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Introduction

In recent years, the sparsity concept has attracted coabideattention in areas
of applied mathematics and computer science, especiafligimal and image pro-
cessing fields [41, 29, 55]. The general framework of spapeesentation is now
a mature concept with solid basis in relevant mathematiedddj such as prob-
ability, geometry of Banach spaces, harmonic analysigrihef computability,
and information-based complexity. Together with theaadtand practical advance-
ments, also several numeric methods and algorithmic tgalesihave been devel-
oped in order to capture the complexity and the wide scopehikaheory suggests.
All these discoveries explain why sparsity paradigm hagmssively interested a
broad spectrum of natural science and engineering apiplisat

Sparse recovery relays over the fact that many signals cargdresented in a
sparse way, using only few nonzero coefficients in a suitah$is or overcomplete
dictionary. The problem can be described as follows. Givémeal vectors € R"
and a matrix® € R™™with m> n, determine the sparsest solutioh, i.e.

a® =argminallo, s.t®a=s (BPO)

where|| - ||o is the{y quasinorm, that represents the number of non-zero entries o
the vectora.

Unfortunately, this problem, also callég-norm minimizationis not only NP-hard
[85], but but also hard to approximate within an exponeriéiator of the optimal
solution [87]. Nevertheless, many heuristics for the peabhas been obtained and
proposed for many applications. Among them we recall a greedsuit technique
that approximates a sparse solutions to an underdeterriieed system of equa-
tions. Successively, several greedy-based extendedskiesithat directly attempt
to solve the/p-norm minimization have been proposed, for instance, MagcRur-
suit (MP) [77], Orthogonal Matching Pursuit (OMP) [91] an&ewise Orthogonal
Matching Pursuit (StOMP) [45].

XV



Xvi List of Tables

A second key contributiori [31] relaxes the problem by usimg®-norm for
evaluating sparsity and solving the relaxed problem byalim@ogramming. Typical
algorithm in this class of algorithms is Basis Pursuit (BEB][

This thesis provides new regularization methods for thesgpeepresentation
problem with application to face recognition and ECG sigo@npression. The
proposed methods are based on fixed-point iteration schérimohwombines non-
convex Lipschitzian-type mappings with canonical orthoglgrojectors. The first
are aimed at uniformly enhancing the sparseness level lnykitg effects, the lat-
ter to project back into the feasible space of solutions.drtipular the algorithm
LIMAPS (Lipshitzian Mappings for Sparse recovery) is proposekleasistics for
(BPQ). This algorithm is based on a parametric clagof nonlinear mappings

Gy:{a | s=®a}—{a | s=®a}.
First of all, the problen{{BRO) is relaxed to the problem

a*:argn;in||a||<,\>, stda=s (REL)

where, forallA > 0, || -||<a~ is a suitable pseudonorm such thiat||o ~ ||0|| A~
for largeA.

The main result we obtain in this part states under reasenaiiditions, the
minima of [REI) are asymptotically stable fixed points@jf with respect to the
iterative system

Ot 1 =Gy (o)

Then, the LMAPS algorithm requires a suitable sequefigg with lim;_,e Ay =
Roughly speaking, this implies thét ||~ = || - ||o for larget. LIMAPS imple-
ments the system

a1 =Gy (ar)

for obtaining a sparse solution s+ .
In many applications, it is often required to solve the wvatriaf (BP0) in which
the sparsity level is a given as a constant:

a* :argmain||CDa—S||%a st.lallo<0 (LS0)

In this thesis we propose a heuristic for (I.S0) the algoritabnMAPS . An empir-
ical evidence of convergencelofL IMAPS to good solutions is discussed.

In the second part of this thesis we study two applicationshich sparseness
has been successfully applied in recent areas of the sigdatreage processing: the
face recognition problem and the ECG signal compressiobl@no.

In the last decades, the face recognition (FR) problem hasived increasing
attention. Despite excellent results have been achietedexisting methods suf-
fer when applied in uncontrolled conditions. Such bott#neepresents a serious
limit for their real applicability. In this work we proposwt different algorithms
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able to work on crucial topics in the context of uncontrobedditions: variation in
illumination conditions, continuous occlusions and laggpression variations. Ex-
perimental results based &L IMAPS show that the algorithm has high recognition
rate, showing good stability performances both in case ofualy and automati-
cally registered images.

In the last few years, the need of ECG signal recordings has baormously
augmented due to the increasing interest in health car¢al®erECG recording
systems (e.g., Holters) record ECG signals continuouslipfay time periods rang-
ing between several hours and few days. We present two nodetfficient signal
compression algorithms aimed at finding the sparsest reptason of the ECG
signals based ok-LIMAPS . The idea behind these algorithms is to use to sparse
represent the ECG signal to compress a dictionary created signal itself. The
saved coefficients are then discretized and rescaled inveni@nt range and com-
pressed by a lossless entropy-based algorithm. Experathente have shown the
effectiveness of our methods which reaches high compmesate maintaining an
acceptable percent root-mean square difference level.
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Chapter 1
Sparse Recovery and Compressive Sensing

Abstract Shannon-Nyquist sampling theorem is one of the centralcjpli@ in
signal processing. To reconstruct without error a sigfigl with no frequencies
higher tharB Hertz by the sampled signs(t), it is sufficient a sampling frequency
A> 2B.

In the last few years a further development calfechpressive sensirgs emerged,
showing that a signal can be reconstructed from far fewesoreanents than what
is usually considered necessary, provided that it admipsese representation.

In this chapter we provide a brief introduction of the bakiedry underlying com-
pressive sensing and discuss some methods to recoveryse saior in efficient
way.

1.1 Introduction

Compressive sensing (CS) has emerged as a new framewoiilgiiaif acquisition
and sensor desigh [47.128]. It provides an alternative tmBbia/ Nyquist sampling
when signal under acquisition is known to be sparse or cossjie. Instead of
taking periodic signal samples of lengthwe measure inner products with< n
measurement vectors and then recover the signal via spaesiking optimization
algorithm. In matrix notation, the measurement vegtoan be expressed as

y=Ws=Woa

where the rows op x n matrix ¥ contain the measurement vecto#sjs ann x n
compression matrixy is the sparse compressed signal amlthe sampled signal.
While the matrix¥ @ is rank deficient, and hence loses information in general, it
can be shown to preserve the information in sparse and casiphe signals if it
satisfies the Restricted Isometry Property (RIP) [15]. Thadard CS theory states
that robust signal recovery is possible frqm- ﬁ(plogg) measurements.
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Many fundamental works are proposed by Candes, Chen, Bauto and
Romberg([31| 21, 26, 27, 23] in which are shown that a finiteatisional signal
having a sparse or compressible representation can beerecbexactly from a
small set of linear non adaptive measurements.

This chapter starts with preliminary notations on linegesra and continue with
an introduction to the compressive sensing problem andlremae of the most
important results in literature that summarize under witichditions compressive
sensing algorithms are able to recover the sparsest repagise of a signal into a
given basis.

1.2 Preliminary Notations on Linear Algebra

The set of allh x 1 column vectors with complex number entries is denote@hy
the i-th entry of a columns vecter= (xy,...,%,)" € R"is denoted by;.

The set of alh x mrectangular matrices with complex number entries is dehloye
C"™M. The elements in the i-th row and j-th column of a maiis denoted b, ;.

Let A € C™™ a rectangular matrix, the left multiplication of a matéAxwith a
scalarA gives another matriX A of the same size a& The entries ofA A are given
by A(A)ij = (AA)i,j = AA ;. Similarly, the right multiplication of a matriA with
a scalan is defined to bgAA )i j = A jA. If Ais annx mmatrix andB is anmx p
matrix, the resulAB of their multiplication is am x p matrix defined only if the
number of columnsnin A is equal to the number of rows in B. The entries of
the product matrix smatriAB are defined ag$AB); ; = S, A kB j. The matrix
addition is defined for two matrices of the same dimensiohs.qum of twamx n
matricesA andB,s denoted byA + B, is again anm x n matrix computed by adding
corresponding element&+B); j = Ai j +Bi .

The dot product, or scalar product, is an algebraic operatiat takes two
equal-length vectors and returns a single number.a_et(ay,...,a,) € C" and
b = (by,...by) € C", the dot product can be obtained by multiplying the transpos
of the vectora with the vectob and extracting the unique coefficient of the resulting
1 x 1 matrix is defined as .

a'b= Zlaibi
1=

Let A e C™M the adjoint matrix is a matrid* € C™" obtained fromA by
taking the transpose and then taking the complex conjudaaah entry. Formally
the adjoint matrix is defined as

A= (AT =AT
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whereAT denotes the transpose aAdienotes the matrix with complex conjugated
entries. If the matrix i\ € R™™, the adjoint matrix is given by

A*:AT

A square matrixA € C™" is called invertible if there exists a matrixe C"™"
such that
AB=BA=1

wherel denotes then x n identity matrix and the multiplication used is ordinary
matrix multiplication. If the matrixB exist, is uniquely determined b and is
called the inverse o4&, denoted a& 1. An orthogonal matrix is a square matrix with
complex entries whose columns and rows are orthogonal aoibvs. Equivalently,
a matrixA is orthogonal if its adjoint matrix is equal to its inverse:

A=At

which entails
AA=AA =1

A symmetricn x n complex matrixA is said to be positive definite if
Z*Az>0,Vze C"
Similarly a symmetric x h complex matrixA is said to be positive semi-definite if
Z*Az>0,vze C"

Let A e C™™, the column rank of a matriR, denoted as rarfR), is the max-
imum number of linearly independent column vectorsAofit is known that the
maximum number of linearly independent rows of a matrix gagls equal to the
maximum number of linearly independent columns.

For a rectangular matrid € C™™, by definition rankA) < min{n,m}. When
rank(/A) = min{n,m} Ais said full rank, otherwise the matrix is said deficient rank

A diagonal matrix is a matri = (d; ;) € C"™" such that
dij=0iff i #j

Denote withD = diag(dy, .. .,dn) € R™" the diagonal matrix with diagonal vec-
tor (d,...,dn). It holds that

diag(ay,...,an) +diag(by,...,by) = diag(as + by,...,an+bn) (1.2)
diag(ay, . ..,an)diag(bs,...,by) = diag(aiby, . ..,anbn) (1.2)

The diagonal matriD = diag(ds, . ..,dn) is invertible if and only if all the entries
of (dy,...,dn) are all non-zero. In this case, we have
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1

1
diag(dy,...,dy) t=diag(=,..., —
g( 1 n) g(dl dn

)

The Hadamard product is a binary operation that takes twaeeatof the same
dimensions, and produces another matrix where each elemjastthe product of
elementd, j of the original two matrices. LeA B € C™™ two rectangular matri-
ces of the same dimensions, the Hadamard pro8lucB is a matrix, of the same
dimension as the operands, with elements given by

(AO©B)ij =AijBi;

The Hadamard product is commutative, associative andlilisitre over addition.
Thatis,

AGB=BOA (1.3)
A®(BGC)=(A®B)®C (1.4)
A®(B+C)=A®B+AGC (1.5)

(1.6)

The identity matrix under Hadamard multiplication of two« m matrices isn x m
matrix where all elements are equal to 1.
Givenx € R", the Euclidean norm ofis defined as

1
[IX]l2 = (xx)2

The Euclidean norm measures the distance from the gadarthe origin. It is almost
immediate from the definition that the following propertresd:

* ||X||]2=0iff x=0
« ForanyyeR,y>0,||yx/|2 = |y||X]2

1.2.1 Singular Value Decomposition theorem

Let A be ann x mmatrix of rankr, with n < m. Then there exist unitary orthogonal
matricedJ, V respectively of orden andm such that

A=UDV*

(D10
o=(%0)

andD; =diag(0s,...,0r) with 01 > g2 > - -- > @ is a non singular diagonal matrix.
The diagonal elements & = diag(gy,...,0,0,...,0) are calledsingular values

whereD has the form
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of A and the number of non-zerag’s is equal to the rank oA. The ratio%, with
or # 0 can be regarded as a condition numbeh.of

1.2.2 Moore-Penrose pseudoinverse

LetA=U %1 8) V* be the singular value decompositionAafThen the Moore-
Penrose pseudoinverseffs defined as
A —v (Pi 0 ye (1.7)
00 '

It is possible to prove that the Moore-Penrose pseudoiavetss the unique
matrix X satisfying:

AXA=A (1.8)
XAX = X (1.9)
(XA)* = XA (1.10)
(AX)* = AX (1.11)
(1.12)

Let us consider the linear system
Ax=Db
and letxg = ATb. Then forx # xq we have either
||AX—bl|2 > [|Ax — b |2 (1.13)

or
|[[AX—Dl|2 = [|A% — b||2 and|[x||2 > |[Xo||2 (1.14)

In other wordsA'b is either the unique least square solution, or it is the least
square solution of minimum norm.
An important case is when the rows Afare linearly independent; in this caséb
is the unique least square solution aldcan be obtained by

Al = (ATA)IAT (1.15)

The product of the matriA and then-dimensional vectok can be written in
terms of dot product of vectors as follow:
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-
a% X
AxX=

alx
whereay, ay, ..., a, denote the rows of the matri Let. 44 be the null space o4,
i.e. /A = {X|AXx=0}; x € .#a is orthogonal to each row vectors&fThe row space
of the matrixA is the span of the row vectors Af it follows that a vectox € 4} iff
it is perpendicular to every vector in the row spacé\ofhe dimension of the null

space ofA is called nullity. It holds that rar(i&) + nullity (A) = m.
Letx € R"=V @W. Thenx can be uniquely decomposed into

X=X + X with X €V andx, e W

The transformation that mapsinto x; is calledprojector matrixontoV alongW

and is denoted blp. The vectoix; = Pxtransformed by the projecté¥is called the
projection ofx ontoV alongW. The necessary and sufficient condition for a square
matrix P of ordern to be the projection matrix is given by

P2=pP
Let Q denote the projector that transformm x,. Then
Px+Qx= (P+ Q)x

Because the equation above has to hold fonagyR", it must hold that

I=P+Q
Let P a square matrix be the projector matrix onMcalongW. ThenQ =1 —-P
satisfiesQ? = | — 2P 4 P? = Q indicating thatQ is the projection matrix ontaV

alongV. We have that
PQ=P(I-P)=P-P?>=0

implying that thespar(Q) constitutes the null space Bf similarly QP = 0 imply
that thespar(P) constitutes the null space Qf
By coming back to the general case,@et= ATA

Q*=AlAATA) = ATA=Q

Q is the projection on the null space AfandP = | — Q is the projection on the
orthogonal complement of the null spacefofdenoted by 4.
The null space also plays a role in the solution to a nonhomegsés linear sys-
tem of linear equations
Ax=Dhb (1.16)
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If uandv are two possible solutions of the equations to the lineatesy$1.16),
then
Alu—v)=Au—Av=b—-b=0

Thus the difference of any two solutions of the equationg)Llies in. #A. It follows
that any solution to the equatidn (1116) can be expressdukasim of a fixed solu-
tion v and an arbitrary element ofa. That is, the solution set df (1.116) is defined
as

{V+x|xe Aa}

wherev is any fixed vector satisfyingv= b. The solution set of(1.16), also called
affine space and denoted b¥a p, is the translation of the null space Afby the
vectorv.

1.2.3 Norm, Pseudo-Norm and Quasi-Norm iR"

For everyp with p € (0 < p < ), let us consider the functiongl||, : R" — R*
defined by:

1
Xlp= (3 1%[P)P (1.17)
This functional is extended tp= 0 andp = « as follows:
= i p =
[Illo = tim [ = supgx)| (118)
[l = lim [1x]]p = maxix; (1.19)

with supfx) = {i|x # 0} is the support of the vector

It is known that]|.||p, with 1 < p < 0, is @ norm , i.e. it holds:

[IX|p=0iff x=0 (1.20)
[laxlp = [all[X][p (1.21)
[Ix+Yllp < [Xlp+[I¥llp (1.22)

In particularR" equipped by||.|| is a Banach spacg][9].
If0 < p<1,||.]|pis aquasinorni[108], i.e. it satisfies the norm axioms, ektegi
the triangular inequality which is replaced by

[IX+Yllp =y (IXl[p+I¥llp) (1.23)

for somey > 1. A vector space with an associated quasinorm is called ai-qua
normed vector space .
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If p=0, the triangular inequality (1.22) holds but does not hbkl$caling ax-
iom (L.21). In this cas§.||o is called pseudonorm .

0.8

0.6r

0.4r

0.2

-0.2f p=0

Fig. 1.1 Unit spheres iR? for thelp norms withp = 1,2, e, for thel, quasinorm withp = 0.5
and for the pseudonorihg.

In figure[1.1 are depicted on the plane the unit sphere and sprasinorms
{x]||X||p = 1} for different values op.

1.2.4 Metric Space and Normed Vector Space

A vector space over a fiel is a set V equipped with operation suptV xV —V
and scalar multiplication: F xV — V, such that the following conditions hold:
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X+y=y+X (commutativity) (1.24)
(x+Yy)+z=x+(y+2) (associativity of vector addition) (1.25)
a(Bx) = (aB)x (associativity of scalar multiplication) (1.26)
Xx+0=0+x=x (additive identity) (2.27)
Ix=x (scalar multiplication identity) (1.28)
X+ (—x) =0 (existence of inverse) (1.29)
a(x+y) = ax+ay (distributivity of vector sums) (1.30)

We define a metric space an ordered jird) whereM is a set andl is a metric
function
d:MxM—R"

such that for any,y,z € M the following properties holds:

d(x,0) =0 iff x=y (identity) (1.31)
d(x,y) >0 (non negativity) (1.32)
d(x,y) =d(y,x) (simmetry) (1.33)
d(x,z) <d(x,y)+d(y,2) (triangular inequality) (1.34)

The functiond is also called distance function .

A normed vector space is a pdV,||.||) whereV is a vector space anfl|| is a
norm function orV/. Observe thaljx — y|| is a distance function.

We callx the limit of the sequencix,) if for each real numbeg > 0, there exists
a natural numbeN such that, for everyn > N, |x, — X| < € where|.| denote the
absolute value. The sequenpg) is said to converge to or tend to the limitand
we denote it ag, — x. A sequencéx, }, of real numbers is said to have the Cauchy
property, if for every positive real number there is a positive integét such that
for all natural numbers,n < N

[Xm—Xn| < €

A metric spaceM is called complete, if every Cauchy sequence of poinks mas
a limit that is also inM or, alternatively, if every Cauchy sequenceMnconverges
in M.

1.2.5 Convex, Smooth and Lipschitzian Functions

A setV is convex if the line segment between any two point¥ ilies inV, i.e., if
for anyxy,x; € C and and any) with 0 < 6 <1, we have

Ox1+(1—0)xeV
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A real valued functionf : V — R defined on a convex s& C R" in a vector
space is said to be convex if for any poisty € V and anya € [0,1] it holds

flax+(1—a)) <af(x)+(1—a)f(y) (1.35)

Afunction f :V — R is said to be strictly convex if for angy € (0,1)

flax+(1—a))<af(X)+(1—a)f(y) (1.36)
If fis twice differentiable on its open domain and the Hes&iaf(x)
’f(x) .. . .
2805 —
0°f(x)i,; = %0, withi,j=1,...,n

exists for eachx € domf, then it is convex if and only if the Hessian matrix is
positive semidefinite
02 (x) = 0 ¥x € domf

If the Hessian matrix is positive definite, i.€12f(x) = 0, ¥x € domf, f is strictly
convex.

Let f be a function defined on a open set on the real line ariddeton negative
integer. If the derivatives ', f*,..., f¥ exist and are continuous the functiéris
said to be of clas€X . If the functionf has derivatives of all orders is said to be of
classC* or smooth . The clas8? is the class of all continuous functions, the class
Clis the class of all differentiable functions whose deriais continuous.

Let (M,dv) and(N,dy) two metric spaces and lét: M — N a function. The
function f is said to be Lipschitz continuous if there exist a consjactlled Lips-
chitz constant such tha&ik,y € M

dn(f(x), f(y) < ydn(xy) (1.37)

The smallest constamtis called the best Lipschitz constantyif 1 the function
is called a short map and if the Lipschitz constant s @< 1 the function is called
a contraction . A function is called locally Lipschitz camtious if for everyx € M
if there exists a neighborhoddl such thatf restricted tdJ is Lipschitz continuous.
A function f defined oveM is said to be Holder continuous or uniform Lipschitz
condition of orderr on M if if there exists a constanit such that

dn(f(x), f(y)) <Adu(xy)* VxyeM (1.38)
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1.3 Basis and Frames

A set of column vector® = {@}]! ; is calledbasisfor R" if the vectors{¢i,..., ¢h}

are linearly independent. Each vectoiiif is then uniquely represented as a linear
combination of basis vectors, i.e. for any vecsar R" there exist a unique set of
coefficientsa = {a;}{'_; such that

s=®a (1.39)
The set of coefficienta can be univocally reconstructed as follows:
a=0o1s (1.40)

The reconstruction is particularly simple when the set atoes{¢, ..., ¢} ; are
orthonormal, i.e.

L (1ifi=]
(Hq’J_{Oifi;«éj (1.41)
In this cased 1 = @*.

A generalization of the basis concept, that allow to repreaeignal by a set of
linearly dependent vectors is tframe[[76].

Definition 1.1. A frame inRR" is a set of vector§@}"; C R", with n < m, corre-
sponding to a matrixp such that there areQ A < B and

Allal5 < ||®"al|3 <Blal3 Va € R" (1.42)

SinceA > 0, condition [1.4P), is equivalent to require that rowstoére linearly
independent, i.e. raii®) = n.
If A= B then the framep is calledA-tight frame, while if A=B =1, then® is
calledParseval frame
By remembering the results presented in secfion (1.2 2n framed in R", the
linear system
s=®a (1.43)

admits an unique least square solutimm, that can be obtained by
as=(®To) loTs=o's (1.44)
Is simple to show that the solution in (1144) is the smallgsbrm vector
llaws|l3 < lall3 (1.45)

for each coefficient vectam such thatx = @a, and it is also calledeast square
solution
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1.4 Sparse and Compressible Signals

We say that a vectox € R" is k-sparse wherisupgx)| < k, i.e ||X||o < k. Let
5= {a:||a]lo <k} the set of alk-sparse vectors.
A signal admits a sparse representation in some fré@ries= ®@a with ||a||o < k.

In real world only few signals are true sparse, rather thay lwa considered
compressible in the sense that they can be well approximated by a spaysal si
We can quantify the compressibility of a sigrsaby calculating the error between
the original signal and the best approximation >y

Ok(s)p = érginKIIIS—éIIp (1.46)

If se 2 thenoi(s)p = 0 for any p. Another way to think about compressible
signals is to consider the rate of decay of their coefficiehts many important
class of signals there exist bases such that the coeffiobetsa power law decay,
in which case the signal are highly compressible. Spedifidghk= ®@a and we sort
the coefficientsr; such thatas| > |az| > - - > |am|, then we say that the coefficients
obey a power law decay if there exist constahitsq > 0 such that

|ai| gCli*q

The largerg is, the faster the magnitudes decay, and the more compleess#tiy-
nal is. Because the magnitude of their coefficients decaypilly, compressible
signals can be represented accuratelkky m coefficients. Specifically, for such
signal there exist constar®s, r > 0 depending only o€; andq such that

Oi(s)2 < Cok ™"

In fact, one can show that(s), will decay ask™" if and only if the sorted coeffi-
cientsa; decay a3 [39].

