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Simulating dynamic 
facial expressions of pain 
from visuo‑haptic interactions 
with a robotic patient
Yongxuan Tan1*, Sibylle Rérolle1, Thilina Dulantha Lalitharatne1, Nejra van Zalk1, 
Rachael E. Jack2 & Thrishantha Nanayakkara1

Medical training simulators can provide a safe and controlled environment for medical students to 
practice their physical examination skills. An important source of information for physicians is the 
visual feedback of involuntary pain facial expressions in response to physical palpation on an affected 
area of a patient. However, most existing robotic medical training simulators that can capture physical 
examination behaviours in real-time cannot display facial expressions and comprise a limited range 
of patient identities in terms of ethnicity and gender. Together, these limitations restrict the utility 
of medical training simulators because they do not provide medical students with a representative 
sample of pain facial expressions and face identities, which could result in biased practices. Further, 
these limitations restrict the utility of such medical simulators to detect and correct early signs 
of bias in medical training. Here, for the first time, we present a robotic system that can simulate 
facial expressions of pain in response to palpations, displayed on a range of patient face identities. 
We use the unique approach of modelling dynamic pain facial expressions using a data-driven 
perception-based psychophysical method combined with the visuo-haptic inputs of users performing 
palpations on a robot medical simulator. Specifically, participants performed palpation actions on the 
abdomen phantom of a simulated patient, which triggered the real-time display of six pain-related 
facial Action Units (AUs) on a robotic face (MorphFace), each controlled by two pseudo randomly 
generated transient parameters: rate of change β and activation delay τ . Participants then rated 
the appropriateness of the facial expression displayed in response to their palpations on a 4-point 
scale from “strongly disagree” to “strongly agree”. Each participant ( n = 16 , 4 Asian females, 4 Asian 
males, 4 White females and 4 White males) performed 200 palpation trials on 4 patient identities 
(Black female, Black male, White female and White male) simulated using MorphFace. Results showed 
facial expressions rated as most appropriate by all participants comprise a higher rate of change and 
shorter delay from upper face AUs (around the eyes) to those in the lower face (around the mouth). In 
contrast, we found that transient parameter values of most appropriate-rated pain facial expressions, 
palpation forces, and delays between palpation actions varied across participant-simulated patient 
pairs according to gender and ethnicity. These findings suggest that gender and ethnicity biases 
affect palpation strategies and the perception of pain facial expressions displayed on MorphFace. 
We anticipate that our approach will be used to generate physical examination models with diverse 
patient demographics to reduce erroneous judgments in medical students, and provide focused 
training to address these errors.

Simulation based education offers safe, controlled, and effective learning environments1 for medical students to 
practice hands-on physical examination skills. They can explore different manoeuvres on physical mannequins 
or tissue phantoms in their own time after bed-side teaching to facilitate self-learning and increase teaching 
and training efficiency2. However, these systems have different levels of fidelity. For example, the highest level 
of fidelity are standardised patients (SPs) who are professionally trained actors simulating patient behavior such 
that skilled clinicians cannot detect the simulation. Although the use of SPs can improve patient outcomes3, SP 
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training and skill maintenance are time-consuming, and a diverse SP pool must be maintained to achieve various 
medical examination learning objectives and cultural competence4. Robotic medical simulator such as physical 
mannequins offer lower fidelity than SPs, but can simulate a greater variety of medical conditions and respond 
to physical inputs with movement, haptic, visual and auditory feedback that enables students to practice more 
specific procedures5.

In both SPs and physical mannequins, simulating patients with different demographic identities such as age, 
gender, and ethnicity is challenging6. Some commercially available mannequins such as the Paediatric HAL7 
offer gender and skin colour variations, but options are limited and cannot easily be swapped between train-
ing sessions. In contrast, virtual simulators such as Virtual Patients8 can render a wide variety of patients with 
different demographics, medical history, and clinical scenarios. However, interactions are often only verbal or 
dialogue-based and they do not respond to physical actions from users. Physical-virtual systems such as the 
Virtual Breast Exam Patient9 can simulate multiple patient identities and respond to physical inputs such as touch 
via visual feedback such as facial expressions at a higher level of detail than physical mannequins using mixed 
reality or projections. Together, these features could substantially enhance the training experience by allowing 
physicians interacting with phantoms and mannequins which resemble human patients.

