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Résumé

Dans les dernières années, beaucoup de progrès a été fait dans le domaine des
voitures autonomes. Plusieurs grandes compagnies travaillent à créer un véhicule
robuste et sûr. Pour réaliser cette tâche, ces voitures utilisent un lidar pour la lo-
calisation et pour la cartographie. Iterative Closest Point (ICP) est un algorithme
de recalage de points utilisé pour la cartographie basé sur les lidars. Ce mémoire
explore des approches pour améliorer le minimisateur d’erreur d’ICP. La première
approche est une analyse en profondeur des filtres à données aberrantes. Quatorze
des filtres les plus communs (incluant les M-estimateurs) ont été testés dans diffé-
rents types d’environnement, pour un total de plus de 2 millions de recalages. Les
résultats expérimentaux montrent que la plupart des filtres ont des performances
similaires, s’ils sont correctement paramétrés. Néanmoins, les filtres comme Var.
Trim., Cauchy et Cauchy MAD sont plus stables à travers tous les types environ-
nements testés. La deuxième approche explore les possibilités de la cartographie
à grande échelle à l’aide de lidar dans la forêt boréale. La cartographie avec un
lidar est souvent basée sur des techniques de Simultaneous Localization and Map-
ping (SLAM) utilisant un graphe de poses, celui-ci fusionne ensemble ICP, les
positions Global Navigation Satellite System (GNSS) et les mesures de l’Inertial
Measurement Unit (IMU). Nous proposons une approche alternative qui fusionne
ses capteurs directement dans l’étape de minimisation d’ICP. Nous avons réussi à
créer une carte ayant 4.1 km de tracés de motoneige et de chemins étroits. Cette
carte est localement et globalement cohérente.
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Abstract

In recent years a lot of progress has been made in the development of self-driving
cars. Multiple big companies are working on creating a safe and robust au-
tonomous vehicle . To make this task possible, theses vehicles rely on lidar sensors
for localization and mapping. Iterative Closest Point (ICP) is a registration algo-
rithm used in lidar-based mapping. This thesis explored approaches to improve
the error minimization of ICP. The first approach is an in-depth analysis of out-
lier filters. Fourteen of the most common outlier filters (such as M-estimators)
have been tested in different types of environments, for a total of more than two
million registrations. The experimental results show that most outlier filters have
a similar performance if they are correctly tuned. Nonetheless, filters such as Var.
Trim., Cauchy, and Cauchy MAD are more stable against different environment
types. The second approach explores the possibilities of large-scale lidar map-
ping in a boreal forest. Lidar mapping is often based on the SLAM technique
relying on pose graph optimization, which fuses the ICP algorithm, GNSS po-
sitioning, and IMU measurements. To handle those sensors directly within the
ICP minimization process, we propose an alternative technique of embedding ex-
ternal constraints. We manage to create a crisp and globally consistent map of
4.1 km of snowmobile trails and narrow walkable trails. These two approaches
show how ICP can be improved through the modification of a single step of the
ICP’s pipeline.
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thrown overboard a certain portion of our data – a sort of sacrifice which
has often to be made by those who sail upon the stormy sea of Probability."

—F.Y. Edgeworth, 1888 [1]
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Introduction

Over the past few years, self-driving cars and their future impact on society has become
a common topic in news outlets. For instance, Singapore started a self-driving taxi pilot
project two years ago, while Uber has kicked off a similar project in Pittsburgh. More
recently, Waymo (formerly part of Google X) has started a pilot project in snowy Detroit
to test more difficult weather conditions. As the first outdoor mass market autonomous
vehicles, theses cars must be highly reliable and safe. Furthermore, the environment
in which they navigate is highly dynamic. The weather, sporadic road work and even
the sunlight itself can change drastically how the environment is perceived by the
car’s sensor [4], further compounding difficulties. Being able to navigate through these
environmental changes is one of many requirements for a robust system. Navigation
systems require detailed maps of the environment to plan decisions [5]. Most self-
driving cars rely on lidar sensors to map the environment and to locate themselves
within it. However, robust and large-scale mapping in a 3D environment with a lidar
is still known to be a challenging task [4].

Lidars are quite similar to radar, as they both estimate the distance between the sensor
and an object in the environment by measuring the time it takes for an electromagnetic
pulse to come back. However in the case of lidar, the pulse is generated by a laser,
instead of a radio transmitter. 2D lidars measure a planar cut of the environment,
while 3D lidars measure a 3D field of view. The output of a scanning lidar is named
a point cloud ; see Figure 0.1 for an example of a point cloud compared to a picture of
the same scene. Lidar is a key technology for robotic applications, since contrary to
cameras, they are relatively immune to the ambient lighting conditions and, to a lesser
extent, to weather conditions.

One of the uses of lidar technology in robotics is for localization. The geometric trans-
formation (translation and rotation) between two positions can be estimated by aligning
the lidar scans taken at these two positions. The problem of aligning two point clouds
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(a) Point cloud from a lidar (b) Picture taken at a similar angle

Figure 0.1 – Lidar scan compared to a picture of a camera. The point cloud and the picture are
taken from the hauptgebäude dataset in the Challenging data sets for point cloud registration
algorithms [6].

is called the point set registration problem. This general problem can be further subdi-
vided into two issues: i) global registration and ii) local registration. The latter requires
an initial estimate of the alignment, while the former does not. Figure 0.2 shows an
example of local registration. Since for most robotic applications, an initial estimate
can be acquired from other sensors (such as the wheel’s odometry, a Global Navigation
Satellite System (GNSS) or an Inertial Measurement Unit (IMU)), this thesis will focus
solely on the problem of local registration.

In spite of having been introduced thirty years ago, the Iterative Closest Point (ICP)
algorithm remains the most common solution to local registration [7], [8]. ICP attempts
to find the best alignment by alternating between matching pairs of points close to
each other and minimizing the distance between the pairs. Over the years, numerous
variants of ICP algorithms have been created to increase the robustness, the speed or
the precision of the original [9]. On the other hand, selecting an appropriate variant
for a given application has become tedious, due in part to the lack of comparative
benchmarks.

When registering point clouds, one of the main sources of errors is the presence of
outliers. Outliers have various causes, such as lack of overlap, sensor noises, or dynamic
elements. The problem of outlier rejection has a long history in the field of robust
statistics [10]. Better outlier filtering naturally leads to better minimization results,
which in turn generally leads to faster convergence.

This thesis will focus on the subject of improving the error minimization of ICP in the

2



(a) Initial alignment (b) Final alignment

Figure 0.2 – An example of pairwise local registration of two lidar point clouds, using ICP.
This top view shows two lidar scans of the interior of a building. The static (i.e., reference)
and dynamic (i.e., reading) point cloud are in red and blue, respectively.

context of mobile robotic applications. This goal is achieved through two approaches.
The first approach explores the effect of outlier filtering on ICP . The second approach
presents a novel sensor fusion technique, to be used directly within the error minimizer
of ICP .

This thesis will consist primarily of two inserted articles, which correspond directly to
the two previously-stated approaches. Chapter 1 provides the theoretical background
required for the understanding of our two articles. In particular, it introduces the
ICP algorithm, its individual steps and how it can be used for mapping. Then, Chap-
ter 2, an inserted article published in IEEE International Conference on Robotics and
Automation (ICRA), shows an analysis of the outlier filter step of ICP. Afterwards
in Chapter 3, a novel approach to large-scale 3D mapping is presented, where sensor
fusion between the IMU, the GNSS and the lidar are performed directly in the error
minimizing step of ICP. Finally, the Appendix A shows a table of all outlier filters for
ICP, with their various proprieties.

3



Chapter 1

Iterative Closest Point Algorithm

ICP was independently developed by Besl [7] and Chen et al. [8]. It is a solution
to the point set rigid registration problem, which is as follows: given two overlap-
ping point clouds (reading P and reference Q), find the rigid transformation that
maximizes their alignment. Rusinkiewicz et al. [11] introduced the idea of ICP as
a pipeline of interchangeable blocks. Pomerleau et al. [12] built upon this idea by cre-
ating libpointmatcher, a library to test different configurations of the pipeline.
Figure 1.1 shows an example of one such pipeline.

ICP is an iterative algorithm to solve this problem. In the first step, the data filtering
step (1), the two point clouds are passed through filters which convert the raw data to a
more useful form. In the matching step (2), each point of the reading P is matched to its
closest neighbor in the reference Q and the errors between these matches are computed.
Subsequently in the outlier filtering step (3), the outlier matches are rejected. In the
minimization step (4), the geometric transformation T̂ between the reference Q and
the reading P that minimizes the error among the inlier matches is computed, and in
the final step (5) the transformation T̂ is applied to the reading P point cloud.

Finally, the steps (2) to (5) are repeated, until convergence or a pre-defined stopping
criterion. Below, we present in greater details these five steps of ICP. We will restrict
ourselves to the subject of descriptor-less point clouds taken from lidar. For more
in-depth reviews of all types of registration, see Pomerleau et al. [9].
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Figure 1.1 – An example of the default pipeline of ICP for the libpointmatcher library. At
each iteration of the loop, the reading point cloud is moved by the estimated transformation.
The loop is executed until the transformation checkers detect convergence.
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1.1 ICP Pipeline

1.1.1 Data Filters

The first step of the pipeline is about converting the raw point cloud into a format
required by the other steps. In this subsection, the two most common types of data fil-
tering, feature reduction and feature augmentation [9], are presented. Before discussing
data filtering, the point cloud representation used in this thesis is explained.

Point cloud representation

A 3D point cloud P is composed of 3D points p ∈ R3. It is usually represented
as a column-wise matrix

[
p0 p1 p2 . . . pn

]
. A homogeneous representation of P is

sometimes used in this thesis to simplify the application of a rigid transformation. The
order of the points inside the matrix is not important: there is no relationship between
how close two points are in the matrix and in Euclidean space. This representation has
the advantages of being densely packed in memory and easily vectorizable. At the same
time, the lack of spatial relationship between points makes lookup operations, such as
the closest point search, computationally expensive.

Filtering

Feature reduction is an operation that simplifies and compresses the point cloud from
the lidar. Indeed, the point cloud outputted by a lidar scan is seldom directly used
for registration. Since 3D lidars use a rotating array of laser beams, the raw lidar
scans are composed of concentric circles. The circles close to the scanner will tend to
have a higher density of points (see Figure 1.2). Thus during the registration, points
closer to the scanner will be overrepresented, compared to those farther away. To
circumvent this kind of problem, the raw scans must be downsampled in an appropriate
manner. In particular, to uniformize the density of a point cloud, multiple data filters
have been introduced over the years. They include random sampling, sampling over a
uniform grid, or filtering out points with too many close neighbors. A cruder form of
downsampling is to simply remove points which are outside a bounding box.

