing a person
viewing only the lower half of the face. Here the performancedrop down even more
because of the higher misalignment: in case of occlusion only the face detector is
adopted to locate the face.

As general consideration we can remark that the local-basedFRS does not re-
quire specific tuning, except the number of features to generate randomly. Obvi-
ously, a small feature cardinalityZ would compromise the system performances, but
at a certain level we observed that further increasing ofZ would be useless for the
performance improvement, while augmenting significantly the computational costs.
Experimentally we setZ = 300 as a trade-off between performances and compu-
tational costs. In any case, considering the weak classifiers are independent, it may
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always be possible to evaluate in parallel the classification stage and merging results
by majority vote rule.

3.4 Conclusion

In the first part of this chapter we have proposed a new approach for face recognition
in the framework of sparse recovery. Experimentally, we have shown its capability in
producing well separated classes in uncontrolled contexts, proving its applicability
in real contexts.

We remark that the system has been applied on automatically localized faces,
showing its ability in dealing with misalignment. Its applicability in real contexts is
reinforced by both the good performances achieved having few examples per sub-
ject for training, and its low computational costs.

In the second part we have illustrated a new local-FRS that combines weak clas-
sifiers to obtain a robust one able to work in difficult conditions such as partial occlu-
sions, with different kind of environmental luminosity conditions and with different
facial expressions.

Experimental results show that the algorithm has high recognition rate, showing
good stability performances both in case of manually registered images and in case
of automatic registration.

The promising results encourage us to research methods to reduce the number of
classifier necessary to obtain a stable FRSs, investigatingnew ensemble techniques
and different kind of features to improve the classificationcapacity under occlusions
and under variation of expressions.



Chapter 4
ECG Signal Compression

Abstract In this chapter we present a novel and efficient signal compression al-
gorithm aimed at finding the sparsest representation of electrocardiogram (ECG)
signals. In order to achieve high compression rate (CR), themethod generates, for
each signal, its own base using the first seconds of the signalitself. The algorithm
requires the user to fix a desired percent root square difference (PRD). After a pre-
processing phase, where some kind of noise is suppressed, the ECG signal is win-
dowed and sparse represented by thek-L IMAPS algorithm with a number of coeffi-
cients adaptively estimated from the data. The found coefficients are then discretized
and rescaled in a convenient range and compressed with a lossless entropy-based
compression algorithm. To evaluate the proposed method, the technique is tested
over a large number of both normal and abnormal ECG signals extracted from the
MIT-BIH Arrhythmia database. The performances are measured in terms of percent
root-mean square difference (PRD), normalized percent root mean square difference
(PRDN), compression ratio (CR) and signal to noise ratio (SNR). Our algorithm
shows best results if compared with other methods proposed in literature, reaching
comparable compression ratios with lower root mean square difference error.

4.1 Introduction

In the last few years, the need of ECG signal recordings has been enormously aug-
mented due to the increasing interest in health care. Portable ECG recording sys-
tems (e.g. holters) record ECG signals continuously for long time periods ranging
between several hours and a few days. One of the most important problem of holter
systems is the huge space required to store long time records; for example a one
channel ECG signal sampled at a frequency of 512Hz with 11 bits of quantization
resolution, recorded for a day (24 hours) require an amount of 58MB of storage size.

In recent years, many ECG compression algorithms have been developed to en-
code digital ECG signals. They can be classified into two major categories: lossless
and lossy algorithms.

93
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The lossless algorithms such as the Run-Length Encoding [74], Huffman [65]
and Lempel-Ziv-Welch [119] do not show reconstruction error while the compres-
sion ratio (CR) is generally small, conversely the lossy algorithms like Foveation-
SPIHT[32] and DCeq-MMP [51] pay a quantization error to obtain higher compres-
sion level.

The most classical compression algorithms apply some data transformations to
extract the most informative characteristics exploiting the redundancy of data. The
most informative coefficients are then encoded using different lossless compression
algorithms.

Within this group many methods based on the Discrete WaveletTransform
(DWT) [4], like the Set Partitioning in Hierarchical Tree (SPIHT) algorithm [73]
show good results in ECG signal coding.

In recent years, compressive sensing and sparse recovery theory has generated
significant interest in the signal processing community because of its potential to
enable signal reconstruction from significantly fewer datasamples than suggested
by conventional sampling theory. Compared to conventionalECG compression al-
gorithms, sparse recovery has some important advantages:

(a) It transfers the computational burden from the encoder to the decoder, and thus
offers simpler hardware implementations for the encoder.

(b) The location of the largest coefficients in the wavelet domain does not need to
be encoded.

Based on the fact that electrocardiogram (ECG) signals can be approximated by a
linear combination of a few coefficients taken from a Waveletbasis, in [94] com-
pressed sensing-based approach for ECG signal compression. For solving ECG de-
noising and compression problem, in [58] was proposed an algorithm based on a
sparse separable 2-dimensional transform for both complete and overcomplete dic-
tionaries.

In this chapter we propose a new compression algorithm that seeks, for each
block of a signal, the sparsest solution of an underdetermined linear system, in a
frame generated on the basis of the first second of the signal itself.

Conversely to the algorithms in the literature, we do not compress the signal
using random projection in a lower space, but we use the sparsest representation of
the signal in a natural basis.

4.2 The Electrocardiogram

A great variety of electrical signals are produced by the human body due to the
chemical activities both in the nerves and in the muscles. Among the others, the
heart leads to a characteristic pattern of voltage variations.

The registration and analysis of these bioelectrical activities are very important
processes in fields such as the clinical research.
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The heart’s electrical activity is measured by electrodes that are placed on the
skin. The amplitudes, polarities and also times and duration of the different com-
ponents of the ECG mainly depend on the location of the electrodes on the body.
When electrodes are placed with medical purposes (4.1), thestandard locations are
on both the arms near the wrists, the left leg near the ankle, and several points of the
chest called precordial positions. Moreover, a reference electrode is usually placed
on the right leg near the ankle.

Fig. 4.1 The standard leads (top) and the augmented leads (bottom) reflect the limb electrodes (left
arm, right arm, left leg) used to record the heart’s electrical axis in the frontal plane.