1.5 Underdetermined Linear System and Sparsest Solution

Let consider a matrixp € R™™with n < mand a vectos, the systemba = shas
more unknowns than equations, and thus it has no solutiais ifot in the span of
the columns of the matrig, or infinitely many ifsis in the span of the dictionaig.

We consider the sparse recovery problem, where the goalrisctiver a high-
dimensional sparse vectarfrom an observatios:

s=®a (1.47)
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A well-posed problem stems from a definition given by Jacdd@damard. He
believed that mathematical models of physical phenomeoialdtihnave three prop-
erties:

* asolution must exists

« the solution is unique

« the solution’s behavior hardly changes when there’s dastibange in the initial
condition

Problems that are not well-posed in the sense of Hadamarttaned ill-posed.
Inverse problems are often ill-posed .

In ill-posed problems we desire to find a single solution afteyns = ®a, and
in order to select one well defined solution additional cid@re needed.
A way to do this is theegularization techniquewhere a functiod(a) that eval-
uates the desirability of a would-be solutionis introduced, with smaller values
being preferred.
Defining the general optimization problem

argarQIéQJ(a) subjectto®a =s (PJ)

wherea € RMis the vector we wish to reconstrusk R" are available measure-
ments,® is a knownn x mmatrix is also called sensing matrix or dictionary.

Itis now in the hands od(a) to govern the kind of solution we may obtain. We
are interested in the underdetermined case with fewer msahan unknowns, i.e.
n < m, and ask whether it is possible to reconstrmatith a good accuracy.
By fixing J(a) = ||a]|o, we can constrain the solution ¢f(1]147) to be sparsest as
possible.

The problem can be formulated as

argargém [lallost.®@a=s (PO)

wherel|a|lo = |supp{a}|.

Problem [[PD) requires searches over all subsets of columgs a procedure
which clearly is combinatorial in nature and has high corapanal complexity. It
is proved that{(F0) is NP-hard [85].

In fact, under the so called Restricted Isometry Condifibslsover the sensing ma-
trix @, described with more details in the next session, the spacswery problem
[20/24] can be relaxed to the convgyproblem

arg min||al|1 s.t.®@a =s (P1)
acRmM

where||a|]1 = T, |ai| denotes thé norm of vectora.
Problem[(PIL) can be reformulated as a linear programminy[@9? problem
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MiNgegm S 4t
s.t. —t < <t
da=s >0 (1.48)

This problem can be solved exactly with for instance intgpimint methods or with
the classical simplex algorithm.

The linear programming formulatioh (1148) results ineffitiin most cases, for
this reason many algorithms able to solvel(P1) have beeropeatin literature: for
example greedies Basis Pursuit (BP)|[29], Stagewise OahaigMatching Pursuit
(StOMP) [45] and the Orthogonal Matching Pursuit (OMP)! [35] or other op-
timization methods like Least Angle Regression (LARS) [4Bkthe Smoothedy
(SLO) [82,/81] that are able to find the approximated solutimthe problem[{B1)
and [PD) respectively.

In the next session are recalled the conditions for the m&trunder which the
sparsest solution of the proble {P0) can be recovered alyiqu

1.5.1 Null Space Property and Spark

In this section we introduce a necessary and sufficient tiendior to ensure that
the unique solution of (B1) is also the solution[ofl(P0). A$ ttegard, givem € R™
andA c {1,2,...,m}, we denota), the vector

fni ieAn
(n).—{o A

Definition 1.2. A sensing matrix® € R"™™ has the Null Space property (NSP) of
orderk, if there is 0< y < 1 such that fon € .4 andA C {1,2,...,m}, |A| <K,
it holds

Inall1 < Vilnaellx (1.49)

Notice that to verify the Null Space Property of a sensingriné not an easy task,
because we have to check each point in the null space withpodipss thark.

A general necessary and sufficient condition [42] for sapnoblem[(PD) is that
the sensing matrixp has the Null Space Property [43,162]. Moreover/[in| [98] it is
shown that if a sensing matri® has the Null Space Property it is guaranteed that
the unique solution of (B1) is also the solution[of](PO).

Moreover, it is proved that if> has the Null Space Property, the unique minimizer
of the [P1) problem is recovered by basis pursuit (BP).

The column rank of a matrig is the maximum number of linearly independent
column vectors ofd. Equivalently, the column rank ap is the dimension of the
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column space of.

Another criteria to assert to existence of a unique spassdstion to a linear
system is based on the concept of spark of a matrix the noatadcspark[43]
defined as:

Definition 1.3. Given a matrix®, spark @) is the smallest numbersuch that there
exists a set 0§ columns in® which are linearly-dependent.

spark @) = rzr;igl||z||o st.®z=0

While computing the rank of a matrix is an easy goal, from ajgotational point
of view, the problem of computing the spark is difficult. Ircfait has been proved to
be an NP-hard problem [1111]. The spark gives a simple apitefior uniqueness of
sparse solutions. By definition, each vectam the null space of the matrigoz=0
must satisfyi|z]|o > spark @), since these vectors combine linearly columns from
@ to give the zero vector.

Theorem 1.1.[43] Given a linear systenta = s, if a is a solution verifying

llalo < 222X9) thena is the unique sparsest solution.

Proof. Let 3 an alternative solution such th&t3 = s, and||B]||o < ||a]|o. This
implies that®(a — ) = 0. By definition of spark

llallo+1[Bllo = [lor — Bllo > sparK @) (1.50)
Since|lal|o < S22 it follows that||B]]o < ||a]|o < SP2X2) By (L50)

spark @) n spark @)
2 2

sparK®) < ||allo+|[Bllo < =spark @)

that is impossible. O

1.5.2 Restricted Isometry Property

Compressive sensing allows to reconstruct sparse or casiptesignals accurately
from a very limited number of measurements, possibly comtatad with noise.
Compressive sensing relies on properties of the sensingxsath as the restricted
isometry property.

The Null Space Property is necessary and sufficient comditieensure that any
k-sparse vectoa is recovered as the unigue minimizer of the problem (P1). Whe
the signalsis contamined by noise it will be useful to consider strongydition
like the Restricted Isometry Property condition [22] on mat®, introduced by
Candes and Tao and defined as
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Definition 1.4. A matrix @ satisfies the Restricted Isometry Property (RIP) of order
k if there exists & € (0,1) such that

(1= 3llall3 <[|®al3 < (1+3)lall3 (1.51)

holds for allar €

If a matrix @ satisfies the RIP of ordek2then we can interprdi (1.b1) as saying
that @ approximately preserves the distance between any p&isphrse vectors.
If the matrix @ satisfies the RIP of ordérwith constan®, then for anyk’ < k we
automatically have thap satisfies the RIP of ordé¢t with constanty, < .

In Compressive Sensing [68] , random matrices are usuadigt as random pro-
jections of a high-dimensional but sparse or compressifpabvector onto a lower-
dimensional space that with high probability contain erfourformation to enable
signal reconstruction with small or zero error. Random ioasrdrawn according
to any distribution that satisfies the Johnson-LindenssBawntraction inequality,
in [12] was shown that with high probability the random segsnatrix® has the
Restricted Isometry Property.

Proposition 1.1.Let @, be a random matrix of sizexam drawn according to any

distribution that satisfies the contraction inequality

Plll®allz—lall2

< 5||0'||2] < 2e ") with0< e < 1

where g(€) > 0is a function ofe. If @ ~ N(0, %I), Co= %2 - ‘9—63 is @ monotonically
increasing function.

For a given Gaussian matri®, for anya € R™, A such that/A| = k < n and any
0< & < 1, we have that

(1-9)llalz <[|®alz < (1+9)||al3
with a probability

[ ®all3
llall3

Pla—s)< <(1+9) >1—2(%2)ke*”°0<5/2>

For largem (number of columns ofb), estimating and testing the Restricted
Isometry Constant is computational impractical. A compatelly efficient, yet
conservative bounds on Restricted Isometry Property casbtened through the
mutual coherence.

In the next session we introduce some bounds for of the mutfzdrence of a
dictionary®.
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1.5.3 Coherence

Mutual coherence is a condition that implies the uniquemessrecoverability of
the sparsest solution. While computing Restricted Isoynetoperty, Null Space
Property and spark are NP-hard problems, the coherence @drix igan be easily
computed.

Definition 1.5. Let @, .. ., @y the columns of the matrixo. The mutual coherence
of @ is then defined as

T
u(@) = max 19 AL
i<i||@ll2l @] |2
By Schwartz inequality, & (@) < 1. We say that a matri® is incoherent if

p(®) =0.

Fornx nunitary matrices, columns are pairwise orthogonal, so theuai coher-
ence is obviously zero. For full ramkx mmatrices® with m> n, u(®) is strictly
positive, and it is possible to show [109] that

with equality being obtained only for a family of matricesnmed Grassmanian
frames. Moreover, if® is a Grassmanian frame, tpark @) = n+ 1, the high-
est value possible.

Mutual coherence is easy to compute and give a lower bounidetgpark. In
order to outline this result, we briefly recall the Gershgsrtheorem for localizing
eigenvalues of a matrix. Givemex nmatrix A= {g; j }, letbeRc = ¥ . |ax j|. The
complex diskz = {z||z— axx| < R} is said Gershgorin’s disk witfil <k <n). It
holds that for Gershgorin’s theorem [57], every eigenvalfé belongs to (at least
one) Gershgorin’s disk.

Theorem 1.2.[43] For any matrix ® € R™™ the spark of the matrix is bounded by
a function of coherence as follows:

1
> -

spark®) > 1+ (@)
Proof. Since normalizing the columns does not change the cohedrecenatrix,
without loss of generality we consider each column of therixab normalized to
the unitlo-norm. LetG = @7 @ the Gram matrix ofd.
Consider an arbitrary minor fror® of size p x p, built by choosing a subset of
p columns from the matrixp and computing their sub Gram matfi%. We have
Q" @l =1ifk=jand|@" ¢j| < p(®)if k= j, as consequend® < (p— 1) u(P).
It follows that Gershgorin’s disks are contained{im|1— 2z < (p—1)u(®)}. If
(p—1u(®) < 1, by Gershgorin’s theorem, 0 can not be eigenvaludd dfience
every p-subset of columns of is composed by linearly independent vectors. We
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conclude that a subset of columns®flinearly dependent should contgin> 1+

1 1
i@y €lements, hencepark @) > 1+ ;. O

Previous result, together with theordm (1.1) gives thefaihg condition imply-
ing the uniqueness of the sparsest solution of a linearsygte = s.

Theorem 1.3.[43] If a linear system®a = s has a solutioro such that||a||o <
5(1+ 1), thana is the sparsest solution.

1.6 Algorithms for Sparse Recovery

The problem we analyze in this section is to approximate aadigusing a lin-
ear combination ok columns of the dictionargp € R™™, In particular we seek a
solution of the minimization problem

A (1...mp Al MINMIn|| 5 @ray -3 (1.52)
A=k G

fixed k with (1 <k <m).

The real difficulties for solving problerh (1.52) lies in thetional selection of the
index setA, since the "brute force” algorithm for the optimization s to test

all (T) > (%k) subsets ok columns of®; this seems prohibitive for real instances.

The algorithms for sparse recovery can be divided in thragsels:

« Basis Pursuit methodswhere is desired the sparsest solution in thesense
and there is an underdetermined system of linear equathans- s that must
be satisfied exactly. The sparsest solution can be easilgdbly classical linear
programming algorithms.

« Greedy methodswhere an approximation of the optimal solution is found by a
sequence of locally optimal choices.

» Convex or Non-convex methodshat relax the combinatorial sparse problem to
a related convex/non-convex programming and solve it wéfative methods.

1.6.1 Basis Pursuit

Basis Pursuit (BP) finds the best representation of a sighglminimizing the/;
norm of the coefficientsr of the representation. Ideally, we would like that some
components ofr to be zero or as close to zero as possible.

In [@9] is shown how[{P1), can be recasted into a linear prognag problem
(LP)of the form

minc'a s.t.®a=s,a >0 (1.53)
acRM
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wherecT xis the objective functiongar = sis a collection of equality constraints
anda > 0 is a set of bounds.
The objective function of (R1) is not linear, however we aamsfer the nonlineari-
ties to the set of constraints by adding new variahles. ,t,. This gives:

m

min Z\ti

teRmi:

st.lai| <t i=1
Pa=s

m

gy

Observing thatai| < t; if and only if —t; < a; <t; we can transform the original
problem [P1) into the following linear programming problsaobject tam inequali-
ties constraints.

m

min thi (Py)
is

s.t.a; <t
a>—t i=1
da=s

m

geeey

Note thata; < tj implies thatla — It <0 anda; > t; implies thatlal +t > 0,
thus we have the problemin LP form

minc't (LP)
stla—-1t <0

la+I1t>0

Pa=s

wherec=[1,1,...,1]".

In order to reduce the size di {L.P) problem is that of usingdhal problem.
From duality theory, starting with a linear program in stareiform [Z.58), we can
rewrite the problem as the following dual linear program:

maxb'ss.t.®Ts+z=c a >0 (1.54)

Using this equivalence we can rewrite the problEm (1.54¢ims of dual variables
y andv which correspond to the constraints from the primal probieithout re-
strictions
minb"y (DLP)
st®'y—2v=—e 0<v<e

Once the size of the original problefRy ) was reduced, the dual problem (DOLP)
can be solved efficiently by a linear solver.
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1.6.2 Greedy Algorithms

In literature many greedy algorithms was proposed to perfeparse recovery.
Many signal analysis methods look for a linear expansiorhefunknown signal
sin terms of functiongg.

s= iaiqq (1.55)

We may say that in such a way the unknown sign& explained using atoms
(functionsq) from the dictionary®, used for decomposition. MP algorithm finds
a sub-optimal solution to the problem of an adaptive appnation of a signal in
a redundant set (dictionary) of atoms. If the dictiondryis an orthonormal basis,
then the coefficients an are given simply by the inner praglotthe dictionary’s
atomsq with the signala; =< s,@ >. We would like to use a dictionargp =
{@}i=1,. mthatwould properly reveal the intrinsic properties of akmown signal,
or, almost equivalently, would give low entropy of thpand possibilities of good
lossy compression.

We may relax the requirement of exact signal representdlidi®), and try to
automatically choose the atonpg, optimal for the representation of a given signal
s, from a redundant dictionargp. The expansion becomes an approximation, and
uses only the functiong,, chosen from the redundant dictiona® In practice,
the dictionary contains orders of magnitude more candifiatetionsg, than the
numberk of functions chosen for the representation:

k
sy o, (1.56)
2%

A criterion of optimality of a given solution for a fixed diocmary®, signals, and
number of used functiorkscan be formulated as minimization of the reconstruction

error of representation
k

2
e=ls=3 anli
t=

Finding the minimum requires checking all the possible ciorations (subsets)
of k functions from the dictionary, which leads to a combinatbeixplosion. There-
fore, the problem is intractable even for moderate dictigs&es. Matching pursuit
algorithm, proposed iri [77], finds a sub-optimal solutionrbgans of an iterative
procedure.

In the first step, the atomy, which gives the largest product with the sigsas
chosen from the dictionar, composed of normalized atomjgg, ||3 = 1). In each
of the consecutive steps, the atgms matched to the signal which is the residual
left after subtracting results of previous iterations:
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f[o=S

l=<r,@>@+rnh1

@, = arg max| <ry,@, > |
@, €D

For a complete dictionary the procedure convergesadh k — oo [[77].

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Require: - adictionary® € R™™M
- asignalse R"
- a stopping criteria

1l.rp=s50a9=0,N=0,t=0
2: while [cond]do

3 Aecargmay—i.m| <ri—1,¢ > | < match>
4 N1 =N U{A S < identify: if multiple maxima exist, choose only one
5. Q1= argMisupgp)ch ||PB —S13 < update>
6: rgi1=s—®Pa

7. t=t+4+1

8: end while

Ensure: & = oy = argmin[;:SUF,p([;)QAt+1 [|PB — s||§

Another greedy algorithm extensively used to find the sgarselution of the
problem [PD) is the so called Orthogonal Matching PursulM B} algorithm pro-
posed in[[35, 91] and analized by Tropp and Gilbert [113]. CAdHs a least square
minimization to each step of the Matching Pursuit. Thbk approximant ois

k
§ = argmin||s— Zat%ll%
t=

stsSe  {@:AeN} (1.57)

that can be performed by standard least squares technijdesailed pseudo-code
of the OMP algorithm can be viewed[ih 1.

1.6.3 Relaxation Algorithms

An alternative way to solve thé (P0) problem is to relax it lie highly discon-
tinuous £p-norm, continuous or even smooth approximations. Exampiesuch
relaxation is to replace th& norm with convex norm as th€&, with nonconvex

norms like the/, for somep € (0, 1) or with smooth functions likg ™, (1—e* af),
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2 a?
ytilog(1+Aa?)orym, Ara?

The problem of usingy norm, needed for a combinatorial search of its mini-
mization, are both due to the fact that thenorm of a vector is a discontinuous
function of that vector.

The main idea of the Smoothdg (SLO) algorithm, proposed and analyzed in
[82,81], is to approximate this discontinuous function sugable continuous one,
and minimize it by means of minimization algorithms funatice. with steepest de-
scent gradient method.

The continuous functions which approximatida||o, should have a parameter
which determines the quality of the approximation.

Consider the single variable family of functions

—a2

fo(a) — @202
and note that
lim Ty (a) = 1, ff a=0
-0 0, fa#0

DefiningFs(a) = 34 fo(ai) itis clear that|a||o = m— Fg(a) for small values
of .

Algorithm 2 Smoothed (SLO)

Require: - a dictionary® e R™™ and the Moore-Penrose pseudo invetse
- asignalse R"
- a suitable decreasing sequencedo« {01,...07}
- a stopping criteria

1: ag=@'s
2: while [cond]do
3 o=o0 < match>

4:  Maximize the functior; on the feasible set” usingL iterations of the steepest ascent
algorithm (followed by projection onto the feasible set):

5 for j=1,...,Ldo
—lay? —|am[?
6 Aa =[aie 202 ... Qme 207 ]
7 a <+ a—ulda < wherep is a small positive constant
8 a«—a—oT(da—ys <orthogonal projectiop-
9:  endfor
100 t=t+1
11: end while

Ensure: & = o
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We can find the minimundy norm solution by maximizing thE;(a) subject to
®a = sfor a very small value otr. The o parameter determines how smooth the
functionF; is, the smaller value of, closer behavior o to /g norm.

The idea is than to use a decreasing sequence,ffar maximizingF, for each
value of g, the initial value of the maximization algorithm is the maxzer of F,
for the previous larger value af. If we gradually decrease the value of for
each value otr the maximization algorithm starts with an initial solutinaar the
actual maximizer oF; and hence we hope to escape from getting trapped into local
maxima and reach to the actual maximum for a small values @fhich gives the
fo norm solution.






Chapter 2

Lipschitzian Mappings for Sparse
Representation

Abstract In this chapter we present two new algorithmsNLAPS andk-LIMAPS
respectively) for the following Sparse Recovery Problem

minflallo s.ts=®a (2.1)

After a general introductionin sdc. 2.1, in 2.2 we dbscthe problem of Sparse
Recovery faced in this work, of which the two proposed altpons are heuristics.
In sec[Z.4 we introduce a parametric cl&& |A > 0} of nonlinear mappings and
in sec[2.b we discuss some properties of iterative schesesllan these operators.
In sec[2.5.11, for a given sequencelpfthe iterative scheme

ar1 =Gy (at) (2.2)

is discussed, proving the convergence WEG%I < o,

In sec[2.5.P the iterative scherag, 1 = G, (at) is studied in the simple bidimen-
sional case. It is proved that, for sufficiently larethe sparsest solution is "near”
to a fixed point 0fG, .

In sec.[2Z.58, we find a connection between the fixed poingpfand a relax-
ation of the problem(2]1). First of all, we introduce a famfl| - [|y| A > 0}
of pseudonorms (see lemina 8). Then we study the relaxedgunobl

rryn||a||<,\> s.t.s= @a (2.3)

The main resul{{2]3) asserts that, under reasonable aismsighe minima of{213)
are asymptotically stable fixed points@f .

In sec[Z.5 4 and selc. 2.6 the algorithm$/lapS andk-LIMAPS are introduced,
together a brief discussion on empirical evidence of cageece ofk-LIMAPS in

sec[2.61.

29



30 2 Lipschitzian Mappings for Sparse Representation

2.1 General Considerations

Consider the underdetermined system of linear equations
s=®a*+n (2.4)
wheren represents an additive noise with mean and variance

E[n]=0 (2.5)
E[n? = o2l (2.6)

andsthe vector of observations. The matrixis an x msensing matrix withn < m.
The matrix® can be considered as the modeling operator that brikthe model)

to thes— n (the noise free data). We assume that the veatdras few entries
significantly different from 0, i.ea* is approximately sparse. In this case, we can
promote the sparsity vi& regularization to overcome the singular naturefofit

is reasonable to recover', under suitable conditions on the matfix minimizing

the objective function:

1
E[§||s—n—<Da||§]+)\||a||1
1 , 1 1,
=§||5— (Da||2+§E[(s— ‘DG)U]+§E[’7 J+Allalla

1
— 5lls— ®a| 3+ Allall1+ 02
2.7)

The minimizer is independent froa?, and can be obtained solving the optimization
problem

o1
nyn§||s—d>a||%+)\||a||1 (QP)

that is closely related to quadratic programming. The patam\ represents the
trade off between thé,-norm of the reconstruction error and thenorm of the
solution vector.

When an estimate of the noise lewef in the signal is available, a different
formulation is often useful:

min [l (BP)

{all|s-®al5<0?}

This formulation, called Basis Pursuit (BP) denoise profj&J], minimizes the/y
norm giving a maximum misfit.

When the/; norm estimator of a "good” solution is available, a third formula-
tion is given by the Lasso [110]
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1
min  Z||s— ®all3 (LS)
{amaulsr}Z” Iz

2.2 Problem Formulation and Summary of Results

In this chapter we present two new algorithms for sparsevesggroblem called
LIMAPS andk-LIMAPS respectively. The IMAPS algorithm tries to find the
sparsest solution of the reformulation of the basis purdeitoise problem irg
norm

minflallo st [ls- dals5<o (BPO Noisy)

In this work we consider only the model without noige€ 0). The problem can be
rewritten as:
minflallo st s=®a (BPO)

In sec[2.5.8 we introduce a famify| - [|(xy| A > 0} of pseudonorri 2.53 that
approximatd| - ||o for large values ofA, and we consider the relaxation[of BPO:

n’(lxin||a||<,\> s.t.s= ®a (REL)

In sec[2.4 we consider a family of mappings, | A > 0}, sec[2.4 and we
prove that, under reasonable conditions, a solutiof_of |R&lan asymptotically
stable fixed point 065, [2.3.

This fact suggests, given a suitable sequéengé with lim;_,. = . to consider the
iterative scheme callediMAPS

a1 = Gy, (ar)

as heuristics for solvind (BP0). This iterative schema i Itlase of the algorithm
LIMAPS presented in 2.5.4.

The second proposed algorithm, calledl IMAPS , is an heuristics for the fol-
lowing problem:

1
rryn§||s—q>a||% st. |lallo<k (LS0)

2.3 A Source of Inspiration

In recent years, a new family of numerical algorithms hasiggadually built. This
family, addressing the optimization problem (QP), is Hegative Shrinkagelgo-

rithms [17) 86| 183].

Roughly speaking, in these iterative methods, each ieratomprises a multipli-
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cation by® and its adjoint, along with a scalar shrinkage step on thaioét result.