The data filtering step can also serve as a means of computing additional features. The
most common example is computing the normal of a surface at each point, based on the
distribution of its neighbors. These additional features can then be used by the other
steps in the pipeline. For instance, the normals are used by a point-to-plane minimizer
for outlier rejection.

6



(a) Raw lidar scan

(b) After maximum density filter

Figure 1.2 – A raw lidar scan is composed of concentric circles. The point cloud has a higher
density of points when close to the scanner. A maximum density filter can uniformize the
point cloud, thus reducing the amount of points closer to scan, while keeping the farthest
points. The scan was taken with a Velodyne HDL-64e and is part of the Kitti dataset [13].
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1.1.2 Matcher

The matching is the first step of the main loop of ICP. It is also the step with the
highest computational cost. The matcher is a function which takes as input the reading
P and reference Q point clouds, and returns for each point in P a corresponding point
in Q. The goal of the matcher is to solve the data association problem. With an
RGB-D camera (e.g., a Kinect), the color and intensity of the neighboring points can
be used to create image descriptors (e.g., Scale-Invariant Feature Transform (SIFT)
[14]). The descriptor can then be used for matching purposes. With a lidar scan,
the correspondence between the reference points in Q and the reading points in P is
unknown. Thus, a heuristic is used, where each point in the reading P is matched with
the closest point in the reference Q. As a result, ICP can be quite sensitive to the initial
estimate transformation qT , since being far from the correct alignment means matching
with the wrong points. Figure 1.3 shows how the matching function slowly converges
to the correct matches through the iterations.

Almost all variants of ICP use a kD-tree [15] as a matching algorithm. The kD-tree is a
type of binary tree, which split space around axis-aligned planes. It is able to find the
k nearest neighbors to a point in logarithmic time (O(k log n)), which is much faster
than looking up each individual point. Usually a kD-tree is build out of the reference
point cloud Q after the data filter step. Since the reference stays the same between
iterations, this is done only once. Then at each iteration of the loop and for each of
the points in the reading P the k closest points in the reference Q are found. The
original ICP used the closest point (k = 1). As shown in Figure 1.3, using a higher
value of k is more robust to mismatches, but at the cost of higher computation time.
Modern implementations (such as libnabo [16]) of kD-tree relies on multithreading
to alleviate this problem.

1.1.3 Outlier filters

As previously stated, outliers are an important source of errors for ICP. The third step
of the ICP’s pipeline is therefore devoted to reducing their effects on the registration.
The outlier filter is a function which takes as input the matched point’s distances, and
outputs a weight for each of these matches. This weight is then used by the minimizer to
determine which matches to filter out. ICP uses a least-square minimizer, which means
that the influence of a given match increases by the square of the distance. Thus, one
outlier with a sufficiently-large distance can dominate all of the inliers.
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Figure 1.3 – Demonstrating the effect of the number of neighbors on the matching function for
the registration of two overlapping curves. The blue circles and red squares are respectively
the reference points Q and the reading points P. The black lines represent the k associations
between Q and P. The reading points are initially far away from the correct alignment. At
each iteration of ICP, they are moved closer to the correct alignment. With two neighbors,
each point in the reading is matched to the two closest points in the reference. At the first
iteration, all points are matched to the same point: it takes a few iterations before the points
are matched to their correct neighbor. A higher neighbor count is more robust and precise,
however each iteration takes longer to compute.
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inlier
outlier
No outlier filter
M-estimator

Figure 1.4 – An example of a least-squares fitting of a linear model in the presence of outliers.
Without a filter, the minimization is influenced by the outliers. If an M-estimator is used, the
influence of outliers is reduced, but not completely removed.

The field of robust statistics has created tools, such as M-estimator, to mitigate the
effect of outliers. The M-estimator (also know as Maximum-likelihood estimator) is a
common solution for outlier filtering of least-square problems [17]. Instead of completely
removing outliers, they reduce their influence (see Figure 1.4 for a line fitting example).
Chapter 2 explores in depth the effects and compromises of outlier filters for the ICP
algorithm. Furthermore, Appendix A provides a detailed list of existing outlier filters
and their respective properties.

1.1.4 Minimizer

The minimizer finds at each iteration the alignment which minimizes a given cost
function J(·):

T̂ = arg min
T

J
(
Q,P , qT

)
, (1.1)

10



where qT is the prior on the alignment (at the first iteration, this is the initial estimate)
and T̂ is the estimated transformation. The choice of the cost function J(·) depends
on the properties of the environment. The original ICP paper [7] introduced the point-
to-point cost function Jp−p, which minimizes the Euclidean distance between pairs of
points:

Jp−p

(
Q,P , qT

)
=
∑
i

∑
j

wij(qT )eij(T )2, (1.2)

eij(T ) =
∥∥Tpi − qj

∥∥ , (1.3)

where wij(·) is the weight function (the outlier filter output) for the ith point in the
reading (pi ∈ P) and the jth point in the reference (qj ∈ Q), and eij(·) is the error
function. As explained in Section 1.1.2, the double summation (corresponding to testing
each reference qj point against each reading point pi) is computationally expensive.
Hence, only a subset of the points in P and Q are used. This subset is selected by the
matcher.

The most common alternative to point-to-point is point-to-plane cost function Jp−n [8]:

Jp−n

(
Q,P , qT

)
=
∑
i

∑
j

wij(qT )((Tpi − qj) · nj)
2,

where nj is the normal of the jth point in the reference. For robotic localization ap-
plications, point-to-plane outperforms point-to-point in most environments [6]. It uses
the surface normal of the reference’s points for a more robust registration. Section 3.3.1
goes into more depth about point-to-plane, and introduces a new cost function named
point-to-Gaussian.

1.1.5 Transformation Checkers

The transformation checkers are responsible for verifying if ICP has converged and if
so, will terminate the ICP iterations. Allowing a larger number of iterations increases
the accuracy, but at the cost of computation time. The choice of the transformation
checker depends mostly on the application. For instance, a real-time application can
trade off accuracy for speed, by having fewer iterations. A common way of setting
an upper bound on the computation time is to stop after a predetermined number of
iterations. The number of iterations highly depends on factors such as the type of
minimizer, or if the points are 2D or 3D.
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Another way the transformation checker can detect convergence is by verifying if the
previous iteration has moved the reading point cloud by more than a set distance. As
shown in Figure 1.3, the reading point cloud moved faster in the first few iterations
and slowly reached a local minimum towards the end. Thus a good sign of convergence
is when the reading only moved by a small amount. Although, a sign of a diverging
registration is when it moves far away from the initial estimate. Therefore, another
type of transformation checker is used to detect when the registration has failed, by
setting a bound on the distance from the initial estimate qT .

To conclude, the ICP algorithm can be divided into five steps. Each of these steps must
be configured depending on the application, the geometric characteristics of the point
clouds, while taking into account the expected registration speed. A few examples of
each step have been shown in this section. From these examples, it is clear that selecting
an appropriate solution is tedious, due to the large number of possible configurations
for each step.

1.2 Mapping

Mapping is a fundamental research field in mobile robotics. Common tasks, such as path
planning and obstacle avoidance, depend on it. Many solutions exist for the localization
and mapping, with ICP used in some of these solutions. The most common approaches
to ICP mapping that will be highlighted in our thesis are scan-to-scan, scan-to-map and
graph-SLAM. While we do not use Simultaneous Localization and Mapping (SLAM) in
this thesis (our work is much closer to odometry), we still provide a brief explanation
to clearly differentiate our approach in Chapter 3 from SLAM.

Scan-to-scan is the simplest way of creating a map using ICP . As the output of ICP
is a transformation between two scans, it can be used to find the robot’s displacement
between the same two scans. By running ICP between each pair of sequential scans,
an odometry of the robot trajectory is estimated. However, like any other form of
odometry, the localization error accumulates over time. Contrary to scan-to-map, a
map is not required for the registration, and thus can be generated offline. The map is
created by simply concatenating each scan together, based on the estimated trajectory.

A classic solution to the problem of trajectory estimation is SLAM, where the robot
localizes itself inside a map and then uses this estimated position to update the same
map. Above all, the main purpose of SLAM is to enable the fusion of multiple sen-
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sor types and odometry sources within a probabilistic framework. SLAM is a large
and complex field of research, with many frameworks and approaches. In our thesis,
we only discuss graph-SLAM, since it is a general-purpose framework. Moreover, it
can integrate ICP measurements with other sensors readily [18]. Graph-SLAM is com-
monly implemented using a factor graph [19] (i.e., a dependency graph), where poses
at each point in time are connected to measurements of the environment, to odometry
measurements and to other poses. Furthermore, the algorithm can use loop closures
to correct previous poses. When a loop is detected, the current pose is connected to
a previously visited pose in the map (i.e., the start of the loop). Thus, as long as an
odometry measurement can be represented as a constraint between a pair of poses, it
can be added to the graph. In the case of Iterative Closest Point (icp), the pose be-
tween each pair of scans becomes a constraint. However, each constraint also requires
a covariance, which represents the degree of uncertainty of the measurement. For ICP ,
there is a closed-form solution to estimate this covariance [20], yet real life experiments
show that it vastly underestimates the actual covariance [21].

Scan-to-map uses ICP to align the current scan with a map including previous ones.
After alignment, the map is updated using the current scan. Since this mapping al-
gorithm updates a map and then localizes itself within this map, it could qualify as a
form of SLAM. However, it deviates from most SLAM algorithms in two crucial ways:
i) scan-to-map is not a probabilistic state estimator and ii) it does not detect/take into
account loop closures. But contrary to normal odometry, the error does not necessarily
accumulate over time: when a new scan aligns to an already-visited part of the map,
the localization error is reduced. This is similar to loop-closing, except that this error
reduction is not propagated through the previous poses. Thus, scan-to-map could be
qualified as a weak form of SLAM, while being much closer to odometry. The imple-
mentation of scan-to-map used in Chapter 2 and in Chapter 3 is a modified version of
ethzasl_icp_mapping, which belongs to the category of scan-to-map. It is avail-
able as a Robotic Operating System (ROS) package, which uses libpointmatcher
for registration.