Facial expressions are frequently used to communicate one’s internal states to others and are crucial in medi-
cal consultations where patients provide information using verbal and non-verbal means10,11. Pain is commonly 
exhibited during medical examinations and often communicated through facial expressions12. Therefore, if physi-
cians wrongly interpret the severity of the patients’ pain from their facial expressions, patient discomfort can be 
ignored, which can increase the risk of mistreatment or even mortality12,13. For example, certain demographic 
factors such as patient gender and ethnicity can impact the interpretation of facial expressions of pain, which 
can negatively impact the physician-patient relationship and trust14–16. Therefore it is crucial for physicians to 
correctly interpret the patient’s pain in clinical diagnoses.

Multiple virtual platforms and systems exist that can generate human avatars and dynamic facial expres-
sions with fine details. FaceGen Modeller17 uses photos of real people to manually generate 3D meshes of their 
faces. The more recently released MetaHuman18 enables mass scale generation of human avatars with detailed 
facial and bodily features and clothing. Our recently developed robotic face MorphFace19, which is based on the 
MakeHuman20 and FACSHuman21 systems, can simulate six human avatars (females and males of Asian, Black 
and White ethnicity), can be integrated with data capturing devices such as the force sensor to render real-time 
facial expressions in response to palpation forces, making it a versatile physical-virtual simulation tool.

Recent studies on the perception of pain experience show systematic biases among the general public and 
medical providers22. For example, individuals with lower socioeconomic status are believed to be less sensi-
tive to pain regardless of their ethnicity or gender22. Similarly, pain and other negative facial expressions such 
as sadness are more readily detected on White than Black male faces23. Together, these studies outline robust 
biases in the perception of pain across groups, highlighting the need to expose medical students to patients with 
different demographic and social backgrounds, and implement mechanisms to identify and reduce racial and 
social bias in treatment24,25.

Thus a training platform that can present pain-related expressions of patients from various demographic 
backgrounds is required. Here, we addressed this critical limitation by developing an interaction platform that 
can evaluate the perceptual impact of transient dynamics of pain facial expression using MorphFace based on 
participant responses for diverse patient groups. Specifically, we used a sensorised silicon phantom to interface 
the force captured during the abdominal palpation procedure—a common practice in physical examination—to 
dynamically modulate the pain facial expressions displayed by a demographically variable set of MorphFace 
human avatars. An overview of the MorphFace system and task procedure is shown in Fig. 1A26. Using this 
system, we conducted a data-driven behavioural experiment to find the transient temporal facial movement 
activation parameters that simulate dynamic pain facial expressions that participants perceived to be appropri-
ate through multiple palpation and observation trials, as shown in Fig. 1C. Our approach differs from previous 
approaches to studying facial expressions of pain in that participants induced simulated pain to the patient 
through their actions, as shown in Fig. 1B. For example, prior work modelling facial expressions for pain across 
cultures27 asked users to view randomly generated dynamic facial expressions displayed on a computer screen 
and to indicate which facial expressions accurately represented the broad category of pain. Here, we refine this 
paradigm by asking participants to also perform actions (abdominal palpation) that would directly affect the 
exhibition of such facial expressions, thus enabling the modelling of facial expressions of pain exhibited within 
a given medical context and specific user interactions: pain received by the patient and subsequently the facial 
expressions of pain arise from palpation of the abdomen performed by the participant. Thus, we anticipate that 
our system and procedure can be used to create dynamic pain facial expression simulation models of interactive 
physical examination procedures for diverse patient identities, ultimately providing bespoke medical training 
solutions to reduce erroneous judgments in individual medical students due to perceptual biases.

Results
We instructed participants (detailed information can be found in “Experiment protocol with human partici-
pants”) to palpate on a silicon phantom (simulating a painful area of the lower abdomen), observe pain facial 
expressions exhibited on MorphFace, and rate its appropriateness (“strongly agree”, “agree”, “disagree” or “strongly 
disagree” that the expression was appropriate) given the force applied within a time limit of 6.5 s. Pain facial 
expressions changed in real-time with palpation forces captured by the phantom. Multiple palpation actions 
could be performed during each trial.

We controlled the generation of the facial expressions using two randomly generated transient parameters for 
each AU-the rate of change β and delay τ . For each trial we captured the force profile, the randomly generated 
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parameters, and the participant rating. Recording the force profiles enabled measurement of the variability in 
behaviours across participants and MorphFace. The parameter values and corresponding ratings enabled us to 
find parameter ranges that best simulate the pain facial expression from palpation actions.

Figure 2A shows the recorded palpation force profiles from four trials performed by a White male participant 
viewing a Black male MorphFace on trials where they rated the pain expressions as “strongly agree” (i.e., most 
appropriate given the palpation actions applied). Each line in Fig. 2A shows a different number of peaks and 
different force levels at each peak, suggesting that the participant varied his palpation strategy across trials even 
though the demography of the MorphFace and his rating remained the same.

