34,337 research outputs found

    A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes

    Get PDF
    Cultural landscapes are regarded to be complex socioecological systems that originated as a result of the interaction between humanity and nature across time. Cultural landscapes present complex-system properties, including nonlinear dynamics among their components. There is a close relationship between socioeconomy and landscape in cultural landscapes, so that changes in the socioeconomic dynamic have an effect on the structure and functionality of the landscape. Several numerical analyses have been carried out to study this relationship, with linear regression models being widely used. However, cultural landscapes comprise a considerable amount of elements and processes, whose interactions might not be properly captured by a linear model. In recent years, machine-learning techniques have increasingly been applied to the field of ecology to solve regression tasks. These techniques provide sound methods and algorithms for dealing with complex systems under uncertainty. The term ‘machine learning’ includes a wide variety of methods to learn models from data. In this paper, we study the relationship between socioeconomy and cultural landscape (in Andalusia, Spain) at two different spatial scales aiming at comparing different regression models from a predictive-accuracy point of view, including model trees and neural or Bayesian networks

    Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model

    Full text link
    Long-term load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment in the construction of excess power facilities, while an underestimate of future load will result in insufficient generation and unmet demand. This paper presents first-of-its-kind approach to use multiplicative error model (MEM) in forecasting load for long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, accessed from a U.S. regional transmission operator, and recession data for years 1993-2016 is used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. To incorporate future volatility, backtesting of MEM model is performed. Two performance indicators used to assess the proposed model are mean absolute percentage error (for both in-sample model fit and out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table

    Short-term load forecasting based on a semi-parametric additive model

    Get PDF
    Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.Short-term load forecasting, additive model, time series, forecast distribution

    The evolutionary neuroscience of tool making

    Get PDF
    The appearance of the first intentionally modified stone tools over 2.5 million years ago marked a watershed in human evolutionary history, expanding the human adaptive niche and initiating a trend of technological elaboration that continues to the present day. However, the cognitive foundations of this behavioral revolution remain controversial, as do its implications for the nature and evolution of modern human technological abilities. Here we shed new light on the neural and evolutionary foundations of human tool making skill by presenting functional brain imaging data from six inexperienced subjects learning to make stone tools of the kind found in the earliest archaeological record. Functional imaging of this complex, naturalistic task was accomplished through positron emission tomography with the slowly decaying radiological tracer (18)flouro-2-deoxyglucose. Results show that simple stone tool making is supported by a mosaic of primitive and derived parietofrontal perceptual-motor systems, including recently identified human specializations for representation of the central visual field and perception of three-dimensional form from motion. In the naive tool makers reported here, no activation was observed in prefrontal executive cortices associated with strategic action planning or in inferior parietal cortex thought to play a role in the representation of everyday tool use skills. We conclude that uniquely human capacities for sensorimotor adaptation and affordance perception, rather than abstract conceptualization and planning, were central factors in the initial stages of human technological evolution. The appearance of the first intentionally modified stone tools over 2.5 million years ago marked a watershed in human evolutionary history, expanding the human adaptive niche and initiating a trend of technological elaboration that continues to the present day. However, the cognitive foundations of this behavioral revolution remain controversial, as do its implications for the nature and evolution of modern human technological abilities. Here we shed new light on the neural and evolutionary foundations of human tool making skill by presenting functional brain imaging data from six inexperienced subjects learning to make stone tools of the kind found in the earliest archaeological record. Functional imaging of this complex, naturalistic task was accomplished through positron emission tomography with the slowly decaying radiological tracer (18)flouro-2-deoxyglucose. Results show that simple stone tool making is supported by a mosaic of primitive and derived parietofrontal perceptual-motor systems, including recently identified human specializations for representation of the central visual field and perception of three-dimensional form from motion. In the naive tool makers reported here, no activation was observed in prefrontal executive cortices associated with strategic action planning or in inferior parietal cortex thought to play a role in the representation of everyday tool use skills. We conclude that uniquely human capacities for sensorimotor adaptation and affordance perception, rather than abstract conceptualization and planning, were central factors in the initial stages of human technological evolution

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    • 

    corecore