In conclusion, we have the choice between two different approaches for ICP mapping:
graph-SLAM and scan-to-map. The former is able to fuse multiple sensor types and
odometry sources, however, estimating the correct covariance for ICP is problematic.
On the one hand, the latter is able to create a locally-consistent map using ICP. On
the other hand, it is unable to fuse multiple sensors. To remedy these problems, we
propose a novel approach to ICP mapping, where the error minimizing step of ICP is
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used for sensor fusion. This approach is presented in Chapter 3.
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Chapter 2

Analysis of Robust Functions for
Registration Algorithms
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Résumé

L’exactitude du recalage de points est influencée par la présence de données aber-
rantes. Ainsi, un grand nombre de techniques ont été développés au fils des années
afin de réduire leur effet. Par contre, sans une comparaison à grande échelle des
filtres à données aberrantes, il est difficile de sélectionner un algorithme approprié
pour une application donnée. Cet article présente une analyse approfondie des
effets des filtres de données aberrantes pour l’algorithme ICP, dans le contexte
d’applications en robotique mobile. Quatorze des filtres les plus communs (in-
cluant les M-estimateurs) ont été testés dans différents types d’environnement,
pour un total de plus de 2 millions de recalages. De plus, l’influence des para-
mètres a été explorée en profondeur. Les résultats expérimentaux montrent que la
plupart des filtres ont des performances similaires, s’ils sont correctement paramé-
trés. Néanmoins, les filtres comme Var. Trim., Cauchy et Cauchy MAD sont plus
stable à travers tous les types environnements testés. Étonnamment, la norme
L1 produit une exactitude comparable aux autres filtres, tout en n’ayant aucun
paramètre à configurer.
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Abstract

Registration accuracy is influenced by the presence of outliers and numerous ro-
bust solutions have been developed over the years to mitigate their effect. How-
ever, without a large scale comparison of solutions to filter outliers, it is becoming
tedious to select an appropriate algorithm for a given application. This article
presents a comprehensive analysis of the effects of outlier filters on the ICP al-
gorithm aimed at a mobile robotic application. Fourteen of the most common
outlier filters (such as M-estimators) have been tested in different types of envi-
ronments, for a total of more than two million registrations. Furthermore, the
influence of tuning parameters has been thoroughly explored. The experimental
results show that most outlier filters have a similar performance if they are cor-
rectly tuned. Nonetheless, filters such as Var. Trim., Cauchy, and Cauchy MAD
are more stable against different environment types. Interestingly, the simple
norm L1 produces comparable accuracy, while being parameterless.
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2.1 Introduction

A fundamental task in robotics is finding the rigid transformation between two overlap-
ping point clouds. The most common solution to the point cloud registration problem
is the ICP algorithm, which alternates between finding the best correspondence for
the two point clouds and minimizing the distance between those correspondences [7],
[8]. Based on the taxonomy of Rusinkiewicz et al. [11], Pomerleau et al. [12] proposed
a protocol and a framework to test and compare the common configurations of ICP.
They simplified the process to four stages: 1) data point filtering, 2) data association,
3) outlier filtering, and 4) error minimization. The stage on outlier filtering is nec-
essary as the presence of a single outlier with a large enough error could have more
influence on the minimization outcome than all the inliers combined. To solve this
generic problem, Huber [10] extended classical statistics with robust cost functions. A
robust cost function reduces the influence of outliers in the minimization process. The
most common class of these robust functions is the maximum likelihood estimator, or
M-estimator. Other solutions exist, which rely either on thresholds (i.e., hard rejection)
or on continuous functions (i.e., soft rejection).

To the best of our knowledge, the current research literature is missing a comprehen-
sive comparison of outlier filters for ICP (i.e., Stage 3 of the ICP pipeline). In the
case of ICP used in mobile robotics, outliers are mainly caused by non-overlapping
regions, sensor noises and shadow points produced by the sensor. Most papers about
outlier filters compare their own algorithm with only two other algorithms [22]–[24]
or only on a single dataset [23]–[26]. Few papers evaluate the influence of the over-
lap between the two point clouds and the initial perturbation, which are leading error
causes for ICP [9]. Furthermore, the dataset selected for evaluation varies depending
on research fields. For instance, papers targeting object reconstruction will use the
Stanford dataset [24], [27], [28]. Results obtained with a dataset containing exclusively
objects might be too specific and consequently not translate well to the field of mobile
robotics, because of the difference in structure, density, and scale. Also, experiments on
registration performances tend to modify multiple stages of ICP at once, making it dif-
ficult to estimate the impact of outlier rejection algorithms on the overall performance.
Additionally, few papers on outlier filters evaluate the impact of the tuning parameters
within those outlier rejection algorithms. The influence of an outlier for a given error
can change drastically, as a function of the tuning parameter value. Finally, with the
rise of the number of ICP variants [9], it is becoming tedious to select the appropriate
robust solution for an application in mobile robotics.
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To mitigate these problems, we propose a comprehensive analysis of outlier filter algo-
rithms. To this effect, the main contributions of this paper are: 1) a large scale analysis
investigating 14 outlier filters subject to more than two million registrations in different
types of environment; 2) a consolidation of the notion of point cloud crispness [29] to
a special case of a common M-estimator, leading to a better understanding of its use
in the outlier filtering stage; 3) a support to better replication of our results with the
open-source implementations of tested outlier filters in libpointmatcher1.

2.2 Related Works

Prior to the existence of ICP, a seminal work on M-estimators was conducted by Welsch
[17], where he surveyed eight functions now known as the classic M-estimators. In the
context of camera-based localization, MacTavish et al. [30] made a thorough effort by
comparing seven robust cost functions, but their conclusions do not translate directly
to point cloud registrations. For ICP, Pomerleau et al. [9] proposed an in-depth review
of the literature explaining how outlier filters must be configured depending on the
robotic application at hand. Unfortunately, their investigation is limited to listing
current solutions, without comparison. These surveys guided us in the selection of our
list of solutions analyzed in this paper.

When it comes to comparing outlier filters, the most common baseline is vanilla ICP
(i.e., labeled L2 hereafter), which does not have any outlier filter and directly minimizes
a least-squared function.

In terms of hard rejections, Phillips et al. [27] compared a solution using an adaptive
trimmed solution against a manually-adjusted trimmed threshold [11] and L2. However,
they limited their analysis to a pair of point clouds with overlap larger than 75%
and using simulated outliers. Another adaptive threshold solution, this time related
to simulated annealing algorithms [25], was compared to five types of hard rejection
algorithms. Unfortunately, they used a limited 2D dataset relying on ten pairs of scans
with similar overlap. As for soft rejections, Bergström et al. [31] compared the effect
of three M-estimators on ICP and proposed an algorithm to auto-tune them, but they
only provided results based on simulated data of simple geometric shapes. Agamennoni
et al. [32] proposed a soft rejection function based on the Student’s T-distribution
for registration between a sparse and a dense point cloud. But, they compare their
algorithm to another complete ICP solution, where multiple stages changed. Bouaziz

1https://github.com/ethz-asl/libpointmatcher
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et al. [28] introduced a soft rejection function based on Lp norms, however, they did
not provide qualitative evaluation. Moreover, their solution does not use a standard
least-squared minimizer. Closer to the topic of our analysis, Bosse et al. [26] compared
five M-estimators and another robust function against L2, for a variety of minimization
problems, one of which was ICP. However, the ICP analysis was limited to examples
relying on a single 2D pair of point clouds. In our analysis, a common 3D benchmark
is used for all solutions allowing a fair comparison of robust cost functions.

When an outlier filter relies on fixed parameters, it is important to know their effects
on registration performance. Segal et al. [33] removed matching points with residual
errors higher than a given value (i.e., named max. distance hereafter) and evaluated
the influence of this parameter on ICP. They concluded that the value used for this
parameter is a trade-off between accuracy and robustness. Bosse et al. [34] compared
the same outlier filter against one of the classic M-estimator Cauchy in an 2D outdoor
environment. They concluded that max. distance is less robust to the parameter value
than Cauchy, but it provided better accuracy when correctly tuned.

For the most part, a robust cost function relies on fix parameters, configured by trial
and error. To sidestep this issue, some outlier filters are designed so as to be auto-
tunable. For instance, Haralick et al. [35] and Bergström et al. [31] have both pro-
posed an algorithm to auto-scale M-estimators. However, Bergström et al. [31] requires
two additional hyper-parameters to tune the auto-scaler: one representing the sensor’s
standard deviation and the other specifying the decreasing rate to reach the standard
deviation. In the case of outlier filters based on a threshold following a given quantile
of the residual error, Chetverikov et al. [36] proposed an estimator to tune the overlap
parameter, which uses an iterative minimizer. Unfortunately, having an iterative min-
imizer inside ICP’s iterative loop becomes computationally intensive [37], thus most of
the implementation resorts to manually fixing the quartile. Phillips et al. [27] improved
on [36] by minimizing the Fractional Root Mean Squared Distance (FRMSD) to tune
the parameter representing the overlap ratio. It removes the need for an inner loop
to estimate the parameter, thus speeding up the execution by a factor of at least five.
But, this algorithm performance also depends on a hyper-parameter that needs to be
tuned [37]. In this paper, we also explore the influence of tuning parameters, testing
even the stability of hyper-parameters, and provide a methodology to tune them.
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Figure 2.1 – The effect of different outlier filters on the registration of two overlapping curves.
The blue circles and red squares are respectively the reference points and the reading points.
The initial graph depicts the data association from the nearest neighbor at the first iteration.
The final graph shows the registration at the last iteration. The other graphs depict scalar
fields of the weight function w(e) of a reading point. For L2, all points have the same weight.
L1 gives an infinite weight to a point directly on top of a reference point.

2.3 Theory

The ICP algorithm aims at estimating a rigid transformation T̂ that best aligns a
reference point cloud Q with a reading point cloud P , given a prior transformation Ť .
The outlier filtering stage of ICP has strong ties to error minimization. The former
reduces the influence of wrongful data association, while the latter finds a solution that
respects the constraints of the previous stage. In the context of ICP, these two stages
can be summarized as estimating the rigid transformation T̂ by minimizing

T̂ = arg min
T

∑
i=1

∑
j=1

ρ
(
e(T ,pi, qj)

)
, (2.1)
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where ρ(·) is the cost function. The error function e(·) is the scaled distance between
matched points, defined as

e(T ,pi, qj) =

∥∥Tpi − qj
∥∥

s
, (2.2)

where pi ∈ P and qj ∈ Q. This is equivalent to a simplified version of the Mahalanobis
distance, where the scale s is uniform on all dimensions. For the original version of ICP,
s is set to one. The double summation of Equation 2.1 is expensive to compute and is
typically approximated using a subset of pairs, using nearest neighbor points of each
pi. To simplify the notation, we will use em(·) for each error to be minimized, with m
being the index of this subset. Since ρ(·) is non-convex, the minimization must be solved
iteratively, in a manner similar to the Iteratively Reweighted Least-Squares (IRLS) [31]
by decomposing ρ(·) as a weight w and a squared error term, such that

T̂ ≈ arg min
T

∑
m=1

w
(
em(Ť )

)
em(T )2. (2.3)

At each iteration, the prior transformation T̂ is assigned to the last estimated trans-
formation until convergence. Figure 2.1 shows a toy example of registration. The
subsequent scalar fields show the impact of different weight functions w(·) in the neigh-
borhood of Q. A notable example is L2, where the lack of weights is equivalent to using
a constant weight for all pairs. Beyond L2, outlier filtering is all about the choice of
this weight function w(·) and its configuration. Table 2.1 shows a list of robust cost
functions used in this paper, with a dedicated column highlighting their implementation
of w(·).