If @ is unitary, the minimization of (QP) can be founded easilithva closed
form solution that leads to shrinkage. Using the idendit$p”T = |, and exploiting
the fact that, norm is unitary invariant, we have:

1
{9 =5lls— @al3+Ap(a)
1
=5llo(@"s—a)l3+Ap(a)
1
=5ll@Ts—all3+Ap(a)

and denotingr® = ®Ts, we get:

1
f(x) =5lla®—allz+Ap(a)

The minimization of the scalar function of the fogfx, a) = 3 (x—a)?+ A p(x) with
respect tox requires that we either zero the gradient in the case of dmfaattion
p(-), or show that the sub-gradient@tontains the zero, for non differentiatgé ).
The problem can be solved, by findirgpt = S, (a) that is the global minimizer

of the scalar objective functiog(x,a).

Let us now consider the convex functipiix) = |x|P with 1 < p < 2. The scalar
objective functiorg(x,a) then can be rewritten as

0(:2) =5 (x—a)> + A[xP
The condition of minimum is thean expressed by
g(x,a) =x—a+ pA|x|PIsgnx) = 0
from which we can derive
a=x+Ap|x|P1sgnx) (2.8)
Inverting the equatiori (2.8) we obtain

Xopt=5(3) (2.9)

that maps the inpwt in the global minimizelxapt. Notice that:
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(a) if ais near the origin, the, (a) ~ 0. This implies that if|S, (a)| < € then
la| ~ pA[x|P~1 and thenS, (a)| ~ (p3a)?.

(b) if ais large (tending to infinity)S, (a) ~ a— pA|alP~1sgn(a), implying |a| >
1S (a)]-

The functionS, (a) results to be ahrinkage function

2.4 Sparsity Promotion Mappings

The aim of this section is to establish asymptotic fixed peaipproaches for a
thresholding-based iterative process for model seleatidying on a family of
shrinkage function represented by the uniformly Lipsdaitznonlinear mappings
F ={f) | A € R"}, where the choice of is important in controlling the shrink-
ing effects, i.e., to drive the search towards the sparségians. It provides then a
fusion with the classical orthogonal projectors built oa Moore-Penrose pseudo-
inverse, in order to restore the feasibility at each iteratitep.

2.4.1 Uniformly Lipschitzian Shrinking Mappings

The key feature of shrinking functions is to attenuate coieffits adaptively with
respect to scale and time, taking into proper account thergéstrength constraints
of the signal. This task is committed to classes of smootnsidal based shrinkage
maps that may be used to promote the sparsity. These cldstemdage functions
introduce a little variability among coefficients with sihamplitude, performing
low attenuation of coefficients with high amplitude and sgyer attenuation on co-
efficients with small amplitudes. These functions depend parametek that make
possible the control of the attenuation degree imposeddfiicients. Moreover they
have the following features:

smoothness: the shrinkage function induces small variability amongadaith
close values.

shrinkage: a strong attenuation is imposed for small values, convergsebk
attenuation is imposed for large values.

vanishing attenuation:  attenuation decreases to zero when the amplitude of the
coefficient tends to infinity.

Lipschitzianity:  given a class of functions

{f)\|f)\ R—R,A 6/\}

the class is called Lipschitzian continuous with Lipschitmstant > 0O if for
all A € A, it holds
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fAa(x)—f
LRI 2.10)
x=yl
forall xandyin R, with x #£ .
df(x)
Name f(x) &
Exponential x(1—e M) eMAIX-1)+1
; 2 2 |x e} XA 1
Exponential 2 x(m -1) N
Hyperbolic Tangent  xtanh(A|x|) tanh(A x|) + A |x| sed?(A |x])
Absolute Val Alx2 AE(AR+3)
Solute value X(Trape) A2 112
AX AX(A%2+2)
Square Root JiANE 7(“2“)%
Error Function xerf(A|x]) erf(A|x))+A |x\ﬁerf(/\ [x])
Gudermannian |xZatan(sinh( A [x|))[A[x/sect{ ZA |x)) + 2atan(sinh( ZA [x]))

. . . X . . f
Table 2.1 Sparsity promotion mappinggx) and first derlvatlve%.

In table[Z.1 we list some Lipschitzian smooth sigmoidal basterinkage maps
and their derivatives that have the properties requireg@bo

Let us introduce some property for a uniformly Lipschitziaapping based on a
family of nonlinear maps
F={fy |A eR}, (2.11)

where the choice of is important in controlling the sparsity effects. In pautar,
we restrict all our analysis on the exponential family, fsrwell-known character-
istics.

ForA >0, letf, : R — R be the shrinkage map

fL(x) =x(1—e A, (2.12)

Letbe.# = {f, | A > 0}. The functionf, is an odd function with continuous deriva-
tive f; (x) = (A|x| —1)e"*X + 1. Since sup.p | f; (X)| = 1+ €72, as a direct conse-
quence of the intermediate value theordgr(x) — f) (y)| < (1+e~2)|x—y|, for each

A >0 andx,y € R. Thus, mappind (2.12) is uniformly Lipschitzian with respto

A with Lipschitz constant 4 e~2. Moreover, given thatf; (x)| < 1 on the interval
(—1/A,1/A), the mappindg(2.32) is contractive within that intervaliwfixed point
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Exponential Derivative

Fig. 2.1 Sparsity promotion mapping&x) and first derlvatlveéj%.

Square Root Derivative

Gudermannian Derivative

Fig. 2.2 Sparsity promotion mapping§x) and first derlvatlve%.
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at the origin[[10]. It obeys to the shrinkage rule simég(x)| < |x| for all x e R and

it is nondecreasing, as shown by its plotting in Figuré 2u3t Jor comparison, in
figure is displayed also the soft threshold functigh(x) = max(|x| — 1,0) sgn(x)
which arises frequently in sparse signal processing andoessed sensing. The
latter, differently from[(2.1P), is discontinuous ai} (x) = 0 iff |x| < 1.

Fig. 2.3 The graphs of shrinking functioh (Z112) and the well knowft swreshold function.

To deal with high dimensional data, we extend mapping {2td 2yany dimen-
sions , obtaining the one-parameter family of nonlinearpiags.7m = {F, : R™ —
R™| A € R"}, where thek-th componentF, (x) )k of F,

(RA(¥)k=Tfa(x), (1<k<m) (2.13)

Analogously to the scalar case, the functidp(x1)/x1,. .., fA (Xm)/Xm] repre-
sents a symmetric sigmoid functionrimdimensions, where larger valuesofjive
sharper sigmoids, in the limit becoming a Heaviside multiehsional step func-
tion.

Now we come back to the problem

Pa=s

where® is ann x m sensing matrix of full rank, anslis the vector of observations.
The set of possible solutiongy s = {x| ®x = s} is the affine space + .45, where
Ao = {y| ®y = 0} is the null space ofp andv is the solution with minimunt,
norm. We recall thav = ®'s, where®' = (&7 @) 1T is the Moore-Penrose
pseudo inverse ob.

Let P be the projector ontoty. For eachx in R™ is projected in a poiny €
Ao s=V+ Np as follow:

y=Px+v (2.14)

These early assumptions suggest to define a new mapping byosimg the
shrinking [2.1B) and the feasibility (2]14). As a conseqeenwe get the self-
mapping familyG, : #p s — %o s, which has the form
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G)(a)=PFR(a)+v, (2.15)
Sincea € @/, it holdsa = x+ v for a suitablex € 4%; as a consequence:

Gy (a) =P(x+ V) +v—Plame (2.16)
=x+v—Paee?

=a—P(ace

2.5 lterative scheme and Fixed Point Characterization

The aim of this section is to show that a fixed point iteratichesne involving
mapping [2.1b) becomes an effective procedure to find goptbapmation of the
sparsest solution to the linear systém{(2.4), providingdhsuitable sequence af
would be supplied.

By denoting withT, : R™ — .45 the mapping defined by, (a) = Pa ®@ e 19l
a fixed pointa* of mapping[(2.1b) satisfies:

a*=G,(a*) <« T,(a")=0. (2.17)

Thus, eacho” in the set FidXG, = J#7, C @/p s Uniquely corresponds to the point
a* @ e Ml e 4, being. 77, and Ao the kernel ofTy and the null space of
projectorP respectively.

For mapping[(2.15) we study the convergence of sequencescoéssive ap-
proximations (Picard process) with a given initial valugpharticular, we take into
exam two cases: the first with fixed parameteand the latter providing a sequence
{At}t>0, tending to become arbitrarily large &s— . Both the analysis will be
useful in the study of minimizers for sparsity promotiondtionals.

2.5.1 Convergence for increasing sequencesiof

In this case, for a given incresing sequence of real numpets-o, we define the

iterates as
{ Qg = 0 € szq)’s

2.18
ay = GAH(at,l), t>1 ( )

and we study the convergence of the sequdingé;>o.
The first lemma provides an inductive form of the general teym

Lemma 1 Let{a:} be the sequence generated by (2.18), then it holds:

t—1

at:Pa—P<z

ak®e}‘k"k> +v, t>1. (2.19)
o
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Proof. To prove the lemma we proceed by inductionrohe case = 1 is trivial.
Fort > 1, by definition we have

oy =Gy_,(a-1) =Pa1—P (0&71 © ef’\t’l‘at’l‘) +Vv.

Assume inductively that the equality (2]119) is true for gvpositive integer less
thant. Thus, the induction hypothesis and the idempotendy iofiply that

t—2
Pay 1 = P?a —P? <Z;ak ® eAk"k> +Pv
K=

t—2
—Pa—P < Y oo e"k"k> ,
K=0
because
Pv=(l-o'o)d's=d's— o'od’s=0.
Hence, the proposition holds forand this completes the proofm

By limiting the sum of reciprocals ofA; }, the sequencéa; } results to be con-
vergent, as stated in the following lemma.

Lemma 2 Let {A;} be a real positive sequence. Thengff ;1/At < +oo, the se-
quence{a; } converges as+s 4.

Proof. First of all observe that the univariate mapping
1
AN <«
X |x|e <
I—>| | = a
is bounded, which implies

<

< ——.
- e A

H ax® ef)‘k‘ak‘

For anyn > n’ and sincg|P|| < 1 we have:

n—-1
o — || =[[P( S ax@e )| (2.20)
k=n’
n—1
<Y e M|
k=n’
n—1
<Y [laoe M|
k=n’

n—1
S@ Z i
e & Ak
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For all € > 0 therefore, there always exists a indesuch that, fon,n’ > y it holds
that

P

kzn, Ak

It follows that if 5, }le converges als¢ay} is convergent.

Given the previous bound, we show now that the sequénce)(i ECauchy
sequence.

We conclude that the hypothesis done on the sequéhgeis sufficient to get
the convergence in norm gf % ax © e Ml O

2.5.2 Fixed points ofG, in the bidimensional case

In this section we discuss the fixed points®f in the simple bidimensional case.
Consider the family of Lipshitzian functions with parantete> 0

GA . 'Q{(D,S — 'Q{(D,S

given by
Gy(a)=a—Place?l)

whereP is the projector on4g. We can assume without loss of generality that

[lv|| = 1 because
a 1
G (—) —G, (a)
A\ ) = T G

The linear system in the bidimensional case, is then:
as .
(1, @) [ GJ =S

wheres € R is fixed. Without loss of generality, we can considép, @)|| = 1,
which can be written in terms of a unique parameéiens for instancé@, @) =
(—sinB,cosB) and Ao = {(zW) | g.z+ @w = 0} = {x(cosB,sinf) [x € R}. The

solutions[al] are in the affine space+ A4, with v = [_Sme} s. Without loss
as cosf

. . —sinf
of generality, we can consider the case 1, thenv = cosd

The problem is transformed into the study of the fixed poirft&p(a), with
fixed A. Consider the bijectioy : R — #/p s given by:

X +— X(cosB,sin@) + (—sinb, cosH)

With respect to the bijection, the opera®y : @7y s — @ s becomes the operator
S, : R — R. The picture in figur&2]4 shows the above bijection in whiuh point
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xu = x(cosB,sinf) is mapped orr = (xcosB,sinB) + (—sinb,cosf) andG, (a)
is mapped or$, (x)(cosf,sinb).

S (x)

Fig. 2.4 Representation of the bijection in which the point= x(cos6, sinf) is mapped o =
(cosf,sinB) + (—sinB,cosd) and the mayss, (a) is mapped or8, (x).
An explicit write for S, is given by:
X (XU+ V — (xu+v) @ e ARVl )

where(-,-) denotes the usual dot product®i. Thus, in this setting, we characterize
the fixed points of the transformation

S) (X) = Xx— cosf(xcosh — sin@)e* xcosd—sin6|_

_ (2.21)
sinB(xsin® + cosp)e A Xsinb-+cosd|
varying the parametess and®6.
The equation for the determination of the fixed points is:
oA [xcosd—sind A xsind-+cosg| _ 1+ Xtand (2.22)

1—xcotf
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For sake of simplicity, we suppose that 8irtosf > 0. In order to identify the
interval where fixed points lie, we obtain:

Lemma 3 If x > tan then0 < S, (x) < x

Proof. Sincex > S8 thenxcosf — sin® > 0, andxcosd + sind > 0, then

S) (X) —x = — cosB(xcos8 — sing) e xc0s9=sind) _ging (xsing -+ cosh)e A (xsiné+cosd) - g
which concludes the proof.00

Under the same hypothesis it holds, with similar proof:
Lemma 4 If x < —cotf then0 > S, (X) > X

By lemmal3 and}4, the presence of fixed points out of the intérvaot6,tanf)
can be excluded.

In this case we can therefore conclude that the fixed pointeefransformation
S, (X) must be in the interval—cot6,tan6). We can drop the absolute values, ob-
taining:

S) (X) = X— c0sB(xcosh — sin@)e * (xc0B-sn6) _ 5ing (xsind 4 cosp)e (xsind-+cosd)

The equation for the fixed points is then:

A (sin6—cosd) AX(cosd-+sind) _ 1+ xtan@
1—xcot6

e

The function
~ 1l+4xtané

~ 1—xcot8

is a rectangular hyperbola that cuts thaxis inx = — cotf. The hyperbola has the
vertical asymptot& = tanf and intersects thg-axis in the poiny = 1. The function

y1(¥) (2.23)

yZ(X) _ efx\ (sinefcose)eJr}\ (sinB-+cosh)x (2.24)
is a growing exponential function.
We can remark:

+ If sin@ > cosB, the function [[2.2K) intersects the ordinate axis in a pwiith
coordinatey’< 1. This guarantees the existence of a fixed ppiatJ; if A > 1
it holds thatxX’~ — cot6. We conclude observing that, farsufficiently large x™
is a sparse solution.

» If sin @ < cosB, the function[[2.24) intersects the ordinate axis in a pofrto-
ordinatey™ 1. This guarantees the existence of a fixed pintJ; if A > 1 it
holds thatx= tan@.

The pointxis asymptotically stable ifS(X)| < 1. If A > 1 it holds that<’~ tanf
and
S(X) ~ 1—cog 6 —sinf0(1— A tang)e *ane (2.25)



42 2 Lipschitzian Mappings for Sparse Representation

It follows that, if A > 1,|S(X)| < 1, hence the pointis asymptotically stable.
Similarly, if sin@ > cosf, the fixed pointx= — cotf is asymptotically stable for
A>1.

We now analyze in details, for illustrative purposes, theeéa= 7. The function
S, can be rewritten as

A _A
S (%) :x—:—zl(x—l)e Vet _ %e vzl (2.26)
Posing for simplicityt = % we have
Sy (X) =x— %(x— 1)eth—_ % aliaadl (2.27)

The fixed points are in the intervgl-1,1) and they are solutions of the equation

Q2x _ 14X

=1 (2.28)

We observe that

« foreacht, x; = 0 is fixed point

o if S0 > LX) iff t > 1. In this case there are two other fixed points
Xo andxz suchthat-1 < x, < 0 < X3 < 1.

o if 0 <t < 1itexists only the fixed point; = 0.

To study the fixed point stability, we calculate:

S =1- %eft(lfx)(lﬂ(xfl)) _ %eft(ljtx)(lft(xjtl)) (2.29)

Let S(x;) =S(0) =1—et(1—t). If t > 1 the fixed point is instable and if
0 <t < 1the pointx; is asymptotically stable. Since fosufficiently highx; ~ —1
andxs ~ 1, then:

S(x)~S(1) = %(1—e*2t(1—2t)) (2.30)

Ift>1is—e 202 <e2 (1) < 3(1+e72) < 1. The pointxs, that exists for
t > 1, is asymptotically stable. Similarly for the fixed poiat

Now we return to the original transformation in the affinecpe/s s
Gy(a)=a—Place (2.31)
In the bijection betweensy s andR, given bya = xu+ v, with u = (cos8,sinf)

andv = (—sin@,cosb), for sufficiently large), the pointd = xu+ v is the asymp-
totically stable fixed point of the iterative system geneddiyG, . We observe that:
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* if X~ tan@, then

~ H i 1
G ~ tanB(cosd, sind) + (—sinf, cosd) = (0, —)
o if X~ cotB, then
@ ~ —cotf(cosh,sin@) + (—sinb,cosh) = (_siie’o)

The fixed points¥, are then very close to the minimizers of the problEm (BPS), a
A — +oo they satisfy:
a= min |allo (2.32)
AEAp s

2.5.3 Sparsity Minimization

In this subsection, our objective is to study the sparsitgimization property of
the fixed points of the iterative system. To do this, let us wowsider the family of
functions

(2 =1—e*A(1+A|7) (2.33)

with parameteR > 0. We can easily verify that the first derivative of the fupati
(2.33) is given by

Lemmab5
6h(2) =A%z

A graphical representation of the functigg (z) can be obtained observing that
0)(2) is even, is increasing faz > 0, it holds that 0< gy (2) < 1, if |7 < 4 is
i (2) ~ A2 while |2 > 4 is g, (2) ~ 1. In particularg) (z) andg] (z) are contin-
uous functions.

Respect to the parametgy if holds that:

Lemma 6

. 0 z=0
AllgnmgA(Z)—{l . o (2.34)

A further property of[(2.33) is the following:
Lemma 7 ¥x,y € R it holds:

A (X+y) <g(X)+ax(y) (2.35)

Proof. Since g(z) = g1(Az), we can limit ourselves to the study in the case of
A = 1. Considering the function

Gx,y) =€ X Y(1+x+y)—e X(1+x) —e Y(1+y)+1
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)
,xl“\l*”‘
—e

S
S
x

Fig. 2.5 Parametric functiom, .

Vx,y > 0. We observe that the poif@,0) is the minimum of &,y), then:

G(x,y) > G(0,0) =0

e Y(1+x+y)—eX(1+x)—eY(1+y)+1>0
This is equivalent to
1-e7Y(14+x+y)<l-eX(1+x)+1-eY(1+y) (2.36)
We conclude that
gu(x+y) =1—e V(14 |x+y))

=1-e XLt |+ Iy)

=1-eMa+x)+1-eMa+y)

=0 +a(y)

O
Let us now study the functional with parameser- 0:
II-ll<as :R™—R* (2.37)

where||(ay,...,0m)||<x> = Yk=1,..mO (Ok).

The principal properties df - || .y~ are summarized in the following points:
Lemma8 VA >0, || ||<x~ is a pseudonorm

Proof. « Foralla,B € R™it holds that

l[a]l<xs =0<«= gx(ax) =0
k=1,...m

= o(a)(l<k<m)
<—a=0

(2.38)
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» Forall a,B € R™it holds that
||a +B||<A> < ||a||<)\> + ||B||<A>
Infact:

o+ Bll<as = g (ak+ Bx)

k=1...m k=1...m

= ||a||<A>+||B||<A>

(2.39)
Lemma9 Va € R™, lim) . ||d]|<x> =]]a]|o
Proof.
lim ||a =
AHWH ||<)\>
= Z lim g, (ax)
k=17 mA—e
=[{kla# 0} =|lallo
(2.40)
Returning to the original problem:
min|jallo st aev+4p (2.41)
it can be relaxed as
min|lallc,> St aev+ My (2.42)

The justification of such relaxation is given By (9): im. ||a||<2~> = ||a]o-
Let az,...,a with r < m—n, an orthogonal basis of the null spacty, where
ag = (ak1,...,am) with 1 < k <r. Recalling that the vectov is orthogonal to
ai,...,ar, the null spacesy can be rewritten as:

«/Vm—{ae la= % Xda (xl,---,xr)eRr}

Given the orthogonal basis;, . . ., a;, the projectoP : R™ — 44 is defined by:

P(y) = A )ak. 2.43
(y) k:Z)r<y<':lk>ak (2.43)
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Given the vecton = 3,3 Xka+ V, the problem[(2.42) can be recasted in the

problem:

min ai with a; = i + Vi 2.44
w2 mgA( i) i k:;’rxkak,J i (2.44)

Note that, fixed an orthogonal basis, the problem (2.44hstaut to be an uncon-
strained problem on the entire spa’e The aim of the following results is to show
that the fixed point of the operatbj (o) are local minima of the probleri(2144). A
necessary condition of minimum is to nullify the gradient:

17
-— aj) | =0, V(s=1,...,r).
- <,—Z..,ng“ n) ( )
It holds that
~ 9 (a1 f (a) (af)as; = (d.a0)
0% i=T.., ng)\ J _J: ..... ng)\ Y ox _J:Z..,ng)\ 185 =198

whereg' = (g} (a1),...,d} (an)). SincePa ®e*18! = 0 is the fixed point condi-
tion of the operato6, (a), and sincey = A%2a © e *19], we can conclude that the
necessary condition of minimum becomes

P(d) = _Z (d,as)as=0. (2.45)

Previous result can be stated in following theorem:

Theorem 2.1.Leta* a solution of local minimum of
min||a||<xs Staev+ Ao

then, it holds that
Pla*oe )y =0

It follow that the pointa* is a fixed point of G(a) = a —P(a ®e @) O

2.5.3.1 Fixed Point Stability
Aiming to show both the local minimum property and the siabjproperty of the

fixed point, we use the second partial derivative test. Nsrgcondition of relative
minimum of the problen{(2.42) is that

¢ <j;,mgA(ai)> =0, vk=1,...r (2.46)

or equivalently
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<_ ; g;\(aj)ak’j> =0, vk=1,...r (2.47)
=1 m

Pd) (a) =0.
A sufficient condition since is a relative minimum, is that the Hessian matrix

2
H(a) = < N <k_§7mgA <ak>>>

must be positive defined. With a direct calculus

Hia)= Y di(anaskaux (2.48)

rewritten as

Let us consider the transformati®) : .o s — ¢ s defined as
Gy(a)=a—Pace
We are interested in the study of the iterative system
ar1 =G, (ar) (2.49)

Suppose thatr* is a relative minimum of[(2.42) such that the Hesdim*) is
positive definite, i.e. has all the eigenvalues greater #eao.
We now show that a fixed poird* is a asymptotically stable fixed point of the

iterative systeni(2.49).
In this regard, consider the bijectign: n + 4o — R™ given by

X = (0, a), a=n+gxkak-

LetL, : R™ — R™ given byL, = @G, @ 1, it is convenient to study instead of
(2.49) the isomorphic iterative system

X(t+1) = Ly (x(t)) (2.50)
In terms of components
1
X (t+1) =x(t) — g) (aj)ay |
A2 j:g,_,r AP J

with aj = nj+ 31-1X&j.
Let x* the fixed point ofL,, corresponding t@*, i.e. x* = (a*,a). The lin-
earizations* + A(t) = x(t) of the system[{2.30) in the neighborhoodxfis given

by
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A+ =40 5 [%A—lz j;_‘mg’A(aJ)akJ] - Ad(t)
Since
(?ixs(j g‘7mgﬁ(a1 Z gh (0j)aw jas | = His(a)
results that 1
A(t+1):A(t)—/\—2$ er,s(a*)As(t)
or in vector notation 1
At+1)=(1— A—H(a*))A(t) (2.51)

We can conclude that

Lemma 10 If the eigenvalues of | — /\—12H(a*), satisfy that|e| < 1, thana* is
asymptotic stable fixed point of the systeEm (2.49).