ECG can be viewed as pseudo periodical signals, characterized by elementary
beats in the specific waveform PQRST. The cardiac cycle begins with the P wave
which corresponds to the period of atrial depolarization inthe heart. It follows the
QRS complex, which is the most recognizable feature of an ECGwaveform and
corresponds to the period of ventricular repolarization. The T wave succeeds the
QRS complex ending the cardiac cycle. Occasionally a small Uwave can be present
at the end of the signal, although not containing significantdiagnostic information.

Another characteristic of the ECG is the interval, that is the timing between pairs
of ECG features (i.e. RR or ST intervals). Such feature is of great interest since it
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Fig. 4.2 Wave definitions of the cardiac cycle. In figure are noted the Pwave, the QRS complex,
the T wave and the R-R interval.

provides a measure of the state of the heart and can indicate the presence of certain
cardiological conditions [34] or diseases.

4.3 ECG Preprocessing

The aim of the preprocessing phase is to improve the quality of the electrocardio-
gram signals. The kinds of noise that can disturb the ECG signal are both low fre-
quency baseline wander (BW) and high frequency (50-60 Hz) noise. The first is
caused by the respiratory activity while the latter by either electrical power line,
poor electrode contacts, body movements or muscular activities.

In the next subsections we describe the preprocessing phaseused to suppress
noise in our experiments.

4.3.1 Baseline Wander

Some considerations should be taken into account in designing a linear time invari-
ant highpass filter aimed at removing the baseline wander:

• The cut-off frequency should be chosen so that the clinicalinformation in the
ECG signal remains undistorted while the baseline wander isremoved. Indeed, if
we chose a too high cut-off frequency, the filtered signal would contain unwanted
artifacts with oscillatory component highly correlated tothe beat rate. To this end
a reasonable cut-off can be fixed at 0.5 Hz: if the patient is retired, the frequency
content of the baseline wander is usually below 0.5 Hz and the lowest frequency
components of the ECG spectra are approximately 0.67 Hz.

• Linear phase is highly desirable in order to prevent phase distortions which would
alter wave properties of the cardiac cycle such as the duration of the QRS, the
ST-T segment level and the duration of the T wave.
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The Finite Impulse Response (FIR) filters would satisfy the two requests, but
they have the disadvantage to have high order. On the contrary, the Infinite Impulse
Response (IIR) filters have a lower order, but they have a nonlinear phase response.
To overcame this problem we adopt a forward-backward IIR filter, rectifying the
nonlinear phase.
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Fig. 4.3 Initial ECG sample (top) and after the IIR filter for baselinewander (bottom).

4.3.2 Powerline Interference

Another common source of noise in ECG signals is the electromagnet field caused
by powerline. This kind of noise is characterized by 50 or 60 Hz (depending on the
country power line frequency), possibly accompanied by several armonics.

Various precautions can be attempted to reduce the effects of this kind of in-
terference. For example we could either surround electrical devices that can cause
line noise or ground and shield the location of the devices. Unfortunately, these
shrewdnesses are often not sufficient to remove the power line noise, thus requir-
ing to perform signal processing. To this end linear time band stop notch filters are
generally applied.
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4.4 R - Peak Detection

A basic task necessary for our electrocardiogram (ECG) compression algorithm is
the R wave peak detector. This task is necessary both for building the dictionary
used in the sparse representation phase and for the compression stage that they re-
quire RR signal bloks. To detect the peaks in ECG signals one can encounter some
difficulties, i.e. irregular peak form, irregular distancebetween peaks and presence
of low-frequency component due to patient breathing etc.

In literature many algorithms for QRS and R peak detection were presented. The
principal techniques are based on the filtering and thresholding of the signal [63, 89],
wavelets [36, 1] and template matching [30]. In our algorithm we use a simple and
inexpensive method to detect R peaks, that does not preserveinformation about the
Q and S waves, that are not useful for our purpose.

Let assume to have a digital ECG signals= (s1, . . . ,sn) ∈ Rn. The first step
in the ECG peak detection algorithm is to remove the low-frequency components.
We apply a direct Fast Fourier Transform (FFT), remove the low frequencies by
thresholding and reconstruct the ECG signal by applying theInverse Fast Fourier
Transform (IFFT).
The second step is to find local maxima using a windowed nonlinear filter. This pro-
cess puts to zero all the values in the window except the localmaximum.
The last step is to remove the small values that called false positives, i.e. high volt-
age T waves. To do this, we threshold the local maxima found inthe previous step
with appropriate value that can be easily set equal to a percentage of the absolute
maximum of the signals.

4.5 Compression Method

The algorithm for ECG signal compression and reconstruction is summarized in
Fig. 4.4. It consists of a block-wise sparse coding precededby standard preprocess-
ing and dictionary creation, and followed by a final losslesscompression of sparse
coefficients, as detailed in the following.

4.5.1 Dictionary Creation and Signal Normalization

The ECG signals= (s1, . . . ,sn) ∈ R
n can be modeled as a mixture of two cardiac

activities:
s= sVA+ sAA (4.1)
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Fig. 4.4 Block diagram of the signal encoding phase.

wheresAA∈Rn denotes the atrial activity signal andsVA∈Rn represent the ventric-
ular activity signal.

The generation of good sparse models for the atrialsAA and the ventricularsVA

signals requires the use of dictionaries capable to fit the signal structure.
The approach proposed in [40] is based on the decomposition of the ECG signals
in a redundant dictionaryΦ ∈ Rn×m that is a composition of two sub dictionaries:
ΦAA∈Rn×k1 suited for the representation of the atrial activity andΦVA∈Rn×k2 able
to represent the ventricular activity (withm= k1+ k2).
In this way the ECG signal can be represented as

s= ΦVAαVA+ΦAAαAA (4.2)

The subdictionaryΦVA in [40] was proposed to be generated by all possible trans-
lations of the Generalized Gaussian function

gVA(t) = cexp(−|t−a|d
b

) (4.3)

wherec is a normalization constant,a represents the position,b is the scale andd
is the peakiness, conversely the subdictionaryΦAA was proposed to be generated by
all translations of the real Gabor function

gAA(t) = cexp

(

−
(

t−a
b

)2
)

cos

(

2πk(t−a)
n

−∆θ
)

(4.4)

wheren is the signal length,a the peak position,c the normalization constant,b the
scale and∆θ the phase.