2.3.1 Hard rejection

Outlier filters categorized as hard rejection define the result of w(·) to be binary (i.e.,
either zero or one). The two most commons solutions are Max. distance and Trimmed.
The solution Max. distance rejects any match with a distance larger than a threshold.
Trimmed only keeps the error below the f th percentile Pf of the matches, where f is the
overlap ratio parameter. This makes the registration accuracy directly related to how
close this parameter f is to the actual overlap between reference and reading. In that
sense, if f deviates from the true overlap, the accuracy will degrade. In applications
where the overlap is unknown or changes often, selecting a fix overlap ratio f becomes
challenging. A variant of trimmed, Var. Trimmed [27], calculates the FRMSD for all
possible overlap ratios, and selects the ratio with the minimum FRMSD value as f .
The Median filter is also used, but is a special case of Trimmed, where f = 50 %.
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Table 2.1 – Descriptive table of robust cost functions used in this analysis expressed with
respect to their tuning parameter k and the scaled error e.

Functions Conditions Cost ρ(e) Weight w(e) M

L2
e2

2
1 3

L1 |e| 1
|e| 7

Huber
{
|e| ≤ k
otherwise

{
e2

2

k(|e| − k/2)

{
1
k
|e|

3

Cauchy k2

2
log(1 + (e/k)2) 1

1+(e/k)2
3

GM e2/2
k+e2

k2

(k+e2)2
3

SC
{
e2 ≤ k
otherwise

{
e2

2
2ke2

k+e2
− k/2

{
1

4k2

(k+e2)2
3

Welsch k2

2
(1− exp(−( e

k
)2)) exp(−(e/k)2) 3

Tukey
{
|e| ≤ k
otherwise

{ k2(1−(1−( e
k
)2)3)

2
k2

2

{
(1− (e/k)2)2

0
3

Student (k+3)(1+ e2

k
)−

k+3
2

k+e2
7

Max. Dist.
{
|e| ≤ k
otherwise

{
e2

2
k2

2

{
1
0

3

Trimmed
{
e ≤ Pf
otherwise

{
1
0

7

Legend: M = Is the function a M-Estimator?

2.3.2 Soft Rejection and M-estimators

Outlier filters using soft rejection output a weight where w(·) ∈ R+. The most common
soft rejection algorithms are M-estimators. To be an M-estimator, a cost function ρ(·)
must fulfill three conditions, which are to be 1) symmetric, 2) non-negative, and 3)
monotonically-increasing [35]. Those conditions do not limit M-estimators to robust
cost functions as, for example, L2 satisfies all of them. Moreover, cost functions asso-
ciated with M-estimators are analyzed using their influence function ψ(·) and weight
function w(·), such that

ψ(e) =
∂ρ(e)

∂e
and w(e) =

ψ(e)

e
. (2.4)

The influence function ψ(·) is used to evaluate whether an M-estimator is robust or
not. If ψ(·) is non-monotonic (i.e., redescending) and is null for an error that tends
to infinity, the M-estimator is considered robust. As for the weight function w(·), it is
given for convenience since it is the only part required to implement an M-estimator
for an IRLS solution, as in Equation 2.3. In the soft rejection algorithms considered in
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this paper (shown in Table 2.1), two are not M-estimators: L1 has a singularity for an
error that is equal to zero, and Student has an undefined ρ(·).

It is worth noting that some soft rejection functions are related. For instance, Huber
uses a parameter k to combine L1 and L2, in order to avoid the singularity at e =

0 of L1. Also, Switchable-Constraint (labeled SC hereafter), typically used in pose
graph SLAM, was expressed as a combination of L2 and Geman-McClure (labeled GM
hereafter) using a parameter k. It shares the same cost function as Dynamic Covariance
Scaling [30]. SC is expected to have similar results to GM for extreme values of k.

2.3.3 Estimating the scale

As expressed in Equation 2.2, we used a scaled error in our ICP implementation. Con-
trary to the filter parameter k, which should be globally constant, the scale s is related
to the point clouds and can be either fixed or estimated at every iteration. The scale
s relates to the uncertainty for which paired points with a certain error should be
considered as outliers. There are multiple estimators for the scale, two of the most in-
teresting are: 1) Haralick et al. [35] used the Median of Absolute Deviation (MAD) as
a scale estimator and calculated it at each iteration; 2) Bergström et al. [31] starts with
s = 1.9 ·median(e) and then gradually decrease s at each iteration, to asymptotically
reach a standard deviation σ∗. The parameter ξ controls the convergence rate of the
scale.

2.3.4 Relating crispness to the M-estimator Welsch

The notion of crispness as a measure of how well two point clouds are aligned was
introduced by Sheehan et al. [38] in the context of sensor calibration. It originates from
the use of a Gaussian kernel in a measurement of Rényi Quadratic Entropy (RQE) for
a kernel correlation approach to registration [39]. RQE has the following cost function:

ρrqe(e∗) = exp

(
− e2∗

4σ2

)
, (2.5)

where e∗ is the unscaled error and σ is a tuning parameter. RQE has been described
as an M-estimator by [39], however, it has not been related to an existing M-estimator.
This cost function is a special case of Welsch with k = 2 and s = σ. This means
that minimizing for RQE is the same thing as using a Welsch M-estimator with this
configuration. Thus, this configuration is expected to have good accuracy.
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2.4 Experiments

Our study focuses on registration-based localization in the context of mobile robotics.
Our analysis follows a similar methodology as in Pomerleau et al. [12], with a strict
focus on changing the outlier filtering stage of ICP. The other stages were kept the
same. Table 2.2 describes the ICP pipeline used.

A number of key factors were selected to be tested jointly, in order to determine their
influence. These factors were: 1) the outlier filter, selected based on their popularity
and their interesting properties (total of 12); 2) the configuration parameter of the
filters; 3) the environment type (indoor, outdoor, etc.); and 4) the overlap between
the reference and reading scans. For each factor selection above, 128 registrations were
computed with a random perturbation from the ground truth. How some of these
factors were sampled during experiments is detailed below.

Configuration parameter sampling Filter parameter values were sampled in a way
to ensure efficient exploration of their configuration space. For instance, the tuning
parameters k of all M-estimators (i.e., Huber, Cauchy, SC, GM, Welsch and Tukey) and
Student were sampled evenly on a log scale. Two sampling value regions were defined.
The first region was Z1 ∈

[
1× 10−6, 0.1

[
and the second one was Z2 ∈

[
0.1, 100

]
. Z1

explores the asymptotic behavior of the algorithm for near-zero k values, while Z2 is
where the parameter with the best accuracy is located for most estimators. They are
sampled 20 times for Z1 and 30 times for Z2. For the error scale s for M-estimator (see
Eq. 2.2), two auto-scalers (Berg. and MAD) and one fixed scale have been tested. All
three permutations were tested on Cauchy, while all other M-estimators were tested only
with MAD. In the case of the Berg. auto-scaler, we used a convergence rate of ξ = 0.85,
as it was found to be the best one in our analysis. Its parameter σ∗ was sampled in
the same two zones as the M-estimator (Z1 and Z2). Cauchy Berg. used the tuning
parameter kcauchy = 4.304, and it was selected based on [31]. If the estimator used
was MAD, then s = MAD(e), otherwise s = 1. In the case of the Trimmed filter, its
overlap parameter f has been sampled linearly 20 times in the range

[
1× 10−4, 100

]
%.

For the Var. Trim. filter, the minimum and maximum overlap parameters have been
set to 40% and 100% respectively. Its λ parameters have been sampled linearly 20
times between 0.8 and 5. The filter Max. Dist. has been sampled 20 times linearly in
the range

[
0.1, 2

]
. Finally, the parameter-less L1 and L2 filters were used as-is.

Environments Experiments were performed on the Challenging Datasets [6]. These
provide a ground truth with mm-level of precision. Our analysis used 3 sets of point
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Table 2.2 – Listing of the configuration of libpointmatcher used.

Stage Configuration Description

Data association KDTree Three matches per point
Data filtering SurfaceNormal Density with 20 neighbors

MaxDensity Limit density to 10k pts/m3

RandomSampling Keep 75% of points
Error Min. PointToPlane Point-to-plane error
Trans. Checking Differential Stop below 1 mm and 1 mrad

Counter Max. iteration count is 40

clouds from this dataset, one per type of environment: structured (Hauptgebäude),
semi-structured (Gazebo Summer) and unstructured (Wood Summer). As each of them
contains around 35 point clouds, it allows a fine control of the ratio of overlap between
point clouds. For each set, 12 pairs of point clouds where selected, to uniformly sample
the overlap between 40% and 100%.

Initial perturbation on T 0 For fine registration, ICP requires a prior on the trans-
formation between the reading and reference point clouds. The performance accuracy
of ICP is directly impacted by the distance between the initial transformation T 0 and
the ground truth. For each of the previous factors, 128 initial transformations T 0 were
generated by adding a random perturbation sampled from a uniform distribution, and
centered at the ground truth. To stress-test ICP, we chose a perturbation as challeng-
ing as the hard perturbation of [12]. The perturbation in translation was generated by
sampling a point in a sphere with a 1 m radius, while the one in rotation was generated
by first sampling from an uniform angle distribution between 0 and 25 deg and then
applying it around a random 3D vector.

Our evaluation of accuracy used the transformation error ∆ defined as ∆ = T−1gt T final

where T gt is the ground truth and T final is the transformation at the last iteration.
∆ is further separated into two components, for easier interpretation: ∆R for the 3x3
rotation matrix and ∆T for the 3x1 translation vector. Finally, the translation error
was evaluated with the Euclidean distance of ∆T , and the rotation error metric is
θ = arccos( trace(∆R)−1

2
).
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Figure 2.2 – Influence of the parameter’s value on the translation registration accuracy of
M-estimators. Each parameter sample point is the median of the error for all datasets for
all overlap. The H min, GS min and WS min correspond to the parameter of Cauchy with
the minimum median error for the environment Hauptgebäude, Gazebo Summer, and Wood
Summer.

2.5 Results

In the first set of tests (Section 2.5.1), we performed over 2.3 million pairwise regis-
trations to exhaustively evaluate the outlier filter solutions. These registrations were
computed offline using Compute Canada’s Supercomputers. In the second set of ex-
periments (Section 2.5.2), we collected data with a mobile robot on an indoor-outdoor
trajectory. We then tested on this trajectory the two best performing filters (Sec-
tion 2.5.1) for a real-time mapping task (Figure 2.4).

