3,118 research outputs found

    Comparing ICP variants on real-world data sets: Open-source library and experimental protocol

    Get PDF
    Many modern sensors used for mapping produce 3D point clouds, which are typically registered together using the iterative closest point (ICP) algorithm. Because ICP has many variants whose performances depend on the environment and the sensor, hundreds of variations have been published. However, no comparison frameworks are available, leading to an arduous selection of an appropriate variant for particular experimental conditions. The first contribution of this paper consists of a protocol that allows for a comparison between ICP variants, taking into account a broad range of inputs. The second contribution is an open-source ICP library, which is fast enough to be usable in multiple real-world applications, while being modular enough to ease comparison of multiple solutions. This paper presents two examples of these field applications. The last contribution is the comparison of two baseline ICP variants using data sets that cover a rich variety of environments. Besides demonstrating the need for improved ICP methods for natural, unstructured and information-deprived environments, these baseline variants also provide a solid basis to which novel solutions could be compared. The combination of our protocol, software, and baseline results demonstrate convincingly how open-source software can push forward the research in mapping and navigatio

    Comparison of 3D scan matching techniques for autonomous robot navigation in urban and agricultural environments

    Get PDF
    Global navigation satellite system (GNSS) is the standard solution for solving the localization problem in outdoor environments, but its signal might be lost when driving in dense urban areas or in the presence of heavy vegetation or overhanging canopies. Hence, there is a need for alternative or complementary localization methods for autonomous driving. In recent years, exteroceptive sensors have gained much attention due to significant improvements in accuracy and cost-effectiveness, especially for 3D range sensors. By registering two successive 3D scans, known as scan matching, it is possible to estimate the pose of a vehicle. This work aims to provide in-depth analysis and comparison of the state-of-the-art 3D scan matching approaches as a solution to the localization problem of autonomous vehicles. Eight techniques (deterministic and probabilistic) are investigated: iterative closest point (with three different embodiments), normal distribution transform, coherent point drift, Gaussian mixture model, support vector-parametrized Gaussian mixture and the particle filter implementation. They are demonstrated in long path trials in both urban and agricultural environments and compared in terms of accuracy and consistency. On the one hand, most of the techniques can be successfully used in urban scenarios with the probabilistic approaches that show the best accuracy. On the other hand, agricultural settings have proved to be more challenging with significant errors even in short distance trials due to the presence of featureless natural objects. The results and discussion of this work will provide a guide for selecting the most suitable method and will encourage building of improvements on the identified limitations.This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1201319, Basal grant FB0008, DGIIP-UTFSM Chile, National Agency for Research and Development (ANID)/PCHA/Doctorado Nacional/2020-21200700, Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Span ish Ministry of Science, Innovation and Universities (project RTI2018- 094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisitio

    Joint Causal Inference from Multiple Contexts

    Get PDF
    The gold standard for discovering causal relations is by means of experimentation. Over the last decades, alternative methods have been proposed that can infer causal relations between variables from certain statistical patterns in purely observational data. We introduce Joint Causal Inference (JCI), a novel approach to causal discovery from multiple data sets from different contexts that elegantly unifies both approaches. JCI is a causal modeling framework rather than a specific algorithm, and it can be implemented using any causal discovery algorithm that can take into account certain background knowledge. JCI can deal with different types of interventions (e.g., perfect, imperfect, stochastic, etc.) in a unified fashion, and does not require knowledge of intervention targets or types in case of interventional data. We explain how several well-known causal discovery algorithms can be seen as addressing special cases of the JCI framework, and we also propose novel implementations that extend existing causal discovery methods for purely observational data to the JCI setting. We evaluate different JCI implementations on synthetic data and on flow cytometry protein expression data and conclude that JCI implementations can considerably outperform state-of-the-art causal discovery algorithms.Comment: Final version, as published by JML

    Analysis of error functions for the iterative closest point algorithm

    Get PDF
    Dans les dernières années, beaucoup de progrès a été fait dans le domaine des voitures autonomes. Plusieurs grandes compagnies travaillent à créer un véhicule robuste et sûr. Pour réaliser cette tâche, ces voitures utilisent un lidar pour la localisation et pour la cartographie. Iterative Closest Point (ICP)est un algorithme de recalage de points utilisé pour la cartographie basé sur les lidars. Ce mémoire explore des approches pour améliorer le minimisateur d’erreur d’ICP. La première approche est une analyse en profondeur des filtres à données aberrantes. Quatorze des filtres les plus communs (incluant les M-estimateurs) ont été testés dans différents types d’environnement, pour un total de plus de 2 millions de recalages. Les résultats expérimentaux montrent que la plupart des filtres ont des performances similaires, s’ils sont correctement paramétrés. Néanmoins, les filtres comme Var.Trim., Cauchy et Cauchy MAD sont plus stables à travers tous les types environnements testés. La deuxième approche explore les possibilités de la cartographie à grande échelle à l’aide de lidar dans la forêt boréale. La cartographie avec un lidar est souvent basée sur des techniques de Simultaneous Localization and Mapping (SLAM) utilisant un graphe de poses, celui-ci fusionne ensemble ICP, les positions Global Navigation Satellite System (GNSS) et les mesures de l’Inertial Measurement Unit (IMU). Nous proposons une approche alternative qui fusionne ses capteurs directement dans l’étape de minimisation d’ICP. Nous avons réussi à créer une carte ayant 4.1 km de tracés de motoneige et de chemins étroits. Cette carte est localement et globalement cohérente.In recent years a lot of progress has been made in the development of self-driving cars. Multiple big companies are working on creating a safe and robust autonomous vehicle . To make this task possible, theses vehicles rely on lidar sensors for localization and mapping. Iterative Closest Point (ICP) is a registration algorithm used in lidar-based mapping. This thesis explored approaches to improve the error minimization of ICP. The first approach is an in-depth analysis of outlier filters. Fourteen of the most common outlier filters (such as M-estimators) have been tested in different types of environments, for a total of more than two million registrations. The experimental results show that most outlier filters have a similar performance if they are correctly tuned. Nonetheless, filters such as Var.Trim., Cauchy, and Cauchy MAD are more stable against different environment types. The second approach explores the possibilities of large-scale lidar mapping in a boreal forest. Lidar mapping is often based on the SLAM technique relying on pose graph optimization, which fuses the ICP algorithm, GNSS positioning, and IMU measurements. To handle those sensors directly within theICP minimization process, we propose an alternative technique of embedding external constraints. We manage to create a crisp and globally consistent map of 4.1 km of snowmobile trails and narrow walkable trails. These two approaches show how ICP can be improved through the modification of a single step of the ICP’s pipeline
    • …
    corecore