In [75] was proposed to learn the subdictionaries from training samples by alter-
nating dictionary learning phases forΦAA andΦVA.
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In [53, 30] ECG signals, were represented using anlog2n waveforms analytically
represented by wavelets functions (like the Haar, Coiflet4,Deaubuchies18, Battle3
and Symmlet8) as atoms of the dictionaryΦ.

Alternative dictionaries are proposed in [61]. The first kind of dictionary, called
Resampled Cardiac Pattern, uses as atoms cardiac pattern taken between the middles
of successive RR intervals of the ECG signal. Each segment contains the P wave,
the QRS complex and the T wave. The second kind of overcomplete dictionary is
called Resampled R-centered Cardiac Patterns and is built taking beats patterns from
an ECG signal each of which is elastically shrinked and stretched with respect to the
peak of the R wave, until it is moved in the middle of the waveform.

Algorithm 5 Dictionary Creation
Require: - the ECG signals

- the numberm of atoms
- the lengthn of atoms

- the vector of peak positionsRR

for i = 1, . . . ,mdo

2: µ =
RRi+1−RRi

2 < calculate the mean of the current RR interval>

sl = sRRi :(RRi+µ−1) < set the left half part of the current RR interval into sl >

4: sr = s(RRi+µ):(RRi+1−1) < set the right half part of the current RR interval into sr >

z= (0, . . . ,0) ∈R
n−(RRi+1−RRi) < create the zero padding vector>

6: φi = [sT
l ,z

T ,sT
r ]

T < stretch the atom to the fixed size>

end for

8: return Φ = {φ1, . . . ,φm} < the dictionaryΦ >

Following the idea in [61] to use natural patterns as representation basis of the
ECG signal, in our algorithm we propose a dictionary constructed from pieces of
RR interval sampled from the ECG signal that we want to compress. Given an ECG
signal, an overcomplete dictionary is built using the cardiac patterns of the signal
extracted from an initial transitory of few seconds’ duration. To do this, the signal
is segmented by taking patterns between successive RR intervals. Each segments
contains two halves of the QRS complex with the T-wave on the left and the P-wave
on the right.s is then normalized extending its length to the size of the sample rate
by adding the right number of zeros in the middle.

The normalization meaning is obviously that of concentrating the distribution or
RR-peaks at the extrema of each segment in order to facilitate the sparse represen-
tation stage. In fact, the more the signal is regular and closer to be a cyclostationary
process, the higher the sparse representation will be. Thus, the light overhead given
by the normalization phase is widely compensated by the highlevel of sparsity
that could be potentially reached. This stage should then imply a first significant
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numerosity reduction of coefficients involved in the sparserepresentation and con-
sequently a first decisive step toward high compression ratio.
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Fig. 4.5 Example of atoms from the original signals. In red the zero padding for atom length
normalization.

After normalization, taken a set ofm heart-beat segmentsφi (i = 1. . . ,m) of size
n, with n < m, the dictionaryΦ is obtained stacking all basis vectors (oratoms)
so thatΦ = [φ1, . . . ,φm], represents a linear mapping into a suitable feature space
S ⊆ Rn. This algorithm is summarized in Algorithm (5). Each atom ofthe dic-
tionary Φ so builted, ensures to represent the clinical information such as the PR
interval, the P wave configuration, the RR duration etc.

4.5.2 Sparse Representation

The main purpose of the sparsity promotion phase is to adaptively choose the spar-
sity level k in order to guarantee an upper bound on the discrepancy between the
i-th ECG segmentsi and its sparse representation ˆsi . To this end we introduce the
main criterion involved in such approximation in order to respect the bounded error
requirement, namely the Percent Root-Mean Square Difference (PRD) defined as:
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PRD(si , ŝi) = 100
‖si− ŝi‖
‖si‖

.

In this setting, the early stage compression can be recastedinto the problem of
finding the sparsest representation of thei-th segmentsi ∈S into the dictionaryΦ.
A sparse representation forsi is a linear combination of as less as possible basis el-
ements, i.e., the smallest number of atoms such thatsi = ∑m

j=1 α jφ j , or equivalently,
in matricial notation

Φα = si .

According to P0 and fixed a bound PRDmax on the PRD, for each segmentsi the
algorithm based onk-L IMAPS (calledk-L IMAPS ECG) aims at approximately
solving the previous system with the regularization problem

min
α∈Rm

‖α ‖0 subject to PRD(si ,Φα) ≤ PRDmax, (4.5)

whosek-L IMAPS -based solver pseudo-code is listed in Algorithm 6.

Algorithm 6 k-L IMAPS ECG - Sparse representation
Require: - dictionary pair

〈

Φ ,Φ†
〉

- signalsi

- guessed initial sparsity levelk0
- upper bound PRDmax

αi ← k-L IMAPS (si ,Φ ,Φ†,k0)
2: if PRD(si ,Φαi)> PRDmax then

while PRD(si ,Φαi)> PRDmax do
4: ki ← ki +1

αi ← k-L IMAPS (si ,Φ ,Φ†,ki)
6: end while

else
8: if PRD(si ,Φαi)< PRDmax then

while PRD(si ,Φαi)< PRDmax do
10: ki ← ki−1

αi ← k-L IMAPS (si ,Φ ,Φ†,ki)
12: end while

end if
14: end if
Ensure: aki -sparse vectorαi s.t.si ≈ ŝi = Φαi

The algorithm takes as input the dictionaryΦ ∈ Rn×m, the pseudoinverse matrix
Φ†, the set of RR intervalsS, the initial sparsity levelk0 and the maximum percent-
age root mean square difference (PRDmax) (4.6) allowed.
It starts finding thek0-sparsest representation for eachsi ∈ S RR interval, then it
evaluates the PRD and dichotomously searches the minimumk j such that ˆsi = Φα,
with α k j -sparse vector and PRD(si , ŝi)< PRDmax
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4.5.3 Quantization and Compression

For long term signal ofN heart-beats the data we have to compress are of three
kinds:

1. the set of coefficients (amended by zeros elements) contained in the vectors
α1, . . . ,αN whose number amount toK = ∑N

i=1ki . Fixed q bits for 2q quanti-
zation levels we simply rescale and quantize each coefficient c into the integer
number

cq = round

(

c−αmin

αmax−αmin
(2q−1)

)

(4.6)

whereαmin andαmax are the minimum and maximum value coefficients.
2. Once processed coefficients, we have to compress the positions of coefficients

different from zero, i.e., the characteristic vectors{χα1, . . . ,χαN}, one for each
n-tupleαi , identifying the positions of coefficients not null. The concatenation
of the binary vectorsχαi forms a sparse bit-vector withK ones overnN bits,
with K≪ nN. An effective way to compress them is to use of Huffman coding
[65] for bit-vectors. It is partitioned into blocks of fixed size l and statistics are
collected on the frequency of occurrence of the 2l bit patterns. Based on these
statistics the set of blocks is Huffman encoded and the bitmap itself is encoded
as a sequence of such codewords For sparse vectors thel -bit block consisting
of zeros only and blocks with only a single 1-bit have much higher probabilities
than the other blocks so the average codeword length of the Huffman code will
be smaller thanl .

3. The last set of numbersρ1, . . . ,ρN to be compressed are those involved in the
zero-padding normalization task, accomplished for each heart-beat. An effec-
tive way to encode such a list is with the delta encoding, which stores the dif-
ferences between pairs of successive values in the list. Such encoding is par-
ticularly useful in our case where most of the differences are small. The final
sequence of differences can be thus compressed much more efficiently by most
of the compression algorithms.

Restore

Coefficients

DecodingSparse

Decompression

Lossless
ŝ = Φα

Fig. 4.6 Block diagram of the signal reconstruction phase.
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4.6 Performance Evaluation

The compression performances for a cardiac signalx of fixed duration is computed,
as usual, in terms of Compression Ratio (CR) [102]:

CR=
# bits ofx
# bits of x̂

.

In our setting the signal to be compressed is a sequence ofN cardiac segmentsx=
[s1, . . . ,sN] picked sequentially by a sliding window without overlapping. As already
mentioned in the previous section, to accomplish this task we have to compress three
kinds of data: not null coefficients in each vectorsαi , characteristic bit-vectorsχi

and padding numbersρi. Putting all tighter, the CR thus becomes

CR=
N× fs×11

Bα +Bχ +Bρ
,

where fs the sampling frequency andBα , Bχ , Bρ the number of bits coding coeffi-
cients, characteristic vectors and padding numbers respectively.

However, in the case of lossy data compression, thedata compression ratiodoes
not provide sufficient detail on the performances because itdoes not reflect distinc-
tion between the original signal and the reconstructed signal.

Regarding the error, since PRD [6] measure heavily depends on the mean value
s̄ of the ECG signals, it is sometime more suitable to use the normalized PRD
measure given by

PRDN= 100
‖s− ŝ‖
‖s− s̄‖ .

wheres̄ is the mean value of the signals.

Another measure typically used to evaluate the reconstruction error is theroot
mean square error(RMS) defined as

RMS=

√

1
n
||s− ŝ||22 (4.7)

wheren is the length of the window over which theRMS is evaluated [126].
TheRMSquantifies the amount of the original signal discarded by thecompression
method, as measured by the difference between the signalsandŝ.

An important aspect of performance evaluation is the choiceof the ECG database.
As the performance of a method depends on the noise level, theevaluation should
be based on data representative of the application of interest.
In the next session we describe the PhysioNet MIT-BIH Arrhythmia database [59],
used to evaluate the performances of our algorithm.
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4.7 PhysioNet MIT-BIH Arrhythmia Database

PhysioNet offers free web access to large collections of recorded physiologic sig-
nals (PhysioBank) and related open-source software (PhysioToolkit) [59].
Since 1975 the Massachusetts Institute of Technology (MIT)together with the Beth
Israel Deaconess Medical Center have carried out research concerning medical ex-
aminations analysis and related points.
One of the first major product of that effort was the MIT-BIH Arrythmia database
(downloadable from the PhysioNet web site [59]) which was completed in 1980.
This database contains standard test material for evaluation of arrythmia detectors.

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-
channel ambulatory ECG recordings, obtained from 47 subjects studied by the BIH
Arrhythmia Laboratory between 1975 and 1979. Twenty-threerecordings were cho-
sen random from a set of 4000 24-hour ambulatory ECG recordings collected from a
mixed population of inpatients (about 60%) and outpatients(about 40%) at Boston’s
Beth Israel Hospital; the remaining 25 recordings were selected from the same set to
include less common but clinically significant arrhythmiasthat would not be well-
represented in a small random sample.

The recordings were digitized at 360 samples per second per channel with 11-bit
resolution over a 10 mV range and each signal was independently annotated from
two or more cardiologists.

4.8 Experimental Results

In order to evaluate the compression performances of thek-L IMAPS based com-
pression algorithm, we have performed extended computer simulations. Tests were
conducted using the records 100, 101, 102, 109, 111, 112, 113, 115, 117, 119 and
121 extracted from the MIT-BIH Arrythmia database [63]. These signals are 30
minutes registrations sampled at 11 bits with a sampling rate of 360 Hz.

Each recording was splitted in two parts: the first one of about 10 minutes, used
for the dictionary creation phase, the second one for the sparse representation and
signal compression.

Our experiments were performed on an AMD Athlon II X4 630 Processor 64 bit,
2.8 GHz processor with 4 GB of memory, implementing our algorithm in MATLAB
v.2011b.

In table (4.1) we can see results for the compression of the selected records. Each
one is quantized with two different quantization rate: 6 and7 bits. With the 6 bits
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Table 4.1 Examples of original and compressed ECG waveforms, along with the reconstruction
error with 6 bits of quantization. The signal duration for dictionary grabbing is about 10 min, while
the block of compressed ECG is about 20 min.

Sig.Num. CR PRD PRDN SNR Time Tot. Time Dict. Time Comp.