2.5.1 Pairwise Outlier Filter Tests

Pairwise registration results are broken down into three parts. We first discuss the
performance (median error) of each filter as a function of its parameter, for all envi-
ronments compounded (Figure 2.2). We then closely analyze the distribution of errors
for the best parameter values found from this search, for the three environments (Fig-
ure 2.3). In the third part, we evaluate how robust the best parameters are to a change
in the environment (Table 2.3).

2.5.1.1 Parameter Search over All Environments Compounded

We computed the error metrics ‖∆T‖ for all registrations, irrespective of the environ-
ment. Figure 2.2 shows the median translation error for M-estimators, as a function of
the filter’s tuning parameter value. We can see that all filters with parameters have a
single global minimum, located in a relatively flat valley. Most solutions have a similar
best performance, while Huber MAD slightly underperforms.
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Figure 2.3 – Box plot of the performance of each outlier filter for the parameter value with
lowest median error in that particular environment.

Comparison with L2 (Vanilla ICP): For large values of configuration parameter
k, all filters (excepted GM ) performed similarly to L2 (top dashed line), i.e. outlier
filtering is effectively disabled. This is not surprising, as these M-estimators have the
property that limk→∞w(e, k) ≈ 1. For small values of k, the performance depends
on the estimator used. It can nevertheless be categorized into two trends. For Huber
MAD, Cauchy and Cauchy MAD, the translation error degrades smoothly towards L2 as
k → 0, without surpassing it. For the four other filters, performance can become much
worse than L2 with k → 0, although for Welsch and Tukey the performance eventually
goes back down to L2. From all this, we can conclude that: 1) it is preferable to
overestimate the parameter for all M-estimators than to underestimate it, to avoid too
much rejection of inliers; 2) peak performance varied little from one filter to another
(less than 2 cm), except for Huber MAD ; and 3) Huber MAD, Cauchy and Cauchy
MAD never performed worse than L2.

Comparison with L1: Despite being unsophisticated, L1 almost always outperforms
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Figure 2.4 – Testing the ICP accuracy in a real time 3D SLAM application with a Husky A200
following a challenging indoor-outdoor route on Université Laval’s campus. The start and end
of the route are at the same location. The black trajectory (ground truth) was calculated
offline. The end position of the trajectory for each parameter value is represented by a circle.
In A), all configurations of Var. Trimmed could not converge correctly in the corridor.
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all outlier filters approaches, except for a narrow band of parameter values. Huber is
the only M-estimator that does not outperform L1. However, as we will see later in
Figure 2.3, L1 exhibits a much greater variance in certain environments, which could
be problematic if one is interested in minimizing the risk of being lost.

Other observations: Cauchy and Cauchy MAD have the same curve, but with an
offset, with Cauchy MAD ’s minimum centered at k = 1 by the auto-scaler. Since GM
and SC shares the same function, they have a similar curve, differing only by a slight
offset. Welsch and Tukey also have similar curves with an offset, despite having very
different weight functions w(e).

2.5.1.2 Distribution of Errors for the Best Fixed Filter Parameter, for
Three Environments

In Figure 2.2, we showed only the median error, for all environments combined together.
As such, this median does not tell the whole story. We thus computed in Figure 2.3
the distribution of errors of all filtering approaches, for three different environments.
It is important to note that the filter parameters were fixed in these experiments, and
were established from the best results found in Figure 2.2. From these experiments, the
environment influence on the registration is clear: the structured one (Hauptgebäude)
is noticeably easier in rotation, while the unstructured one (Wood Summer) is by far
the hardest in rotation and in translation. Furthermore, all error distributions are
asymmetric (heavy-tailed). Apart from the unstructured environment ofWood Summer,
all outlier filters have error spreads and median errors significantly smaller than L2. This
further confirms the lack of robustness of L2. Although L1 has a favorable median error
in the semi-structured environment Gazebo Summer, its error spread is much greater
that most other M-estimators. The performance of Huber is even worse than that of L1

in that environment despite being a “robust” version of the former. Finally, we observed
that Cauchy has an error spread noticeably smaller than its auto-scaled counterpart
(Cauchy MAD).

2.5.1.3 Robustness of Best Fixed Parameter Across Environments

To determine if a filter is robust across environment changes, we used the following
metric: if the best parameters of a filter for each of the three environments are all
within the global flat valley, this filter is considered robust. We define this global flat
valley as the range of parameters that perform better than L1, when comparing the
median translation error. For instance, Figure 2.2 shows the best parameters of Cauchy
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Table 2.3 – All 14 outlier filters were tested on the three environments and for a variety of
parameter values. The parameter corresponding to the smallest median error for each dataset
is shown. In the median error columns, the outlier filter with the best performance is in bold.
In the parameter columns, if the parameter value is located inside the global flat valley, then
it is in bold. If all three environments are within the valley, then ’All’ is in bold.

Outlier Filters Median Error (mm) Parameters
H GS WS All H GS WS All

L2 544 390 459 409 n/a n/a n/a n/a
L1 66 25 350 68 n/a n/a n/a n/a
Huber MAD 54 58 176 84 0.05 0.33 0.67 0.33
Cauchy 28 11 131 37 0.05 0.10 0.32 0.20
Cauchy MAD 28 14 132 28 0.40 1.00 1.59 0.80
Cauchy Berg 39 18 99 39 0.01 0.00 0.05 0.01
SC MAD 21 19 111 31 0.50 2.53 3.18 1.00
GM MAD 34 19 180 47 1.08 4.52 11.72 4.52
Welsch MAD 23 17 109 36 2.00 2.00 3.18 1.59
Tukey MAD 26 19 130 34 2.53 5.04 6.35 3.18
Student 40 32 178 60 0.10 0.13 1.37 0.16
Max. Distance 45 38 112 58 0.30 0.40 0.60 0.40
Trim 39 24 284 63 0.63 0.68 0.89 0.68
Var. Trimmed 28 9 58 27 1.91 2.35 2.35 1.91

Legend: H = Hauptgebäude, GS = Gazebo Summer, WS = Wood Summer

for three environments. Since all three parameter values have an error below L1, Cauchy
is robust as per our metric.

In Table 2.3, the best performing parameters for all filters are presented, for three
environments. The best overall filter for these experiments is Var. Trim. It has half of
the error of the second best filter inWood Summer. It is also the only hard rejection filter
that met our robustness criteria describes above. Filters such as Cauchy, Cauchy MAD,
Welsch MAD, and Tukey MAD are also robust across our environment changes, as they
all have values below L1 (indicated by bold notation). On the subject of auto-scaling,
Cauchy Berg is out performed by Cauchy and Cauchy MAD for all environments except
Wood Summer. The optimal parameter of Welsch for two environments is k = 2, the
exact value for RQE kernel function (as discussed in Section 2.3.4), which means that
our experiments agree with the theory around kernel function. The parameters of Max
distance and Trim depend on the environment, possibly indicating a lack of robustness.
We can attribute this to the fact that they are hard rejection, and that they lack the
adaptability of Var. Trimmed.
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2.5.2 Test on a full Indoor-Outdoor Trajectory

In Figure 2.4, two filters (Cauchy MAD and Var. Trim.) were tested in a challeng-
ing route containing both indoor and outdoor portions. These filters were chosen for
their good performance in our offline tests. The robot used a Velodyne HDL-32e for
scanning and used a mix of wheel encoder and an Xsens MTi-30 IMU for odometry.
To estimate the trajectory, an ICP-based SLAM was used with a moving window map.
The moving window map was created by randomly decimating the map’s point. For
ground truth, the ICP-based SLAM was done offline without moving windows. The
outlier filter performance was evaluated by comparing the cumulative registration error
to the ground truth. Multiple parameter values were tested, all near the best value
from Table 2.3. For Var. Trim., all parameter values had difficulties in the highlighted
zone A in Figure 2.4, which occurs in a small corridor. This confirmed that Var. Trim.
has problems in structured environments as in Figure 2.3-Hauptgebäude. For Cauchy
MAD, all tested parameters finished close to the ground truth. The parameter with the
best performance was k = 3.0, which demonstrates that the valley for this experiment
is shifted to higher k values than our offline tests. We think that this change is caused
by the different sensors used, and because this test is a registration between scan to
(small) map, while our offline tests were between two scans.

2.6 Conclusion

In this paper, we performed exhaustive robustness experiments on a wide range of out-
lier filters, in the context of ICP. After analysis, we concluded that all robust solutions
have similar performances, with a number of particularities worth noting. For instance,
L1 exhibits good overall performance, despite having no parameter. Also, using MAD
as auto-scale improves accuracy, but does not relieve from parameter tuning. When
appropriately tuned, Var. Trim. has the best accuracy, with a translation error under
27 mm, while the best M-estimator is Cauchy MAD with roughly the same error. More-
over, we demonstrated the necessity of a well-tuned outlier filter for robust registration.
In particular, Welsch, Tukey, GM, and SC should be employed carefully, as they have
the potential to produce worse estimate than L2 when mis-tuned. This fact should be
kept in mind when assessing the risks associated with parameter selection.

Encouraged by the result of L1, further investigation will be made to adapt registration
solutions related to Lp norms [28] into the standard ICP pipeline. Furthermore, the link
between RQE, a Gaussian kernel and Welsch opens the door to a family of kernels to
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be studied for outlier filters along with an integration of the kernel correlation solution
[39] and EM-ICP [23] into a generic version of ICP.
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Chapter 3

Large-scale 3D Mapping of Subarctic
Forests
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Résumé

La capacité de cartographier un environnement subarctique difficile ouvre la voie à
des déploiements de robots dans des industries tels que la foresterie, la surveillance
et l’exploitation minière à ciel ouvert. Dans cet article, nous explorons la possibilité
de cartographie à grande échelle en forêt boréale, à l’aide de lidar. La cartographie
avec un lidar est souvent basée sur des techniques de SLAM utilisant un graphe
de poses. Celui-ci fusionne ensemble l’ICP, les positions GNSS et les mesures de
l’IMU. Nous proposons une approche alternative qui fusionne les informations
issues des capteurs directement dans l’étape de minimisation de l’ICP. De plus,
une nouvelle formulation de la fonction de coût de l’ICP est présentée et est
utilisée afin de compenser les incertitudes provenant du GNSS et des nuages de
points du lidar. Pour tester cette approche, nous avons enregistré un ensemble de
données à grande échelle à la Forêt Montmorency. Nous présentons les problèmes
techniques rencontrés lors du déploiement en hiver. Les cartes générées grâce à
notre nouvelle technique sont globalement et localement cohérentes, même sur un
parcours de 4.1 km.
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Abstract

The ability to map challenging subarctic environments opens new horizons for
robotic deployments in industries such as forestry, surveillance, and open-pit min-
ing. In this paper, we explore the possibilities of large-scale lidar mapping in a
boreal forest. Computational and sensory requirements with regards to contem-
porary hardware are considered as well. The lidar mapping is often based on
the SLAM technique relying on pose graph optimization, which fuses the ICP
algorithm, GNSS positioning, and IMU measurements. To handle these sensors
directly within the ICP minimization process, we propose an alternative approach
of embedding external constraints. Furthermore, a novel formulation of a cost
function is presented and cast into the problem of handling uncertainties from
GNSS and lidar points. To test our approach, we acquired a large-scale dataset
in the Forêt Montmorency research forest. We report on the technical problems
faced during our winter deployments aiming at building 3D maps using our new
cost function. These maps demonstrate both global and local consistency over
4.1 km.
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Figure 3.1 – The boreal forest Forêt Montmorency presents an environment ideal to test
robotic applications in a subarctic region. For lidar mapping, it offers challenging dense forest
conditions. Credit: Forêt Montmorency.

