29 research outputs found

    Multiangle social network recommendation algorithms and similarity network evaluation

    Get PDF
    Multiangle social network recommendation algorithms (MSN) and a new assessmentmethod, called similarity network evaluation (SNE), are both proposed. From the viewpoint of six dimensions, the MSN are classified into six algorithms, including user-based algorithmfromresource point (UBR), user-based algorithmfromtag point (UBT), resource-based algorithm fromtag point (RBT), resource-based algorithm from user point (RBU), tag-based algorithm from resource point (TBR), and tag-based algorithm from user point (TBU). Compared with the traditional recall/precision (RP) method, the SNE is more simple, effective, and visualized. The simulation results show that TBR and UBR are the best algorithms, RBU and TBU are the worst ones, and UBT and RBT are in the medium levels

    Recommender System Using Collaborative Filtering Algorithm

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from different resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid flooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation to do the project comes from my eagerness to learn website design and get a deep understanding of recommender systems. Applying machine learning dynamically is one of the goals that I set for myself and I wanted to go beyond that and verify my result. Thus, I had to use a large dataset to test the algorithm and compare each technique in terms of error rate. My experience with applying collaborative filtering helps me to understand that finding a solution is not enough, but to strive for a fast and ultimate one. In my case, testing my algorithm in a large data set required me to refine the coding strategy of the algorithm many times to speed the process. In this project, I have designed a website that uses different techniques for recommendations. User-based, Item-based, and Model-based approaches of collaborative filtering are what I have used. Every technique has its way of predicting the user rating for a new item based on existing users’ data. To evaluate each method, I used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE). Finally, each method has its strengths and weaknesses that relate to the domain in which I am applying these methods

    Recommender Systems using Collaborative Filtering

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new items rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make prot out of cus- tomers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from dierent resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid ooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation for this project comes from the eagerness to get a deep un- derstanding of recommender systems. One of the goals set for this project was to apply machine learning dynamically and to verify the results. Thus, a large dataset is used to test the algorithm and to compare each algorithm in terms of error rate. In this project, a website has been developed that uses dierent techniques for recommendations namely User-based Collaborative Filtering, Item-Based Collab- orative Filtering and Model Based Collaborative Filtering. Every technique has its way of predicting the user rating for a new item based on existing users data. To evaluate each method, I have used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE

    Improving collaborative filtering using lexicon-based sentiment analysis

    Get PDF
    Since data is available increasingly on the Internet, efforts are needed to develop and improve recommender systems to produce a list of possible favorite items. In this paper, we expand our work to enhance the accuracy of Arabic collaborative filtering by applying sentiment analysis to user reviews, we also addressed major problems of the current work by applying effective techniques to handle the scalability and sparsity problems. The proposed approach consists of two phases: the sentiment analysis and the recommendation phase. The sentiment analysis phase estimates sentiment scores using a special lexicon for the Arabic dataset. The item-based and singular value decomposition-based collaborative filtering are used in the second phase. Overall, our proposed approach improves the experiments’ results by reducing average of mean absolute and root mean squared errors using a large Arabic dataset consisting of 63,000 book reviews

    Recommendation Systems in Libraries: an Application with Heterogeneous Data Sources

    Get PDF
    The Reading[&]Machine project exploits the support of digitalization to increase the attractiveness of libraries and improve the users’ experience. The project implements an application that helps the users in their decision-making process, providing recommendation system (RecSys)-generated lists of books the users might be interested in, and showing them through an interactive Virtual Reality (VR)-based Graphical User Interface (GUI). In this paper, we focus on the design and testing of the recommendation system, employing data about all users’ loans over the past 9 years from the network of libraries located in Turin, Italy. In addition, we use data collected by the Anobii online social community of readers, who share their feedback and additional information about books they read. Armed with this heterogeneous data, we build and evaluate Content Based (CB) and Collaborative Filtering (CF) approaches. Our results show that the CF outperforms the CB approach, improving by up to 47% the relevant recommendations provided to a reader. However, the performance of the CB approach is heavily dependent on the number of books the reader has already read, and it can work even better than CF for users with a large history. Finally, our evaluations highlight that the performances of both approaches are significantly improved if the system integrates and leverages the information from the Anobii dataset, which allows us to include more user readings (for CF) and richer book metadata (for CB)

    A collaborative filtering similarity measure based on singularities.

    Get PDF
    Recommender systems play an important role in reducing the negative impact of informa- tion overload on those websites where users have the possibility of voting for their prefer- ences on items. The most normal technique for dealing with the recommendation mechanism is to use collaborative filtering, in which it is essential to discover the most similar users to whom you desire to make recommendations. The hypothesis of this paper is that the results obtained by applying traditional similarities measures can be improved by taking contextual information, drawn from the entire body of users, and using it to cal- culate the singularity which exists, for each item, in the votes cast by each pair of users that you wish to compare. As such, the greater the measure of singularity result between the votes cast by two given users, the greater the impact this will have on the similarity. The results, tested on the Movielens, Netflix and FilmAffinity databases, corroborate the excellent behaviour of the singularity measure proposed

    From "I like" to "I prefer" in Collaborative Filtering

    Get PDF
    International audienceCollaborative filtering exploits user preferences, generally ratings, to provide them with recommendations. However, the ratings may not be completely trustworthy: the rating scale is usually reduced and the rating values may be influenced by many factors. This paper is a first attempt at studying the expression of preferences under the form of preference relations where users are asked to compare pairs of resources. First experiments show that this new approach compares with, and sometimes improves, the classical one
    corecore