The time differences between the force peaks represent the time the participant took to view the facial 
expression and plan the next palpation action. Differences in force peak magnitude show the force variations 
the participant applied to the phantom. Together they represent the palpation behaviour of the participant. Each 
participant performed 50 trials on each of the 4 MorphFace identities (shown in Fig. S1) shown in random order 
of the demography of MorphFace for each participant. To better identify the force peaks, we fitted cubic splines to 
upsample the raw force data using methods detailed in “Force data upsampling”. Figure 2B shows the comparison 
between raw and upsampled data for one force profile. The error between the force peaks in the upsampled and 
those in the raw data for all trials have an error distribution of 0.025± 0.0025 N, which is negligible compared 
to the mean peak force of 3.10N.

To examine the potential effects of demographic differences on palpation behaviour between participant-
MorphFace pairs, we computed the joint distribution of δtp = tp(i)− tp(i − 1) and δfp = fp(i)− fp(i − 1) , where 
tp(i) is the time at the ith force peak, and fp(i) is the ith force peak. Figure 3A shows the force and time differences 
between palpation actions within and across all trials grouped by ratings. See Supplementary Fig. S3 for details of 
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Figure 1.   (A) Schematics of the interactive platform. (B) Experiment setup. (C) Experiment plan. (D) Trial 
sequence.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4200  | https://doi.org/10.1038/s41598-022-08115-1

www.nature.com/scientificreports/

0 1 2 3 4 5 6
Time (s)

0

1

2

3

4

5

6

7

8

9

10
Fo

rc
e 

(N
)

Subject: White Male | Face: Black Male
Rating: Strongly Agree

0 1 2 3 4 5 6
Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

Fo
rc

e 
(N

)

Force and Time Difference Calculation

Raw Profile
Upscaled Profile
Raw Profile Peaks
Upscaled Profile Peaks

 Force peak (N)

 Time (s) 

 Force peak (N)
 Time (s) 

A B

Figure 2.   (A) Force profiles recorded from four trials of a White male participant palpating a Black male 
MorphFace patient who “strongly agreed” that the pain facial expression displayed was appropriate given his 
palpation actions. (B) Force and time differences between successive palpation actions were based on the peaks 
of the upsampled force profiles.
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Figure 3.   (A) Distributions of the change in force and time between two consecutive palpation force peaks 
for all trials grouped by participant ratings. (B) Mann-Whitney U test results of time differences ( δtp ) between 
interaction groups. For gender-wise comparisons, “male_male | male_female” denotes δtp difference between 
male participants examining the male MorphFace and male participants examining the female MorphFace. 
Same format applies to ethnicity-based comparisons. Light blue represents p < 0.01 and dark blue represents 
p < 0.001 . (C) Kurtosis of force variations ( δfp ) between interaction groups. Higher kurtosis of δfp means a 
sharper peak around fp = 0.
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all gender interactions and Fig. S4 for all ethnicity interactions. Gender interaction analysis included all ethnic-
ity data and vice versa for ethnicity interaction analysis. Figure 3B shows the p values of Mann-Whitney U test 
which compares δtp between different participant-MorphFace interaction pairs. Figure 3C shows the kurtosis of 
δfp which shows the force variations between the interaction pairs.

The δtp is consistently statistically significantly different ( p < 0.001 ) between male-female (male participants 
interacting with female MorphFace patients) vs. female-male examination across all four response options. δtp 
for male participants was less positively skewed than for female participants, suggesting that male participants 
might spend more time viewing the facial expression and/or planning for the next palpation actions. In opposite 
gender interactions, the variation of the size of the peak force δfp was similar (ratio of kurtosis < 1.5 ) for “agree” 
or “strongly agree” cases. However, male participants viewing female MorphFace identities showed noticeably 
higher concentration of δfp around zero (ratio of kurtosis > 1.5 ) for the “disagree” case, while female participants 
viewing male MorphFace identities showed the same pattern for the “strongly disagree” case. This suggests that 
participants tended to apply the next palpation action more quickly when they disagree with appropriateness 
of the facial response for opposite gender interactions. For same gender interactions between the participant 
and MorphFace, males and females were significantly different in δtp variation only for the “disagree” case 
( p < 0.01 ). In terms of the variation of δfp , male-male had higher ratio of kurtosis compared to female-female 
(ratio of kurtosis > 1.5 ) for “agree” or “disagree” cases. Thus, for same gender interactions, male participants 
made relatively smaller increments and decrements in their peak forces to closely observe the corresponding 
pain facial expression changes when decisions were not apparent.