Since the eigenvalu-of I — —12H( a*) are related to the eigenvaluesyodf H(a*)
bye= then we can study the eigenvaluestiio ™).

— 3
Recall thawg) (z) = A2ze 214, results that
gy (%) =A%(1-Alz)e . (2.52)
1
0 )\g A2(1-A|z)eAl
7672 4

Fig. 2.6 Graph ofAng( 2).

The functlonAng( 2), illustrated in Fig[ 2B, is an even function, with the max-
imum value in 0, end minimum value |&2, in particular results that-e 2 <

20 (2 < 1.

Theorem 2.2.For all a € v+ .4, let € be the maximum eigenvalgef A—le(a);
thene <1.

Proof. Recall thatysHsk(a) = ¥ j-1..mPjasjaj, With pj = 350 (aj) < 1. We
know that:

£= vi—Hi,s(a
el 1Z 'AZ (1)ve
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It result that

1
2 VigzHis(@)vs=3 vi ( Pjas,jai,j> Vs
1S 1,S j=1..m

= zpj <izlvia"j>2 |

Cansidering an orthonormal basis a..,ar,ar.1,...,am of R™, the matrix A=
(a.j) is orthogonal and then

2
viaij | =1|(va,...,W,0,...,0)A|?
j:g.,m <i—g...,r )

(2.53)

=|(v1,...,\,0,...,0)||* for orthogonality of A

=|MI*=1
(2.54)
We conclude with
1
£ = max Vi—H: «(a)Ve < 1 555
(vl,...,v,omzzll’zs A2 l-,S( ) s S ( )

O
We are able to prove the main result of this section:

Theorem 2.3.Let a* a relative minimum of[(2.42), with {&*) positive defined,
thena* is the asymptotically stable fixed point of the iterativeeys(2.49).

Proof. Each eigenvalue of | — A—le(a*) is equal toe = 1—y, wherey is an

eigevalue of/\—le(a*). By theoreni 212, we know thgt< 1; furthermore, since
H(a*) is positive defined, it holds that:

O<y<1

Sincee = 1—y, we conclude thad < ¢ < 1. Since, each eigenvalue of | —
/\—12H (a*) verifies thate| < 1, o* is asymptotically stable fixed point.



50 2 Lipschitzian Mappings for Sparse Representation

2.5.4 TheL1MAPS Algorithm

Stating the role of the paramet&rin the family of Lipschitzian-type mapping%,
we call it sparsity ratiobecause it determines how strong the overall increment of
the sparsity level should be within each step of the iteegpikocess. In fact, when
applied iteratively, for smalh this kind of mappings should promote sparsity by
forcing the magnitude of all componentsto become more and more close to zero
(recall that the map is contractive withjr-1/A,1/A)). On the other hand, for high
values ofA, the chance to reduce the magnitudes of dh&liminishes, fixing its
value over the time. Hence, for gaining sparsity, the sclieglof sparsity ratio
should start from small values and then increase accordititgtiteration step.

This behavior is exhibited by the algorithmMAPS (which stands for lps-
CHITZIAN MAPPINGS FORSPARSITY) introduced in[[2], whose pseudo-code is
sketched in Algorithr]3.

Algorithm 3 LIMAPS

Require: - adictionary® € R™™M
- its pseudo-inverse’
- asignalse R"
- a sequencéi; }t>o

1:t«0

2.a+v

3: while [cond]do

40 A+ X <sparsity ratio update
5. B+ fi(a) <increase sparsity
6: a«pB-ol(®p-y3 <orthogonal projectiop-
7. t«t+1 <step update
8: end while

Ensure: a fixed-pointa = Pa + v

Remark 1 As said informally above, its ability to find desired solut®is
given by wise choices which will be adopted for the sequdi¢h >o, together with
choosing a good dictionary. Among many candidates respggttie constraints im-
posed by[(P), one of the most promising sequence, at leashpitieal grounds, is
the geometric progression whasth term has the form

/\t = Y/\t,:L = 9)} fort > 1,

whereAg = 6 andy > 1 are positive and fixed constants.

Remark 2 In order to have faster computations, the projection opmra®
must be split into the two matrix products of steps 5 and 6 @upgscode LMAPS .
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affine space ofp

sparse solutions

null space of®

Fig. 2.7 2D example of the LM APS iteration scheme. Starting from a pointin the affine space
o s, the point is shrinked applying thig function. After that, the shrinked point is projected into
the null space ofp. As last step, the point is shifted into the affine space byragithe least square
solutionv

Remark 3 The stop condition of thevhile loop (line 3: of Algorithn3) may
capture different events leading to a correct terminatiothe iterative system to a
solution having minimum error and, hopefully low sparsity.

In realistic computations we found solutions with very srealor when the algo-
rithm reaches values near machine precision. Possibleehioiay include to bound
the difference between two successive iterates, thatis,|lo, — an_1|| > €, or the
discrepancy between the valje [y, ax @ e 9] || and zero.

Remark4 LiIMAPS algorithm has a very simple iteration scheme given by step
5 and 6 of the pseudocode. Each iteration consists of tw@wadditions and two
matrix multiplications.
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2.6 Sparsity Approximation with Best k-Basis Coefficients

The main drawback of IMAPS is represented by the need of providing a right se-
guence for the parametgrindexing the function family in{2.11) so as to achieve a
convergent sequende ;0. Moreover, even if it has good performances on sparse
recovery, in general there is no way to upper bound the dpéesel which LM APS
carries out, unless to accomplish an unnatural threshplointhe final coefficient
vector.

In this section we suggest a new fixed point iterative metmspired by the
same nonlinear operator on whichNLAPS is based on. In particular, it is shown
that the method is able to adaptively find a suitable sequekgdor approximately
solving the problen{L30). This choice should also be madkariight of relevant
constraints imposed on the objective function of such alprabthat is to choosk
coefficients not null and discard the remainimg- k.

Fixed 1< k < n, a possible strategy for findirgsparse solutions using M APS
consists on choosinyt = o; ! at timet > 0 satisfying

Gt = Q1 (2.56)

beingd the absolute values af rearranged in descending order aid  its k-th
element. The goal of this choice is double:

1. to speed up the process aimed at dropping the smalledicomes, i.e., those
corresponding to elemenés < o, which have indices in the sét(t) = {j :
laj| < 6t}

2. to minimize the solution error induced loy “adjusting” the not null coeffi-
cients, i.e., those corresponding to elements- o; which have indices in the
setAc(t) = {j : |aj| > at}.

Based upon this strategy, the method should ideally foreesthvalues in such a
way to have

lim go(|atj]) = 1— e lail/a — J - ifjen®
t—+o0 O, if i 6/\C(t)

Clearly, this requires that j € A(t) the ratio between the absolute value of the
coefficient/a;| and the parametex tends to infinite, while/ j € A¢(t), |a;| have to
be an infinitesimal of order greater than thatpfleading to

- N W Jag, dfjeA(t)
tlrfmf(,t(aj)_ajgat(lajl)—{O’ if j € Ac(t)

The overall algorithm, calle&-LIMAPS (which stands fok-COEFFICIENTS
LIPSCHITZIAN MAPPINGS FORSPARSITY), is sketched in Algorithril4.

It should be noted that the last step of the algorithm accisimgs a threshold-
ing of the final point carried out by the while loop becausedme cases it can
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Algorithm 4 k-LIMAPS

Require: - dictionary® € R™™
- signalx € R"
- least square solution = ®Tx
- sparsity levek

o<V

: while [cond ]do
o+ sort (al)
A+ 1/Gk+l .
a+a—P(aoe?ll)

end while

a «— ng(a)

Ensure: An approximate solutiod € %.

Saklhw N R

N

have some noise among the null coefficients, that is thoseimdices in the seA®.
However, experimentally we found that such coefficientshearbitrary close to
zero values as the number of loops increases, making th&htiicestep not strictly
necessary. In Fi@. 2.8 we plot thecoefficients showing thus annealing-like behav-
ior which hits the not required coefficients exhibited ey IMAPS already at the

beginning of the first iterations.

0= 0.0103

me . HH?«; .

Ogg = 7.72e-04

1 15 10 15 20 25 30 1 15
Sparsity k = 10

05 = 0.0191

15 20 25

Og = 0.0039

30

mTh&:Y,

1 15

Hﬁf«; .

15 20 25 30 1 15
Sparsity k = 20

15 20 25

30

Fig. 2.8 Sorted absolute values of thecoefficients. The red stencils represent the absolute yalue
of g; at varius times. They separate the null coefficients (blaekcils) from the absolute values

of those not null (blue stencils).

Thek-LIMAPS algorithm relies on the nonlinear self-mapping
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a Ha—P(a@e*““‘) (2.57)

over the affine convex set (affine spacg) s = {a € R™: ®a = x}, whereA >0
is a parameter.

Starting with an initial guese € R™ and applying the mappin§ (2157), the se-
quenceq a; }¢~o Obtained by the iterative step

o1 = o —P (oo eal), (2.58)

where{ At }t~0 given by [2.56). Points that at the same time minimize théjero
(CS0) and are fixed points df (2.67) are those we are lookingiothis end, after a
fixed number of iterationk-LIMAPS uses the nonlinear orthogonal projectidp
onto the sety = {B € R™: || B, < k} expressed by

Py (a) = arg min||a — B|. (2.59)
Betk

Note that, due to the nonconvexity @, the solution of problem(2.59) is not
unigue.

2.6.1 Empirical Convergence fok-LIMAPS

To provide empirical evidence on the convergence ratio,ign [E3 we plot the
curves given by the norm
|Pae?1al|| (2.60)

during the first simulation steps of system (2.58). They dresen as examples
for highlighting how it behaves and how is in general the slopthe curves which
resultto be decaying in all simulations. Here in particlkesparse random instances
s€ R"and random matrix dictionarieB € R"*™M with fixed sizen = 100 and various
m=200,...,1000. The different slopes are mainly due to the ratjm rather than
the values imposed to the algorithm by means of the sparaitgnpeteik. In fact,
the curves do not significantly change when we use valuek fok*, wherek* is
the optimum sparsity of the given sigral

2.7 Simulation of LIMAPS Algorithm

To show the effectiveness of M APS algorithm we directly compared it with some
algorithms for sparsity recovery well-known in literatyas Matching Pursuit (MP)
[[77], Orthogonal Matching Pursuit (OMR) [91, 113], StagesDrthogonal Match-
ing Pursuit (StOMP)[[45], LASSQO [48], LARS [48], Smoothed [8L0) [8Z], It-
erative Soft Thresholdin@ [49], Accelerated iterativechiaresholding (AIHT)([17]
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0.16

m =200

90

Fig. 2.9 Plotting of the norm in [[2.60) with sparsitk = 10, sizen = 100 and m =
200,400,800, 1000.

and Improved SLO (ISLQ)[€6]. In order to make the ISLO alfun behavior more
stable, in our implementation we used the explicit pseuderse calculation instead
of the conjugate gradient method, so penalizing its timéoperances in case of big
size instances.

In all tests, the frame® and the optimum coefficients* are randomly generated
using the noiseless Gaussian-Bernoulli stochastic modeffor alli, j € [1,...,m:

&~ (00 and o ~x-.4(0,0),

wherex; ~ Bern(p). In this way each coefficiers;* has probabilityp to be active
and probability 1- p to be inactive. When the coefficient” is active, its value
is randomly drawn with a Gaussian distribution having zeramand standard
deviationa. Conversely, if the coefficient is not active the value isteetero. As far
as the parameters are concerned, wa§ix 103 andy = 1.01 because they have
given good results in all considered instances, coming ssgrially independent
from the sizen x m of the frames and siza of the coefficient vectors.

We evaluate the performances of the algorithms measuriatjve error and
computation time:

1. as errors we consider the Signal-to-Noise-Ratio (SNR)the Sum of Squares
Error (SSE) of found approximate soluti@n with respect the optimunor*.
Precisely:

SNR= 20Iogm%, SSE= ||s— @a|/*;
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2. as computation time we take the CPU time spent in the eixerat the algo-
rithm cores, without including the computation of insta;mgeneration or the
pseudo-inverse matrix of the dictionary in our and SLO atbars.

The simulations were performed on AMD Athlon 1l X4 630 Proams 64
bit, 2.8 GHz processor with 4 GB of memory, using MATLAB wittp&se-
Lab (http://sparselab.stanford.edu ) and Toolbox Sparse Optimiza-
tion (http://www.ceremade.dauphine.fr/ ~peyre/matlab/ ) for al-
gorithm implementation. The algorithmiMAPS is available online at the URL
http://dalab.dsi.unimi.it/limaps !

Among the many experiments done, in Figure 2.10, Fifure antiiFiguré 2,12
we report the average SNR, times and the relative number)(of 2orrectly recov-
ered atoms values respectively, obtained from executiaringiances oh = 200
equations andhranging from 300 to 1400 variables, moving the percentagpaif-
sity k from 10% to 50% oven. For eacin,mandk 100 instances of dictionary and
coefficients were randomly generated.

As can be noted, our algorithm outperforms all the other$ wégard to the
reconstruction quality, reaching arbitrary precision &eeping a CPU execution
time comparable with the others. The most interesting tesuk obtained with the
sparsity levels between the 30% and the 50% oyevhere our algorithm keeps a
good accuracy in terms of SNR.

350
—A— LiMapS
Y —:SL0
300 ——LARS [
—©—LASSO
—%— MP
- zsoé . —%— OMP
S ‘ —&— StOMP
0 ISLO ||
= 200: AIHT
§ ——IST
o 150
R
(o]
Z 1004
g
2
n 50( e

20
Sparsity (% of n)

Fig. 2.10 Averages SNR of the algorithms vs. sparsity, expressedrireptage of the number of
equationsn.
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Fig. 2.11 Averages computational times of the algorithms vs. spamskpressed in percentage of
the number of equations

A second kind of experiment was aimed at studing the algorliehavior when
the sparsity levek is low (e.g., 50% oven), that is when algorithms find more
difficulties to converge toward the sparsest solution inegeh To this end, we have
generated random instances of dimensions 400 andm = 800 with a sparsity
level k = 200, doing also in this case 100 trials. The results arermdlin Table
[2.2, listed by error averagesssg Usnr and mean timesgkime together with their
relative standard deviations. Again LIMAPS gives the best results in terms of
SNR and of SSE with lower standard deviations while the timmesain comparable
with other algorithms. Finally, it must be noted that the S$Bolutions found by
LIMAPS vanishes at each iteration of while cycle (statement 1:lgodthm 1)
since they are remapped every time onto the feasible spd&2aj.

2.8 Simulation ofk-LIM APS Algorithm

In order to empirically study how the LIMAPS algorithm performs, we have car-
ried out two kinds of experiments on synthetic and real despectively. The first
was conducted on random instances assumed to have theyspaogierty, while
the second was aimed to learn a dictionary for a class ofreletdiogram (ECG)
signals taken from standard benchmark. Other applicatis@iscan benefit from



58 2 Lipschitzian Mappings for Sparse Representation

603  — < : w
= & ) —%— LiMapS
40 —SL0 i
—— LARS
20l —6—LASSO ||
—— MP
T ol —*—OMP ||
= —&— StOMP
© —7ISLO
S 100 ——AIHT [
W 80|
c
e
B 60
=
2 a0t
o ¢
o)
x 20r
010 15 25 30

20
Sparsity (% of n)

Fig. 2.12 Relative number (in %) of correctly recovered atoms not etmaero. An atom is
considered correctly reconstructed if the deviation fromttue value of the estimated value is less
than 5%.

Table 2.2 Averages and standard deviations of the results obtaingdebglgorithms from 1000
trials with instances of dimensioms= 800, n = 400 andk = 200.

HUsse Osse MsNR OsNR Mtime Otime

LIMAPS 1.5e-24 1.3e-24249.8114.9 0.79 0.23

SLO 4.8e-24 7.6e-25 24.7 38.3.15 0.01

ISLO 4.3e-16 3.7e-15 82.7 89.5 9.10 12.70
IST 6.2e+04 2.2e+05 -0.1 5.0 0.33 0.07
AIHT  5.8e+03 1.6e+03 5.4 1.28 0.06 0.02
LASSO 1.3e+02 1.1e+03 8.3 2.0 1.79 0.20
LARS 2.3e-10 2.3e-09 6.3 2.2 0.79 0.07
MP 2.4e+04 43e+03 19 0.7 0.18 0.01
OMP 2.4e+00 2.8e-01 16 55 114 0.79
StOMP 3.8e+05 1.4e+05 2.4 0.7 0.02 0.01

the sparsity and overcompleteness concepts include cesipne regularization in
inverse problems and feature extraction.

By synthetic instances we mean a collection of instancesalflem[BPD satis-
fying sparsity requirements and defined by an ensemble afeaatb of sizen x m
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and an ensemble é¢sparse vectorse R". All matrices have been sampled from
the uniform spherical ensemble, while each vestaras a single realization of a
random variable having nonzeros sampled from a standard.iid(0, 1) distribu-
tion.

The OMP andk-LIMAPS algorithms are compared measuring their perfor-
mances on each realization according to the quantitatitexion given by the mean
square error:

2
wse_ 1@a=sl

A diagram of the integral of the error depicts the perfornesnaf the two algo-
rithms for a wide variety of instances. The average valuaiohsumulative error
measure is displayed as a functiorpof k/nandd = n/m. Fig.[2.13 displays a grid
of & — p values, withd ranging through 50 equispaced points in the interval [.01,
.5] andp ranging through 100 equispaced points in [.01, 1]; here igyas length
is fixed ton = 100. Each point on the grid shows the cumulated mean square er
between the original and reconstructed, averaged ovemtiépendent realizations
at a giverk, m.

It can be noticed that MSE of OMP increases particularly whetends to .5
andp tends to 1, whilk-LIMAPS is less sensitive with respect to these saturation
values.

To show the effectiveness of our algorithm on real data, veeigcon the dic-
tionary learning task for sparse representation appli€&6 signals. Instances are
taken from the Physionet bank [59], specifically in the clafgsormal sinus rhythm,
collecting many patient records with normal cardiac attiwiVe took a long ECG
registration relative to a single patient and we split tigmal into segments of length
n= 128, each one corresponding to a second of the signal raigstiand sampled
with frequencyfs = n, then we divide the blocks so obtained into two groups: train
ing set and test set.

To perform the dictionary learning task we use KSVD[5] and MB0] tech-
niques working in conjunction with both the pursuit algbnit OMP and our non-
linear methok-LIMAPS as sparsity recovery algorithms. In the training phage, th
algorithms perform 50 iteration steps with a fixed sparsyel of 64 coefficients
(50% of the signal length), over a dataset collecting 512pesrandomly picked
from training set. At the end of the learning phase, the diiitries carried out by
the learning algorithms were tested on 5000 signals pickad the test set using
the same sparse recovery algorithms (OMRK-ariMAPS ) previously applied in
the training phase.

To evaluate the accuracy of the signal reconstruction, btteanost used perfor-
mance measure in the ECG signal processing field is the ramt sguare difference
or PRD, together with its normalized version PRDN (whichglnet depend on the
signal mean), defined respectively as:

Is=8l2 14 PRON= 100+ IS~ 312

PRD= 100 ,
(BB |s—52
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OMP

MSE

Cum.

d =n/m 1

Fig. 2.13 Each point on the grid shows the cumulative MSE between tiggnat s and recon-
structed®a signals, averaged over 100 independent realizations. fiti@fgd — p values is done

with & ranging through 50 equispaced points in the interval [.QJril p ranging through 100
equispaced points in [.01, 1].

wheres ands'are the original and the reconstructed signals respegtiblile sis
the original signal mean.

As it can be observed in TablesP.3 2.4 our sparse recalguyithm, ap-
plied to the dictionary learning, obtains the best resuitaeerage for both training
algorithms MOD and KSVD, with standard deviations comp&ad that of OMP.

The convergence error is a parameter in evaluating suchdadimlgorithms.
In figure[Z.1%# we report all MSEs ensured by the algorithmso @ this casek-
LIMAPS outperforms OMP with both MOD and KSVD algorithms.

Qualitatively speacking, the signals recovered usingiateties trained with
OMP suffer from a significant error in the more “flat” regionghich are mainly
localized nearby the most prominent features of a normatreleardiogram, given

by the three graphical deflections seen on a typical ECG kmmé called QRS
complex.
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Table 2.3 PRD over 5000 test signals.
PRD mean (%) PRD std. dev.

KSVD-LiMapS 15.86 5.26
MOD-LiMapS 16.16 5.05
KSVD-OMP 17.92 5.13
MOD-OMP 17.41 4.93

Table 2.4 PRDN over 5000 test signals.
PRDN mean (%) PRDN std. dev.

KSVD-LiMapS 16.17 5.26
MOD-LiMapS 15.86 5.05
KSVD-OMP 17.92 5.13
MOD-OMP 17.42 4.92
7 —
——KSVD-LiMapS
6 MOD-LiMapS
—KSVD-OMP
5 —— MOD-OMP

Error

1, | |
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Fig. 2.14 Mean square error over the training set during each iteratidche learning process.

2.8.1 Empirical Phase Transition

Following [1€], one of the main aspects of the CS systemsialiility to recover

k-sparse signals when time- k, as the problem size grows, ire— «. Each sparse
recovery algorithm exhibits a phase transition propetghshat, when no noise is
present, it exists g, such that for ang > 0, ask};, n — o, the algorithm successfully
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recovers alk-sparse vectors, provided thak (1 — €)k;; and does not recover all
k-sparse vectors K > (1— g)kj,.

We assum is an x mmatrix withn < m, drawn from i.i.d.#(0,n~1), the nor-
mal distribution with mean 0 and varianoe! and leta € R™ a realm dimensional
vector withk < nnon zero entries.

For the problen(s, @) we seek the sparsest vecwrsuch thats = @a. When
the solution of[(P1) is the same as the solution of the prolflgiAll), a is called a
point of 1 /¢y equivalence.

Following the convention used by Donolo[44], we dermte ‘ﬁ( andd = & anor-
malized measure of problem indeterminacy and a normalizeskore of the spar-
sity respectively, and we define regiof p) < [0,1]? that describe the difficulty
of a problem instance, in which there is a high probabilitytloa draw of Gaussian
matrix @ that for large problem sizg,n,m) — oo, all a € 3 are points oty /¢
equivalence.

A problem can be considered difficult to recover if the sggrsieasure and the
problem indeterminacy measure are high.

The region wheré; /¢y equivalences occur for aft € 5y is given by(9, p) for

p < (1-¢)ps(d) (2.61)

for anye > 0, where the functiops(d) defines a curve below which there is expo-
nentially high probability on the draw of a matrik with Gaussian i.i.d. entries that
everyk-sparse vector is a point éf/¢o equivalence .