3.1 Introduction

Autonomous mobile robots require a representation (i.e., a map) of the environment
in order to perform specific tasks. For instance, maps are needed internally to plan
motions and avoid obstacles. The map itself can also be the objective, captured by
robots and used for later analysis [40], including forestry inventories [41]. Although
many solutions exist for localization and mapping, the environment itself influences
the complexity of the task, and thus dictates which algorithm to use. In this study,
we targeted snowy, subarctic forests to explore new challenges to large-scale mapping.
Indeed, this type of environment is minimally-structured, making registration more
difficult. Moreover, the ruggedness of terrains dictates the need for a full six Degrees
of Freedom (DoF) solution, with little assumption on trajectory smoothness.

Another difficulty brought by subarctic environments is the lack of distinctive visual
features during snowy periods [42]. With images of snowy surfaces, it is challenging to
extract enough features in order to support visual odometry or vision-based Simultane-
ous Localization and Mapping (SLAM). This precludes the use of passive camera-based
localization systems, making lidar the sensing modality of choice for these conditions.
A natural approach to mapping in this case is to incrementally build a 3D point cloud
map from scans taken at different locations, using the Iterative Closest Point (ICP)
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algorithm [43]. The ICP algorithm iteratively finds corresponding points between two
point clouds and looks for a rigid transformation minimizing an alignment error. This
approach ensures local consistency, yet inevitably suffers from global drift [12]. This
drift problem can be mitigated by SLAM techniques based on pose graph optimization
[44], [45]. The key idea behind the latter is to identify loop closures and optimize all
estimated transformations between the individual lidar scans to ensure global consis-
tency. Unfortunately, in environments which do not allow loop closure (such as a long
straight trajectory), drift cannot be avoided without additional external localization
sources, such as Global Navigation Satellite System (GNSS). Moreover, the pose graph
optimizer requires uncertainty estimations in the form of covariance matrices for all
transformations, including those from ICP. As shown by Landry et al. [21], this uncer-
tainty can be modeled, learned or sampled, but the Gaussian distribution assumption
does not hold up well in complex 3D environments.

Furthermore, autonomous robots operating on polar ice sheets [46] often rely on GNSS
as their main source of positioning. In unstructured environments (e.g., boreal forests,
taiga), GNSS cannot be used this way due to high uncertainty of position estimates.
This uncertainty is caused by interference of the canopy with the signals from satel-
lites [47]. Still, the main advantage of GNSS is that it provides a global source of
positioning, which shows minimal and bounded bias compared to the ICP. Meanwhile,
ICP creates maps that are crisp (i.e. locally consistent).

The goal of our paper is to demonstrate large-scale mapping of difficult environments,
while generating maps that are i) crisp, ii) without long-term drifts, and iii) that can
be updated swiftly. To satisfy the first two criteria, we experimented with embedding
external constraints directly within the ICP minimization process using a novel for-
mulation to handle uncertainty on positions. More precisely, we propose to augment
the ICP algorithm by adding penalty terms based on the global GNSS positioning and
the Inertial Measurement Unit (IMU) attitude estimates, weighed by their uncertainty.
This formulation has the advantage that the uncertainty associated with these external
constraints, contrary to the ICP’s, can usually be readily estimated. Second, it avoids
undue oscillations induced by alternating between graph minimization and point cloud
registration, as both algorithms have no guarantees of sharing the same minimum. The
third criterion pertains to the need for fast point-cloud map update in autonomous
systems. The main bottleneck of the ICP algorithm is the update of the KD-tree, a
data structure used for a fast nearest-neighbor search. Since our objective is to build
large maps, this slowdown becomes unacceptable. We investigate a simple optimiza-
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tion technique to reduce the execution time of registrations by reducing the size of the
map portion used for the KD-tree update. We tested our approach on large-scale maps
recorded in a boreal forest during the winter (shown in Figure 3.1). A particular em-
phasis has been placed on discussing problems related to the different aspects of lidar
mapping for this type of environment.

3.2 Related Work

The context our work involves robotic deployments in harsh, snowy environments. This
problem of mapping and localization in these conditions has only been investigated by
a few publications. For example, visual SLAM for a robotic snowmobile platform was
deployed by [48] on a glacier in Alaska. The authors report difficulties relating to the
relatively low number of visual features in close vicinity of the mapping platform, com-
pared to visual features located on the horizon. Since the nearby features are vital for
translation estimation, image processing techniques are proposed to improve their ex-
traction. Effects of changing shape and appearance of snowy areas on a path-following
algorithm are also discussed in [49]. Their findings further motivate the use of lidars
for mapping in these conditions. In our approach, the deployment of the lidar sensor
translates the problem of extracting image features for localization into the problem of
locating against 3D geometry. On the one hand, areas covered by the boreal forests
comply well with this requirement. On the other hand, on open plateaus where 3D
features are sparse, the GNSS constraints assure consistent localization and mapping.
Moreover, similarly to [48] and [49], we do not require wheel or track odometry mea-
surements from the mobile platform. This feature simplifies integration of the mapping
system into different mobile vehicles which do not offer any odometry (in our case, the
sleigh). We, however, benefit from an IMU which provides attitude prior with unbiased
roll and pitch angles.

Laser scans can be captured from a ground-based static sensor as in the work of [50]
who employed a stationary high density lidar sensor for terrain classification and iden-
tification of tree stems. Alternatively, the Airborne Lidar Scanning (ALS) approach
allows the mapping of vast forested areas from the air. Besides the ALS, Structure
from Motion technique [51] and stereo imagery [52] are further alternatives to creating
3D maps, suitable mainly for light aerial drones. Our goal is creating and maintaining
globally consistent 3D maps for autonomous ground robots. In the case of ALS, the
global consistency is easier to achieve because of the high-altitude point of view and

41



unobstructed GNSS reception. Contrarily, ground robots only observe a limited portion
of the area at a time and their GNSS reception is partially occluded by the canopy.
On the other hand, ground-based 3D scans offer high details, also useful for in-depth
vegetation analysis. The problem of storing and managing large amounts of data is
common to all of the mentioned works. In our approach, we propose a technique to
limit the computation demands during the mapping process.

Fueled by the increasing interest in self-driving cars, multiple large-scale urban datasets,
most notably [13], (containing lidar and GNSS information beside other sensors) have
become available. These datasets have accelerated development, refining a variety of
visual- and lidar-based SLAM algorithms. Contrary to structured urban environments,
we investigate the characteristics of mapping in unstructured ones (forests) in harsh
winter conditions. Additionally, any improvement on the accuracy of registration algo-
rithms reduces pressure on loop-closure and graph minimization algorithms, leading to
more robust lidar-based SLAM algorithms overall.

From the extensive family of ICP variants [9], our contribution relates mainly to incor-
porating generalized noise models into the ICP algorithm. Since the GNSS positioning
provides a confidence estimate in the form of a covariance matrix, simplification to an
isotropic noise model discards potentially important information. Ohta et al. [53] were
first to consider anisotropic and inhomogeneous noise models when estimating opti-
mal rotation of features extracted from stereo-pair depth images for 3D reconstruction.
Later, the Generalized Total-Least-Squares ICP (GTLS-ICP) algorithm was introduced
by Estépar et al. [54] for registering medical fiduciary markers. The work considers an
anisotropic noise model in the registration phase of ICP and accounts for optimizing
translation component as well. Further improvements were introduced by Maier-hein et
al. [55], where the matching phase is modified to benefit both from KD-tree search speed
and Mahalanobis-distance metric. This technique has been eventually enhanced by the
introduction of a new kind of KD-tree which directly supports Mahalanobis-distance
and a new minimizer [56]. In our approach, the anisotropic noise is strictly limited to
the GNSS position measurements, making the problem slightly different. We look for
a way to integrate this positioning information together with its anisotropic noise into
the ICP. More closely related to robotic applications, the Generalized-ICP (GICP)
algorithm [33] preserves the possibility to model measurement noise, while focusing
on minimizing the plane-to-plane metric. However, using an iterative minimizer such
as Broyden-Fletcher-Goldfarb-Shanno (BFGS) inside the matching loop of ICP is pro-
hibitively slow. In this paper, we investigate how to link point set registration to
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include penalty terms brought by the GNSS and IMU measurements within the same
mathematical framework generic to anisotropic noise.

3.3 Theory

3.3.1 New Formulation for Point-to-Gaussian Cost Function

The ICP algorithm aims at estimating a rigid transformation T̂ that best aligns a set
of 3D points Q (i.e., a map point cloud) with a second set of 3D points P (i.e., scan
point cloud), given a prior transformation qT . For a better representation of surfaces,
the points of the map point cloud can be represented locally by planes. The problem
of rigid registration using points from the scan and planes from the map [8] can be
summarized as minimizing the point-to-plane cost function Jp-n(·) following

T̂ = arg min
T

Jp-n

(
Q,P , qT

)
, with (3.1)

Jp-n =
∑
i=1

∑
j=1

wij(e
T
ijni)

2, and eij = qi − qRpj −qt, (3.2)

where eij is the error vector between the ith point q of Q and the jth point p of P , ni

is the normal of the plane, qR and qt are respectively the rotation and translation part
of qT , and wij is a weight limiting the impact of outliers as surveyed by Babin et al. [2].
The double summation in (3.1) is expensive to compute and is typically approximated
using a subset of pairs using nearest neighbor points of each scan point. To simplify
the notation, we will use em for each error to be minimized, with m being the index
of this subset. Point-to-plane error outperforms point-to-point error in most cases [12].
However, it does not represent non-planar surface well. Point-to-Gaussian provides a
more versatile representation [57]. Instead of being represented by a plane, each point
in Q is the mean of a Gaussian and its incertitude is represented by a covariance. The
point-to-Gaussian cost function Jp-g thus becomes the following:

Jp-g =
∑
m=1

(
weTW−1e

)
m
, (3.3)

where W−1 is the inverse of the covariance. In point-to-Gaussian, the Mahalanobis
distance is minimized instead of the Euclidean distance (point-to-point) or the projected
distance to a plan (point-to-plane). Instead of using a second iterative solver within the
matching loop of ICP [33], [54], [56], we propose a novel decomposition to minimize the
point-to-Gaussian error (3.3) directly using the equations for point-to-plane error (3.1).
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The inverse of the covariance W−1 can be expressed as a matrix N of eigenvectors and
a diagonal matrix Λ holding the sorted eigenvalues, with λ1 < λ2 < λ3, using

W = NΛNT ⇒W−1 = NΛ−1NT .