We found no significant differences in δtp between Asian-White (Asian participants interacting with White 
MorphFace) vs. White-White regardless of the decision cases. δtp of Asian-White vs Asian-Black showed signifi-
cant difference in the “strongly agree” case, and δtp of White-White vs. White-Black showed significant differences 
in all cases except for “agree”. This suggests Asian participants spend a similar amount of time examining White 
and Black MorphFace except when the rating is “strongly agree”, whereas White participants spent a different 
amount of time examining White and Black MorphFaces except for the “agree” case. This could be due to less 
familiarity with White and Black faces amongst Asian participants, whereas White participants had interactions 
with their own-ethnicity faces in which they may have had perceptual expertise of28, resulting in the significant 
δtp differences between the same (White-White) and different (White-Black) ethnicity interaction cases. Trials 
performed by Asian participants (8 participants, 1545 trials) showed a higher concentration of δfp around zero 
than White participants (8 participants, 1550 trials) in most of the cases, reflecting that they varied the palpation 
forces less frequently than White participants. White participants showed similar variations in δfp when interact-
ing with White and Black MorphFace, though in the “agree” case they varied their force less when viewing Black 
compared to White MorphFace patient faces.

Next, we examined what transient parameter values of the pain facial expressions displayed on MorphFace 
that participants rated as “strongly agree” and “strongly disagree” for appropriateness. Figure 4 shows the prob-
ability distribution of ratings of each parameter pair: rate of change β and delay τ , calculated using the method 
from  “Probability distribution of transient parameters”. For “strongly agree”, we observed low rates of change 
β < 2 for all AUs except Upper Lip Raiser (AU10) and Jaw Drop (AU26). Jaw Drop (AU26) also had longer delays 
τ > 2 compared to other AUs, with the shortest delay associated with Eyes Closed (AU43) τ ≈ 1.
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Figure 4.   Transient parameter probability distributions between the two extreme rating cases (“strongly 
agree” and “strongly disagree”) for each AU across all trials. The two transient parameter values are randomly 
generated (see “Experimental setup” for detail) for each AU in each trial. High probability in the parameter 
values represent the AU activations of generated facial expression that all participants rated as “strongly agree” 
or “strongly disagree” for appropriateness. Clusters of peak joint probability are accompanied by branches along 
one parameter of the other, implying considerable joint and marginal probability distributions. To account for 
both patterns, we used the absolute peak of the entire probability landscape as well as the peak of the marginal 
probability distribution (by taking the sum of the probability landscape along one parameter axis to identify the 
peak corresponding to the other parameter). This resulted in a weighted average based on the relative values 
of two probability peaks (the absolute peak and the peak of the marginal distribution). This was done for both 
parameters. The red cross indicates the coordinates of the weighted averages.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4200  | https://doi.org/10.1038/s41598-022-08115-1

www.nature.com/scientificreports/

Figure 5 shows the probability distribution of the weighted average parameter values (centroids) grouped by 
AUs for all ratings by all participants. In the “strongly agree” case, the rate of change are 1.26 < β < 1.50 for AU4 
(Brow Lowerer), AU7 (Lid Tightener), AU9 (Nose Wrinkler), and AU10 (Upper Lip Raiser), but 1.56 < β < 1.96 
for AU43 (Eyes Closed) and AU26 (Jaw Drop), suggesting the activation intensity of AU43 and AU26 increase 
more rapidly with the applied palpation force than other AUs. The delays are 1.34 < τ < 1.86 for AU4 and AU7 
and 1.78 < τ < 2.25 for AU26 and AU10, with the latter two AUs having a longer delay than the former two. For 
AU4 and AU26, we found significant differences in the τ parameters (Mann-Whitney U-test, p < 0.01 ) between 
“strongly agree” and “strongly disagree” cases. For the “agree” and “disagree” cases, we found no significant differ-
ences between the parameters for any of the AUs. When combining “strongly agree” with “agree”, and “strongly 
disagree” with “disagree”, we found significant differences between the τ value for AU26 (Mann-Whitney U-test, 
p < 0.01 ). This shows that the activation delay of AU26 (Jaw Drop) is significantly associated with participant 
ratings of appropriateness of the displayed pain facial expressions.

Figure 629 shows the simulated pain facial expression generated using the median transient parameters from 
trials rated “strongly agree” and “agree” (“agree*”), and those rated “strongly disagree” and “disagree” (“disagree*”) 
from all participants. Activation intensities of the AUs are plotted with a simulated sine wave force profile fol-
lowing the method from “Simulation Using transient parameter pairs”, the shaded regions represent standard 
error across participants. The activation intensity patterns for “agree*” are more synchronous than for “disagree*”.