100 78.20 0.72 18.03 34.27 30.09 9.47 20.62
101 80.24 0.68 14.66 38.40 30.08 11.23 18.84
102 50.54 0.69 18.45 33.81 30.08 9.86 20.22
103 46.32 0.75 12.57 41.47 30.08 10.22 19.87
109 24.86 1.43 13.70 39.76 30.08 8.36 21.73
111 31.05 0.98 26.20 26.79 30.07 10.29 19.78
112 34.06 0.71 16.58 35.94 30.08 8.42 21.67
113 37.42 1.08 14.08 39.20 30.08 12.33 17.75
115 38.26 0.65 9.76 46.53 30.08 11.27 18.82
117 38.94 0.61 14.42 38.73 30.08 14.12 15.96
119 16.26 3.74 32.19 22.67 30.09 10.36 19.73
121 26.67 0.67 17.36 35.02 30.08 11.88 18.20

Table 4.2 Examples of original and compressed ECG waveforms, along with the reconstruction
error with 7 bits of quantization. The signal duration for dictionary grabbing is about 10 min, while
the block of compressed ECG is about 20 min.

Sig.Num. CR PRD PRDN SNR Time Tot. Time Dict. Time Comp.

100 75.12 0.68 17.22 35.19 30.09 9.47 20.62
101 76.46 0.60 12.91 40.95 30.08 11.23 18.84
102 48.47 0.68 18.16 34.11 30.08 9.86 20.22
103 44.33 0.69 11.57 43.14 30.08 10.22 19.87
109 23.57 1.04 9.97 46.12 30.08 8.36 21.73
111 29.44 0.73 19.51 32.69 30.07 10.29 19.78
112 32.55 0.68 15.99 36.66 30.08 8.42 21.67
113 35.49 0.75 9.82 46.42 30.08 12.33 17.75
115 36.57 0.61 9.18 47.75 30.08 11.27 18.82
117 37.13 0.56 13.38 40.23 30.08 14.12 15.96
119 15.24 1.90 16.36 36.20 30.09 10.36 19.73
121 25.29 0.60 15.63 37.12 30.08 11.88 18.20

quantization we can see that the compression rate increasesrespect to the 7 bits
quantization. The only signal that drastically decrease the quality passing from a
quantization of 7 bits to 6 bits is the record 119. This fact isdue to the irregularity
of the RR interval.

In figure (4.7) we can see an example of compressed signal extracted from the
record 100 of the MIT-BIH Arrythmia database. From the top weillustrate the orig-
inal signal without baseline, the reconstructed signal andthe error vector. We note
that the errors are equally distributed over all the signal.
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Fig. 4.7 Compression of the record 100 withCR= 75.12 andPRD= 0.68. (a) Original signal. (b)
Reconstructed signal. (c) Error signal.

In table (4.3) we summarize comparative results with the algorithms DCeq-MMP
[52] (Multididimensional Multiscale Parser) and with Foveation [33] + SPIHT algo-
rithm (Set Partitioning in Hierarchical Trees [101, 106]) for records 100, 102, 115,
117 and 119.

In all the experiments conducted, the PRD of each signal was calculated with
respect to the original non-processed signal mean. This turns out to be necessary
because different preprocessing filtering can change significantly the average signal
magnitude, making the results incomparable.
As we can see for almost all the records, the compression rateobtained by our
algorithm is the highest, maintaining a PRD less or comparable to other algorithms.
An exception is found for the record 119: in this case this theirregularities of the
RR interval and the presence of large muscular noise, the atoms of the dictionary do
not represent properly the signal when only few coefficientsare adopted.
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Table 4.3 Performance comparison of different ECG compression schemes

Method Record CR PRD

DCeq - MMP [52] 100 24 3.30

Foveation + SPIHT [33] 100 20 0.52

k-L IMAPS (7 bit) 100 74.12 0.68

k-L IMAPS (6 bit) 100 78.20 0.72

DCeq - MMP [52] 102 10 2.03

k-L IMAPS (7 bit) 102 48.47 0.68

k-L IMAPS (6 bit) 102 50.54 0.69

DCeq - MMP [52] 115 30.6 2.92

k-L IMAPS (7 bit) 115 36.57 0.61

k-L IMAPS (6 bit) 115 38.26 0.65

DCeq - MMP [52] 117 13 0.91

Foveation + SPIHT [33] 117 32 0.51

k-L IMAPS (7 bit) 117 37.13 0.56

k-L IMAPS (6 bit) 117 38.19 0.61

DCeq - MMP [52] 119 20 1.83

DCeq - MMP [52] 119 10 1.07

DCeq - MMP [52] 119 8 0.91

Foveation + SPIHT [33] 119 20 0.49

k-L IMAPS (7 bit) 119 15.24 1.90

k-L IMAPS (6 bit) 119 16.26 3.74

4.9 Garanteed-Percentage Root Mean Square Difference Error

In this section we present a variant of the ECG compression algorithm explained in
4.5. The main difference concerns the dictionary construction: in this variant it is a
concatenation of two dictionaries, one extracted directlyfrom a portion of the signal
to be compressed, the second is a random generated matrix used with the purpose of
improving the ability of sparse recovery ofk-L IMAPS into a natural base. Moreover
no zero padding is added to the natural signals, thus no noisein the superposition
of atoms are added and propagated to the compressed coefficients. The algorithm
proposed in this section ensures that the recovered signal has a guaranteed PRD
error.
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4.9.1 Dictionary Creation

The dictionary is created by slicing a natural ECG signal with a fixed window size.
Atoms are selected as non overlapped pieces of signal that contain (in average) only
one beat. To do this, in the case the ECG signal used, belongs to subjects at rest, we
can simply choose a window size of dimension approximately equal to the sampling
rate. This assumption is justified by the fact that in normal conditions, the average
heart beat rate is in the interval of 60-80 bpm (beat per minute). If an estimate of
the average beats per minutes is available, another possible choice for the temporal
resolution is given by the formula

tr = ⌈abpm
60
∗ f s⌉

whereabpmis the average beat per minutes andf s is the sampling rate frequency.
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Fig. 4.8 Example of Dictioanry Atoms.

In figure 4.8 we can see examples of dictionary atoms extracted by slicing the
ECG signal with a temporal resolution equal to the sampling rate.

A generalization of the notion is presented in [8], where twofundamental mea-
sures of coherence are introduced: worst-case coherence and the average coherence
, among the columns of a matrix.