The decomposition can be inserted inside the cost function and reformulated as three
point-to-plane errors using a projection for each of the eigenvector. Dropping the
summation and the indices for clarity, we obtain for a single pair of points

Jp-g =
∑

weTNΛ−1NTe (3.4)

=
∑

weT
[
n1 n2 n3

]
diag

(
1
λ1
, 1
λ2
, 1
λ3

) [
n1 n2 n3

]T
e

=
∑

w

(
1

λ1

(
eTn1

)2
︸ ︷︷ ︸

Jp-n

+
1

λ2

(
eTn2

)2
+

1

λ3

(
eTn3

)2)
, (3.5)

where λi is an eigenvalue and ni is its associated eigenvector. Thus, point-to-Gaussian
can be used with any point-to-plane minimizer. In fact, point-to-plane is a special case
of point-to-Gaussian, where the first eigenvalue λ1 is small enough compared to λ2 and
λ3. This formulation can be used to also minimize Gaussian-to-Gaussian by setting W

to the sum of the uncertainty of point q with the rotated uncertainty of its associated
p.

3.3.2 Adding Penalty Terms to ICP

ICP mapping creates crisp maps by taking into account local geometric characteristics
contained in each new point cloud. Therefore, global consistency is not enforced. On
the other hand, GNSS provides globally consistent positioning, but yields low local
precision, especially when compared to ICP in forested areas. Furthermore, there is
a disproportion between the altitude, latitude and longitude positioning components,
the altitude being the least precise. By fusing ICP, GNSS and IMU information, we
propose to compensate for the ICP drift.

Penalties are a natural way to add a constraint to the minimization step of ICP. They
can be seen as imaginary points added to the point cloud during minimization for which
the association is known. The minimization problem thus becomes:

T̂ = arg min
T

1

M

∑
m=1

(
weTW−1e

)
m︸ ︷︷ ︸

point clouds

+
1

K

∑
k=1

(
eTW−1e

)
k︸ ︷︷ ︸

penalties

, (3.6)
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where ek and W k are respectively the error and the covariance of the kth penalty, M is
the number of matched points and K the number of penalty added. The penalty error
ek consists of two points added to their respecting frames of reference

ek = Mqk −
M
S

qT Spk, (3.7)

where Mqk is the position of the kth penalty in the map frame, M
ST is the transformation

from the scan frame (S) to the map frame (M) at the current iteration and Spk is the
position of the kth penalty in the scan frame. For instance for the GNSS penalty, Mqk

is the GNSS’s global position and Spk is the origin of the scan frame. Effects of adding
penalty points are presented in Section 3.5.1.

Since the GNSS penalty points come in the form of a Gaussian distribution and point
clouds contain plane normal information, equation (3.6) is approximated using a con-
stant scale s in our implementation. This constant ensures the conversion from pro-
jected distances to Mahalanobis distances by assuming that 1

λ1
is constant for all points

and neglecting 1
λ2

and 1
λ3

in (3.5). In this setting, the final cost function to be optimized
becomes:

Jp-g ≈
s

M

∑
m=1

(
w(eTn1)

2
)
m

+
1

K

∑
k=1

(
eTW−1e

)
k
. (3.8)

3.3.3 Iterative Closest Point mapping

The mapping was achieved using a modified version of ethz-icp-mapping [58]. The
mapper performs the following steps: 1) Move the scan to the initial estimate, 2) register
the scan with the map using ICP, and 3) insert the scan inside the map. The initial
estimate qT is composed of a translation increment based on the GNSS positioning and
change in orientation based on the IMU. The IMU heading is corrected by the GNSS
positioning as long as the platform moves forward. Justification of this correction
and a possible alternative are discussed in Section 3.5.1. Since this initial estimate
qT is utilized in an incremental manner, the mapping can diverge over time. As for
the construction of the global map Q, the whole scan P is not directly concatenated.
Rather, only points that are farther than ε from any points in Q are inserted. This
helps in keeping the global map uniform, without sacrificing registration precision. As
the robot explores the environment, the complexity of registration grows linearly with
the number of points in the map due to the KD-tree structure updates. To stabilize
the mapping complexity, a scan P is not registered against the whole map Q, but only
against a subsection of the map within a radius rmax equal to the maximum range of
the lidar. The effects of this optimization is shown in Section 3.5.3.
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Figure 3.2 – The data acquisition platform mounted on a sleigh behind the snowmobile (left).
This configuration limited transfer of engine vibrations to the sensors. Right : close-up of the
GNSS receiver and the RS-16 lidar.

3.4 Experimental Setup

3.4.1 Data Acquisition Platform

For our experiments, we developed a rugged data acquisition platform which can with-
stand snow and sub-zero temperatures. It comprises an Xsens MTI-30 IMU, a Ro-
bosense RS-16 lidar, and a REACH RS+ GNSS antenna powered by two 20Ah 12V
AGM batteries (10 h battery life). A small, low-power computer (AIV-APL1V1FL-
PT1) records the sensor data using the Robotic Operating System (ROS) framework.
This platform can be attached to most of mobile vehicles (see Figure 3.2). The rota-
tion axis of the lidar sensor is at an angle of 27° from the vertical. This orientation
has been chosen for two reasons: 1) the lidar does not see the mobile vehicle nor its
operators as long as they are in front of the platform, and 2) as mentioned in [59] a
lower incidence angle with the ground reduces the odometry drift. The GNSS antenna
is coupled with a fixed station (also a REACH RS+ antenna) mounted on a tripod to
provide a Real-Time Kinematic (RTK) solution.

The Université Laval owns the Forêt Montmorency, the largest research forest in the
world with over 412 km2 of boreal forest (Figure 3.1). For our experiments, we collected
data along three large loops (see Figure 3.3). Two of them (i.e., lake and forest)
consist of a mix of narrow walkable trails and wider snowmobile trails, while the last
one (i.e., skidoo) followed exclusively a wide snowmobile trail.
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Figure 3.3 – The three large loops completed in the Montmorency forest in order to collect the
lake (0.8 km), forest (1.3 km) and skidoo (2 km) datasets. The map was adapted from
©Mapbox and ©OpenStreetMap contributors.

More specifically, the dataset lake was recorded by mounting our platform to a snow-
mobile (see Figure 3.2) and then having two operators pull the sleigh through a pedes-
trian trail. The snowmobile drove through a cross-country skiing trail, which is an open
area with good GNSS coverage (A to B in Figure 3.3). The pedestrian trail was a dense
forest path (B to C), where the platform suffered from poor GNSS reception due to
the tree canopy. The overlap between scans diminished abruptly each time branches
came near the sensor. Similarly, the dataset forest consists of a pedestrian trail and
a cross-country skiing trail. In the first part of the trajectory, a pedestrian trail in the
dense forest was traversed with a sleigh (D to E), followed by an untapped path through
an even denser forest (E to F) and finally the sleigh was attached to a snowmobile and
driven back to the starting point (F to D). Lastly, the dataset skidoo follows a 2 km

long snowmobile trail. The data were gathered during a light snow fall. This loop was
the easiest to map because it provided clear GNSS signal and was relatively flat from
beginning to end (G to H to G).

3.5 Field Results

3.5.1 Effects of Adding GNSS Penalty to ICP

In order to inject the GNSS positioning information as a constraint into the ICP algo-
rithm, it is necessary to find the correct transformation between the ICP map coordi-
nate frame and the local tangent East-North-Up (ENU) frame. The translation, roll
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and pitch angles are directly observable from the GNSS receiver and the IMU. The yaw
angle (heading) measurement provided by the magnetometer part of the IMU is, how-
ever, affected by soft- and hard-iron errors induced by the mobile platform itself and by
local deviations of the Earth’s magnetic field. A practical solution to this problem was
to observe a short initial portion of the GNSS trajectory to estimate the magnetometer
heading offset. This way, the typical error of between 15° and 20° could be reduced
to 3° or less, which led to a satisfactory initial alignment. Another approach would be
attaching a second GNSS receiver antenna to the mobile platform and estimating the
heading angle from the relative positions of the two antennas. Both approaches, how-
ever, require a precise RTK GNSS solution. The standard uncorrected GNSS operating
under the tree canopy yields excessive error and cannot be used for this purpose.

We first only applied a single penalty point to the ICP, based on the GNSS positioning.
As the green trajectory in Figure 3.4 demonstrates, this approach does not provide
satisfactory results. On a short straight trajectory, we see that the single-point penalty
forces the ICP to follow the GNSS reference, however, the orientation estimate drifts
leading to a malformed map. In the Figure 3.4, this effect manifests itself as a slow rise
in the pitch angle.

To fully constrain the ICP and avoid both orientation and position drift, we increased
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the number of penalty points to three, still following (3.8). The additional two points
lie on the gravity and on the heading vectors as follows: In the map frame, one point lies
below the GNSS position in the direction of the z axis. The second point lies in the x-y
plane, in the direction of the current heading as indicated by the IMU and GNSS. In the
scan frame, these two new points are accordingly projected using the IMU orientation
information. In the ideal case, all three penalty points in the scan frame coincide with
their map counterparts. Otherwise, the penalty is forcing the ICP solution towards the
ideal state. The effect is demonstrated in the Figure 3.4 by the orange trajectory; the
ICP output follows the GNSS positioning while keeping the correct orientation as well.

3.5.2 The Forêt Montmorency Dataset Results and Discussion

For each dataset, three mapping configurations were evaluated: GNSS+IMU (i.e.,
prior), ICP with penalties (i.e., penalty) and ICP without penalty (i.e., baseline).
When processing, the ethz-icp-mapping was used with rmax = 100 m and with
a minimum point distance ε = 5 cm for lake and forest. The skidoo dataset uses
ε = 10 cm due to its size and memory requirements. The resulting maps are shown in
Figure 3.5.
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Figure 3.5 – Top view of the point cloud maps of the three datasets; prior, penalty and baseline configurations. The figure on this page
show the lake dataset. A side view of the map (red dashed ellipse) shows the misalignment between the start and end. Red insets show
the local (in)consistencies otherwise not visible at the full scale. Some trees in the insets are up to 15m in height.
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(I) Local Wildlife (II) Snow fall

(III) Path Obstacles (IV) Uneven Path

Figure 3.6 – Aspects of mapping a subarctic boreal forest. (II) shows snow fall caused by
the snow in the tree branches. (I) was taken in skidoo, (II) in lake, and (III)-(IV) in
forest.