Conclusions
We modelled dynamic facial expressions of pain using a data-driven perception-based psychophysical method 
combined with visuo-haptic interactions of users applying palpation examinations to a robotic medical simulator. 
We controlled the dynamic response of six pain-related AUs using two transient parameters—the rate of change 
( β ) and delay ( τ)—to render pain facial expressions on four face identities of different gender and ethnicity demo-
graphics. We found that the activation delay of AU26 (Jaw Drop) significantly influenced the perceived appro-
priateness of the pain facial expression of the simulated face undergoing abdominal palpation such that a longer 
delay was viewed to be more appropriate. Moreover, a gradual decrease of intensity and speed of response from 
upper face AUs (around the eyes) to those in the lower face (around the mouth) is a common feature of facial 
expressions rated as appropriate by all participants. Analysis across different demographic interactions between 
the participants and the Morphface showed differences in palpation behaviors including the duration between 
force peaks, controlling the size of consecutive force peaks, and the corresponding transient parameters of the 
facial expressions rated as appropriate. As gender and ethnicity are the only two dominant factors that varied 
across participants and in the Morphface, our results suggest that gender and ethnicity interactions underpin this 
variance. These findings highlight the usefulness of visuo-haptic interactions with a robotic patient as a method 
to quantify differences in behavioral variables relating to medical examination with diverse participant groups 
and to assess the efficacy of future bespoke interventions aimed at mitigating the effects of such differences.

Discussion
Participants showed different palpation behaviours based on the perceived appropriateness of the pain facial 
expressions. Figure 3A as well as Supplementary Figs. S3 and S4 show that when participants rated “strongly 
disagree”, they tended to vary δfp in a small range (Kurtosis = 11.66). In the cases of “agree” and “disagree” the 
δfp kurtosis are high (19.75 and 21.46), showing that participants varied their palpation force in a broader range. 
Similarly we observed statistically significant differences in δtp between the rating “strongly agree” and “strongly 
disagree” in three gender-pair and four ethnicity-pair comparison cases as shown in Fig. 3B. Such variations 
in palpation behaviours could have assisted in decision-making (i.e., rating the appropriateness of the facial 
expression) by optimising the balance between effort (i.e., number of palpations applied and force variation) 
and information gain for perceptual decision.

The probability distribution of the AU transient parameter pairs rated as “strongly agree” in Fig. 4 shows 
multiple oriented local high joint probability distributions in β and τ . The orientations often tend to be parallel to 
one of the parameter axes, suggesting local regions where the effect of one parameter is stronger than the other. 
The pattern of these oriented distributions is reminiscent of a lattice shape, highlighting the inter-connectivity 
between the two parameter pairs, as the participants only perceived the resultant visual output where certain 

Brow Lowering

Lid Tightening

Nose wrinkling

Upper lip raising

Jaw dropping

Eye closing

0

1

2

3
Brow Lowering

Lid Tightening

Nose wrinkling

Upper lip raising

Jaw dropping

Eye closing

0

1

2

3
Brow Lowering

Lid Tightening

Nose wrinkling

Upper lip raising

Jaw dropping

Eye closing

0

1

2

3
Brow Lowering

Lid Tightening

Nose wrinkling

Upper lip raising

Jaw dropping

Eye closing

0

1

2

3

strongly agree strongly disagree agree disagree

Beta Tau Beta Tau

Figure 5.   Parameter variations ( β and τ ) for different AUs between decision cases. The error bars along the 
polar axes represent the standard error across participants.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4200  | https://doi.org/10.1038/s41598-022-08115-1

www.nature.com/scientificreports/

combinations of the two parameter values may render similar facial expressions. See Supplementary Figs. S5–S8 
for detailed results across all gender and ethnicity interaction contexts. This suggests that in general, the four 
combinations of low/high delay ( τ ) and low/high rate of change ( β ) triggers the perception of the appropriateness 
of the facial expression given palpation forces. However, it does not indicate the specific combinations across 
the six AUs. Therefore, we used a weighted average to compute a single centroid as explained in Fig. 4 caption.