1 J
Combinatorial !
Search :
i
c ! fl/g()
~ 1 .
- i Equivalence
i
i
1
1
Or ! 1
‘Underdetermined ‘ ‘ Overderdeterminedr
0 1 2

n/m

Fig. 2.15 Donoho-Tanner [44] Phase Transition.
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Any problem instance with parametéksn, m), Ve > 0, if ‘ﬁ =p<(1-¢)ps(9d),
then with high probability in the draw of a matri® with entries drawn i.i.d. from
A (0,n"1) everya € 3 is a point of¢y /¢y equivalence.

Rudelson and Vershynin in_[100] provided a sufficient canditunder which
Gaussian matrices will recover allec 2.
The next theorem shows the main result in terms of lower baumithe phase tran-
sition pRY(5) for Gaussian matrices.

Theorem 2.4.For anye > 0 as (k,n,m) — oo, there is an exponentially high prob-
ability on the draw of® with Gaussian i.i.d. entries that eveoye 2 is a point of
¢1/4o equivalence ip < (1— €)pRY(5), wherep&Y(5) is the solution of

1
P~ 12+ 8log %) B?(p0)
with l0g(11 2log))
B og(1+2log p—%

The curve(, pRY(3)) is the theoretical curve that separates the successful re-
coverability area positioned below from unrecoverabl¢ainses described by the
portion of phase space above. In [Fig. 2.15, the Donoho-TdAdEphase transition
is illustrated. The area under the red curve represents ffig equivalence area.

For a given algorithm, we estimate the phase transition orgasthe capability
of sparse recovery through extensive experiments. We fixitineber of equations
of the undetermined systemiio= 100 and we move the number of variabheand
the sparsity levek through a grid of 90@ and 100p, with & varying from Q01 to
1.0 and withp varying from Q01 to 10. At each(d,p) combination, we perform
100 problem instances.

Each problem instance is randomly generated using the @auBsrnoulli
stochastic model, with each frame entty; ~ .4 (0, n—1). Each entry belonging
to the optimal solutiomr* is modeled as

a* ~x..4(0,0)

with x; ~ Bern(p) distributed as a Bernoulli random variable with parameter
probability of coefficient’s activity. Finally the vectof &nown termss of the linear
system is calculated bga* =s.

A problem instance generated as described above is thyset (P, s, a*) con-
sisting of a framep € R™™ and ak sparse coefficients vectar-.

To better highlight the reconstruction performances olataiby each algorithm,
we chose to plot the phase transition plane in terms of SignbBloise-Ratio (SNR),
that compares the level of the desitedparse vectoa* to the level of noise of the
estimated vecton.
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In our experiments we estimated the phase transition ofdfgorithms: OMP,
LASSO (LARS), SLO and our IMAPS algorithm. For each one of them we per-
formed 9« 10° sparse reconstructions using a dedicated workstationdieceethe
computational time required for the simulations.

In Figured 2.16.2.7[7.2.1B, 2]19, 2.20 we depict empiritelse transitions es-
timated through instances extracted from the GaussiandBdr stochastic model
described above. The transitions obtained in terms of fitityaof reconstruction
obey the following ordering:

LIMAPS > SLO> LASSO> OMP

Otherwise, if we consider the obtained reconstructionigual terms of Signal-
to-Noise-Ration, the SLO algorithm obtains the worst rss@specially in the area
between M1< 4 < 0.8.

Phase Transition Comparison
lo T T T T

==

0 . . —. . . I I I
0.01 0.11 0.22 0.33 44 0.55 0.66 0.77 0.88 1
_n

m

Fig. 2.16 1D Phase Transition of the OMPJMAPS , LASSO and SLO algorithm. In this graph, a
signal is considered reconstructed if the SNR of the eséthsignal is greater or equal to 100dB.

To show the behavior of theiIMAPS algorithm with different nonlinear sparse
promoting mappings, extensive experiments are conduetstihg dictionaries. The
chosen dictionaries are matrices commonly used or havetgifes easily found in
real cases. The dictionaries used in these experiment&aceioed below:

« Gaussian Dictionary. A Gaussian random dictiona € R"™™ has each entry

@ drawn from i.i.d..#"(0,n~1) normal distribution with mean 0 and variance
~1

n
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Fig. 2.17 Signal to Noise phase transition of the OMP algorithm.
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Fig. 2.18 Signal to Noise phase transition of the LASSO (LARS) aldonit
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Fig. 2.19 Signal to Noise phase transition of the SLO algorithm.
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Fig. 2.20 Signal to Noise phase transition of theMLAPS algorithm.
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 Partial Circulant Dictionary : Given a vectorp = (@i,.. ., @), the partial cir-
culant matrixC € n x mis defined as

@ o @
c=|". .
th 1. Gnon

where each entryg is drawn from i.i.d_4(0,n~*)normal distribution with mean
0 and variance 1.

» Partial Toeplitz Dictionary : Given a vectorg = (@, ...,@nn), the partial
Toeplitz matrixT € nx mis defined as

® B G
T=|. .
th Bhi1 - Bnin

whit each entryg randomly extracted from the i.i.dg ~ .#°(0,n"1) random
variable.
« Ternary Dictionary : Each entry of the Ternary dictionafy has a probabilityp
to have value equal to zero. If the entdyj is not equal to zero, has probability
0.5 to take value 1 and probability®to take value-1.
» Bernoulli Dictionary : Each entry®; ; of the Bernoulli dictionary® has proba-
bility p= 0.5 to take value 1 and probabilify= 0.5 to take value-1.
» Fourier Dictionary : the entries of the Fourier dictionady € C"™*™ are given by
2mijk
(Dj,k = %ﬂ expTJ
« Sparse dictionary. Sparse dictionayp € R"™™M is a matrix populated primar-
ily with zeros. The entries of the dictionary that differ finaczero are randomly
choosen from a Gaussian random variable. Formally, eacl ent has prob-
ability p to be active and probability 4 p to be inactive. Whem j is active,
its value is randomly drawn with a Gaussian distributionihgwzero mean and
standard deviatior%. Conversely, if the coefficient is not active, the value i se
to zero. In our experimentg,is set to 05.

For each dictionary and for each sparsity promoting mapjistgd in table
(2.43) we estimate the phase transition measuring thebdipaf sparse recov-
ery in terms of Signal to Noise (SNR) of theNM ApS algorithm. We fix the number
of equations of the undetermined systermmte: 100 and we move the number of
variablesm and the sparsity levédthrough a grid of 5@ and 90p, with  varying
from 0.01 to 10 and withp varying from 001 to 10. At each(d, p) combination,
we performed 100 problem instances. The results are shovppendixB of this
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thesis. As we can see theMAPS algorithm reaches a high reconstruction area in
almost all couples sparsity promoting mapping - dictionary

2.9 Conclusions

We developed new heuristics to solve efficiently the spagsewvery of signals de-
scribed by underdetermined linear systems. They consialtémnating two lips-
chitzian maps: one promotes the sparsity of each neamteasvlution (or point)
falling outside the affine space associated with the linearsformation and the
other remaps such a solution in the nearest point of thelfieaspace.

The so derived heuristics one based on a iteration schemieb whnverge to
good solution coinciding, in many cases, with the sparsestsolution admitted.

With the experimental results conduced in secfiod 2.7, vghllght the high
solution quality and a good average time complexity in pcactcomparable with
the fastest well-known reconstruction algorithms; in jgatar, such technique is
promising because it exhibits very good performances (BiyR) also in case of
very high sparsity (near/2), values for which many others fail.

In particular, we have considered both the case of randorarg&d instances
and the case of real data picked to ECG signal database wititaiion to the dic-
tionary learning. We directly compare all accomplishedst@gth the well-known
greedy method called Orthogonal Matching Pursuit and wevghat the proposed
method outperforms the latter one obtaining less noisytisols in both kinds of
experiment.

We point out that the theoretical analysis of the algoritisyarticularly difficult
and it deserves further studies. The main open problemsetated to the clarity
into details the properties of the iterative systems geadiay the mappingS, . In
particular, we proved that the local minima of te||,- overthesefa | s=
®a} are asymptotically stable fixed points@§ . An open problem is to show that
the sequence

Ot 1 =G, (o)

converges for any initial poirdg.
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Chapter 3
Face Recognition

Abstract In the first part of this chapter, we present a new holisticrapgh for
face recognition[[3] that even with few training samples abust against both
poorly defined and poorly aligned training and testing dsi¥arking in the con-
ventional feature space yielded by the Fisher’s Linearisoant analysis, it uses
the sparse representation algorithm, nankely M ApPS introduced in chaptét 2, as
general classification criterion. Thanks to its particskzairch strategy, it is very fast
and able to discriminate among separated classes lyingitotirdimension Fish-
erspace. In the second part of this chapter, we introducearbmsed FRS namely
k-LIMAPS _LFR, proposing two possible local features: either raw isnbges or
Gabor features. Both these variants combine weak clasdifeesed on random local
information, creating a new robust classifier able to reegfaces in presence of
occlusions.

3.1 Introduction

In the last decades the face recognition problem has beesiywstudied involving
biological researchers, psychologists, and computenssis. This interest is moti-
vated by the numerous applications it involves, such as hucoaputer interaction
(HCI), content-based image retrieval (CBIR), securitytsys and access control
systems[[125]. Unfortunately there is still a big dispabigtween the performances
achieved by existing automatic face recognition syster®Sg} [125| 9/7] and hu-
man ability in solving this task. In particular, the exigtiimethods behave very well
under controlled conditions, but their performances droywrd significantly when
dealing with uncontrolled conditions [125, 112] 97]. Tharteuncontrolled con-
ditionsrefers to several problems affecting the images, includamations in the
environmental conditions (lighting, clutter backgroundjriations in the acquired
face (expressions, poses, occlusions), and even theyqoélihe acquisition (fo-
cus/blurred). All these problems have high probability &pppen in real applica-
tions, thus they need to be faced to have a robust face ramgsystem (FRS).

71
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Many solutions have been proposed to face each single pnobkveral illumi-
nation invariant FRSs have been presented (e.g! [107, 48360 and also systems
dealing with variations of the expression and occlusiong. (84,[7]). However,
such systems are specialized on one problem, while in regditagions, it is neces-
sary a system able to deal with any possible imperfectioen edded together. In
this perspective a big effort has been done: the FRSs prdpo$&22,/38[ 104, 95]
deal with uncontrolled images in general, achieving higHqrenances. But again
when trying to adopt them in real applications other prold@mse. The first con-
cerns themumber of images per subjectxjuired for training: many FRSs [122,138]
behaves well only if a sufficiently representative trainseg is available which,
however, is not possible in many applications. On the copfraliterature we find
works where the training phase requires only one image fggest(facing the so
calledSmall Sample Size problg(i70,[96], but then the performances are too poor.
Another question concerns the step of face cropping: mastoaghes[[104, 95]
present results on face images cropped using manual aedddadmarks, but this
is not indicative of the performances we would have applyirgmethods on au-
tomatic detected faces. In fact it has been amply demoesitthat the system per-
formances decrease drastically in presence of misalighffi8h This problem has
been tackled in[124, 118] showing extensive results. Ofdndprs to take into ac-
count evaluating a FRS are its scalability, namely, "doessystem perform well
even with big galleries?”, and the computational cost ofalyorithm: real-time is
often required in applicative contexts.

Existing FRSs can be classified in holistic (H) and localdab@ ). The holistic
approaches are suitable in case of low quality images cerisgithey do not re-
quire to design and extract explicit features. The most fgofare Eigenface [115],
Fisherfacel[14] and Laplacianface [64]. More recently a apgroach([123] based
on the sparse representation theary [41, 25] has been mdppmoving its effec-
tiveness. This method aims at recognizing a test image aaraespepresentation
of the training set, assuming that each subject can be mEmezbas a linear com-
bination of the corresponding images in the training see ain disadvantage of
this method, and of all the holistic approaches in genesahat it requires a very
precise (quasi-perfect) alignment of all the images bothértraining and in the test
sets: even small errors affect heavily the performarices B@&ides, they require to
have numerous images per subject for training. All theseatheristics are not con-
ceivable for real world applications. The local-based rodthextract local features
either on the whole facé [92] or in correspondence to pecfidiacial points[[120].
By construction, such methods are more robust to variatansed by either illu-
mination or pose changes. Moreover they are more suitalleabwith face partial
occlusions[[90._79] that may occur in real world applicasiomheir main disad-
vantages are the computational cost and the fact that thgyreea certain image
resolution and quality, which cannot be guaranteed in realdxapplications.

In this chapter we propose both a holistic method and a Iggataach, high-
lighting their strengths and weaknesses.

The holistic approach follows [123], while being fast, reband completely au-
tomatic. The crucial peculiarity consists in the adoptearsp approximation algo-
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rithm, solving an underdeterminend linear system usingtheMAPS algorithm
[2] presented in chaptEt 2. Such method is based on suitgisehitzian type map-
pings providing an easy and fast iterative scheme whictsléadapture sparsity in
the face subspace spanned by the training set. With thigehthe method achieves
higher performances both in presence of unregistered acuhtrolled images.

The local-based approach we propose is also based &nrltid APS algorithm,
while it extracts local and multiscale information (eitmaw sub-images or Gabor
features) in correspondence to the visible parts of facesh Setting makes the
approach suitable to deal with partial occlusions causeelittner accessories (e.g.
sunglasses, scarves or hats), or hands or hair on the famsroexternal sources
that partially occlude the camera view. The main noveltywfalgorithm is that it
attempts to solve the face recognition problem with a setedkiclassifiers com-
bined by the majority vote rule to create a strong FRS thasdti@s among multiple
linear regression models, being robust to partial occhssand misalignments.

3.2 Holistic Face Recognition byk-L 1M APS Algorithm

In this section we propose a completely automatic and faSt IB&&sed on the sparse
representation (SR) method. Both the training and the &tstare preprocessed
with the off-the-shelf face detector presented.in [116fphe eyes and mouth lo-
cator presented in [19]. The obtained face sub-images ajeqted in the Fisher
space and then sparsity is accomplished applying the lgganoiposed algorithm
k-LIMAPS [2]. Such method is based on suitable Lipschitzian typeqimggs pro-
viding an easy and fast iterative scheme which leads to oapparsity in the face
subspace spanned by the training set.

We tested out method on the Yale, Yale B Extended [56], ORI, B&NCA [L1]
and FRGC version 2.0 databasel|[93], and compared it with&& 8ethod. These
experiments prove that, despite the system is completédyraatic, it is robust with
respect to misalignments and variations in expressionuwmnihation.

3.2.1 Eigenfaces and Fisherfaces

Holistic Face Recognition algorithms deal with face imafygsg to extract global
features describing the face in its wholeness. In this geatie outline two fun-
damental techniques used to extract interesting featwefsiufor solving the face
recognition problem. These techniques are low sensitil@¢@ variations in light-
ing intensity, direction and number of light sources andifteckent facial expres-
sions.

The first is the principal component analysis (PCA) thataots a set of features
called Eigenfaces which maximize the total scatter ovemthele training set. The
second method exploits the information given by the labélhe training set to
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extract features called Fisherfaces which are the mostidiisative as possible
among the different classes.

3.2.1.1 Eigenfaces

The Eigenface method [1114, 169], is based on the principalpmomant analysis
(PCA) also called Karhunen-Loéve transformation for disienality reduction .
It applies a linear projection from the image space to a latierensional feature
space so that the chosen directions maximize the totaksaattoss all classes, i.e.
across all images of all faces. Choosing the projection vriaximizes total scatter,
the principal component analysis retains unwanted variatsuch as for example
facial expressions and illuminations.

Let {xq,...,xn} with x; € R" be a set ofN images taking values in an-
dimensional image space, and assume that each imdmgongs to one of th€
classeq1,...,C}. Let us consider a linear transformation mapping the oaigin
dimensional image space into kdimensional feature space , withc n. The new
feature vectory; € R' are defined by:

yi=WTx withi=1,...,N (3.1)
whereW € R™! is an orthonormal column matrix.

Let St the total scatter matrix defined as

N
Sr= -Zi(xi — ) —p)"

whereu € R" is the mean image of all samples, then after applying thalirans-
formationWT, the scatter of the transformed feature vediar... yn}is WTSw.
Principal component analysis choose the projedfigp such that the determinant
of the total scatter matrix of the projected samples is maérth

Wt = argmaxW' SrW|

with Wopt = [w1,..., W] is the set ofn-dimensional eigenvectors & corre-
sponding to thé largest eigenvalues . Considering these eigenvectorshagame
dimension of the original images, they are also called Hiysss.

If the principal component analysis is presented with insagefaces under
varying illumination , the projection matri: will contain principal components
which retain, in the projected feature space, the variatioa to lighting. For this
reason, the points in the projected space will not be wediteled according to the
subject identity.

The eigenvectors that catch the variance of lighting arefitse eigenvectors,
thus, discarding them permits a reduction of the variatioa @ lighting, and con-
sequently a better clustering of the projected samples.
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AR
= HE;

Fig. 3.1 Examples of Eigenfaces of some subjects of the YaleB databas

3.2.1.2 Fisherfaces

The principal component analysis projections are optirmakéconstruction from
a low dimensional basis but they may not be optimal from artfisnation stand-
point.

Since the learning set is labeled, it makes sense to usenfoisriation to build a
more reliable method for reducing the dimensionality offéeture space .

Fisher Linear Discriminant analysis (FLD) [54,]114] is a dlapecific method,
in the sense that it tries to reshape the scatter in order k& mhanore reliable for
classification. This method selects the projection mawixf (3.7) such that the
ratio of the between class scatter and the within classescattmaximized. We
define the between class scatter matrix as:

C
So= 3 Mk~ 1) (b~ W'

and let the within class scatter matrix be

Sw = iixj; (5 = H) (xj — k)T

wherey; is the mean image of the claXsandN; the number of samples in the
classX;. If Sy is non singular, the optimal projectidfb; is chosen as the matrix
with orthonormal columns which maximizes the ratio betwdendeterminants of
the between and the within class scatter matrix of the ptejesamples respectively

-
Wopt = arg n\}/ax|W SBW|

WIS &2

The matrixWopt = [Wi, ..., W] is the matrix that contains the generalized eigen-
vectors ofSs andSy corresponding to thegeneralized eigenvalues
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SW = AiSyw; withi=1,...,1

Fig. 3.2 Examples of Fisherfaces of some subjects of the YaleB ds¢aba

The maximum number of nonzero generalized eigenvalués-i4, so an upper
bound onl isC — 1, whereC is the number of classes.

In the face recognition problem, a possible difficulty than e appear is that the
within class scatter matri®y € R™" can be singular. This stems from the fact that
the rank of the matri§y is at mosiN — C, and in general the number of imade
the learning set is much smaller then the numbef pixels in each image, making
possible to choose the mati¥ such that the within class scatter of the projected
samples can be made exactly zero.

To avoid this problem in[14] it was proposed an alternativehe criterion[(3.2)
called Fisherfaces , that projects the image set to a loweemsional space such
that the within class scatter mat®y is nonsingular . This can be achieved by using
the principal component analysis to reduce the dimensibtiseofeature space to
N — C and then applying the standard Fisher linear discrimira) to reduce the
dimension taC — 1. The projection matri¥\,p; can be rewritten as

Wt;rpt = Wf-ﬁdW;-)rca (3.3)

where
Whea = arg r\r)va){WT STW]|

[WTW;2SeWocalV |
IWTWI Sy WocaWV |

Ws g = argmax
fid g X

whereWpc, is the projection matrix of the principal component anaysidWy g
is the projection matrix of the Fisher linear discriminant.
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3.2.2 Classification Based on Linear Sparse Representation

The classification process aiming at identifying a subjeithiw a fixed group of
individuals can be successfully carried out using techeschased on sparse repre-
sentation[[123].

This process can be recasted into the problem of finding thesept represen-
tation of a test image, usually represented by a vector intatda feature space
x € Z CR" into a frame (calledlictionaryin this context)® = [@, ..., @] as-
sumed to be a wide collectiom(> n) of vectors (oatoms) in 2", each one coding
a subject belonging to a fixed training set. In this settingparse representation for
X means to linearly combine the fewest possible training esage., the smallest
number of atoms such that= 3; ai@, or equivalently in matricial form

®da =x. (3.4)

Ideally, under condition of underdetermination of the eyst{3.4) the sparsest
solution can be found as a unique solution of the NP-hardrapgition problem
BPG

In order to make effective the general techniques based arsisp promotion
two main issues must be taken into account:

1. projection— it helps both in extracting holistic features to discriatimamong
subjects and in projecting high-dimensional face imagewsdimensional
feature spaces, so making computations faster.

2. approximation- the recovery by the exact superposition of few atoms is some
times unlikely for holistic feature spaces, therefore hiéster for the sparse rep-
resentation to focus on constructing the best approximati@n image with a
linear combination ok, or fewer, atoms from the dictionary, as stated by the
sparse approximation problem:

min || ®@a —x|| subjectto | oy <k, (LSO)
acRM

where|| - || represents the standard Euclidean norm.

Following [123], the previous defined sparsity frameworhk & used to deter-
mine, givenc distinct classes or subjects, at which one a given test irbatgmgs.
To this end data are arranged such that the training sanmolesthei-th class are
represented as column vectors of the mafix= [xq,...,X,] € R™". The training
set collecting all subjects is then obtained by stackingradtricesA; into matrix
A=[Ag,..., Al

As a usual practice, a dimensional reduction is carried guinearly project-
ing high-dimensional face images to low-dimensional fempaces by means of a
suitable matrixW. Thus the dictionary for the sparse recovery is determined as
® =W A Successively, in the classification stage, given a tegjéxahe projected
sampley =W xis used to find a sparse vecmisuch thai®a ~ vy, i.e., to solve one
out the many sparsity problems as, for instance, the prolkééenred by[(LSD).
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In the purpose of solving the membershipf the test image, one looks for
the linear span of the training samples associated to thigatilthat better ap-
proximates the feature vectegrin other words, by denoting with; the coefficient
vector whose only nonzero entries are the oneg essociated to class(zeroing
all others entries), the identity gfis found minimizing the residual with the linear
combination®d;, i.e., by applying the discrepancy rule:

identity(y) = argmingp, ¢ [ly— a4l (3.5)

3.2.3 Classification bk-LIMAPS

The holistic FRS we propose here, namkl.IMAPS _HFR, follows the setting
of the general framework introduced in the previous sectwinile adopting the
k-LIMAPS algorithm to solve the sparsity promotion.

The entire process for face recognition usiaggIMAPS is summarized in the
flow diagram of Figur€3]3 and consists in the following steps

Training Images

LDA |
Sbj.1 Features
Sbj.2 LDA | |.] Dictionary
Features Creation
e Error Error Error
Sbj.m Features [
I .IIII T S
j Sbj.2 Sbj.m
Test Image S j‘ !
v Subject Identificatio
(Minum Error)
LDA Sparse
—> > .
Features Representation Sbj.2

Fig. 3.3 Thek-LIMAPS _FR system.

1. Projection— which embed training and testdimensional images in the LDA
space (c— 1)-dimensional vecto)sin order to extracts holistic facial features
using the matri¥X\{ pa as projector.

2. Sparsity— which finds a sparse representation of a test imagebuilding the
dictionary® =W pa A € R D> (with c— 1 < n) and applying-LIMAPS to
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the projected testimage=W pa x using dictionary®, an initial guessig = Py,
and the sparsity parameter
Classify— which finds the identity ok by applying rule[(3.5).

3.2.4 Databases

As claimed before, our goal is to define a FRS that works indéeetly of the ac-
quisition conditions. In order to verify this independenee test our FRS on several
databases that differ significantly one from the others véifipect to several aspects:
the illumination conditions, the photo sharpness, the faase and expression, the
context, and the subject cardinality. In particular in eaf.1) we report the results
obtained on the following databases:

1.