Lake – In this dataset, the baseline map looks similar to the penalty map when observed
from top. However, a side view clearly shows that the buildings at the start and the end
of the trajectory do not match. This effect is avoided by applying the penalty. For each
configuration, we highlighted a pine tree in the top part of the map. While the tree is
crisper in the baseline, the penalty map’s tree is clearly sharper than the one from the
prior map. Forest – The particularity of this map is the rough trail at the bottom of
the map (see subfig. III and IV of Figure 3.6). It suffers from large circular artifacts
caused by the platform being immobile and by major changes of orientation along that
trail. Again, the penalty is less clear than the baseline, but quite an improvement
compared to the prior map. The circular-shaped building at the top part of the map is
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quite blurry in both the prior and penalty map. This lack of crispiness is caused by the
start and end of the trajectory not correctly matching. Skidoo – The baseline map is
the most bent of all three datasets. This bending has two probable causes: 1) the map
was created with lower density ε = 10 cm contrary to the other maps 2) the trajectory
is twice as long as the lake dataset. Otherwise, the behavior is similar to that of the
other datasets with the similar circular-shaped artifacts in the prior map.

None of the baseline maps manages to close the loop, they all drift and bend over
time. Because of the magnetometer-based heading, the prior maps show large circular
artifacts at several locations. These artifacts are especially noticeable in zones where
the platform stops moving—the heading cannot be corrected by GNSS in this case. All
penalty and prior maps closed the loop in a similar fashion. Moreover, the penalties
manage to achieve a trade-off between the global and local consistency.

The field trials at the Forêt Montmorency presented a number of challenges. As (I) of
Figure 3.6 shows, local wildlife might hinder your experiments. We had a pair of moose
blocking one of our trajectories and the experiment had to be rescheduled for another
day. Also, wild birds used our static GNSS antenna as a perch. Another challenge
is snow fall, as even a light snow fall will be visible in the map. Furthermore, even
when our experiments were done on a clear day, they were still affected by snow falling
from the trees (see subfig. II of Figure 3.6). In the forest trajectory, we had to
pass through an untapped trail with trees blocking our way (III). Because of the
roughness of that trail, the platform almost tumbled over multiple time (IV). The
snowmobile trails, on the other hand, were easy to pass through.

Cold can cause hindering issues with lidars that are not properly rated for low temper-
atures. We tested a lidar rated for a minimum of −10 ◦C, with exterior temperature
during our field experiments varying between −17 ◦C and −7 ◦C. The lidar started
to malfunction when the temperature dropped below 0 ◦C, producing spurious mea-
surements to a level where the environment could not be seen anymore. Providing an
exterior source of heat could mitigate the problem temporary. A second lidar rated for
−20 ◦C was used for our final experiments. Through the development process, we ob-
served that sun glare was more apparent at low temperatures. More tests are required
to fully understand the impact of cold on lidar, but one should be careful regarding the
temperature ranting of sensors deployed as it can cause serious safety issues.
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Figure 3.7 – Effect of the cut-map radius rmax on the complexity over time for the lake trajec-
tory. Left : number of points used as a reference point cloud for the ICP. Right : computation
time used by the mapper for each new lidar scan.

3.5.3 Steps towards Real-Time Large-Scale Lidar Mapping

The large-scale point cloud maps bear several problems that complicate real-time de-
ployment on autonomous vehicles. The processing time required to register the scans
and update the map may limit the agility of the vehicle. Moreover, memory manage-
ment needs to be taken into consideration. For example, the ∼23 700 000 data points
of the forest final prior map consumed 1.8 GB when stored in RAM. To improve
the mapping speed, we have implemented the rmax cut-map radius as defined in Sec-
tion 3.3.3. As shown in Figure 3.7, the mapper execution time is reduced. One can
observe a flattening in the number of points in the cut-map around 250 s to 500 s. This
situation occurs when the mobile platform is immobile.

Finally, in order to achieve globally consistent maps, we used the RTK GNSS solution
consisting of two receivers, one static and the other attached to the mobile platform.
The precise positioning information is obtained by combining the information from both
receivers. In our case, it was done during post-processing of the dataset. For real-time
deployment, it is necessary to reliably transmit the static receiver information to the
mobile vehicle, which may be difficult in dense vegetation.
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3.6 Conclusion

In this paper, we explored the process of creating large globally consistent maps of
subarctic boreal forests by adding external constraints to the ICP algorithm. The maps
remained crisp even through 4.1 km of narrow walkable and snowmobile trails. We also
discussed problems encountered with the environment and the lidar sensor during the
field trials. Moreover, we introduced a computation optimization for very large maps,
allowing real-time deployments. Encouraged by the results, this opens the door to
further comparison with Normal Distribution Transformation (NDT) and GICP using
better experimental validation and external tracking systems. Furthermore, studying
the impact of penalties within ICP against graph minimization would lead to a better
understanding of their pros and cons.
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Conclusion

In this thesis, we aimed at improving the error minimization of the ICP algorithm.
We presented our improvements through two inserted articles. The first article is an
analysis of 14 of the most common outlier filters for ICP. Each outlier filter has been
tested in different types of environments and with multiple types of overlap. Further-
more, the influence of the tuning parameters present in many of these filters has been
thoroughly explored. In the end, our analysis concluded that Variable Trimmed,
Cauchy and Cauchy MAD are more robust to different environments and to change
in overlap than the other outlier filters. Surprisingly, L1 demonstrated a comparable
performance despite being parameter-less. Meanwhile, the second inserted article ex-
plored the creation of large, globally-consistent maps by modifying the error minimizer
of ICP. Our improvements enabled the sensor fusion of an IMU and a GNSS, directly
within the ICP’s minimizer. We managed to create a crisp and globally-consistent map
of 4.1 km of snowmobile and narrow walkable trails.

While the contributions presented in this thesis improve existing methods, there are
still challenges and avenues for research left to explore. For the outlier filters analysis,
a remaining challenge is to demonstrate that our conclusions also apply to scan-to-map
registration. Since all of the quantitative evaluations were done using a scan-to-scan
dataset, it is difficult to truly know if our tests generalize to scan-to-map. The main
hurdle to such an analysis is the lack of datasets with a millimeter precision. Challeng-
ing data sets for point cloud registration algorithms [6] mostly consist of small loops
(less than 50 m long), which is insufficient for large-scale mapping experiments. As
for the second article, it lacks quantitative comparisons to existing mapping frame-
works. Future works should conduct further comparisons with SLAM frameworks such
as g2o [60] and Lidar Odometry And Mapping (LOAM) [61]. Again, such comparisons
require large-scale datasets of forest environments with a precise ground truth. Our
improved version of ICP described in Chapter 3 can be used in conjunction with graph-
SLAM. It would be interesting to see if our more globally-consistent ICP could reduce
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the pressure on the loop-closure and on the graph minimization of SLAM.

To conclude, we presented improvements to the ICP algorithm in this thesis. We have
proposed possible research avenues left to explore. This shows that the ICP algorithm
will still provide research opportunities in the future, despite its age.
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List of Outlier Filters for Iterative Closest Point
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Table A.1 – Extended list of 26 outlier filters for ICP. In some case the specific outlier filter does not have a name, hence the name
of its variant of ICP is used. The breakdown point is the maximum proportion of outliers beyond which the estimator may develop an
arbitrarily large bias [26]. The influence function ψ(·) is not included, but can be determined by simply multiplying the weight function
w(·) by the scaled error e (see Equation 2.4). The other variables are the tuning parameter k, the unscaled error (aka the Euclidean
distance) e′, the f th percentile of the matches Pf , where f is the overlap ratio parameter, the ratio between the closest match distance
and the closest match’s closest match distance β [62], and the distance threshold at the t iteration dt (it updated at each iteration based
on the relative translation motion of the previous iteration [25]).
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L2 3 3 7 0 %[17] e2

2
1

L1 7 7 7 0 % |e| 1
|e|

Huber [10] 3 7 7 50 %[26]

{
|e| ≤ k

otherwise

{
e2

2

k(|e| − k/2)

{
1
k
|e|

Cauchy [63] 3 7 7 25 %[26] k2

2
log(1 + (e/k)2) 1

1+(e/k)2

Geman-McClure (GM) [64] 3 7 7 10 % e2/2
k+e2

k2

(k+e2)2

Switchable-Constraint (SC) [65][66] 3 7 7 n/a
{
e2 ≤ k

otherwise

{ e2

2
2ke2

k+e2
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1

4k2

(k+e2)2

Welsch [17] 3 7 7 10 % [26] k2
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k
)2)) exp(−(e/k)2)

§ The breakdown point is calculate as min(100%− f, 50%) , where f is the overlap ratio parameter. For RANSAC and Trimmed this parameter
is manually tuned. For Var. Trim. and AICP, f is estimated using an heuristic.
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RANSAC [69] 7 3 7 §

§ The breakdown point is calculate as min(100%− f, 50%) , where f is the overlap ratio parameter. For RANSAC and Trimmed this parameter
is manually tuned. For Var. Trim. and AICP, f is estimated using an heuristic.



72

Name M
-E

st
im

at
or

B
in
ar
y
W
ei
gh

ts

A
da

pt
at
iv
e

B
re
ak

do
w
n
po

in
t

C
on

di
ti
on

C
os
t
fu
nc
ti
on

(ρ
)

W
ei
gh

t
fu
nc
ti
on

(w
)

GICP [33] 3 3 7 n/a
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otherwise
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2
k2

2

{
1

0

BiDistance [62] 7 7 7 n/a exp(k(β − 1))

AICP [22] 7 3 3 §
{
e ≤ Pf

otherwise

{
1

0

LM-ICP [24] 3 7 7 50 %[26]

{
|e| ≤ k

otherwise

{
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k
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EM-ICP [23] 3 7 3 n/a
{ |e| ≤ 3

otherwise

{ |e|
0

{ 1
e
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Kernel Correlation (KC) [39] 3 7 7 10 %[26] k2

2
(1− exp(−( e

k
)2)) exp(−(e/k)2)

Fast Global Registration (FGR) [70] 3 7 3 10 % e2/2
k+e2

k2

(k+e2)2

Relative Motion Threshold (RMT) [25] 7 3 3 n/a
{
e ≤ dt

otherwise

{
1

0

Sparse ICP [28] 7 7 7 n/a 0 ≤ p ≤ 1 ep pep−2

§ The breakdown point is calculate as min(100%− f, 50%) , where f is the overlap ratio parameter. For RANSAC and Trimmed this parameter
is manually tuned. For Var. Trim. and AICP, f is estimated using an heuristic.