Differences in the weighted averages of β and τ values are larger between “strongly agree” and “strongly disa-
gree” than between “agree” and “disagree” cases as shown in Fig. 5. AUs with larger movements such as AU26 
(Jaw Drop) varied most τ between “strongly agree” and “strongly disagree” cases with a larger τ associated with 
more appropriate ratings, suggesting the AU should be activated later in the facial expression. In contrast, AUs 
with smaller movements such as AU4 (Brow Lowerer) and AU7 (Lid Tightener) are perceived as more appro-
priate when the τ value is small (i.e., shorter delay), suggesting that the AU should be activated earlier in the 
facial expression. The variation of β across all AUs for the “strongly agree” case is smaller than for the “strongly 
disagree” case, and higher β in AUs with large movement were shown to be more appropriate. We speculate that 
these activation patterns could be related to the volume of the corresponding facial muscle groups and the meta-
bolic costs of the muscle contraction, where low τ groups could have lower metabolic costs than high τ groups.

We observed a variety of different effects associated with demographic factors regarding preferences for the 
weighted averages of transient parameters and comparing all rating cases. Results for gender are shown in Supple-
mentary Fig. S9 and those for ethnicity are shown in Supplementary Fig. S10. We discuss a few key AUs here for 
brevity. Specifically, we found a slower rate of eye closing (AU43) accompanied by a shorter delay in participant 
response across all gender interactions. Participants perceived faster facial responses to be more appropriate for 
White MorphFace when viewed by both ethnic groups of participants. Similarly, for White MorphFaces, White 
participants perceived shorter delay facial expressions as most appropriate whereas Asian participants perceived 
longer delays to be more appropriate. Examination of the effect of individual AUs such as AU7 (Lid Tightener), 
both genders perceived as most appropriate a longer delay of AU7 (Lid Tightener) on male faces and faster acti-
vation of AU7 on female faces, whereas male participants vs. male MorphFace perceived shorter delays as most 
appropriate and female vs. female perceived longer delays as most appropriate; Asian participants perceived 
slower rate of change as most appropriate, and White participants perceived shorter delays as most appropriate 
while Asian participants perceived longer delay as most appropriate. These findings suggest that bespoke facial 
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8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4200  | https://doi.org/10.1038/s41598-022-08115-1

www.nature.com/scientificreports/

pain expression models could be derived for different gender-ethnicity interaction scenarios with a focus on 
exposing and reducing perception biases.

The activation intensities of AUs in Fig. 6 shows that compared to the parameters with “disagree*”, the “agree*” 
parameters have higher synchrony. At maximum activation intensities, the AUs used to generate pain facial 
expressions that participants rated as “agree*” (i.e., most appropriate) are ordered relative to the facial muscle 
sizes and visual changes in displacement, which is consistent with our speculations based on our analysis of the 
weighted averages of individual AUs. Specifically, AUs with smaller muscle volumes such as AU9 (Nose Wrin-
kler), AU7 (Lid Tightener), and AU4 (Brow Lowerer) activate more quickly and intensely than AUs with larger 
muscle volumes such as AU26 (Jaw Drop) and AU10 (Upper Lip Raiser). This is corroborated by observing that 
trials rated as “disagree*” comprise activation of AU26 and AU10 earlier and more intensely than the other AUs.

In this paper, the general focus is to derive a model of the best transient AU parameters that is valid across 
known groups of people using a novel robotic patient framework. The current study included participants 
of White and Asian ethnicity, in the same age group and sex-matched. However, our sample did not include 
other ethnicities including Black participants, who might represent pain facial expressions differently than other 
groups. Troy highlighted the needs to consider both ethnic and cultural influences30, and even our limited diver-
sity in ethnicity in this paper showed that pain expressions driven by dynamic parameters depended on the sex 
and ethnicity interaction, and further studies will be done to test if this holds for broader classes of interaction, 
which is currently beyond the scope of this paper. Therefore, we invite caution in attributing the generalizability 
of our results across ethnicities and highlight the need to conduct further studies that include Black participants. 
A library containing pain expression models derived via homo and hetero interactions by sex and ethnicity 
will help us to better understand the visual stimuli of biases in recognising and expressing pains, in attempt to 
reduce biases in pain expression recognition in primary medical examinations via quantitative analysis of the 
expressions.

Our findings demonstrate homogeneity in the AU transient parameter values associated with pain facial 
expressions in response to palpation force in this visuo-haptic task, and diversity according to gender and ethnic 
patient-participant interactions. Participants generally agreed that appropriate pain facial expressions for low 
intensity pain comprise certain early onset upper face AUs, which could relate to their lower muscle volume and/
or visual salience. In contrast, when the induced pain intensity is high, pain facial expression comprise more 
lower face AUs that could have larger muscle volume and involve higher metabolic costs. We also found gender 
and ethnicity differences in the temporal regulation of force peaks. However, in general, participants increased 
the variation of the range of force peaks when their conviction about the decision is low (agree or disagree) 
compared to when their conviction was high (strongly agree or strongly disagree). This was accompanied by a 
higher positive skewness to use smaller temporal gaps δtp between force peaks. This pattern could reflect a visual 
information gain process whereby lower conviction of the outcome reflected from the visual information leads 
to larger variation in force peaks with shorter temporal gaps.