Yale db: contains 165 grayscale images of 15 individuals with hoemegus
background. There are 11 images per subject, where the ssxpne(neutral,
happy, sad, sleepy, and wink) and the illumination condgicentral/right/left-
light) are varied. The subjects are also acquired both withithout glasses.

. YaleB + Extended YaleB db[56]: contains 21888 grayscale images of 38 in-

dividuals acquired in 9 poses and 64 different illuminasioall with homoge-
neous background. For our experiments we considered thgesnaith frontal
faces under any illumination conditions (2432 images).

. ORL db [88]: contains 400 grayscale images of 40 distinct subjiectsontal

position and with homogeneous background. The images wakea &t different
times, varying the lighting, facial expressions (open &elbeyes, smiling / not
smiling) and facial details (glasses / no glasses).

. BANCA db [11]: it is a large, realistic and challenging multi-modailtabase.

For our experiments we refer to the sections Controlled addefse.Con-
trolled: it consists of 2080 images of of 52 people placed in fronhefcamera
and looking down as if reading. The images were acquired iiffdrent ses-
sions. The images have homogeneous background whiledharil&tion condi-
tions vary from daylight to underexposestiverse like the Controlled section
it consists of 2080 images. The main difference is that tfekd¢paund is non-
uniform and the image quality and illumination are poorer.

. FRGC version 2.0 db[93]: this dataset reports images of 466 people acquired

in several sessions (from 1 to 22, varying from person togrgrover two pe-
riods (Fall 2003 and Spring 2004). A session consists ofrages: foucon-
trolled and twouncontrolled both acquired with either neutral or smiling face
expression. Controlled images are acquired in frontal pegh homogeneous
illumination, while the uncontrolled ones represent serdéces, often blurred
and acquired in several illumination conditions. For ouperxments we con-
sidered only the subjects with at least three sessions pedp@his brought us
to 384 subjects, in the case of the uncontrolled section38ddubjects for the
controlled one.
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Table 3.1 Database description. From the left to the right the coluemesthe database name,
number of subjects, number of images, background, illutinaexpression, timing and the image

3 Face Recognition

quality.
Database N.sbj | N.Imgs. | Back. | lllum. Expr. | Timing | Qual.
Yale 15 165 hom. | varies | varies n good
ORL 40 400 hom. | varies | varies y good
BANCA Controlled 52 2080 hom. | good | reading y good
BANCA Adverse 52 2080 clutter | poor | reading y bad
Extended Yale B (frontal) 38 2432 hom. | varies | neutral n good
FRGC v.2 Controlled 394 5726 hom. | good | varies y good
FRGC v.2 Uncontrolled 384 5248 clutter | poor | varies y bad

3.2.5 Experimental results

In this section we present the experimental results obdaimening our system
on several public databases.

All the experiments have been carried out on images autoaligtiocalized
with the face detector proposedin[117] followed by the eyresmouth locator
presented il [IT9No human interventiois required. The misalignment we deal
with is exemplified in Figl_314.

-
.

Fig. 3.4 Examples of automatic cropping on uncontrolled imagest (ine from the FRGC v.2
db; second line from the BANCA Adverse db).

The number of images in the training set has been delibgrhatet low k vary-
ing between 3 and 5) in order to emulate real world settingge Mesults we
report have been obtained mediating over 100 trials; at #acdtion,k images
are randomly selected for training and the remaining ard tseonstruct the
test set. Comparisons have been carried out with the statee@rt SRC[[123],
with a feature space dimension equal to 100, which is a goothboomise be-
tween the performances and the computational costs.

We first set up several experiments referring to a subseed#RGC 2.0 dataset.
The choice of this database is due to its high subject cdityimad to its rich-
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Table 3.2 The face recognition rate (%) on the FRGC 2.0 controlledyingrthe cardinality. In

brackets we report the number of features which broughtab percentage.

# Subj 50 100 150 200 239
k=3 | 97.6 (100)| 96.4 (180)| 95.6 (200)| 94.9 (340)| 93.9 (360)
k=4 | 98.4 (100)| 98.3 (200)| 97.0 (250)| 96.9 (390)| 95.4 (490)
k=5 | 98.8 (160)| 98.2 (230) | 98.2 (280)| 97.2 (340)| 97.2 (390)

ness in the acquisition conditions (both controlled andomtmlled), allowing
to analyze our FRS under several critical aspects. In pdatiove first explored
the system scalability considering only the controlled images of people with
neutral expressions, we tested the system performanagsrieating the sub-
jects cardinality. As shown in Table_3.2, the decrease dbpeances is more
important for small values .

Second, we investigated how tlegpression variationinfluences the perfor-
mances. In the first two columns of Taljle]3.3 we report theltesibtained
by both our algorithm and the SRC, varyikgand the pool of images: either
neutral or neutral and smiling of the FRGC 2.0 database. Asavesee, the
expression variation causes a loss of less than one pegegmint for both our
method and the SRC, showing a desirable invariance to thessipns.

We explored the system behavior oncontrolledimages reporting the results
in the last column of Table—3.3. This is the more realistic ahdllenging sce-
nario, where the subjects are non-collaborative and thaisitign conditions
non-optimal. In this case the performances are poorergtaftgthe challenge
of the task. The low quality of these images affects the reitmy percentage
in two ways: first the face locator is less precise, resuliingiore misaligned
faces (see Fig.3.4). Second, the feature extractor itsalftt deal with less
discriminative information deleted by blurring, and eversleading informa-
tion caused by shadows or glasses. What we highlight hovietlee large gap
between the performance we achieve and the SRC ones. Caorffithat our
method is more robust in presence of misalignment and urdal®conditions.

Table 3.3 The face recognition rate (%) on 239 subjects of the FRGCéh@alled, neutral versus
neutral and smiling and FRGC 2.0 uncontrolled.

NEUTRAL NEUTRAL AND SMILING [ UNCONTROLLED

k-LiMapS SRC | k-LiMapS SRC k-LiMapS SRC
k=3 93.9(360) 92.8| 93.2(380) 91.8 77.1(390) 68.4
k=4 95.4(490) 95.3| 94.6 (500) 94.7 82.8(360) 74.7
k=5 97.2(390) 96.6| 96.3 (460) 96.2 87.2(380) 79.1

Secondly we investigate the behavior of our algorithm ofedéint databases
described ih 3.2]4, like Yale, Extended Yale B, Banca Cdieicand Adverse,
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ORL and the FRGC v.2 Controlled and Uncontrolled. With thiperiment
we wanted to demonstrate the robustness of our method indep#y of the
database in analysis.

Table 3.4 The face recognition rate (%) on some databases.

Database k=3 k=4 k=5
k-LIMAPS _HFR | SRC || k-LIMAPS_HFR | SRC || k-LIMAPS _HFR [ SRC
Yale 95.7 (26) 36.7 97.4 (46) 399 980 (44) 410
ORL 896 (52) 65.5 93.0 (66) 830 953 (54) 89.4
BANCA Co. 90.8 (148 811 94.3 (154 89.9 965 (190 938
BANCA Ad. 86.3 (148 774 90.7 (154) 87.5 939 (198 919
Ext. Yale B 89.3 (109 457 94.2 (114) 69.9 96.3 (146) 79.7
FRGC v.2 Co. 90.1 (565) 87.8 94.0 (625) 924 96.0 (685) 94.4
FRGC v.2 Un. 725 (530) 65.6 79.7 (530) 721 84.6 (634) 751

The experiments have been carried out keeping low the nuofberages per
subjects in the training set and repeating 100 times eagfessetting. In table
[3.4 we report the average results; regarding the standaidtib®s, we remark
they are always very low (varying between 0.013 and 0.0h8l)¢cating a good
stability of the system. Results are presented for eaclbdaga reporting for
eachk: the best results obtained varying the number of featnris brackets
we indicate the corresponding valuemfand the results obtained on the same
data running the SRC algorithm.
In the following we highlight some aspects crucial for th@laability of the
system in real applications: the robustness to possiblaligisnent produced
by the localization step (s€lc. 3.2)5.1); the low critigabf the parameter set-
ting (sec[3.2.5]2); the robustness in a wide range of aitigmisconditions
(sec[3.24); the low computational cost in testing phasel[3.2.5.3).

3.2.5.1 Face localization

In all the experiments the images have been cropped autatigtive applied
the face detector proposed in [116], followed by the eyesrandth locator
(EML) presented in[19]. The faces missed by the Viola-Jdaes detector are
not considered for the subsequent steps, while the misabgits caused by the
EML is managed by the FRS.
In order to give a quantitative estimate of the misalignnegrdr, we computed
the relative error measure introduced by Jesorsky [67] ddfas

_ max(]|G - G|, [IC - &)

deye =

G =Gl
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where the valueérﬂ stand for the eye positions output by the localization mod-
ule, while the value€; | are the ground truth of the right and left eye centers re-
spectively. This measure, which normalizes the localiwegirror over the inter-
ocular distance, is scale independent. We analogouslyedi@al,,o .»measure

as the mouth detection error normalized over the interayalistance. Accord-
ing to these measures, we can say that on all the datasetethedrachieves
both deye and dmouth < 0.25 in about 99- 100% of the processed images, ex-
cept for the uncontrolled sections of the BANCA and FRGC basas where

it achieves the 95%. A more precise localizatigly¢ and dmoytnh < 0.10) is
attained in the 85% of controlled images and 60% of the umotet sections.
Figure3.4 shows qualitatively the level of misalignmentdeal with.

3.2.5.2 Parameters setting

The algorithm requires to fix three parametdgshat is the number of images
per subject in the training sat; the feature space dimensionality, andhe
number of atoms selected ByL IMAPS .

a. Regarding, it is obvious that the bigger it is the better the perfornmenc
are. However, in order to emulate real world settings, wekdew (vary-
ing it between 3 and 5). This choice frames our FRS as a salttidhe
small sample size (SSS) problem.

b. The feature space dimensionalitylepends on both the database and the
value ofK. This is the reason why, whenever possible, it is advisable t
tunen for each experiment. Results reported in téblé 3.4 are basadhed
values ofn.

We remark, however that good performances can be achievtagse
equal to any value between the number of subjects in therigpget and the
number,w, of eigenvalues greater than a fixed value (e.g-1Qhe per-
formance trend in this range changes slowly, while overogrttie superior
limit w they drop down drastically.

c. Thek-LIMAPS algorithm requires to set the numisssf atoms to select
from the dictionary. This is not a critical parameter (vagyit between 2
and 10 no significant differences are encountered). In therixents we
sets= k: so doing in the best caseL IMAPS will select all and only the
k atoms in the dictionary corresponding to the current tasgbject.

3.2.5.3 Computational costs

A last but not least aspect to take in consideration whergdésj and imple-
menting a FRS is its computational cost: traditional apphea in the field of
the compressive sensing require to solve linear systenoptiag the expen-
sive simplex method. If on one hand this allows to achievé Ipigrformances,



84

3 Face Recognition

on the other hand, it is computational very expensive privgiby itself the
applicability in real applications.

Thek-LIMAPS _HFR is very fast being based on an iterative search strategy,
that in the case of face recognition arrives to convergeftee &ew iterations
(namely 5-10).

In particular, the MATLAB implementation of our algorithmms each image

in 0.01 seconds when referring to the most populous dictionaRGE con-
trolled), resulting in a real-time solution for the FR preiul.

3.3 Face Recognition with Occlusions bk-LIMAPS

Occlusions and variation of expressions are the most conufifboulties in
applications involving automatic FRSs. Sources of ocolusican be apparel
like sunglasses, eyeglasses, scarves and hats as welldsdramair covering
part of a face or even other objects placed between the caanerthe face.
Other kind of occlusions can be considered extreme vanaifdllumination
like dark shadows or excessive lighting.

Robustness to occlusions is essential for real world FR$acés are partially
occluded, holistic methods based on Eigenfaces of Fistesfil 4] cannot be
applied, since all the features extracted from the trais@tgvould be corrupted.
In this work we propose a local-based FRS nanielyiMAPS _LFR, com-
bining a set of weak local classifiers obtaining a strong amlist classifier,
suitable to solve the face recognition problem under ogzhss This algorithm
exploits two possible local features: the first, describd€@.B.2, called Multi-
scale Random Tessellations (MRT), consist of natural gestextracted from
face images; the second, are Gabor features (Gf) that wedritke contours
and local variations in spatial domain.

Thek-LIMAPS _LFR system consists of two phases: the dictionary construct
and the test phase. Regarding the first one, we proceedisglketnoccluded
images per subject and extracting from each of them a highbeu# of local
features (the same pool of features for all the imagésjictionaries are then
constructed, one for each featugdinearizing the corresponding information
extracted from each training images and placing them sided®yin the matrix
@,.

The testing phase is articulated in the following steps. &t fihe test image
is classified according to the possible occlusion (unoaafudglasses / scarf)
performed through the use of the EML locator. In the case Mk Bcator cor-
rectly localize eyes, the subject must be checked by thé detctor described
in [80Q] in order to determine the scarf possible presendee@tise, if the EML
fails to locate eyes, the face are classified as occluded hglasses. On the
basis of this information, we inhibit the occluded regioaterring to off-line
defined masks. In particular two binary masks, one corredipgrio sunglasses
and the other to scarves. The masks are mathematicallyilbesgersM (x, y):
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M(xy) = 0, if the pixel (x,y) is not occluded
27711, otherwise

EYy W

Neutral Face
Detected

Mouth Detected?

Glasses Detected

Feature Points

W Extraction

Fig. 3.5 Classification of occlusions and feature points extraction

M is used to define a feature property. kzdte a feature it and let(x;, y;) be
the center of the feature suppdntandw be its height and width respectively.
Then, given < g < 1, we say that is o-unoccluded if

o+%1  [ypt3] -
Ei:prf"j"j Zi:LyrgJ M(Iu J) <o
wh -

Applying this inspection, a subs8of dictionaries is selected for classification
so that
@, € Sif zis o-unoccluded.

Each®, € Sis a weak classifier behaving as the one presented in s€cldh 3
The final decision is determined applying the majority vaike ras described
in the next subsection. Finally, at the end of this sectiordefil two possible
features to be casted in tkelL IMAPS _LFR system.

3.3.1 Combining Classifiers

LetD = {D,,...,DL} be a set of classifiers, called also pool or ensemble, such
thatD; : R" — Q, whereQ = {wx, ..., w}, assigns to eacke R" a class label
wj € Q. The majority vote method for combining classifiers decisids one
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of many methods that assign xothe class labety; that is supported by the
majority of the classifier®;.

In general given the votes afclassifierds,...,D., we define a majority vote
classifier as follows

C(x) :argmaxL w;jl (Dj(x) =1i) (3.6)
i =1

wherew, ..., w_ are weights such thgt; wj = 1, andl (.) is an indicator func-
tion. If weights arew; = % (3.8) can be rewritten as

C(x) = mod€gD1(x),...,DL(X)} (3.7)

where modg) is the value that appears most often in the set of classifiers.
Finding independent classifiers is one aim of classifiemfusnethods for the
following reason. Let be 0odd,Q = {wy, w}, and all classifiers have the same
classification accuracp € [0,1]. The majority vote method with independent
classifiers decisions gives an overall correct classificagiccuracy calculated
by the binomial formula

Pmaj = L:ﬁ ('I') p-i(1—p)

where|x| denotes the largest integer less than or equal The majority vote
method with independent classifiers is guaranteed to giigheehaccuracy than
individual classifiers whep > 0.5 [72,[71].

3.3.2 Local Features

The first pool of features we are interested in investigatimgsists of patches
extracted varying randomly the position, the height andviidth. These raw

data capture local details, varying the scale and thus thdae details.

In figure[3.6 we can see examples of random patches maintain@eésence
of different kind of occlusions. We observe that both theeaaning and neutral
expression images are unoccluded, thus their occlusioksraas set to O for
all pixels.

The second pool of features we investigate is obtained agpéybank of Gabor
filters in correspondence to a certain number of points raniglextracted from

the non occluded face portion.

A Gabor filter is a linear band pass filter, widely used for edggection, ob-

tained by modulating an harmonic sinusoidal function witassian function.
The filter has a real and an imaginary component represeatthggonal di-

rections.
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Fig. 3.6 Example of Random Pieces for different occlusions.

The impulse response of a Gabor filter is defined as

Xy N

gfea|(xvy; A ) 97 (P» g, V) =€ 202 COiZTl’X “+ qD)
_ X2 1y%y2 . X

gimag(x7 y’ A ) 97 (pa ag, V) =e 20 Sln(ZTTX —+ (p)

Real Part .
Gabor Filter  'Maginary Part

Fig. 3.7 Real (cosine-type) and imaginary (sine-type) part of thputse response of a Gabor
filter.

wherex' = xcog0) + ysin(@) andy = —xsin(0) +ycog6).
The parametek is the wavelength of the sinusoidal functidghis the orienta-
tion of the Gabor functiong represents the sigma of the Gaussian envelppe,
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specifies the ellipticity of the support of the Gabor funotandg is the phase
offset.

The real and the imaginary components of the Gabor filter neaysed individ-
ually or combined to form a complex number as defined below:

X21y/? .
g(xy;A,0,9,0,y) =€ Gt e +o)

The response of a Gabor filter to an image is obtained by a 2Robation
operation. Let (x,y) denotes the image and I&(x,y;A,0,¢,0,y) be the re-
sponse of a Gabor filteg(x,y; A, 0, @, 0,y) at point(x,y) on the image plane.
The responsé&(.) of the Gabor filter is obtained as

G(X,Y;A,0,9,0,y) = 1(u,v)xg(X,y;A,6,0,0,y)
+o00
= // I(U,V)g(x—U,y—V;)\,e,(p,U,V)dUdV

In figure[3.8 we show the amplitude of response of Gabor filtétts different
orientations and scales applied to a face image.

Wiskott at al. in [121] suggest a set of Gabor filters with 5Stepdrequencies
and 8 distinct orientations to create an efficient filter bank

Parameters are resumed in tdbld 3.5

Table 3.5 Parameters of Gabor filters.

Parameter | Symbol | Values |
Orientation ] {0, 7 2; 3m 4n om em Im
Wavelength A {4,41/2),8,8V/2,16}
Phase (0] {0, 7}
Gaussian Radius o {4,41/2),8,8V/2,16}
Aspect Radius y 1

Gabor filters are among the most popular tools for facialuieaextraction.
Their use in automatic face recognition system is motivatetivo major fac-
tors: their computational properties and their biologreddvance.

When exploited for feature extraction, a filter bank withesafilters is usually
created and used to extract multiorientational and muliesfeatures from the
given face image.

By convolving face images with the Gabor kernels of the fittenk previously
defined, we would have a total of 40 Gabor filter response imableese im-
ages could be used as features, but their high dimensipmaditld make this
approach impractical.

To reduce the feature space, our approach consists in giegai@ndom points
spatially located in non occluded area of the image, and licutzing local
features through the application of the Gabor filter bank.
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Fig. 3.8 Example of features extracted convolving a subject withdgditters with different ori-
entations and scales.

3.3.3 Occlusion and Expression Database

Our goal is to test th&-LIMAPS _LFRS system in case of partial occlusions
or expression variations. To this end we adopted the[AR [Z&lohse that con-
tains images of faces acquired with different occlusiorsaith different ex-
pressions.

This face database was created by Aleix Martinez and Robama@ente in
the Computer Vision Center (CVC) at the U.A.B. It containgio%,000 color
images corresponding to 126 people’s faces (70 men and 5&mnjoimages
show frontal view faces with different facial expressioifismination condi-
tions, and occlusions (sun-glasses and scarves). Thagsottere taken at the
CVC under strictly controlled conditions. No restriction olothing, make-up,
hair style, etc. were imposed to participants. Each persaticjpated in two
sessions, separated by two weeks (14 days) time.

The same pictures were taken in both sessions.

All images are stored in raw file format of the form G-xx-yy& he letter 'G’
represents the gender of the subject and can assume the’MElfier males
and "F” for females, 'xx’ is a unique person identifier (fror@0” to "70” for
males and from "00” to "56" for females) and 'yy’ specifies tleatures of each
image; its meanings are described in the following table:

Neutral expression

Smile

Anger

Scream

left light on

right light on

all side lights on

wearing sun glasses

wearing sun glasses and left light on
10 wearing sun glasses and right light on
11 wearing scarf

12 wearing scarf and left light on

13 wearing scarf and right light on

14t0 26 second session (same conditions as 1 to 13)

O©CoO~NOOUTA,WNPEP
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3.3.4 Experimental results

In this section we present the experimental results obdainghe AR database run-
ning our local-FRS using both Multiscale Random Tesselfatind Gabor features

Table 3.6 Face recognition rate (%) for AR registered with 100 sulsjet00 trials.

k-LIMAPS _LFR | k-LIMAPS _LFR | SRC | PFI
Type Train Test MRT Gf
200 pieces 300 points
1 Glasses [1:414:17 [8,21] 98.15 94.50 97.50| 97.50
2 Scarf [1:414:17 (11,24 98.27 97.30 93.00| 93.50
3| Glasses | [1,5:7,14,18:20 | [8:1021:23 95.01 95.00 96.00 | 97.70
4 Scarf | [1,5:7,14,18:20 | [11:1324:2§ 96.45 97.17 91.50| 82.50
5| Glasses [1,2,5:7 [8:10,21:23 87.80 91.30 79.30 | 84.50
6 Scarf [1,2,5:7 [11:1324:26 92.05 95.53 82.30| 73.20
7 Neutral [1,2,5:7 [14,15,18: 20 98.94 99.76 96.20 | 98.80
8 | Expression [1:4,7] [15:17 95.77 96.47 91.00| 97.00

In all the experiments the images are automatically locat#dthe face detector
proposed in[117] and automatically registered by the egds@outh locator (EML)
presented in[[19]. In case of sunglasses, the EML reportgyke absence, thus
we refer to the face localized by the face detector. In caseafves, the eyes are
generally correctly localized, allowing a partial regédion.

The results we report have been obtained mediating overXrienents, vary-
ing randomly the patches for the Multiscale Random Tess®ligMRT) and the
point locations for the Gabor features (Gf).

We setup two sessions of experiments. In the first we adopag8ésiper subject
for the training set = 8), according to the experiments reported in literatur&[12

In the second we redudgto 5 in order to test the system behavior in more realistic

conditions. In all cases the training images are non ocdu@emparisons have
been carried out with the state-of-the-art SRC [123] and thi¢ algorithm proposed
in [103,[105] that use a large features sets extracted jocedlach image.

In the first session, the training sets are constructed gsopea in [[12B]. In
particular the authors propose two scenarios: in the fidsifeed for the experiments
1 and 2 in the tabld (3.6)) the training sets represents aduject under different
expressions, while the illumination condition is constdmthe second (adopted for
the experiments 3 and 4 in the tale {3.6)), the expressiaiwiays neutral while
the illumination conditions vary over the training imagksthe second session all
illumination and neutral and smiling expressions are usedrining. Only in the
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case of test over the expressions, we enrich the training alitthe expressions,
reducing the illumination variability.

Experiments are run both on manually registered images aaditmmatic regis-
tered images. Results are respectively summarized inli@ @8) and in tabld (317).
We observe that in all the experiments we obtained a very tandard deviation,

varying between 0.022 and 0.037 indicating good stabiéiuits.

