2,236 research outputs found

    Comparative Performance Analysis of State-of-the-Art Classification Algorithms Applied to Lung Tissue Categorization

    Get PDF
    In this paper, we compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) and with healthy tissue. The evaluated classifiers are naive Bayes, k-nearest neighbor, J48 decision trees, multilayer perceptron, and support vector machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. These are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 88.3% with high class-specific precision on testing sets of 423 ROI

    Classification of interstitial lung disease patterns with topological texture features

    Full text link
    Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.Comment: 8 pages, 5 figures, Proceedings SPIE Medical Imaging 201

    Challenges and Opportunities of End-to-End Learning in Medical Image Classification

    Get PDF
    Das Paradigma des End-to-End Lernens hat in den letzten Jahren die Bilderkennung revolutioniert, aber die klinische Anwendung hinkt hinterher. Bildbasierte computergestützte Diagnosesysteme basieren immer noch weitgehend auf hochtechnischen und domänen-spezifischen Pipelines, die aus unabhängigen regelbasierten Modellen bestehen, welche die Teilaufgaben der Bildklassifikation wiederspiegeln: Lokalisation von auffälligen Regionen, Merkmalsextraktion und Entscheidungsfindung. Das Versprechen einer überlegenen Entscheidungsfindung beim End-to-End Lernen ergibt sich daraus, dass domänenspezifische Zwangsbedingungen von begrenzter Komplexität entfernt werden und stattdessen alle Systemkomponenten gleichzeitig, direkt anhand der Rohdaten, und im Hinblick auf die letztendliche Aufgabe optimiert werden. Die Gründe dafür, dass diese Vorteile noch nicht den Weg in die Klinik gefunden haben, d.h. die Herausforderungen, die sich bei der Entwicklung Deep Learning-basierter Diagnosesysteme stellen, sind vielfältig: Die Tatsache, dass die Generalisierungsfähigkeit von Lernalgorithmen davon abhängt, wie gut die verfügbaren Trainingsdaten die tatsächliche zugrundeliegende Datenverteilung abbilden, erweist sich in medizinische Anwendungen als tiefgreifendes Problem. Annotierte Datensätze in diesem Bereich sind notorisch klein, da für die Annotation eine kostspielige Beurteilung durch Experten erforderlich ist und die Zusammenlegung kleinerer Datensätze oft durch Datenschutzauflagen und Patientenrechte erschwert wird. Darüber hinaus weisen medizinische Datensätze drastisch unterschiedliche Eigenschaften im Bezug auf Bildmodalitäten, Bildgebungsprotokolle oder Anisotropien auf, und die oft mehrdeutige Evidenz in medizinischen Bildern kann sich auf inkonsistente oder fehlerhafte Trainingsannotationen übertragen. Während die Verschiebung von Datenverteilungen zwischen Forschungsumgebung und Realität zu einer verminderten Modellrobustheit führt und deshalb gegenwärtig als das Haupthindernis für die klinische Anwendung von Lernalgorithmen angesehen wird, wird dieser Graben oft noch durch Störfaktoren wie Hardwarelimitationen oder Granularität von gegebenen Annotation erweitert, die zu Diskrepanzen zwischen der modellierten Aufgabe und der zugrunde liegenden klinischen Fragestellung führen. Diese Arbeit untersucht das Potenzial des End-to-End-Lernens in klinischen Diagnosesystemen und präsentiert Beiträge zu einigen der wichtigsten Herausforderungen, die derzeit eine breite klinische Anwendung verhindern. Zunächst wird der letzten Teil der Klassifikations-Pipeline untersucht, die Kategorisierung in klinische Pathologien. Wir demonstrieren, wie das Ersetzen des gegenwärtigen klinischen Standards regelbasierter Entscheidungen durch eine groß angelegte Merkmalsextraktion gefolgt von lernbasierten Klassifikatoren die Brustkrebsklassifikation im MRT signifikant verbessert und eine Leistung auf menschlichem Level erzielt. Dieser Ansatz wird weiter anhand von kardiologischer Diagnose gezeigt. Zweitens ersetzen wir, dem Paradigma des End-to-End Lernens folgend, das biophysikalische Modell, das für die Bildnormalisierung in der MRT angewandt wird, sowie die Extraktion handgefertigter Merkmale, durch eine designierte CNN-Architektur und liefern eine eingehende Analyse, die das verborgene Potenzial der gelernten Bildnormalisierung und einen Komplementärwert der gelernten Merkmale gegenüber den handgefertigten Merkmalen aufdeckt. Während dieser Ansatz auf markierten Regionen arbeitet und daher auf manuelle Annotation angewiesen ist, beziehen wir im dritten Teil die Aufgabe der Lokalisierung dieser Regionen in den Lernprozess ein, um eine echte End-to-End-Diagnose baserend auf den Rohbildern zu ermöglichen. Dabei identifizieren wir