Let Φ be ann×mmatrix with unitary norm columnsφi ∈ Rn, [8] defines
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µ(Φ) = max
i, j :i 6= j

|< φi ,φ j > | (4.8)

ν(Φ) =
1

m−1
max

i
| ∑

j : j 6=i

< φi ,φ j > | (4.9)

respectively the worst-case coherence and the average coherence ofΦ. The smaller
the worst-case coherence, the less similar the columns. On the other hand, the av-
erage coherence is a measure of the spread of the columns of a dictionary matrix
within then-dimensional unit ball. TNote that, in addition to having zero worst-case
coherence, orthonormal bases also have zero average coherence.

The uniqueness of the sparsest solution of an underdetermined linear system de-
pends on the worst-case coherence of the dictionaryΦ. Recalling the theorem 1.3:
i f a linear systemΦα = s has a solutionα such that||α||0 < 1

2(1+
1

µ(Φ) ), than
α is the sparsest solution. Futhermore, the worst case analysis tells us that we can
recover superposition ofk atoms as long as

k.
1

µ(Φ)
≈
√

m (4.10)

The resulting worst case bounds for recoverable sparsity levels turn out to be overly
pessimistic and quite in contrast to the much better performance archived in practice.

The natural bases extracted from the ECG signal, does not guarantee a low worst
case coherence, making difficult to recover the sparsest solution of the underdeter-
mined system.

It was established in [8] that when the average coherenceν(Φ) is sufficiently
smaller thanµ(Φ), a number of guarantees can be provided for sparse signal pro-
cessing.

To decrease the average coherence of our dictionary, we concatenate the dictio-
nary containing atoms extracted from natural ECG signal with a dictionary random
sampled from a Gaussian distribution.

Formally letΦ be the dictionary created by segmenting the natural ECG signal,
and letΨ be the dictionary sampled from a Gaussian distributionN (0, 1

n), we can
recast the regularization problem 4.5 as

min
αi∈Rm

‖αi ‖0 subject to PRD(si ,Σαi)≤ PRDmax, (4.11)

with Σ defined as
Σ = [Φ|Ψ ]

that is the concatenation of the two dictionaries.
As proved in [8], we note that the average coherence of Gaussian matrixΨ ∈

R
n×p with i.i.d. N (0, 1

n) entries, is

ν(Ψ )≤
√

15logp
n
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Fig. 4.9 ECG Dictionary with Gaussian atoms. The left part of the dictionary contains atoms
sampled from ECG signal, right part are atoms random sampledfrom Gaussian distribution.

with probability exceeding 1−2p−2 as long asp> n≥ 60logp.
Conversely, the dictionaryΦ extracted by natural ECG signal has a high average

coherence, hence concatenating the two dictionaries we canestablish the following
relation

ν(Ψ )≤ ν(Σ)≤ ν(Φ)

4.9.2 Experimental Results

To analyze the compression performances of the method described in this session,
we have performed a wide range of experiments using the records taken from the
MIT-BIH Arrythmia database [63], as we have done to evaluatethe k-L IMAPS
ECG in section 4.5.

Each record signal was divided in two partitions: one of about 12 minutes for the
creation of the subdictionary, and the other to be used to measure the compression
capability of the method.

In table (4.4) we resume the results of compression performances reached by the
Garanteed-Percentage Root Mean Square Difference Error algorithm, obtained over
a selection of ECG records taken from the MIT-BIH Arrythmia database.
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Table 4.4 k-L IMAPS Compression Results for the Garanteed-Percentage Root Mean Square Dif-
fenrence Error algorithm.

Record CR PRD PRDN SNR Time dic. Time sign.

100 41.87 0.49 12.42 41.72 7.57 22.51

101 37.85 0.52 11.14 43.90 11.21 18.87

102 23.04 0.49 14.23 39.00 8.17 21.92

103 30.35 0.57 9.41 47.27 9.01 21.07

109 18.02 0.59 6.09 55.96 6.12 23.97

111 26.61 0.55 15.24 37.63 8.67 21.42

112 20.32 0.50 13.50 40.05 6.07 24.02

113 22.18 0.66 9.88 46.29 12.20 17.88

115 23.56 0.59 8.82 48.57 10.27 19.81

117 32.11 0.55 15.89 36.79 16.57 13.51

119 13.04 0.71 7.11 52.87 11.41 18.67

121 33.94 0.48 14.41 38.75 11.28 18.81

201 23.14 0.49 15.50 37.29 10.33 19.76

After the sparse representation, each obtained coefficientis quantized in 7 bits.
We can observe a decreasing of compression performances if compared with the
method that uses the dictionary obtained by signal length normalization with zero
padding. Conversely, the PRD obtained in the compression phase, in each signal
respects the imposed limit of 0.5.

The records with lowest compression rate are 119 and 109. Theirregularity of the
RR intervals and the low quality recording, compromise the performances obtained
by the compression algorithm in these two examples.

4.10 Conclusion

This chapter proposes a new algorithm to perform electrocardiographic signal com-
pression. It rest on the recent but strengthen paradigm of sparsity representation on
overdetermined dictionary. It is developed on the basis of arecent optimization al-
gorithm which iterates suitable nonconvex mappings onto the solution affine space
after a brief trajectory accomplished inside the space. Thenovelty is mainly rep-
resented by the idea of extracting base waveforms from the cardiac signal in order
to provide succinct representation via linear combinationfor the long term part of
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the signal. Therefore the compression task is recasted intothe problem of finding a
sparse representation of signal blocks and successive encoding of the information
held by few coefficients saved along with their positions.

Experimentally we have shown the effectiveness of our method which reaches
high compression rate maintaining an acceptable percent root-mean square differ-
ence level. The proposed method has been experimentally compared with the state
of the art algorithms in our knowledge.

Subsequently has been proposed a variant of thek-L IMAPS ECG compression
algorithm, that has as main difference from the previous a different representation
dictionary. The dictionary is a composition of two different subdictionaries: the first
one extracted directly from a portion of the signal to be compressed, the second
one is a random generated Gaussian matrix used with the purpose of improving the
ability of sparse recovery ofk-L IMAPS into a natural base.