Table 3.7 Face recognition rate (%) for AR unregistered with 72 sutsjeb00 trials.

k-LIMAPS | k-LIMAPS | SRC | PFI
Type Train Test MRT GC

200 pieces | 300 points
1| Glasses [1:4,14:17 (8,27 84.40 82.74 52.56 | 83.80
2 Scarf 1:4,14:17 (11,24 95.51 96.50 88.46 | 70.90
3| Glasses | [1,5:7,1418:20 | [8:1021:23 78.21 81.60 56.55 | 74.50
4 Scarf [1,5:7,1418:2Q | [11:1324:2§ 92.86 95.95 84.33| 71.40
5| Glasses [1,2,5:7] [8:1021:23 65.60 66.84 44.02 | 62.80
6 Scarf [1,2,5:7 [11:1324:2§ 87.18 91.42 75.50 | 64.20
7| Neutral [1,2,5:7] [14,15,18:2Q 91.64 94.02 83.59 | 92.50
8 | Expression [1:47] [15:17 80.80 85.76 74.64 | 91.20

As we can see in tab[e_3.6, our local-FRS using 300 Gaborresatesults the
best classifier in almost all cases, except for the first expmt that use training
images with controlled frontal illumination but with vatians in expressions. In
this case the best results are obtained adopting the MRUIré=satThis behavior of
the Gabor features could be explained by the fact that the@(dter bank is very
sensitive to edges caused by expression variations, dorgupe training informa-
tion.

In the second most realistic scenario, where the imagesuaoenatically reg-
istered, the worst performances are obtained in the caskasgas occlusion. This
result confirms the difficulty already shown in tablel3.6 ofagnizing a person
viewing only the lower half of the face. Here the performadazp down even more
because of the higher misalignment: in case of occlusion thrd face detector is
adopted to locate the face.

As general consideration we can remark that the local-bB&%i does not re-
quire specific tuning, except the number of features to ggaeandomly. Obvi-
ously, a small feature cardinaliBwould compromise the system performances, but
at a certain level we observed that further increasing wafould be useless for the
performance improvement, while augmenting significarity¢computational costs.

Experimentally we seZ = 300 as a trade-off between performances and compu-

tational costs. In any case, considering the weak classdier independent, it may
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always be possible to evaluate in parallel the classifinatiage and merging results
by majority vote rule.

3.4 Conclusion

In the first part of this chapter we have proposed a hew apprfoaface recognition
in the framework of sparse recovery. Experimentally, westehown its capability in
producing well separated classes in uncontrolled contprésing its applicability
in real contexts.

We remark that the system has been applied on automaticaifized faces,
showing its ability in dealing with misalignment. Its apgbility in real contexts is
reinforced by both the good performances achieved havingfeamples per sub-
ject for training, and its low computational costs.

In the second part we have illustrated a new local-FRS thabawes weak clas-
sifiers to obtain a robust one able to work in difficult cormtis such as partial occlu-
sions, with different kind of environmental luminosity aitions and with different
facial expressions.

Experimental results show that the algorithm has high reitimg rate, showing
good stability performances both in case of manually regést images and in case
of automatic registration.

The promising results encourage us to research methodduoea¢he number of
classifier necessary to obtain a stable FRSs, investigatwgensemble techniques
and different kind of features to improve the classificatiapacity under occlusions
and under variation of expressions.



Chapter 4
ECG Signal Compression

Abstract In this chapter we present a novel and efficient signal cosgive al-
gorithm aimed at finding the sparsest representation ofrelgardiogram (ECG)
signals. In order to achieve high compression rate (CR)ntathod generates, for
each signal, its own base using the first seconds of the ditgetl The algorithm
requires the user to fix a desired percent root square differéPRD). After a pre-
processing phase, where some kind of noise is suppresseB(6 signal is win-
dowed and sparse represented byikia MAPS algorithm with a number of coeffi-
cients adaptively estimated from the data. The found caefffis are then discretized
and rescaled in a convenient range and compressed withladegntropy-based
compression algorithm. To evaluate the proposed methedteithnique is tested
over a large number of both normal and abnormal ECG signataated from the
MIT-BIH Arrhythmia database. The performances are meakurterms of percent
root-mean square difference (PRD), normalized percentnean square difference
(PRDN), compression ratio (CR) and signal to noise ratioRpNOur algorithm
shows best results if compared with other methods proposkgiature, reaching
comparable compression ratios with lower root mean squéezehce error.

4.1 Introduction

In the last few years, the need of ECG signal recordings has erormously aug-
mented due to the increasing interest in health care. RerEE®G recording sys-
tems (e.g. holters) record ECG signals continuously fog ltime periods ranging
between several hours and a few days. One of the most impertaiem of holter
systems is the huge space required to store long time redordsxample a one
channel ECG signal sampled at a frequency of 512Hz with XKldfijuantization
resolution, recorded for a day (24 hours) require an amdiB8MB of storage size.

In recent years, many ECG compression algorithms have bearaped to en-
code digital ECG signals. They can be classified into two maategories: lossless
and lossy algorithms.

93
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The lossless algorithms such as the Run-Length Encodirg #fman [65]
and Lempel-Ziv-Welch [119] do not show reconstruction exwbile the compres-
sion ratio (CR) is generally small, conversely the lossy#tgms like Foveation-
SPIHT[32] and DCeg-MMF_[51] pay a quantization error to ddbtagher compres-
sion level.

The most classical compression algorithms apply some dataformations to
extract the most informative characteristics exploiting tedundancy of data. The
most informative coefficients are then encoded using diffelossless compression
algorithms.

Within this group many methods based on the Discrete Wavieiahsform
(DWT) [4], like the Set Partitioning in Hierarchical TreeRB1T) algorithm [73]
show good results in ECG signal coding.

In recent years, compressive sensing and sparse recowsmythas generated
significant interest in the signal processing communityaose of its potential to
enable signal reconstruction from significantly fewer degenples than suggested
by conventional sampling theory. Compared to conventi&@@b compression al-
gorithms, sparse recovery has some important advantages:

(a) Ittransfers the computational burden from the encauléite decoder, and thus
offers simpler hardware implementations for the encoder.

(b) The location of the largest coefficients in the wavelenhdm does not need to
be encoded.

Based on the fact that electrocardiogram (ECG) signals eaapproximated by a
linear combination of a few coefficients taken from a Wavélasis, in [94] com-

pressed sensing-based approach for ECG signal compreBsiosolving ECG de-

noising and compression problem, in [58] was proposed aorittign based on a
sparse separable 2-dimensional transform for both compled overcomplete dic-
tionaries.

In this chapter we propose a new compression algorithm #ngltss for each
block of a signal, the sparsest solution of an underdetathiimear system, in a
frame generated on the basis of the first second of the sigpetfl i

Conversely to the algorithms in the literature, we do not poass the signal
using random projection in a lower space, but we use the sglargpresentation of
the signal in a natural basis.

4.2 The Electrocardiogram

A great variety of electrical signals are produced by the &orbhody due to the
chemical activities both in the nerves and in the musclesoigrthe others, the
heart leads to a characteristic pattern of voltage vanatio

The registration and analysis of these bioelectrical diEs/are very important
processes in fields such as the clinical research.
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The heart’s electrical activity is measured by electrodhes &re placed on the
skin. The amplitudes, polarities and also times and duraticthe different com-
ponents of the ECG mainly depend on the location of the eldes on the body.
When electrodes are placed with medical purpdses (4.1ktémelard locations are
on both the arms near the wrists, the left leg near the anktesaveral points of the
chest called precordial positions. Moreover, a referefeetr®de is usually placed
on the right leg near the ankle.

AR
it

Fig. 4.1 The standard leads (top) and the augmented leads (botttiety the limb electrodes (left
arm, right arm, left leg) used to record the heart’s eleatrixis in the frontal plane.

ECG can be viewed as pseudo periodical signals, charastieby elementary
beats in the specific waveform PQRST. The cardiac cycle begith the P wave
which corresponds to the period of atrial depolarizatiothia heart. It follows the
QRS complex, which is the most recognizable feature of an E@&form and
corresponds to the period of ventricular repolarizatione T wave succeeds the
QRS complex ending the cardiac cycle. Occasionally a smaihike can be present
at the end of the signal, although not containing significéagnostic information.

Another characteristic of the ECG is the interval, that estiming between pairs
of ECG features (i.e. RR or ST intervals). Such feature isrehginterest since it
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ll? R-R Interval ||Q

L
Qs
Fig. 4.2 Wave definitions of the cardiac cycle. In figure are noted theale, the QRS complex,
the T wave and the R-R interval.

provides a measure of the state of the heart and can indi@présence of certain
cardiological conditions [34] or diseases.

4.3 ECG Preprocessing

The aim of the preprocessing phase is to improve the qudlitiieoelectrocardio-
gram signals. The kinds of noise that can disturb the ECGasigie both low fre-
quency baseline wander (BW) and high frequency (50-60 HRend he first is
caused by the respiratory activity while the latter by eitbkectrical power line,
poor electrode contacts, body movements or muscular éesvi

In the next subsections we describe the preprocessing pisaseto suppress
noise in our experiments.

4.3.1 Baseline Wander

Some considerations should be taken into account in degjgniinear time invari-
ant highpass filter aimed at removing the baseline wander:

e The cut-off frequency should be chosen so that the cliriid@rmation in the
ECG signal remains undistorted while the baseline wandeni®ved. Indeed, if
we chose a too high cut-off frequency, the filtered signalligcontain unwanted
artifacts with oscillatory component highly correlatedhe beat rate. To this end
a reasonable cut-off can be fixed & ®1z: if the patient is retired, the frequency
content of the baseline wander is usually belo#8z and the lowest frequency
components of the ECG spectra are approximatéy 61z.

< Linearphase is highly desirable in order to prevent phagentions which would
alter wave properties of the cardiac cycle such as the durati the QRS, the
ST-T segment level and the duration of the T wave.
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The Finite Impulse Response (FIR) filters would satisfy the tequests, but
they have the disadvantage to have high order. On the cgntinarinfinite Impulse
Response (IIR) filters have a lower order, but they have aimes phase response.
To overcame this problem we adopt a forward-backward lIRffiltectifying the
nonlinear phase.

3.0
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Fig. 4.3 Initial ECG sample (top) and after the IIR filter for baselimander (bottom).

4.3.2 Powerline Interference

Another common source of noise in ECG signals is the elecgrat field caused
by powerline. This kind of noise is characterized by 50 or &#pending on the
country power line frequency), possibly accompanied byssgharmonics.

Various precautions can be attempted to reduce the efféttssokind of in-
terference. For example we could either surround eletilieadces that can cause
line noise or ground and shield the location of the devicadolunately, these
shrewdnesses are often not sufficient to remove the powenliise, thus requir-
ing to perform signal processing. To this end linear timedostop notch filters are
generally applied.
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4.4 R - Peak Detection

A basic task necessary for our electrocardiogram (ECG) cesson algorithm is
the R wave peak detector. This task is necessary both fadibgithe dictionary
used in the sparse representation phase and for the conopretzge that they re-
quire RR signal bloks. To detect the peaks in ECG signals anesncounter some
difficulties, i.e. irregular peak form, irregular distantoetween peaks and presence
of low-frequency component due to patient breathing etc.

In literature many algorithms for QRS and R peak detectioreypeesented. The
principal techniques are based on the filtering and threlgmgbf the signal [63, 89],
wavelets|[36], 1] and template matching][30]. In our algaritive use a simple and
inexpensive method to detect R peaks, that does not preiséovmation about the
Q and S waves, that are not useful for our purpose.

Let assume to have a digital ECG sigsat (si,...,5) € R". The first step
in the ECG peak detection algorithm is to remove the low4dmty components.
We apply a direct Fast Fourier Transform (FFT), remove the flequencies by
thresholding and reconstruct the ECG signal by applyindkierse Fast Fourier
Transform (IFFT).

The second step is to find local maxima using a windowed neaiifilter. This pro-
cess puts to zero all the values in the window except the loneximum.

The last step is to remove the small values that called falséipes, i.e. high volt-
age T waves. To do this, we threshold the local maxima founidérprevious step
with appropriate value that can be easily set equal to a ptage of the absolute
maximum of the signad.

4.5 Compression Method

The algorithm for ECG signal compression and reconstrodggosummarized in
Fig.[4.4. It consists of a block-wise sparse coding precégextandard preprocess-
ing and dictionary creation, and followed by a final losslesspression of sparse
coefficients, as detailed in the following.

4.5.1 Dictionary Creation and Signal Normalization

The ECG signaé= (s,...,%) € R" can be modeled as a mixture of two cardiac
activities:
S=Sya+Saa (4.1)
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Fig. 4.4 Block diagram of the signal encoding phase.

wheresaa € R" denotes the atrial activity signal asgs € R" represent the ventric-
ular activity signal.

The generation of good sparse models for the agialand the ventriculas,a
signals requires the use of dictionaries capable to fit teadistructure.
The approach proposed in [40] is based on the decompositihe &CG signak
in a redundant dictionarg> € R"™™M that is a composition of two sub dictionaries:
®an € R™ suited for the representation of the atrial activity algh € R™*2 able
to represent the ventricular activity (with= k; + k).
In this way the ECG signal can be represented as

S= Pyadva+ Panlan (4.2)

The subdictionaryby a in [40] was proposed to be generated by all possible trans-
lations of the Generalized Gaussian function

_4d
valt) = cexp— 25 @3)

wherec is a normalization constard, represents the positiob,is the scale and
is the peakiness, conversely the subdictionBgy was proposed to be generated by
all translations of the real Gabor function

gaalt) = cexp(— (t—Ta) 2) cos(%_a) — AG) (4.4)

wheren is the signal lengtha the peak positior; the normalization constartthe
scale andi 6 the phase.

In [[75] was proposed to learn the subdictionaries from tngjisamples by alter-
nating dictionary learning phases f@xa and @y a.
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In [53,[30] ECG signals, were represented usindpa, n waveforms analytically
represented by wavelets functions (like the Haar, Coifleeaubuchies18, Battle3
and Symmlet8) as atoms of the dictionapy

Alternative dictionaries are proposed iin [61]. The firstckif dictionary, called
Resampled Cardiac Pattern, uses as atoms cardiac pakenrbitween the middles
of successive RR intervals of the ECG signal. Each segmentaics the P wave,
the QRS complex and the T wave. The second kind of overcomgletionary is
called Resampled R-centered Cardiac Patterns and isdkiitttbeats patterns from
an ECG signal each of which is elastically shrinked andcitied with respect to the
peak of the R wave, until it is moved in the middle of the wavefo

Algorithm 5 Dictionary Creation
Require: - the ECG signas
- the numbem of atoms
- the lengthn of atoms
- the vector of peak positiorRR

fori=1,...,mdo

2. u= M < calculate the mean of the current RR interval
S = SRR:(RR+u—1) < set the left half part of the current RR interval info>s
4 S =SRR+p):(RRL1-1) < set the right half part of the current RR interval intos
z=(0,...,0) € R"(RR+1-RR) < create the zero padding vector
6: a=[5,2.9" < stretch the atom to the fixed size
end for
8: retun ®={q,...,@n} < the dictionary® >

Following the idea in[[61] to use natural patterns as repradi®n basis of the
ECG signal, in our algorithm we propose a dictionary cortd&rd from pieces of
RR interval sampled from the ECG signal that we want to cosgréiven an ECG
signal, an overcomplete dictionary is built using the cacdpatterns of the signal
extracted from an initial transitory of few seconds’ duratiTo do this, the signal
is segmented by taking patterns between successive RRalteEach segmerst
contains two halves of the QRS complex with the T-wave ondfteahd the P-wave
on the right.sis then normalized extending its length to the size of the@amate
by adding the right number of zeros in the middle.

The normalization meaning is obviously that of concentigathe distribution or
RR-peaks at the extrema of each segment in order to faeilitgt sparse represen-
tation stage. In fact, the more the signal is regular ancecltusbe a cyclostationary
process, the higher the sparse representation will be., Theitight overhead given
by the normalization phase is widely compensated by the tdgél of sparsity
that could be potentially reached. This stage should thgalyira first significant
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numerosity reduction of coefficients involved in the spaeggesentation and con-
sequently a first decisive step toward high compressioa.rati

500 T
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Fig. 4.5 Example of atoms from the original signslIn red the zero padding for atom length
normalization.

After normalization, taken a set af heart-beat segmengs (i = 1...,m) of size
n, with n < m, the dictionary® is obtained stacking all basis vectors @om3
so that® = [@,..., @], represents a linear mapping into a suitable feature space
& C R". This algorithm is summarized in Algorithrhl(5). Each atomtloé dic-
tionary @ so builted, ensures to represent the clinical informatischsas the PR
interval, the P wave configuration, the RR duration etc.

4.5.2 Sparse Representation

The main purpose of the sparsity promotion phase is to addypthoose the spar-
sity levelk in order to guarantee an upper bound on the discrepancy eetthe
i-th ECG segmend; and its sparse representatignTo this end we introduce the
main criterion involved in such approximation in order tepect the bounded error
requirement, namely the Percent Root-Mean Square DifteréPRD) defined as:
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Is — Sl
sl

In this setting, the early stage compression can be recagtethe problem of
finding the sparsest representation ofithle segmeng € . into the dictionaryd.
A sparse representation fgris a linear combination of as less as possible basis el-
ements, i.e., the smallest number of atoms suchsgthaty [, aj¢@;, or equivalently,
in matricial notation

PRD(s,§) =100

®a =s.

According td PD and fixed a bound PRE on the PRD, for each segmesnthe
algorithm based oR-LIMAPS (calledk-LIMAPS _ECG) aims at approximately
solving the previous system with the regularization proble

m]g?nﬂ all, subjectto PRDs,®d) < PRDnax (4.5)
ac

whosek-LIMAPS -based solver pseudo-code is listed in AlgoritBm 6.

Algorithm 6 k-LIMAPS _ECG - Sparse representation

Require: - dictionary pair{®, ®")
- signals
- guessed initial sparsity levij
- upper bound PRRax

a; < k-LIMAPS (5, @, @' ko)
2: if PRD(s, @a;) > PRDpax then
while PRD(s, @d;) > PRDpax do
4: ki < ki +1
a; < k-LIMAPS (5, @, @7 k)
6:  end while
else
8: if PRD(s, ®ai) < PRDyaxthen
while PRD(s, @d;) < PRDpaxdo

10: ki« k—1
a; < k-LIMAPS (5, ®, @7 k)
12: end while
end if
14: end if

Ensure: ak-sparse vectog; s.t.5 = § = ®q;

The algorithm takes as input the dictionabye R"*™, the pseudoinverse matrix
@7, the set of RR intervalS, the initial sparsity leveky and the maximum percent-
age root mean square difference (RRR) (4.8) allowed.

It starts finding thekg-sparsest representation for eagle S RR interval, then it
evaluates the PRD and dichotomously searches the miniknsorch thag™= @a,
with a kj-sparse vector and PR, §) < PRDnax
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4.5.3 Quantization and Compression

For long term signal ofN heart-beats the data we have to compress are of three
kinds:

1. the set of coefficients (amended by zeros elements) caatan the vectors
ai,...,an whose number amount i = 2{\‘:1k;. Fixed g bits for 2 quanti-
zation levels we simply rescale and quantize each coefficiarno the integer
number

Cq = round(ﬂ(zq - 1)) (4.6)
q .
Omax— Qmin
whereamin andamax are the minimum and maximum value coefficients.

2. Once processed coefficients, we have to compress théopssitf coefficients
different from zero, i.e., the characteristic vectfgg, , . .., Xay }, One for each
n-tuple a;j, identifying the positions of coefficients not null. The catenation
of the binary vectory,, forms a sparse bit-vector with ones ovenN bits,
with K < nN. An effective way to compress them is to use of Huffman coding
[65] for bit-vectors. It is partitioned into blocks of fixeize | and statistics are
collected on the frequency of occurrence of théi patterns. Based on these
statistics the set of blocks is Huffman encoded and the Iptitsalf is encoded
as a sequence of such codewords For sparse vectorsthblock consisting
of zeros only and blocks with only a single 1-bit have mucthkigprobabilities
than the other blocks so the average codeword length of tiffiendn code will
be smaller thar.

3. The last set of numbeps, ..., pn to be compressed are those involved in the
zero-padding normalization task, accomplished for eachrtHzeat. An effec-
tive way to encode such a list is with the delta encoding, tvistores the dif-
ferences between pairs of successive values in the lish 8acoding is par-
ticularly useful in our case where most of the differencessmall. The final
sequence of differences can be thus compressed much marergffi by most
of the compression algorithms.

Lossless Restore SparseDecoding
Coefficients 5= do

Decompression

Fig. 4.6 Block diagram of the signal reconstruction phase.
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4.6 Performance Evaluation

The compression performances for a cardiac sigiéfixed duration is computed,
as usual, in terms of Compression Ratio (CR) [102]:

_ #bits ofx

CR= ——.
# bits of X

In our setting the signal to be compressed is a sequendecafdiac segments=
[s1,-..,Sn] picked sequentially by a sliding window without overlappiAs already
mentioned in the previous section, to accomplish this taskawve to compress three
kinds of data: not null coefficients in each vectos characteristic bit-vectorg;
and padding numbeys. Putting all tighter, the CR thus becomes

N x fgx 11

CR= — 22—
Ba + By +Bp

wherefs the sampling frequency ar8l;, By, B, the number of bits coding coeffi-
cients, characteristic vectors and padding numbers régplyc

However, in the case of lossy data compressiongdtta compression ratidoes
not provide sufficient detail on the performances becausess not reflect distinc-
tion between the original signal and the reconstructedagign

Regarding the error, since PRD [6] measure heavily depemdseomean value
s of the ECG signas, it is sometime more suitable to use the normalized PRD
measure given by
Is—§l

PRDN=10 .
Is—9]
wheresis the mean value of the signal

Another measure typically used to evaluate the reconspruetror is theroot
mean square errofRMS) defined as

RMS— ,/%||s—§||g @.7)

wheren is the length of the window over which tHeMSis evaluated[[126].
The RMSquantifies the amount of the original signal discarded byctimapression
method, as measured by the difference between the sgmals.

Animportant aspect of performance evaluation is the chaofitee ECG database.
As the performance of a method depends on the noise levetviiaation should
be based on data representative of the application of sttere
In the next session we describe the PhysioNet MIT-BIH Arninyia database [59],
used to evaluate the performances of our algorithm.
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4.7 PhysioNet MIT-BIH Arrhythmia Database

PhysioNet offers free web access to large collections adrdEd physiologic sig-
nals (PhysioBank) and related open-source software (Bhyslkit) [59].

Since 1975 the Massachusetts Institute of Technology (Midgther with the Beth
Israel Deaconess Medical Center have carried out reseandeming medical ex-
aminations analysis and related points.

One of the first major product of that effort was the MIT-BIHmpthmia database
(downloadable from the PhysioNet web sjte|[59]) which waspketed in 1980.
This database contains standard test material for evafuatiarrythmia detectors.

The MIT-BIH Arrhythmia Database contains 48 half-hour exte of two-
channel ambulatory ECG recordings, obtained from 47 steguadied by the BIH
Arrhythmia Laboratory between 1975 and 1979. Twenty-theeerdings were cho-
sen random from a set of 4000 24-hour ambulatory ECG recgsdiollected from a
mixed population of inpatients (about 60%) and outpatiéatieut 40%) at Boston’s
Beth Israel Hospital; the remaining 25 recordings werecsetefrom the same set to
include less common but clinically significant arrhythmilaat would not be well-
represented in a small random sample.

The recordings were digitized at 360 samples per seconchpanel with 11-bit
resolution over a 10 mV range and each signal was indepdgdamntotated from
two or more cardiologists.