Methods
Experimental setup.  We developed a novel interactive facial expression evaluation platform to generate 
and evaluate a set of temporal facial movement parameters for synthesising pain facial expressions that users 
find appropriate for simulated patients undergoing abdominal palpation, as shown in Fig. 1A. Participants per-
formed palpation actions on a block of silicon (Ecoflex 00-10, Smooth-On, Inc, USA) abdomen phantom placed 
on top of a load cell (20KG Weight Sensor with HX711 Amplifier, DIYmalls). The applied palpation force is cap-
tured by the load cell and sent to Unity3D (Unity Technologies, USA) via an Arduino Uno through a serial port 
at a baud rate of 9600. A pain expression generation function is implemented in C# in Unity3D that describes 
the following relationship between palpation force and the AU activation intensity:

where Ci(t) is the activation intensity of the ith facial activation unit (AU) at time t. F(t) is the palpation force 
at time t. βi defines the gradient of the increasing sigmoid function for the ith AU (rate of change), and τi is the 
activation delay of the ith AU.

We included six Action Units (AU4: Brow Lowerer, AU7: Lid Tightener, AU9: Nose Wrinkler, AU10: Upper 
Lip Raiser, AU26: Jaw Drop and AU43: Eyes Closed)31 as these have been shown to be present in models of pain 
expressions of different intensities and across different cultures6,27. Using MakeHuman20 with the FACSHuman21 
plugin, we generated a natural expression mesh and 6 maximum AU activation mesh for each AU. We constrained 
the maximum activation intensities max(Ci) by the default mesh deformation defined in the FACSHuman plugin. 
We imported these meshes into Blender, assigned a shapekey = 1.0 to each AU with max(Ci) , and added to 
the natural expression which had shapekey = 0 . The shape key values represented the activation intensities for 
the AUs and could be controlled individually. We separated the head of the human avatar from the body and 
exported to Unity3D, where the corresponding mesh deformation for each AU could be controlled by setting 
their shape key values. Supplementary Figure S2 shows the natural expression and maximum pain expression 
synthesised using these AUs.

Experiment protocol with human participants.  We used the abdominal palpation platform shown 
in Fig. 1 to find what βi and τi should be assigned to the pain facial expression generating function to render 
appropriate pain facial expressions for a simulated patient undergoing abdominal palpation. For each AU, the 
rate of rise βi and delay of response τi were assigned a random number between 0 and 3 at increments of 0.3, the 
range and increment were both chosen based on results from a small pilot study on 4 volunteers. We projected 

(1)Ci(t) =
F(t)

1+ e−βi(t−τi)
, for i = 4, 7, 9, 10, 26, 43
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a dynamic bar plot next to the face as visual feedback for participants to regulate their palpation force. The 
maximum value represented by the bar was 3N as the palpation force applied on the abdomen had been shown 
to be between 0.09N and 2.22N32. We created four face identities comprising two genders (male and female) for 
each of two ethnicity (Black and White). Supplementary Figure S1 shows these four face identities rendered on 
MorphFace.

We recruited undergraduate students from Imperial College London (n = 16, 4 Asian females, 4 Asian males, 
4 White females, and 4 White males, aged 18 to 23 years (M = 20.9 years, SD = 2.14 years)) to participate in this 
experiment. Participants provided informed consent to take part in the experiment.

The study was approved by the Imperial College Research Ethics Committee (no. 20IC6295). All methods 
were carried out in accordance with the approved protocol and comply with general guidelines.

We briefed participants on the experimental protocol and asked them to read the experiment instruction 
document on arrival. We advised participants verbally that the MorphFace and the silicon phantom represents 
a patient with an underlying physiological condition that causes pain when the silicon phantom is pressed. 
We instructed participants to palpate the silicon phantom and observe the facial expressions projected onto 
MorphFace for each of 4 different faces with 50 trials per face identity. The appearance of the faces is shown in 
Supplementary Fig. S1. After viewing the facial expression, participants were tasked to respond to the statement 
“The facial expression is appropriate given the palpation force you applied” by pressing one of four buttons 
representing a 4-point Likert scale ranging from “strongly agree”, “agree”, “disagree” to “strongly disagree”. This 
statement was given verbally and was printed in bold on the experiment instruction document which the par-
ticipants could view during the experiment. The physical setup and the interactive pad are shown in Fig. 1A. We 
used two laptops to record force data, compute and render facial responses, and record responses (Intel Core i7 
2.5GHz, 16 GB memory, AMD Radeon R9 M370X), both using the same compiled Unity3D 2019.3.7f1 execut-
able. We saved all randomly generated parameters, palpation forces, and participant responses as text files at the 
end of each trial inside the compiled executable.