With this compression algorithm, experiments have shown lower compression
rate if compared with previous method but capable of guaranteeing a percent root-
mean square difference level in reconstruction phase.

These techniques appears to be applicable in real contexts,especially in offline
outpatient applications. Future work suggests the necessity to make it computation-
ally tractable in embedded mobile devices, like Holter, to meet the medical needs
of the last few years and enabling the application of our algorithm in environments
like personal area networks (PAN).





Appendix A
MATLAB Code

A.1 L I M APS

function [ alpha ] = LiMapS(s, D, DINV, gamma, maxIter, ftype)
%
% [ alpha ] = LIMAPS(s, D, DINV, gamma, maxIter, ftype)
%
% Returns the sparsest vector alpha which satisfies underde termined
% system of equations D * alpha=s, using Lipschitzian Mapping for Sparsity
% Recovery algorithm.
% The dictionary matrix D should have more columns than rows. The
% number of rows of dictionary D must be equal to the length of t he
% column observation vector(or matrix) s.
%
% The observations signal(s) s and the dictionary D necessar ily, must
% be provided by the user. The other parameters have defult va lues, or
% may be provided by the user.
%
% This algorithm work fine with matrix too, returning the spa rsest matrix
% alpha that satisfy the underdetermined system of equation s D* alpha=s.
% Then the dictionary D is of size [n x m], s must be of size [ s x T ] and
% as consiquence the coefficients matirx alpha is of size [ m x T]
%
% s:
% The observation vector (matrix)
%
% D:
% The dictionary
%
% DINV (optional):
% The pseudo -inverse of the dictionary matrix D
%
% gamma (optional):
% The increase factor (default 1.01)
%

115
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% maxIter (optional):
% Maximum number of iterations (default 1000)
%
% ftype (optional):
% String that represent the shrinking function
% - 'exp' (default) exponential
% - 'exp2' exponential function
% - 'htan' hyperbolic function
% - 'abs' absolute value function
% - 'sqrt' square root function
% - 'err' error function
% - 'gud' Gudermannian function
%
% Authors: Alessandro Adamo and Giuliano Grossi
%
% WEB PAGE:
% ------------------
% http://dalab.dsi.unimi.it/limaps
%
% HISTORY:
%--------------
% Version 2.0: 9 Feb. 2013
% official version.
%

if (nargin<2||nargin>6)
error( 'Wrong parameters number' );

end
if (nargin==2)

DINV=pinv(D);
gamma=1.01;
maxIter=1000;
ftype= 'exp' ;

end
if (nargin==3)

gamma=1.01;
maxIter=1000;
ftype= 'exp' ;

end
if (nargin==4)

maxIter=1000;
ftype= 'exp' ;

end
if (nargin==5)

ftype= 'exp' ;
end

%% -- INITIALIZATION --
alpha = DINV * s;

lambda = 1/max(abs(alpha(:)));
epsilon=1e-5; % stopping criteria
alpha_min=1e-2;
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% choose the shrinking function
f=shrinkage_function (ftype);

%% -- CORE --
for i=1:maxIter

alphaold=alpha;
% apply sparsity constraction mapping: increase sparsity
beta = f(alpha,lambda);

beta(abs(beta)<alpha_min)=0;

% apply the orthogonal projection
alpha = beta-DINV * (D * beta-s);

% update the lambda coefficient
lambda = lambda * gamma;

% check the stopping criteria
if (norm(alpha(:)-alphaold(:))<epsilon)

break ;
end

if (mod(i,100))
if (sum(abs(f(alpha,lambda)./alpha)>1/lambda)>size(D,1 ))

break ;
end

end

end

%% -- REFINEMENT --

% threshold the coefficients
alpha(abs(alpha)<alpha_min) = 0;

% final refinements of the solution
for i=1:size(alpha,2);

alpha_ind = alpha(:,i) 6=0;
D1 = D(:,alpha_ind);
alpha(alpha_ind,i) = alpha(alpha_ind,i) - pinv(D1) * (D1 * alpha(alpha_ind,i)-s(:,i));

end

end

function [ f ] = shrinkage_function ( type )

f = @exponential_func;
switch (type)

case 'exp'
f = @exponential_func;

case 'exp2'
f = @exponential2_func;
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case 'htan'
f = @hyperbolic_tangent_func;

case 'abs'
f = @absolute_value_func;

case 'sqrt'
f = @square_root_func;

case 'err'
f = @error_func;

case 'gud'
f = @gudermannian_func;

end

end

function [ y ] = exponential_func(x,lambda)
y=x. * (1-exp(-lambda * abs(x)));

end

function [ y ] = exponential2_func(x,lambda)
y=x. * (2./(1+exp(-lambda * abs(x)))-1);

end

function [ y ] = hyperbolic_tangent_func(x,lambda)
y=x. * tanh(lambda * abs(x));

end

function [ y ] = absolute_value_func(x,lambda)
y=x. * (lambda * x.ˆ2./(1+lambda * x.ˆ2));

end

function [ y ] = square_root_func(x,lambda)
y=x. * (lambda * abs(x))./sqrt(1+(lambda * x).ˆ2);

end

function [ y ] = error_func(x,lambda)
y=x. * erf(lambda * abs(x));

end

function [ y ] = gudermannian_func(x,lambda)
y=x. * (2/pi * atan(sinh(pi/2 * lambda * abs(x))));

