5,014 research outputs found

    Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System

    Get PDF
    This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO) algorithm for Optimal Power Flow (OPF) of twoterminal High Voltage Direct Current (HVDC) electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm

    An Improvement of Load Flow Solution for Power System Networks using Evolutionary-Swarm Intelligence Optimizers

    Get PDF
    Load flow report which reveals the existing state of the power system network under steady operating conditions, subject to certain constraints is being bedeviled by issues of accuracy and convergence. In this research, five AI-based load flow solutions classified under evolutionary-swarm intelligence optimizers are deployed for power flow studies in the 330kV, 34-bus, 38-branch section of the Nigerian transmission grid. The evolutionary-swarm optimizers used in this research consist of one evolutionary algorithm and four swarm intelligence algorithms namely; biogeography-based optimization (BBO), particle swarm optimization (PSO), spider monkey optimization (SMO), artificial bee colony optimization (ABCO) and ant colony optimization (ACO). BBO as a sole evolutionary algorithm is being configured alongside four swarm intelligence optimizers for an optimal power flow solution with the aim of performance evaluation through physical and statistical means. Assessment report upon application of these standalone algorithms on the 330kV Nigerian grid under two (accuracy and convergence) metrics produced PSO and ACO as the best-performed algorithms. Three test cases (scenarios) were adopted based on the number of iterations (100, 500, and 1000) for proper assessment of the algorithms and the results produced were validated using mean average percentage error (MAPE) with values of voltage profile created by each solution algorithm in line with the IEEE voltage regulatory standards. All algorithms proved to be good load flow solvers with distinct levels of precision and speed. While PSO and SMO produced the best and worst results for accuracy with MAPE values of 3.11% and 36.62%, ACO and PSO produced the best and worst results for convergence (computational speed) after 65 and 530 average number of iterations. Since accuracy supersedes speed from scientific considerations, PSO is the overall winner and should be cascaded with ACO for an automated hybrid swarm intelligence load flow model in future studies. Future research should consider hybridizing ACO and PSO for a more computationally efficient solution model

    Multi-objective operation optimization of an electrical distribution network with soft open point

    Get PDF
    With the increasing amount of distributed generation (DG) integrated into electrical distribution networks, various operational problems, such as excessive power losses, over-voltage and thermal overloading issues become gradually remarkable. Innovative approaches for power flow and voltage controls are required to ensure the power quality, as well as to accommodate large DG penetrations. Using power electronic devices is one of the approaches. In this paper, a multi-objective optimization framework was proposed to improve the operation of a distribution network with distributed generation and a soft open point (SOP). An SOP is a distribution-level power electronic device with the capability of real-time and accurate active and reactive power flow control. A novel optimization method that integrates a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and a local search technique – the Taxi-cab method, was proposed to determine the optimal set-points of the SOP, where power loss reduction, feeder load balancing and voltage profile improvement were taken as objectives. The local search technique is integrated to fine tune the non-dominated solutions obtained by the global search technique, overcoming the drawback of MOPSO in local optima trapping. Therefore, the search capability of the integrated method is enhanced compared to the conventional MOPSO algorithm. The proposed methodology was applied to a 69-bus distribution network. Results demonstrated that the integrated method effectively solves the multi-objective optimization problem, and obtains better and more diverse solutions than the conventional MOPSO method. With the DG penetration increasing from 0 to 200%, on average, an SOP reduces power losses by 58.4%, reduces the load balance index by 68.3% and reduces the voltage profile index by 62.1%, all compared to the case without an SOP. Comparisons between SOP and network reconfiguration showed the outperformance of SOP in operation optimization

    Dynamic strategy based fast decomposed GA coordinated with FACTS devices to enhance the optimal power flow

    No full text
    International audienceUnder critical situation the main preoccupation of expert engineers is to assure power system security and to deliver power to the consumer within the desired index power quality. The total generation cost taken as a secondary strategy. This paper presents an efficient decomposed GA to enhance the solution of the optimal power flow (OPF) with non-smooth cost function and under severe loading conditions. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two sub problems are proposed to coordinate the OPF problem under different loading conditions: the first sub problem related to the active power planning under different loading factor to minimize the total fuel cost, and the second sub problem is a reactive power planning designed based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the proposed algorithm tested on IEEE 30-Bus, 26- Bus and IEEE 118-Bus under different loading conditions and compared with global optimization methods (GA, EGA, FGA, PSO, MTS, MDE and ACO) and with two robust simulation packages: PSAT and MATPOWER. The results show that the proposed approach can converge to the near solution and obtain a competitive solution at critical situation and with a reasonable time
    corecore