The stages for each trial are summarised below and shown in Fig. 1D. We included the same text in the 
experiment instruction document: 

1.	 “Initialising”: This text is highlighted in red and projected onto the tabletop next to the face. We instructed 
participants not to touch the phantom during this stage.

2.	 “Palpate”: This text is highlighted in green and projected next to the face. A force bar with green filled colour 
appeared below the text, indicating that the participant can now perform palpation on the phantom. The 
time limit of 6.5 s is not shown in the projection.

3.	 “Rate”: This text is highlighted in yellow and projected next to the face. We instructed participants to press 
one of the four buttons to register their response to the appropriateness of the facial expression displayed.

4.	 “Get Ready”: This text is highlighted in white and projected next to the face. Another text string projected 
above this text box showed the current trial number and total number of trials.

Participants performed practice trials using an Asian male face (not used in the experiment) until they felt 
confident to perform the set of actions described above.

Exclusion criteria.  We collected a total of 3200 data points (16 participants, 50 trials per MorphFace iden-
tity, 4 identities). Although the experimental protocol and plan had been explained to the participants, mistakes 
during the experiment were made. We therefore introduced the following exclusion criteria to remove invalid 
trials (as shown in Fig. 7):

1.	 Decision is not empty—participant made a choice and the choice was registered for that trial.
2.	 The minimum force for a trial is greater than 0—participant did not touch the silicon phantom during the 

’Initialising’ stage.
3.	 The number of peaks (palpation actions) is greater than 0—participant varied the force during the trial.
4.	 The number of peaks is less or equal to the upper adjacent value (UAV) calculated from filtered results from 

the previous three criteria (UAV = 9).
5.	 The number of force samples collected for a trial is greater than 2 times of the UAV (18).

3098 were labeled to be valid with an exclusion rate of 3.19%.

Data analysis.  Force data upsampling.  We only considered the peaks of palpation force for analysis. We 
obtained force peaks using findpeaks function in MATLAB (version 2019b, Mathworks Inc, Natic, MA, USA) 
with minimum prominence greater than 0.1 after upsampling force data by a factor of 5 using cubic spline fit-
ting (spline function in MATLAB). The median number of force peaks were 3 with an upper adjacent value of 

N = 3200

Collected Raw Data

N = 3200

Valid Decisions

N = 3195

Valid Force Range

N = 3114

Remove Outliers

N = 3098

Valid Sampling Rate

R.1 R.2 R.3 & 4 R.5

Figure 7.   Exclusion criteria on collected trial data. R.X represents an exclusion rule.
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9 within the 6.5 s sampling window. Therefore trials with less than 18 samples out of the two computers were 
excluded from the analysis, and the remaining trials are above the minimum required sampling frequency.

The same peak detection function was applied on the upsampled force data to extract the magnitude and 
timestamp of the peaks for each palpation cycle. The differences in peak forces and the timestamps were calcu-
lated and grouped by participant gender and ethnicity, as shown in Figs. S3 and S4.

The time differences for the first and last 10% of trials done by the participants were compared to see if the 
participants had enough practice such that they did not perform differently over the real trials. A Mann-Whitney 
U test was performed and returned p = 0.41 such that there was no statistically differences between the time 
differences in the first and last 10% of the trials, meaning they did not spend more or less time between their 
palpation actions between the start and the end of the experiment.

Probability distribution of transient parameters.  The randomly generated transient parameters β and τ were 
grouped based on the corresponding ratings of trials. The probability distribution of the ranges of β and τ were 
calculated by dividing their appearance frequencies by the total frequencies after they were placed in bins with 
a size of 0.4. The weighted averages of the probability distribution were calculated as a weighted average of the 
absolute peak and the peak of the marginal (row/column wise) distribution. Supplementary Figures S5–S8 show 
the probability distribution of these transient parameters grouped by gender and ethnicity of the participants.

Simulation using transient parameter pairs.  We grouped and calculated the median of the weighted averages 
of the transient parameter pairs for all trials rated with “strongly agree” and “agree”, and “disagree” and “strongly 
disagree” to simulate facial expressions using a sine wave as the force profile with an average of 2N and a period 
of 2 s. Video clips by ethnicity and gender pairs can be viewed at simulation video clips.

Data availability
The datasets generated and analysed during the current study are available in the OSF repos​itory.
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