9,038 research outputs found

    Personalized Automatic Estimation of Self-reported Pain Intensity from Facial Expressions

    Full text link
    Pain is a personal, subjective experience that is commonly evaluated through visual analog scales (VAS). While this is often convenient and useful, automatic pain detection systems can reduce pain score acquisition efforts in large-scale studies by estimating it directly from the participants' facial expressions. In this paper, we propose a novel two-stage learning approach for VAS estimation: first, our algorithm employs Recurrent Neural Networks (RNNs) to automatically estimate Prkachin and Solomon Pain Intensity (PSPI) levels from face images. The estimated scores are then fed into the personalized Hidden Conditional Random Fields (HCRFs), used to estimate the VAS, provided by each person. Personalization of the model is performed using a newly introduced facial expressiveness score, unique for each person. To the best of our knowledge, this is the first approach to automatically estimate VAS from face images. We show the benefits of the proposed personalized over traditional non-personalized approach on a benchmark dataset for pain analysis from face images.Comment: Computer Vision and Pattern Recognition Conference, The 1st International Workshop on Deep Affective Learning and Context Modelin

    The expression and assessment of emotions and internal states in individuals with severe or profound intellectual disabilities

    Get PDF
    The expression of emotions and internal states by individuals with severe or profound intellectual disabilities is a comparatively under-researched area. Comprehensive or standardised methods of assessing or understanding the emotions and internal states within this population, whose ability to communicate is significantly compromised, do not exist. The literature base will be discussed and compared to that within the general population. Methods of assessing broader internal states, notably depression, anxiety, and pain within severe or profound intellectual disabilities are also addressed. Finally, this review will examine methods of assessing internal states within genetic syndromes, including hunger, social anxiety and happiness within Prader-Willi, Fragile-X and Angelman syndrome. This will then allow for the identification of robust methodologies used in assessing the expression of these internal states, some of which may be useful when considering how to assess emotions within individuals with intellectual disabilities

    Facial expression of pain: an evolutionary account.

    Get PDF
    This paper proposes that human expression of pain in the presence or absence of caregivers, and the detection of pain by observers, arises from evolved propensities. The function of pain is to demand attention and prioritise escape, recovery, and healing; where others can help achieve these goals, effective communication of pain is required. Evidence is reviewed of a distinct and specific facial expression of pain from infancy to old age, consistent across stimuli, and recognizable as pain by observers. Voluntary control over amplitude is incomplete, and observers can better detect pain that the individual attempts to suppress rather than amplify or simulate. In many clinical and experimental settings, the facial expression of pain is incorporated with verbal and nonverbal vocal activity, posture, and movement in an overall category of pain behaviour. This is assumed by clinicians to be under operant control of social contingencies such as sympathy, caregiving, and practical help; thus, strong facial expression is presumed to constitute and attempt to manipulate these contingencies by amplification of the normal expression. Operant formulations support skepticism about the presence or extent of pain, judgments of malingering, and sometimes the withholding of caregiving and help. To the extent that pain expression is influenced by environmental contingencies, however, "amplification" could equally plausibly constitute the release of suppression according to evolved contingent propensities that guide behaviour. Pain has been largely neglected in the evolutionary literature and the literature on expression of emotion, but an evolutionary account can generate improved assessment of pain and reactions to it

    A Comprehensive Study on Pain Assessment from Multimodal Sensor Data

    Get PDF
    Pain assessment is a critical aspect of healthcare, influencing timely interventions and patient well-being. Traditional pain evaluation methods often rely on subjective patient reports, leading to inaccuracies and disparities in treatment, especially for patients who present difficulties to communicate due to cognitive impairments. Our contributions are three-fold. Firstly, we analyze the correlations of the data extracted from biomedical sensors. Then, we use state-of-the-art computer vision techniques to analyze videos focusing on the facial expressions of the patients, both per-frame and using the temporal context. We compare them and provide a baseline for pain assessment methods using two popular benchmarks: UNBC-McMaster Shoulder Pain Expression Archive Database and BioVid Heat Pain Database. We achieved an accuracy of over 96% and over 94% for the F1 Score, recall and precision metrics in pain estimation using single frames with the UNBC-McMaster dataset, employing state-of-the-art computer vision techniques such as Transformer-based architectures for vision tasks. In addition, from the conclusions drawn from the study, future lines of work in this area are discussed

    Simulating dynamic facial expressions of pain from visuo-haptic interactions with a robotic patient

    Get PDF
    Medical training simulators can provide a safe and controlled environment for medical students to practice their physical examination skills. An important source of information for physicians is the visual feedback of involuntary pain facial expressions in response to physical palpation on an affected area of a patient. However, most existing robotic medical training simulators that can capture physical examination behaviours in real-time cannot display facial expressions and comprise a limited range of patient identities in terms of ethnicity and gender. Together, these limitations restrict the utility of medical training simulators because they do not provide medical students with a representative sample of pain facial expressions and face identities, which could result in biased practices. Further, these limitations restrict the utility of such medical simulators to detect and correct early signs of bias in medical training. Here, for the first time, we present a robotic system that can simulate facial expressions of pain in response to palpations, displayed on a range of patient face identities. We use the unique approach of modelling dynamic pain facial expressions using a data-driven perception-based psychophysical method combined with the visuo-haptic inputs of users performing palpations on a robot medical simulator. Specifically, participants performed palpation actions on the abdomen phantom of a simulated patient, which triggered the real-time display of six pain-related facial Action Units (AUs) on a robotic face (MorphFace), each controlled by two pseudo randomly generated transient parameters: rate of change β and activation delay τ. Participants then rated the appropriateness of the facial expression displayed in response to their palpations on a 4-point scale from “strongly disagree” to “strongly agree”. Each participant (n=16, 4 Asian females, 4 Asian males, 4 White females and 4 White males) performed 200 palpation trials on 4 patient identities (Black female, Black male, White female and White male) simulated using MorphFace. Results showed facial expressions rated as most appropriate by all participants comprise a higher rate of change and shorter delay from upper face AUs (around the eyes) to those in the lower face (around the mouth). In contrast, we found that transient parameter values of most appropriate-rated pain facial expressions, palpation forces, and delays between palpation actions varied across participant-simulated patient pairs according to gender and ethnicity. These findings suggest that gender and ethnicity biases affect palpation strategies and the perception of pain facial expressions displayed on MorphFace. We anticipate that our approach will be used to generate physical examination models with diverse patient demographics to reduce erroneous judgments in medical students, and provide focused training to address these errors
    corecore