end

A.2 k-L I M APS

function [ alpha ] = KLiMapS(s, D, k, DINV, maxIter, ftype)
%
% [ alpha ] = KLIMAPS(s, D, k, DINV, maxIter, ftype)
%
% Returns the k-sparse vector alpha which satisfies underde termined
% system of equations D * alpha=s, using Lipschitzian Mapping for Sparsity
% Recovery algorithm.
% The dictionary matrix D should have more columns than rows. The
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% number of rows of dictionary D must be equal to the length of t he
% column observation vector(or matrix) s.
%
% The observations signal(s) s and the dictionary D necessar ily, must
% be provided by the user. The other parameters have defult va lues, or
% may be provided by the user.
%
% This algorithm work fine with matrix too, returning the spa rsest matrix
% alpha that satisfy the underdetermined system of equation s D* alpha=s.
% Then the dictionary D is of size [n x m], s must be of size [ s x T ] and
% as consiquence the coefficients matirx alpha is of size [ m x T]
%
% s:
% The observation vector (matrix)
%
% D:
% The dictionary
%
% k:
% Number of coefficients to select
%
% DINV (optional):
% The pseudo-inverse of the dictionary matrix D
%
% gamma (optional):
% The increase factor (default 1.01)
%
% maxIter (optional):
% Maximum number of iterations (default 1000)
%
% ftype (optional):
% String that represent the shrinking function
% - 'exp' (default) exponential
% - 'exp2' exponential function
% - 'htan' hyperbolic function
% - 'abs' absolute value function
% - 'sqrt' square root function
% - 'err' error function
% - 'gud' Gudermannian function
%
% Authors: Alessandro Adamo and Giuliano Grossi
% Version: 1.0
% Last modified: 1 Aug. 2011.
%
% WEB PAGE:
% ------------------
% http://dalab.dsi.unimi.it/klimaps
%
% HISTORY:
%--------------
% Version 2.0: 9 Feb. 2013
% official version.
%

if (nargin<3||nargin>6)
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error( 'Wrong parameters number' );
end
if (nargin==3)

DINV=pinv(D);
maxIter=1000;
ftype= 'exp' ;

end
if (nargin==4)

maxIter=1000;
ftype= 'exp' ;

end
if (nargin==5)

ftype= 'exp' ;
end

%% -- INITIALIZATION --
alpha = DINV * s;
a=sort(abs(alpha));
lambda = 1/a( end -k);

epsilon=1e-4; % stopping criteria

% choose the shrinking function
f=shrinkage_function (ftype);

%% -- CORE --
for i=1:maxIter

alphaold=alpha;

% apply sparsity constraction mapping: increase sparsity
beta = f(alpha,lambda);

% apply the orthogonal projection
alpha = beta-DINV * (D * beta-s);
% update the lambda coefficient
a=sort(abs(alpha));
lambda = 1/a( end -k);

% check the stopping criteria
if (norm(alpha-alphaold)/norm(alphaold)<epsilon || isnan (lambda))

break ;
end

end

%% -- REFINEMENT --

% final refinements of the solution
alpha(abs(alpha) ≤1/lambda)=0;

idx = alpha 6=0;
D1 = D(:,idx);
alpha(idx) = alpha(idx) - pinv(D1) * (D1 * alpha(idx)-s);
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end

function [ f ] = shrinkage_function ( type )

f = @exponential_func;
switch (type)

case 'exp'
f = @exponential_func;

case 'exp2'
f = @exponential2_func;

case 'htan'
f = @hyperbolic_tangent_func;

case 'abs'
f = @absolute_value_func;

case 'sqrt'
f = @square_root_func;

case 'err'
f = @error_func;

case 'gud'
f = @gudermannian_func;

end

end

function [ y ] = exponential_func(x,lambda)
y=x. * (1-exp(-lambda * abs(x)));

end

function [ y ] = exponential2_func(x,lambda)
y=x. * (2./(1+exp(-lambda * abs(x)))-1);

end

function [ y ] = hyperbolic_tangent_func(x,lambda)
y=x. * tanh(lambda * abs(x));

end

function [ y ] = absolute_value_func(x,lambda)
y=x. * (lambda * x.ˆ2./(1+lambda * x.ˆ2));

end

function [ y ] = square_root_func(x,lambda)
y=x. * (lambda * abs(x))./sqrt(1+(lambda * x).ˆ2);

end

function [ y ] = error_func(x,lambda)
y=x. * erf(lambda * abs(x));

end

function [ y ] = gudermannian_func(x,lambda)
y=x. * (2/pi * atan(sinh(pi/2 * lambda * abs(x))));

end
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Fig. B.1 Phase transition for Guassian matrices.
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Circulant
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Fig. B.2 Phase transition for Circulant matrices.
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Toeplitz
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Fig. B.3 Phase transition for Toeplitz matrices.
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Ternary
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Fig. B.4 Phase transition for Ternary matrices.
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Bernoulli
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Fig. B.5 Phase transition for Bernoulli matrices.
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Fourier
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Fig. B.6 Phase transition for Fourier matrices.
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Hessian, 47

identity, 7
inverse, 7
Moore-Penrose pseudoinverse, 9
nonsingular, 76
nullity, 10
orthogonal, 7
positive definite, 7
positive semi-definite, 7
positive semidefinite, 14
projection, 74
projector, 10
pseudoinverse, 102
random, 20

Gaussian, 62, 64, 67
rectangular, 6

metric space, 13
misalignment, 82
MIT-BIH Arrythmia database, 104
Multiscale Random Tessellation Classifier, 86,

90

norm, 11
Euclidean, 8

Null Space
property, 18

P wave, 99
phase

linear, 96
nonlinear, 97
transition, 61

precordial position, 95
principal component analysis, 73–75
problem

well-posed, 17
projection

matrix, 76
optimal, 75

pseudonorm, 12

QRS complex, 99
quadratic programming, 30
quasinorm, 11
quasinormed vector space, 11

range, 10
rank

column, 7, 18
deficient, 7
full, 7

regularization problem, 17
repolarization, 95
resampled cardiac patterns, 99
resampled R-centered cardiac patterns, 100
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Restricted Isometry
condition, 17
property, 19

root mean square difference, 93, 102
percent, 93

root mean square error, 104

scatter matrix
between class, 75
nonsingular, 76
total, 74
within class, 75

security systems, 71
sHadamard product, 8
Shannon-Nyquist sampling theorem, 5
short map, 14
shrinkage function, 33
shrinkage maps, 33
singular values, 9
small sample size, 83
spark, 19
sparse recovery algorithm

greedy, 22, 24
Basis Pursuit, 18
Orthogonal Matching Pursuit, 18

Stagewise Orthogonal Matching Pursuit,
18

relaxation, 25
Least Angle Regression, 18
Smoothedℓ0, 18

sparse signal, 16
SPIHT, 106
system scalability, 81

T wave, 99
test

set, 73
training

phase, 72
set, 72

uncontrolled images, 81

vector space, 12
normed, 13

ventricular activity, 99

wave
U, 95
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