eine weitgehend vernachlässigte Zwangslage zwischen dem Streben nach der Auswertung von Modellen auf klinisch relevanten Skalen auf der einen Seite, und der Optimierung für effizientes Training unter Datenknappheit auf der anderen Seite. Wir präsentieren ein Deep Learning Modell, das zur Auflösung dieses Kompromisses beiträgt, liefern umfangreiche Experimente auf drei medizinischen Datensätzen sowie eine Serie von Toy-Experimenten, die das Verhalten bei begrenzten Trainingsdaten im Detail untersuchen, und publiziren ein umfassendes Framework, das unter anderem die ersten 3D-Implementierungen gängiger Objekterkennungsmodelle umfasst. Wir identifizieren weitere Hebelpunkte in bestehenden End-to-End-Lernsystemen, bei denen Domänenwissen als Zwangsbedingung dienen kann, um die Robustheit von Modellen in der medizinischen Bildanalyse zu erhöhen, die letztendlich dazu beitragen sollen, den Weg für die Anwendung in der klinischen Praxis zu ebnen. Zu diesem Zweck gehen wir die Herausforderung fehlerhafter Trainingsannotationen an, indem wir die Klassifizierungskompnente in der End-to-End-Objekterkennung durch Regression ersetzen, was es ermöglicht, Modelle direkt auf der kontinuierlichen Skala der zugrunde liegenden pathologischen Prozesse zu trainieren und so die Robustheit der Modelle gegenüber fehlerhaften Trainingsannotationen zu erhöhen. Weiter adressieren wir die Herausforderung der Input-Heterogenitäten, mit denen trainierte Modelle konfrontiert sind, wenn sie an verschiedenen klinischen Orten eingesetzt werden, indem wir eine modellbasierte Domänenanpassung vorschlagen, die es ermöglicht, die ursprüngliche Trainingsdomäne aus veränderten Inputs wiederherzustellen und damit eine robuste Generalisierung zu gewährleisten. Schließlich befassen wir uns mit dem höchst unsystematischen, aufwendigen und subjektiven Trial-and-Error-Prozess zum Finden von robusten Hyperparametern für einen gegebene Aufgabe, indem wir Domänenwissen in ein Set systematischer Regeln überführen, die eine automatisierte und robuste Konfiguration von Deep Learning Modellen auf einer Vielzahl von medizinischen Datensetzen ermöglichen. Zusammenfassend zeigt die hier vorgestellte Arbeit das enorme Potenzial von End-to-End Lernalgorithmen im Vergleich zum klinischen Standard mehrteiliger und hochtechnisierter Diagnose-Pipelines auf, und präsentiert Lösungsansätze zu einigen der wichtigsten Herausforderungen für eine breite Anwendung unter realen Bedienungen wie Datenknappheit, Diskrepanz zwischen der vom Modell behandelten Aufgabe und der zugrunde liegenden klinischen Fragestellung, Mehrdeutigkeiten in Trainingsannotationen, oder Verschiebung von Datendomänen zwischen klinischen Standorten. Diese Beiträge können als Teil des übergreifende Zieles der Automatisierung von medizinischer Bildklassifikation gesehen werden - ein integraler Bestandteil des Wandels, der erforderlich ist, um die Zukunft des Gesundheitswesens zu gestalten

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Statistical Analysis and Deep Learning Associated Modeling for Early stage Detection of Carinoma

    Get PDF
    The high death rate and overall complexity of the cancer epidemic is a global health crisis. Progress in cancer prediction based on gene expression has increased in light of the speedy advancement using modern high-throughput sequencing methods and a wide range of machine learning techniques, bringing insights into efficient and precise treatment decision-making. Therefore, it is of significant interest to create machine learning systems that accurately identify cancer patients and healthy people. Although several classification systems have been applied to cancer prediction, no single strategy has proven superior. This research shows how to apply deep learning to an optimization method that uses numerous machine learning models. Statistical analysis has helped us choose informative genes, and we've been feeding those to five different categorization models. The results from the five different classifiers are ensembled in the next step using a deep learning technique. The three most common types of adenocarcinoma are those of the lungs, stomach, and breasts. The suggested deep learning-based inter-ensembles model was tested with deep learning-based algorithms on Carcinoma data. The results of the tests show that relative to using only one set of classifiers or the simple consensus algorithm, it improves the precision of cancer prognosis in every analyzed carcinoma dataset. The suggested deep learning-based inter-ensemble approach is demonstrated to be reliable and efficient for cancer diagnosis by entirely using diverse classifiers
    • …
    corecore