4.8 Experimental Results

In order to evaluate the compression performances oktheMAPS based com-
pression algorithm, we have performed extended computeriagtions. Tests were
conducted using the records 100, 101, 102, 109, 111, 112,1163117, 119 and
121 extracted from the MIT-BIH Arrythmia database|[63]. $besignals are 30
minutes registrations sampled at 11 bits with a sampling@&860 Hz.

Each recording was splitted in two parts: the first one of ai@uminutes, used
for the dictionary creation phase, the second one for thesepapresentation and
signal compression.

Our experiments were performed on an AMD Athlon 11 X4 630 Fssor 64 bit,
2.8 GHz processor with 4 GB of memory, implementing our athar in MATLAB
v.2011b.

In table [4.1) we can see results for the compression of {ketsel records. Each
one is quantized with two different quantization rate: 6 @rtits. With the 6 bits
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Table 4.1 Examples of original and compressed ECG waveforms, alotig tivé reconstruction
error with 6 bits of quantization. The signal duration foctéhnary grabbing is about 10 min, while
the block of compressed ECG is about 20 min.

Sig.Num.| CR |PRD|PRDN| SNR|Time Tot. | Time Dict.|Time Comp.
100 |78.20/0.72| 18.03|34.27] 30.09 9.47 20.62
101 |80.24/ 0.68| 14.66|38.40 30.08 11.23 18.84
102 |50.54 0.69| 18.45(|33.81] 30.08 9.86 20.22
103 |46.320.75| 12.57|41.47 30.08 10.22 19.87
109 [24.861.43| 13.70(39.76 30.08 8.36 21.73
111 |31.050.98] 26.20{26.79 30.07 10.29 19.78
112 |34.060.71] 16.58(35.94 30.08 8.42 21.67
113 |37.421.08| 14.08(|39.20 30.08 12.33 17.75
115 |38.260.65| 9.76 |46.53 30.08 11.27 18.82
117 |38.940.61| 14.42|38.73 30.08 14.12 15.96
119 |16.26 3.74| 32.19|22.67] 30.09 10.36 19.73
121 |26.67/0.67| 17.36|35.02 30.08 11.88 18.20

Table 4.2 Examples of original and compressed ECG waveforms, alotig tivé reconstruction
error with 7 bits of quantization. The signal duration foctéhnary grabbing is about 10 min, while
the block of compressed ECG is about 20 min.

Sig.Num.| CR |PRD|PRDN| SNR|Time Tot. | Time Dict.|Time Comp.

100 |75.120.68| 17.22(35.19 30.09 9.47 20.62
101 |76.460.60| 12.91(40.9 30.08 11.23 18.84
102 |48.47/0.68| 18.16(34.11) 30.08 9.86 20.22
103 |44.33 0.69| 11.57(43.14 30.08 10.22 19.87
109 |23.57/1.04| 9.97 [46.12 30.08 8.36 21.73
111 |29.440.73| 19.51(32.69 30.07 10.29 19.78
112 |32.550.68| 15.99(36.64 30.08 8.42 21.67

113 |35.490.75| 9.82 [46.42 30.08 12.33 17.75
115 |36.570.61| 9.18 [47.7§ 30.08 11.27 18.82

117 |37.13 0.56| 13.38(40.23 30.08 14.12 15.96
119 |15.24 1.90| 16.36(36.2(0 30.09 10.36 19.73
121 |25.290.60| 15.63(37.12 30.08 11.88 18.20

quantization we can see that the compression rate increasgsct to the 7 bits
quantization. The only signal that drastically decreasedtality passing from a
quantization of 7 bits to 6 bits is the record 119. This faatug to the irregularity
of the RR interval.

In figure [4.7) we can see an example of compressed signalossdt from the
record 100 of the MIT-BIH Arrythmia database. From the topillustrate the orig-
inal signal without baseline, the reconstructed signaltaederror vector. We note
that the errors are equally distributed over all the signal.
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Fig. 4.7 Compression of the record 100 wiiR= 75.12 andPRD= 0.68. (a) Original signal. (b)
Reconstructed signal. (c) Error signal.

In table [4.8) we summarize comparative results with theritlgms DCeq-MMP
[52] (Multididimensional Multiscale Parser) and with Fexion [33] + SPIHT algo-
rithm (Set Partitioning in Hierarchical Trees [101, 106j) fecords 100, 102, 115,
117 and 119.

In all the experiments conducted, the PRD of each signal wbsilated with

respect to the original non-processed signal mean. This tout to be necessary
because different preprocessing filtering can changefiigntly the average signal
magnitude, making the results incomparable.
As we can see for almost all the records, the compressionotattened by our
algorithm is the highest, maintaining a PRD less or compgaratother algorithms.
An exception is found for the record 119: in this case thisitregularities of the
RR interval and the presence of large muscular noise, timesadd the dictionary do
not represent properly the signal when only few coefficianésadopted.
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Table 4.3 Performance comparison of different ECG compression sekem

Method Record CR PRD

DCeq - MMP [52] 100 24 3.30
Foveation + SPIHT[33] 100 20 0.52
k-LIMAPS (7 bit) 100 74.12 0.68
k-LIMAPS (6 bit) 100 78.20 0.72
DCeq - MMP [52] 102 10 2.03
k-LIMAPS (7 bit) 102 48.47 0.68
k-LIMAPS (6 bit) 102 50.54 0.69
DCeq - MMP [52] 115 30.6 2.92
k-LIMAPS (7 bit) 115 36.57 0.61
k-LIMAPS (6 bit) 115 38.26 0.65
DCeq - MMP [52] 117 13 0.91
Foveation + SPIHTL[33] 117 32 0.1
k-LIMAPS (7 bit) 117 37.13 0.56
k-LIMAPS (6 bit) 117 38.19 0.61
DCeq - MMP [52] 119 20 1.83
DCeq - MMP [52] 119 10 1.07
DCeq - MMP [52] 119 8 091
Foveation + SPIHT[[33] 119 20 0.49
k-LIMAPS (7 bit) 119 15.24 1.90
k-LIMAPS (6 bit) 119 16.26 3.74

4.9 Garanteed-Percentage Root Mean Square Difference Emro

In this section we present a variant of the ECG compressgorighm explained in
[4.3. The main difference concerns the dictionary consoctn this variant it is a
concatenation of two dictionaries, one extracted dirdiotlyn a portion of the signal
to be compressed, the second is a random generated mattiwiteehe purpose of
improving the ability of sparse recoverylol IMAPS into a natural base. Moreover
no zero padding is added to the natural signals, thus no motbe superposition
of atoms are added and propagated to the compressed coeffiCide algorithm
proposed in this section ensures that the recovered sigsahlguaranteed PRD
error.
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4.9.1 Dictionary Creation

The dictionary is created by slicing a natural ECG signahwifiixed window size.

Atoms are selected as non overlapped pieces of signal th&dindin average) only
one beat. To do this, in the case the ECG signal used, belorsgbjects at rest, we
can simply choose a window size of dimension approximatglaéto the sampling
rate. This assumption is justified by the fact that in norneaiditions, the average
heart beat rate is in the interval of 60-80 bpm (beat per reinut an estimate of

the average beats per minutes is available, another pessibice for the temporal
resolution is given by the formula

abpm
60

tr=7_ * fg]

whereabpmis the average beat per minutes drsds the sampling rate frequency.

ECG Dictionary Atoms
300 ‘ ‘

250

200

150

100

50

Fig. 4.8 Example of Dictioanry Atoms.

In figure[4.8 we can see examples of dictionary atoms extlanyeslicing the
ECG signal with a temporal resolution equal to the samplateg.r

A generalization of the notion is presented|[in [8], where fwedamental mea-
sures of coherence are introduced: worst-case cohereddh@average coherence
, among the columns of a matrix.

Let @ be ann x mmatrix with unitary norm columng € R", [8] defines
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u((D):irpgg}I <Q,@ >| (4.8)
1
v(®) = mfmiax| j;%&i <@, > | (4.9)

respectively the worst-case coherence and the averageetmlesof®. The smaller
the worst-case coherence, the less similar the columnsh@®ather hand, the av-
erage coherence is a measure of the spread of the columnsicfeamary matrix
within then-dimensional unit ball. TNote that, in addition to havingaeorst-case
coherence, orthonormal bases also have zero average nobere

The uniqueness of the sparsest solution of an underdetedrinear system de-
pends on the worst-case coherence of the dictiodarRecalling the theorein 1.3:
i f a linear system®a = s has a solutioror such thaf]|a||o < %(14— ﬁ), than
o is the sparsest solution. Futhermore, the worst case anaédjis us that we can
recover superposition éfatoms as long as

1
< =
k< (@) vm (4.10)

The resulting worst case bounds for recoverable sparsigldéurn out to be overly
pessimistic and quite in contrast to the much better perdoica archived in practice.

The natural bases extracted from the ECG signal, does noaigte a low worst
case coherence, making difficult to recover the sparsestieolof the underdeter-
mined system.

It was established ir_[8] that when the average cohererid® is sufficiently
smaller thanu(®), a number of guarantees can be provided for sparse signal pro
cessing.

To decrease the average coherence of our dictionary, weatanate the dictio-
nary containing atoms extracted from natural ECG signdl witlictionary random
sampled from a Gaussian distribution.

Formally let® be the dictionary created by segmenting the natural ECGakign
and letW be the dictionary sampled from a Gaussian distributitio, %), we can
recast the regularization problémi.5 as

m]ilgm” 0ill subjectto PRDs,>aj) < PRDmnax, (4.11)
aic
with 2 defined as

Z =0V

that is the concatenation of the two dictionaries.
As proved in [8], we note that the average coherence of Gassatrix¥ €
R™P with i.i.d. 40, ) entries, is

v/15logp

V(W) < -
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Fig. 4.9 ECG Dictionary with Gaussian atoms. The left part of theidiwry contains atoms
sampled from ECG signal, right part are atoms random sanffed Gaussian distribution.

with probability exceeding & 2p~2 as long ag > n > 60logp.

Conversely, the dictionarg extracted by natural ECG signal has a high average
coherence, hence concatenating the two dictionaries westablish the following
relation

V(W) <v(Z) <v(@)

4.9.2 Experimental Results

To analyze the compression performances of the methodideddn this session,
we have performed a wide range of experiments using thedsdaken from the
MIT-BIH Arrythmia database[[63], as we have done to evaluhtek-LIMAPS
_ECG in section 4]5.

Each record signal was divided in two partitions: one of dd@minutes for the
creation of the subdictionary, and the other to be used tsoreghe compression
capability of the method.

In table [4.4) we resume the results of compression perfocemreached by the
Garanteed-Percentage Root Mean Square Difference Egamithim, obtained over
a selection of ECG records taken from the MIT-BIH Arrythmitabase.
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Table 4.4 k-LIMAPS Compression Results for the Garanteed-Percentage Rawt Stpiare Dif-
fenrence Error algorithm.

Record| CR |PRD|PRDN|SNR|Time dic.|[Time sign.

100 |41.870.49| 12.42{41.74 7.57 22.51
101 |37.850.52| 11.14|43.90 11.21 18.87
102 |23.04 0.49| 14.23(39.00 8.17 21.92
103 |30.350.57| 9.41 [47.27 9.01 21.07
109 |18.020.59| 6.09 [55.9q 6.12 23.97
111 |26.610.55| 15.24(37.6§ 8.67 21.42
112 |20.32 0.50{ 13.50(40.0§ 6.07 24.02
113 |22.18 0.66| 9.88 [46.29 12.20 17.88
115 |23.56 0.59| 8.82 |48.57 10.27 19.81
117 |32.110.55| 15.89|36.79 16.57 13.51
119 |13.040.71| 7.11 |52.87 11.41 18.67
121 |33.940.48| 14.41(38.7§ 11.28 18.81
201 |23.140.49| 15.50|37.29 10.33 19.76

After the sparse representation, each obtained coefficseniantized in 7 bits.
We can observe a decreasing of compression performancemipared with the
method that uses the dictionary obtained by signal lengtmabzation with zero
padding. Conversely, the PRD obtained in the compressiasehn each signal
respects the imposed limit off

The records with lowest compression rate are 119 and 109riBEgeilarity of the
RR intervals and the low quality recording, compromise teggrmances obtained
by the compression algorithm in these two examples.

4.10 Conclusion

This chapter proposes a new algorithm to perform electddegraphic signal com-
pression. It rest on the recent but strengthen paradigmastip representation on
overdetermined dictionary. It is developed on the basisrmefcant optimization al-

gorithm which iterates suitable nonconvex mappings orgcstiiution affine space
after a brief trajectory accomplished inside the space. fidwelty is mainly rep-

resented by the idea of extracting base waveforms from thidazasignal in order
to provide succinct representation via linear combinat@rthe long term part of
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the signal. Therefore the compression task is recastedtiatproblem of finding a
sparse representation of signal blocks and successiveligcof the information
held by few coefficients saved along with their positions.

Experimentally we have shown the effectiveness of our ntkthioich reaches
high compression rate maintaining an acceptable percetimean square differ-
ence level. The proposed method has been experimentallpareah with the state
of the art algorithms in our knowledge.

Subsequently has been proposed a variant oktheMAPS _ECG compression
algorithm, that has as main difference from the previoudfargint representation
dictionary. The dictionary is a composition of two diffetesnbdictionaries: the first
one extracted directly from a portion of the signal to be coesped, the second
one is a random generated Gaussian matrix used with the geigiemproving the
ability of sparse recovery ¢&¢LIMAPS into a natural base.

With this compression algorithm, experiments have showretocompression
rate if compared with previous method but capable of guasing a percent root-
mean square difference level in reconstruction phase.

These techniques appears to be applicable in real conesyscially in offline
outpatient applications. Future work suggests the ndgdesinake it computation-
ally tractable in embedded mobile devices, like Holter, teetrthe medical needs
of the last few years and enabling the application of ourrilgm in environments
like personal area networks (PAN).






Appendix A
MATLAB Code

A.l LIMAPS

function [ alpha ] = LiMapS(s, D, DINV, gamma, maxlter, ftype)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

[ alpha ] = LIMAPS(s, D, DINV, gamma, maxlter, ftype)

Returns the sparsest vector alpha which satisfies underde termined
system of equations D =*alpha=s, using Lipschitzian Mapping for Sparsity
Recovery algorithm.

The dictionary matrix D should have more columns than rows. The
number of rows of dictionary D must be equal to the length of t he
column observation vector(or matrix) s.

The observations signal(s) s and the dictionary D necessar ily, must
be provided by the user. The other parameters have defult va lues, or
may be provided by the user.

This algorithm work fine with matrix too, returning the spa rsest matrix
alpha that satisfy the underdetermined system of equation s D+alpha=s.

Then the dictionary D is of size [n x m], s must be of size [ s x T ] and
as consiquence the coefficients matirx alpha is of size [ m x T]

s:

The observation vector (matrix)

The dictionary

DINV (optional):
The pseudo-inverse of the dictionary matrix D

gamma (optional):
The increase factor (default 1.01)
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% maxliter (optional):

% Maximum number of iterations (default 1000)
%

%  ftype (optional):

% String that represent the shrinking function
% - 'exp' (default) exponential
% - 'exp2' exponential function

% - ‘'htan’ hyperbolic function

% - 'abs' absolute value function
% - 'sqrt' square root function

% - lerr' error function

% - 'gud’ Gudermannian function
%

% Authors: Alessandro Adamo and Giuliano Grossi

%

% WEB PAGE:

L ———

% http://dalab.dsi.unimi.it/limaps

%

% HISTORY:

1 ——

% Version 2.0: 9 Feb. 2013

% official version.

%

if (nargin<2||nargin>6)
error(  'Wrong parameters number' );

end

if (nargin==2)
DINV=pinv(D);
gamma=1.01;
maxIter=1000;
ftype= ‘exp’ ;

end

if (nargin==3)
gamma=1.01;
maxlter=1000;
ftype= ‘exp’ ;

end

if (nargin==4)
maxlter=1000;
ftype= ‘exp’ ;

end

if (nargin==5)
ftype= ‘exp' ;

end

%% -- INITIALIZATION -
alpha = DINV =s;

lambda = 1/max(abs(alpha(:)));
epsilon=1e-5; % stopping criteria
alpha_min=1e-2;
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% choose the shrinking function
f=shrinkage_function (ftype);

%% -- CORE --
for i=l:maxlter

alphaold=alpha;
% apply sparsity constraction mapping: increase sparsity
beta = f(alpha,lambda);

beta(abs(beta)<alpha_min)=0;

% apply the orthogonal projection
alpha = beta-DINV = (D= beta-s);

% update the lambda coefficient
lambda = lambda *gamma,;

% check the stopping criteria

if  (norm(alpha(:)-alphaold(:))<epsilon)
break ;

end

if  (mod(i,100))
if (sum(abs(f(alpha,lambda)./alpha)>1/lambda)>size(D,1
break ;
end
end

end
%% -- REFINEMENT --

% threshold the coefficients
alpha(abs(alpha)<alpha_min) = 0;

% final refinements of the solution
for i=1:size(alpha,2);

alpha_ind = alpha(,i) £0;

D1 = D(;,alpha_ind);

alpha(alpha_ind,i) = alpha(alpha_ind,i) - pinv(D1)
end

end
function [ f 1 = shrinkage_function ( type )

f = @exponential_func;
switch (type)
case ‘'exp'
f = @exponential_func;
case 'exp2'
f = @exponential2_func;

117

)

* (D1 * alpha(alpha_ind,i)-s(:,i));
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[ y ] = hyperbolic_tangent_func(x,lambda)

y=X. *(lambda =*abs(x))./sqrt(1+(lambda *X)."2);
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case ‘'htan’'
f = @hyperbolic_tangent_func;
case ‘'abs'
f = @absolute_value_func;
case 'sqrt'
f = @square_root_func;
case ‘err'
f = @error_func;
case 'gud'
f = @gudermannian_func;
end
end
function [ y ] = exponential_func(x,lambda)
y=X. *(1l-exp(-lambda  *abs(x)));
end
function [ y ] = exponential2_func(x,lambda)
y=X. *(2./(1+exp(-lambda * abs(x)))-1);
end
function
y=X. *tanh(lambda =*abs(x));
end
function [ y ] = absolute_value_func(x,Jlambda)
y=X. *(lambda =*x."2./(1+lambda *X."2));
end
function [ y ] = square_root_func(x,lambda)
end
function [ y ] = error_func(x,lambda)
y=x. *erf(lambda +*abs(x));
end
function [ y ] = gudermannian_func(x,lambda)
y=X. *(2/pi *atan(sinh(pi/2 * lambda * abs(x))));
end
A.2 K-LIMAPS
function

%
%
%
%
%
%
%

[ alpha ] = KLIMAPS(s,

[ alpha ] = KLiMapS(s, D, k, DINV, maxlter, ftype)

D, k, DINV, maxlter, ftype)

Returns the k-sparse vector alpha which satisfies underde
D +alpha=s, using Lipschitzian Mapping for Sparsity

system of equations
Recovery algorithm.
The dictionary matrix

D should have more columns than rows.

termined

The
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

2 k-LIMAPS

number of rows of dictionary D must be equal to the length of t
column observation vector(or matrix) s.

The observations signal(s) s and the dictionary D necessar
be provided by the user. The other parameters have defult va
may be provided by the user.

This algorithm work fine with matrix too, returning the spa
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ily, must
lues, or

rsest matrix

alpha that satisfy the underdetermined system of equation s D+alpha=s.

Then the dictionary D is of size [n x m], s must be of size [ s x T ]

as consiquence the coefficients matirx alpha is of size [ m x
S:
The observation vector (matrix)
D:
The dictionary
k:

Number of coefficients to select

DINV (optional):
The pseudo-inverse of the dictionary matrix D

gamma (optional):
The increase factor (default 1.01)

maxliter (optional):
Maximum number of iterations (default 1000)

ftype (optional):
String that represent the shrinking function

- 'exp' (default) exponential

- 'exp2' exponential function

- 'htan’ hyperbolic function

- 'abs' absolute value function
- 'sqrt' square root function

- lerr' error function

- 'gud' Gudermannian function

Authors: Alessandro Adamo and Giuliano Grossi
Version: 1.0
Last modified: 1 Aug. 2011.

WEB PAGE:

http://dalab.dsi.unimi.it/klimaps

HISTORY:

Version 2.0: 9 Feb. 2013
official version.

if (nargin<3||nargin>6)

T]

and
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error(  'Wrong parameters number' );

end

if (nargin==3)
DINV=pinv(D);
maxlter=1000;
ftype= ‘exp’ ;

end

if (nargin==4)
maxlter=1000;
ftype= ‘exp’ ;

end

if (nargin==5)
ftype= ‘exp’ ;

end

%% -- INITIALIZATION  --
alpha = DINV =s;
a=sort(abs(alpha));

lambda = 1/a( end-k);

epsilon=1e-4; % stopping criteria

% choose the shrinking function
f=shrinkage_function (ftype);

%% -- CORE --
for i=l:maxlter

alphaold=alpha;

% apply sparsity constraction mapping: increase sparsity
beta = f(alpha,lambda);

% apply the orthogonal projection
alpha = beta-DINV = (D=* beta-s);
% update the lambda coefficient
a=sort(abs(alpha));

lambda = 1/a( end-k);

% check the stopping criteria

if  (norm(alpha-alphaold)/norm(alphaold)<epsilon || ishan
break ;

end

end
%% -- REFINEMENT --

% final refinements of the solution
alpha(abs(alpha) <1/lambda)=0;

idx = alpha x0;
D1 = D(,idx);
alpha(idx) = alpha(idx) - pinv(D1) * (D1 * alpha(idx)-s);

(lambda))
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end

function

[ f 1 = shrinkage_function ( type )

f = @exponential_func;
switch (type)

end

end

function

y=X.

end

function

y=X.

end

function

y=X.

end

function

y=X.

end
function

y=X
end

function

y=X.

end

function

y=X.

end

case ‘'exp'

f = @exponential_func;
case 'exp2'

f = @exponential2_func;
case ‘'htan’'

f = @hyperbolic_tangent_func;
case 'abs'

f = @absolute_value_func;
case 'sqrt'

—

= @square_root_func;
case ‘err'
= @error_func;
case 'gud'
f = @gudermannian_func;

—

[ y ] = exponential_func(x,lambda)
* (l-exp(-lambda  *abs(x)));

[ y ] = exponential2_func(x,lambda)
* (2./(1+exp(-lambda * abs(x)))-1);

[ vy 1 = hyperbolic_tangent_func(x,lambda)
*tanh(lambda *abs(x));

[ y ] = absolute_value_func(x,lambda)
* (lambda *x."2./(1+lambda *X."2));

[ y ] = square_root_func(x,lambda)
* (lambda *abs(x))./sqrt(1+(lambda *X)."2);

[ y ] = error_func(x,lambda)
*erf(lambda  * abs(x));

[ y ] = gudermannian_func(x,lambda)
*(2/pi  *atan(sinh(pi/2 * lambda * abs(x))));






Appendix B
Phase Transition

Gaussian
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Fig. B.1 Phase transition for Guassian matrices.
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Circulant
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Fig. B.2 Phase transition for Circulant matrices.
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Toeplitz
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Fig. B.3 Phase transition for Toeplitz matrices.
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Ternary
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Fig. B.4 Phase transition for Ternary matrices.
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Bernoulli
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Fig. B.5 Phase transition for Bernoulli matrices.
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Fourier
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Fig. B.6 Phase transition for Fourier matrices.
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Fig. B.7 Phase transition for Sparse matrices.
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